WO2001078078A1 - Dispositif de lecture d'une memoire - Google Patents

Dispositif de lecture d'une memoire Download PDF

Info

Publication number
WO2001078078A1
WO2001078078A1 PCT/FR2001/001077 FR0101077W WO0178078A1 WO 2001078078 A1 WO2001078078 A1 WO 2001078078A1 FR 0101077 W FR0101077 W FR 0101077W WO 0178078 A1 WO0178078 A1 WO 0178078A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
column
reading
reference voltage
vref
Prior art date
Application number
PCT/FR2001/001077
Other languages
English (en)
Inventor
Hervé COVAREL
Eric Compagne
Original Assignee
Dolphin Integration
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR0004589A priority Critical patent/FR2807562B1/fr
Application filed by Dolphin Integration filed Critical Dolphin Integration
Priority to US10/018,078 priority patent/US6724673B2/en
Publication of WO2001078078A1 publication Critical patent/WO2001078078A1/fr

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/14Dummy cell management; Sense reference voltage generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells

Definitions

  • the present invention relates to a device for reading a memory and more particularly a read only memory (ROM, PROM, EPROM, EEPROM).
  • ROM read only memory
  • PROM PROM
  • EPROM EPROM
  • EEPROM electrically erasable programmable read-only memory
  • FIG. 1 schematically and partially represents a ROM memory 2 comprising a plurality of memory points arranged in rows or word lines and in columns or bit lines. Each memory point may or may not have an active cell 4.
  • the cells 4 are made up of transistors or any other switching circuit capable of connecting the column comprising this cell to a low voltage, commonly ground.
  • the addressing of cells 4 is carried out by rows or word lines WL 6 connected to a line decoder 8. When an active cell is addressed, it modifies the potential of column 10 to which it is connected.
  • certain cells are made non-active by construction, generally by deletion of one of their connections, and the corresponding memory point never connects the corresponding column to ground regardless of the row potential corresponding.
  • Each column 10 is connected to a high supply potential Vdd via a precharge transistor 12 and is connected to a first input 16 of a sense amplifier 18. Groups of columns are optionally associated by multiplexers (not shown). A second input 20 of each sense amplifier 18 is connected to a reference potential Vref.
  • the column 10 is brought to a precharge potential Vpch which is substantially equal to the supply voltage Vdd and a high signal is applied to one of the rows WL. If the memory point is not programmed, column 10 substantially retains the precharge voltage on its terminal 16. On the other hand, if the memory point is programmed, column 10 is discharged by a current I which passes through cell 4. The voltage on line 10 drops and the read amplifier 18 switches when the voltage on terminal 16 falls below the reference potential Vref on terminal 20.
  • the switching time of amplifier 18 or read time is given by relation:
  • T C. ⁇ V / I in which ⁇ V is the potential difference Vpch-Vref between the inputs 16 and 20 of the sense amplifier 18, beyond which the switching of the sense amplifier 18, C occurs represents the capacity of column 10 and I represents the value of the current flowing in cell 4.
  • a known solution for optimizing the value of Vref consists in carrying out a differential reading by adding memory columns 2 to the memory and taking a reference voltage from these witness columns.
  • This solution therefore has the drawback of increasing the size and the cost of the memory.
  • each control column 21 introduces a parasitic capacity.
  • An object of the present invention is to provide a method and a device for reading a ROM memory overcoming the above drawbacks.
  • a device for reading a cell of a memory comprising a differential amplifier for reading having a first input terminal connected to a column of cells and a circuit intended to supply a second terminal of amplifier input a reference voltage.
  • the aforementioned circuit includes means for storing the voltage of said column and means for applying as reference voltage the stored voltage modified by a predetermined amount.
  • the presence of a cell is manifested by a reduction in the potential of a column and the reference voltage is reduced by a predetermined amount relative to the stored voltage.
  • the above-mentioned circuit comprises a first capacitive element intended to memorize the precharge voltage and a second capacitive element connectable in parallel on the first to fix the value of the reference voltage.
  • the capacitive elements consist of the gate-source, gate-substrate and gate-drain capacitors of MOS transistors.
  • the present invention also relates to a method for reading a cell from a memory, comprising the steps consisting in memorizing the voltage of a column just before a reading; and modify the stored voltage by a predetermined amount and use the modified voltage as the reference voltage.
  • this reading method also consists in comparing the reference voltage with a column voltage. According to an embodiment of the present invention, this reading method also consists in applying the precharge voltage to a first capacitor, - disconnecting the first capacitor from the precharge voltage; and connect in parallel on the first capacitor a second capacitor.
  • Figure 1 schematically and partially represents a ROM memory according to the prior art
  • Figure 2 schematically represents a column of a ROM memory connected to a reading device according to the invention
  • Figure 3 is a timing diagram illustrating the method for reading a ROM type memory according to the invention.
  • FIG. 2 illustrates a single column or bit line 10 of a ROM memory connected to a reading device according to the invention.
  • This column 10 is associated with several cells 4 and is connected to a high supply potential Vdd via a precharge transistor 12.
  • the state of a cell 4 (programmed or not programmed) is read when the row 6 corresponding to this cell is selected by the line decoder 8.
  • a terminal in column 10 is connected to a first input 16 of a differential amplifier 18.
  • a second input 20 of the amplifier 18 is connected to a node 32 of a circuit 34 intended to supply a reference voltage Vref.
  • the node 32 is connected to the column 10 via a switch 36 controlled by a binary signal INT.
  • the node 32 is connected to the ground by a first capacitive element 38.
  • the node 32 is connected to the first terminal of a second capacitive element 40 whose second terminal can be connected to a first voltage VI or to the ground by a switch 42 controlled by a binary signal INJ.
  • FIG. 3 illustrates the operation of the reading device according to the invention.
  • Curve 50 represents the signal INT
  • curve 52 represents the signal INJ
  • curve 54 represents the signal of the word line L
  • curve 56 represents the voltage of an unprogrammed memory point (absence of active cell)
  • the curve 57 represents the voltage of a programmed memory point (presence of an active cell)
  • curve 58 represents the reference voltage Vref generated by circuit 34 at input 20 of amplifier 18.
  • the column 10 is connected by means of the precharge transistor 12 to the supply voltage Vdd and takes a voltage Vpch close to the voltage Vdd, which depends on the structure of the memory.
  • the signal INT is passed from the logic state "1" to the logic state "0" to open the switch 36 which was initially closed.
  • the node 32 then remains at the potential of line 10.
  • the binary signal INJ is passed from the logic state "0" to the logic state "1". This has the effect of switching the switch 42 and of connecting the second terminal of the capacitive element 40 to ground (Vss).
  • Vss ground
  • the two capacitive elements are then found in parallel and the distribution of the charge stored on the capacitive elements 38 and 40 is modified. If we call Cl, C2 the capacitance values of the capacitive elements 38, 40 and which we consider to simplify that Vss is equal to 0:
  • the charge Q1 initially stored on the capacitive element 38 is equal to Cl.Vpch
  • the charge Q2 initially stored on the capacitive element 40 is equal to C2 (Vpch-VI); the total charge is therefore
  • Vref Vpch - V1.C2 / (C1 + C2)
  • the reference voltage is therefore very precisely defined with respect to the precharging voltage on line 10. It is therefore possible to choose a reference voltage very close to the precharging voltage.
  • other subtractor or divider circuits may be provided by those skilled in the art to provide a reference voltage linked to a stored precharge voltage.
  • the binary read signal L is passed from the logic state "0" to the logic state "1".
  • the first and second capacitive elements 38, 40 may be capacitors of NMOS transistors, for example gate-substrate capacitors of transistors whose drain, source and substrate are connected to ground.
  • a person skilled in the art can make various variants of the invention as long as he plans to store the voltage of a column of ROM memory just before a reading and to use a fraction of this voltage as reference voltage of reading.
  • the invention has been described in relation to a memory for which the potential of a column is likely to decrease, it will also apply to the case of a memory for which the potential of a column is likely to increase. The reference potential will then be increased compared to the normal potential of a column.
  • the mutual synchronizations of the signals WL, INT and INJ may be modified. Preferably INJ will be delayed relative to INT by an inverter. WL can be switched after, at the same time, or shortly before INT.
  • the invention has been described in the context of read-only memories, it will be noted that it generally applies to any memory in which each cell is associated with a single reading column.
  • the columns are associated with preload transistors 12 with common control.

Landscapes

  • Read Only Memory (AREA)

Abstract

L'invention concerne un dispositif de lecture d'une cellule (4) d'une mémoire, comprenant un amplificateur différentiel de lecture (18) ayant une première borne d'entrée (16) reliée à une colonne de cellules (10) et un circuit (34) destiné à fournir à une deuxième borne d'entrée (20) de l'amplificateur (18) une tension de référence (Vref). Le circuit (34) comporte un moyen (38) pour mémoriser la tension de ladite colonne et un moyen (38, 40, 42) pour appliquer en tant que tension de référence (Vref) la tension mémorisée modifiée d'une quantité prédéterminée.

Description

DISPOSITIF DE LECTURE D'UNE MEMOIRE
La présente invention concerne un dispositif de lecture d'une mémoire et plus particulièrement d'une mémoire morte (ROM, PROM, EPROM, EEPROM) .
La figure 1 représente schématiquement et partiellement une mémoire ROM 2 comportant une pluralité de points mémoire disposés en rangées ou lignes de mot et en colonnes ou lignes de bit. Chaque point mémoire comporte ou non une cellule active 4. Les cellules 4 sont constituées de transistors ou tout autre circuit de commutation susceptible de connecter vers une tension basse, couramment la masse, la colonne comportant cette cellule. L'adressage des cellules 4 est réalisé par des rangées ou lignes de mot WL 6 reliées à un décodeur de ligne 8. Quand une cellule active est adressée, elle modifie le potentiel de la colonne 10 à laquelle elle est connectée. Dans le cas d'une simple ROM, certaines cellules sont rendues non actives par construction, généralement par suppression de l'une de leurs connexions, et le point mémoire correspondant ne relie jamais la colonne correspondante à la masse quel que soit le potentiel de rangée correspondant. Chaque colonne 10 est reliée à un potentiel d'alimentation haut Vdd par l'intermédiaire d'un transistor de précharge 12 et est reliée à une première entrée 16 d'un amplificateur de lecture 18. Des groupes de colonnes sont éventuellement associés par des multiplexeurs (non représentés) . Une deuxième entrée 20 de chaque amplificateur de lecture 18 est reliée à un potentiel de référence Vref.
Pour lire un point mémoire, la colonne 10 est portée à un potentiel de précharge Vpch qui est sensiblement égal à la tension d'alimentation Vdd et un signal haut est appliqué sur l'une des rangées WL. Si le point mémoire n'est pas programmé, la colonne 10 conserve sensiblement la tension de précharge sur sa borne 16. Par contre, si le point mémoire est programmé, la colonne 10 est déchargée par un courant I qui passe dans la cellule 4. La tension sur la ligne 10 chute et l'amplificateur de lecture 18 commute lorsque la tension sur la borne 16 passe en dessous du potentiel de référence Vref sur la borne 20. Le temps de commutation de l'amplificateur 18 ou temps de lecture est donné par la relation :
T = C.ΔV/I dans laquelle ΔV est la différence de potentiel Vpch-Vref entre les entrées 16 et 20 de l'amplificateur de lecture 18, au-delà de laquelle se produit la commutation de l'amplificateur de lecture 18, C représente la capacité de la colonne 10 et I représente la valeur du courant qui passe dans la cellule 4.
Les valeurs respectives de la capacité C et du courant I peuvent être considérées comme constantes. Ainsi, pour réduire le temps de lecture T, il faut réduire la tension ΔV, c'est-à-dire choisir une tension Vref aussi proche que possible de Vpch. Or, il est nécessaire de prévoir une marge de sécurité pour tenir compte des dérives technologiques, des décalages de potentiels aux entrées de l'amplificateur 18, des fluctuations des potentiels Vdd et Vref, du potentiel bas Vss, et de la différence entre Vdd et Vpch.
Une solution connue pour optimiser la valeur de Vref consiste à effectuer une lecture différentielle en ajoutant à la mémoire 2 des colonnes témoin et en prélevant une tension de référence sur ces colonnes témoin. En pratique, il faut prévoir un assez grand nombre de colonnes témoin, par exemple une pour huit colonnes réelles. Cette solution présente donc l'inconvénient d'accroître la taille et le coût de la mémoire. En outre, chaque colonne témoin 21 introduit une capacité parasite.
Un objet de la présente invention est de prévoir un procédé et un dispositif de lecture d'une mémoire ROM palliant les inconvénients ci-dessus .
Cet objet est atteint grâce à un dispositif de lecture d'une cellule d'une mémoire, comprenant un amplificateur différentiel de lecture ayant une première borne d'entrée reliée à une colonne de cellules et un circuit destiné à fournir à une deuxième borne d ' entrée de 1 ' amplificateur une tension de référence. Le circuit susmentionné comporte un moyen pour mémoriser la tension de ladite colonne et un moyen pour appliquer en tant que tension de référence la tension mémorisée modifiée d'une quantité prédéterminée.
Selon un mode de réalisation de la présente invention, la présence d'une cellule se manifeste par une réduction du potentiel d'une colonne et la tension de référence est réduite d'une quantité prédéterminée par rapport à la tension mémorisée. Selon un mode de réalisation de la présente invention, le circuit susmentionné comporte un premier élément capacitif destiné à mémoriser la tension de précharge et un deuxième élément capacitif connectable en parallèle sur le premier pour fixer la valeur de la tension de référence. Selon un mode de réalisation de la présente invention, les éléments capacitifs sont constitués des capacités grille- source, grille-substrat et grille-drain de transistors MOS.
La présente invention vise aussi un procédé de lecture d'une cellule d'une mémoire, comprenant les étapes consistant à mémoriser la tension d'une colonne juste avant une lecture ; et modifier la tension mémorisée d'une quantité prédéterminée et utiliser la tension modifiée comme tension de référence.
Selon un mode de réalisation de la présente invention, ce procédé de lecture consiste en outre à comparer la tension de référence à une tension de colonne. Selon un mode de réalisation de la présente invention, ce procédé de lecture consiste en outre à appliquer la tension de précharge sur un premier condensateur ,- déconnecter le premier condensateur de la tension de précharge ; et connecter en parallèle sur le premier condensateur un deuxième condensateur.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1, décrite précédemment, représente schémati- quement et partiellement une mémoire ROM selon 1 ' art antérieur , - la figure 2 représente schématiquement une colonne d'une mémoire ROM reliée à un dispositif de lecture selon l'invention ,- et la figure 3 est un chronogramme illustrant le procédé de lecture d'une mémoire de type ROM selon l'invention.
La figure 2 illustre une seule colonne ou ligne de bit 10 d'une mémoire ROM reliée à un dispositif de lecture selon l'invention. Cette colonne 10 est associée à plusieurs cellules 4 et est reliée à un potentiel d'alimentation haut Vdd par l'intermédiaire d'un transistor de précharge 12. L'état d'une cellule 4 (programmé ou non programmé) est lu lorsque la rangée 6 correspondant à cette cellule est sélectionnée par le décodeur de ligne 8. Une borne de la colonne 10 est reliée à une première entrée 16 d'un amplificateur différentiel 18. Une deuxième entrée 20 de l'amplificateur 18 est reliée à un nœud 32 d'un circuit 34 destiné à fournir une tension de référence Vref. Le nœud 32 est relié à la colonne 10 par l'intermédiaire d'un interrupteur 36 commandé par un signal binaire INT. Le nœud 32 est relié à la masse par un premier élément capacitif 38. Le nœud 32 est relié à la première borne d'un deuxième élément capacitif 40 dont la deuxième borne peut être connectée à une première tension VI ou à la masse par un interrupteur 42 commandé par un signal binaire INJ. La figure 3 illustre le fonctionnement du dispositif de lecture selon l'invention. La courbe 50 représente le signal INT, la courbe 52 représente le signal INJ, la courbe 54 représente le signal de la ligne de mot L, la courbe 56 représente la tension d'un point mémoire non programmé (absence de cellule active) , la courbe 57 représente la tension d'un point mémoire programmé (présence d'une cellule active) , et la courbe 58 représente la tension de référence Vref générée par le circuit 34 à l'entrée 20 de l'amplificateur 18. Initialement, la colonne 10 est connectée au moyen du transistor de précharge 12 à la tension d'alimentation Vdd et prend une tension Vpch proche de la tension Vdd, qui dépend de la structure de la mémoire.
A un instant tl auquel on souhaite effectuer une lecture, on fait passer le signal INT de l'état logique "1" à l'état logique "0" pour ouvrir l'interrupteur 36 qui était initialement fermé. Le nœud 32 reste alors au potentiel de la ligne 10.
A un instant t2, on fait passer le signal binaire INJ de l'état logique "0" à l'état logique "1". Ceci a pour effet de faire commuter le commutateur 42 et de connecter la deuxième borne de l'élément capacitif 40 à la masse (Vss) . Les deux éléments capacitifs se retrouvent alors en parallèle et la répartition de la charge stockée sur les éléments capacitifs 38 et 40 est modifiée. Si on appelle Cl, C2 les valeurs des capacités des éléments capacitifs 38, 40 et que l'on considère pour simplifier que Vss est égal à 0 :
- la charge Ql initialement stockée sur l'élément capacitif 38 est égale à Cl.Vpch, la charge Q2 initialement stockée sur l'élément capacitif 40 est égale à C2 (Vpch-VI) ; la charge totale est donc
Q = (Cl+C2)Vpch - C2.V1
- après la fermeture de l'interrupteur 42, la charge sur les condensateurs 38 et 40 et Q devient égale à (Cl+C2)Vref .
Ainsi Vref = Vpch - V1.C2/ (C1+C2) On pourra par exemple choisir VI = Vdd ou VI = Vpch et la tension de référence sera une tension réduite par rapport à Vpch, par exemple liée à Vpch par un coefficient constant égal à C1/(C1+C2) . La tension de référence est donc définie de façon très précise par rapport à la tension de précharge sur la ligne 10. On peut donc choisir une tension de référence très proche de la tension de précharge. On notera que d'autres circuits soustracteurs ou diviseurs pourront être prévus par l'homme de l'art pour fournir une tension de référence liée à une tension de précharge mémorisée. A un instant t3, on fait passer le signal binaire de lecture L de l' état logique "0" à l' état logique "1" . Si le point mémoire considéré n'est pas programmé, le potentiel de la ligne 10 au point 16 reste à son niveau initial de précharge, illustré par la courbe 56 ou chute très lentement par rapport à ce niveau. Si le point mémoire considéré est programmé, la colonne 10 se décharge. A un instant t4, le potentiel de la ligne 10, illustré par la courbe 57, devient inférieur à Vref et la lecture est effectuée. Du fait que Vref est peu inférieur à Vpch, la durée t3- t4 est particulièrement brève. Dans un mode de réalisation, les premier et deuxième éléments capacitifs 38, 40 peuvent être des capacités de transistors NMOS, par exemple des capacités grille-substrat de transistors dont le drain, la source et le substrat sont reliés à la masse. L'homme de l'art pourra apporter diverses variantes à l'invention du moment qu'il prévoit de mémoriser la tension d'une colonne de mémoire ROM juste avant une lecture et d'utiliser une fraction de cette tension comme tension de référence de lecture. De plus bien que l'invention ait été décrite en relation avec une mémoire pour laquelle le potentiel d'une colonne est susceptible de diminuer, elle s'appliquera également au cas d'une mémoire dont le potentiel d'une colonne est susceptible d'augmenter. Le potentiel de référence sera alors augmenté par rapport au potentiel normal d'une colonne. A titre de variante, on notera que les synchronisations mutuelles des signaux WL, INT et INJ pourront être modifiées. De préférence INJ sera retardé par rapport à INT par un inverseur. WL pourra être commuté après, en même temps, ou peu avant INT. Bien que l'invention ait été décrite dans le cadre de mémoires mortes, on notera qu'elle s'applique de façon générale à toute mémoire dans laquelle chaque cellule est associée à une seule colonne de lecture.
Dans le mode de réalisation décrit, les colonnes sont associées à des transistors de précharge 12 à commande commune. On pourrait prévoir des commandes séparées pour chaque transistor de précharge ou pour des sous-ensembles de transistors de précharge.
Ceci permet de réduire la consommation à chaque lecture.

Claims

REVENDICATIONS
1. Dispositif de lecture d'une cellule (4) d'une mémoire, comprenant un amplificateur différentiel de lecture (18) ayant une première borne d'entrée (16) reliée à une colonne de cellules (10) et un circuit (34) destiné à fournir à une deuxième borne d'entrée (20) de l'amplificateur (18) une tension de référence (Vref) , caractérisé en ce que ledit circuit (34) comporte un moyen (38) pour mémoriser la tension de ladite colonne et un moyen (38, 40, 42) pour appliquer en tant que tension de référence (Vref) la tension mémorisée modifiée d'une quantité prédéterminée.
2. Dispositif selon la revendication 1, dans lequel la présence d'une cellule se manifeste par une réduction du potentiel d'une colonne et caractérisé en ce que la tension de référence est réduite d'une quantité prédéterminée par rapport à la tension mémorisée.
3. Dispositif selon la revendication 1, caractérisé en ce que ledit circuit (34) comporte un premier élément capacitif (38) destiné à mémoriser la tension de précharge (Vpch) et un deuxième élément capacitif (40) connectable en parallèle sur le premier pour fixer la valeur de la tension de référence (Vref) .
4. Dispositif selon la revendication 3, caractérisé en ce que les éléments capacitifs sont constitués des capacités grille-source, grille-substrat et grille-drain de transistors MOS.
5. Dispositif selon la revendication 1, caractérisé en ce que chaque colonne est associée à un transistor de précharge (12) et en ce que les transistors de précharge sont adressables indépendamment .
6. Procédé de lecture d'une cellule (4) d'une mémoire, caractérisé en ce qu'il comprend les étapes suivantes :
- mémoriser la tension d'une colonne juste avant une lecture ,- et modifier la tension mémorisée d'une quantité prédéterminée et utiliser la tension modifiée comme tension de référence.
7. Procédé de lecture selon la revendication 6, carac- térisé en ce qu'il consiste en outre à comparer ladite tension de référence à une tension de colonne.
8. Procédé de lecture selon la revendication 6, caractérisé en ce qu'il comprend les étapes suivantes :
- appliquer la tension de précharge (Vpch) sur un premier condensateur (38) , -
- déconnecter le premier condensateur de la tension de précharge ; et
- connecter en parallèle sur le premier condensateur un deuxième condensateur (40) .
PCT/FR2001/001077 2000-04-10 2001-04-09 Dispositif de lecture d'une memoire WO2001078078A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR0004589A FR2807562B1 (fr) 2000-04-10 2000-04-10 Dispositif de lecture d'une memoire
US10/018,078 US6724673B2 (en) 2000-04-10 2001-04-09 Memory reading device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/04589 2000-04-10
FR0004589A FR2807562B1 (fr) 2000-04-10 2000-04-10 Dispositif de lecture d'une memoire

Publications (1)

Publication Number Publication Date
WO2001078078A1 true WO2001078078A1 (fr) 2001-10-18

Family

ID=8849092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001077 WO2001078078A1 (fr) 2000-04-10 2001-04-09 Dispositif de lecture d'une memoire

Country Status (3)

Country Link
US (1) US6724673B2 (fr)
FR (1) FR2807562B1 (fr)
WO (1) WO2001078078A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2874734A1 (fr) * 2004-08-26 2006-03-03 St Microelectronics Sa Procede de lecture de cellules memoire programmables et effacables electriquement, a precharge anticipee de lignes de bit
JP4855773B2 (ja) * 2005-12-26 2012-01-18 株式会社東芝 半導体記憶装置及びそのデータ読み出し方法
JP5490432B2 (ja) * 2008-03-17 2014-05-14 ピーエスフォー ルクスコ エスエイアールエル 半導体装置
US20090296506A1 (en) * 2008-05-28 2009-12-03 Macronix International Co., Ltd. Sense amplifier and data sensing method thereof
US9460759B2 (en) 2014-01-07 2016-10-04 Infineon Technologies Ag Sense amplifier of a memory cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622655A (en) * 1983-05-04 1986-11-11 Nec Corporation Semiconductor memory
US4669065A (en) * 1983-11-26 1987-05-26 Matsushita Electronics Corporation Dynamic memory apparatus having a sense amplifier and a reference voltage connection circuit therefor
DE19928598A1 (de) * 1998-06-23 1999-12-30 Mitel Semiconductor Ltd Halbleiterspeicher
US6018481A (en) * 1997-10-22 2000-01-25 Kabushiki Kaisha Toshiba Dynamic semiconductor memory device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0678871B1 (fr) * 1994-03-22 2000-05-31 STMicroelectronics S.r.l. Dispositif de lecture de réseau de cellules de mémoire
JPH08147968A (ja) * 1994-09-19 1996-06-07 Mitsubishi Electric Corp ダイナミックメモリ
EP0740307B1 (fr) * 1995-04-28 2001-12-12 STMicroelectronics S.r.l. Circuit amplificateur de détection pour dispositifs de mémoire à semi-conducteurs
TW367503B (en) * 1996-11-29 1999-08-21 Sanyo Electric Co Non-volatile semiconductor device
JP3568868B2 (ja) * 2000-02-28 2004-09-22 沖電気工業株式会社 読み出し専用メモリ
JP3651767B2 (ja) * 2000-04-24 2005-05-25 シャープ株式会社 半導体記憶装置
US6535434B2 (en) * 2001-04-05 2003-03-18 Saifun Semiconductors Ltd. Architecture and scheme for a non-strobed read sequence
EP1288955A3 (fr) * 2001-08-17 2004-09-22 Kabushiki Kaisha Toshiba Dispositifs de mémoire à semiconducteurs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622655A (en) * 1983-05-04 1986-11-11 Nec Corporation Semiconductor memory
US4669065A (en) * 1983-11-26 1987-05-26 Matsushita Electronics Corporation Dynamic memory apparatus having a sense amplifier and a reference voltage connection circuit therefor
US6018481A (en) * 1997-10-22 2000-01-25 Kabushiki Kaisha Toshiba Dynamic semiconductor memory device
DE19928598A1 (de) * 1998-06-23 1999-12-30 Mitel Semiconductor Ltd Halbleiterspeicher

Also Published As

Publication number Publication date
FR2807562A1 (fr) 2001-10-12
US20030021160A1 (en) 2003-01-30
US6724673B2 (en) 2004-04-20
FR2807562B1 (fr) 2005-03-25

Similar Documents

Publication Publication Date Title
EP0585150B1 (fr) Circuit de lecture pour mémoire, avec précharge et équilibrage avant lecture
EP1727147B1 (fr) Amplificateur de lecture pour mémoire dynamique
EP0270410B1 (fr) Circuit intégré du type circuit logique comportant une mémoire non volatile programmable électriquement
EP1434237B1 (fr) Cellule de mémoire SRAM non volatile
EP0279712B1 (fr) Circuit de lecture pour mémoire
FR2799874A1 (fr) Dispositif de memoire a semiconducteur
FR2650694A1 (fr) Memoire vive pour machine de traitement de donnees
EP0278832B1 (fr) Circuit de lecture pour mémoire
WO2001078078A1 (fr) Dispositif de lecture d'une memoire
FR2838861A1 (fr) Memoire effacable et programmable electriquement comprenant un dispositif de gestion d'une tension d'alimentation interne
FR2838840A1 (fr) Comparateur de tension d'alimentation
FR2824176A1 (fr) Procede et dispositif de lecture de cellules de memoire dynamique
FR2826772A1 (fr) Procede et circuit de rafaichissement de cellules de memoire dynamique
EP0954865B1 (fr) Procede de programmation d'une memoire de type eprom-flash
EP1168359B1 (fr) Procédé de commande d'un accès en lecture d'une mémoire vive dynamique et mémoire correspondante.
FR2810150A1 (fr) Dispositif de memoire vive dynamique et procede de commande d'un acces en lecture d'une telle memoire
WO2011098743A1 (fr) Cellule de memoire vive sram a dix transistors
FR2784219A1 (fr) Architecture de circuit memoire
EP0845783B1 (fr) Circuit de lecture pour mémoire
EP1103979A1 (fr) Dispositif de mémoire vive dynamique, et procédé de lecture correspondant
EP1624460B1 (fr) Mémoire comprenant un point mémoire de type SRAM, procédé de lecture et procédé d'écriture associés.
EP0478440B1 (fr) Circuit de précharge pour la lecture de mémoires
EP0996064B1 (fr) Cellule mémoire à programmation unique
FR2765026A1 (fr) Procede et circuit de lecture pour memoire dynamique
FR2819091A1 (fr) Rafraichissement de memoire dram

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10018078

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP