WO2001076865A1 - Metal sheet coated with resin and method for its production - Google Patents

Metal sheet coated with resin and method for its production Download PDF

Info

Publication number
WO2001076865A1
WO2001076865A1 PCT/JP2001/003137 JP0103137W WO0176865A1 WO 2001076865 A1 WO2001076865 A1 WO 2001076865A1 JP 0103137 W JP0103137 W JP 0103137W WO 0176865 A1 WO0176865 A1 WO 0176865A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
thin film
metal plate
coupling agent
silane coupling
Prior art date
Application number
PCT/JP2001/003137
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshio Wakayama
Original Assignee
Mitsubishi Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics, Inc. filed Critical Mitsubishi Plastics, Inc.
Priority to JP2001574361A priority Critical patent/JP4065693B2/en
Priority to KR1020027013745A priority patent/KR100663762B1/en
Publication of WO2001076865A1 publication Critical patent/WO2001076865A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin

Definitions

  • the present invention relates to a resin-coated metal plate and a method for producing the same, and a container for a capacitor exterior using the resin-coated metal plate.
  • a resin-coated metal plate in which the surface of a metal plate such as an aluminum plate is coated with a thermoplastic resin coating film has excellent corrosion resistance, electrical insulation, and design, and is used in various fields.
  • an aluminum electrolytic capacitor stores a capacitor element impregnated with an electrolyte in a cylindrical container formed by drawing an aluminum plate, and seals the opening of the container with rubber, etc., and electrically insulates the outer peripheral surface. It is covered with a heat-shrinkable tube made of vinyl chloride resin or olefin resin for the purpose of displaying contents.
  • a metal-coated plate such as an aluminum plate is coated with an insulating resin to form a resin-coated plate.
  • This resin-coated plate is drawn or ironed to form an outer container or cap.
  • There has been proposed a technique for omitting the step of covering with a heat-shrinkable tube and at the same time achieving an insulating property for example, Japanese Patent Laid-Open No. 1-17522, Japanese Utility Model Application Laid-Open No. 3-799974). No., etc.).
  • Techniques for coating the surface of an aluminum plate with an insulating resin to form a resin-coated plate include a method of applying an epoxy resin, a vinyl chloride resin, or a polyester resin to the surface of an aluminum plate, and a method of coating the surface of the aluminum plate. There is a method of laminating a resin film on the substrate.
  • the resin-coated metal sheet with the coating film formed by these conventionally known methods has the disadvantage that the interface between the aluminum plate and the coating film is peeled off in secondary processing steps such as drawing and ironing. was there.
  • the present invention provides excellent adhesion (adhesion or adhesive strength), and even when drawing or ironing is performed, delamination occurs at the interface between the aluminum plate and the thermoplastic resin coating film, and the thermoplastic resin is removed.
  • An object of the present invention is to provide a resin-coated metal plate that does not cause breakage or cracks of a coating film produced, hardly causes delamination over time, and that can be efficiently manufactured. Disclosure of the invention
  • the present invention forms a chemical conversion thin film on the surface of a metal plate, forms a thin film of a silane coupling agent on the surface of the chemical conversion thin film, and forms a thin film of a thermoplastic resin on the surface of the thin film.
  • the above problem was solved by forming a coating film.
  • the corrosion resistance of the metal plate can be improved, and the adhesion between the metal plate and the coating film made of a thermoplastic resin can be improved.
  • the organic functional group of the silane coupling agent reacts with the thermoplastic resin to form a strong bond, thereby forming an interface between the metal plate or the chemical conversion-treated thin film and the coating film made of the thermoplastic resin.
  • the silane coupling agent are firmly bound via the silane coupling agent. For this reason, peeling between eyebrows between the metal plate and the thermoplastic resin coating film, breakage of the thermoplastic resin coating film, and the like can be prevented.
  • a chemical conversion treatment thin film is formed on the surface of the metal plate, and a thin film of a silane coupling agent is formed on the surface of the chemical conversion treatment thin film (hereinafter, referred to as a “silane coupling agent thin film”).
  • a coating film made of a thermoplastic resin hereinafter, referred to as a “thermoplastic resin coating film” formed on the surface of the thin film.
  • the above-mentioned metal plate refers to a plate made of various metals such as iron, various stainless steels, copper, copper alloy, aluminum, aluminum alloy, tin alloy, steel plate, nickel, and zinc. Among these, an aluminum plate is more preferable.
  • the aluminum constituting the aluminum plate means pure A1 and A1 alloy. More specifically, pure A1, JISA1500, A1100, A1200 JIS 1000 series alloys such as 0, Al-Mn series JIS 300-series alloys such as JISA300, A3004, etc. Al-Mg JIS 50,000 series Alloys, etc., but aluminum is not limited to those exemplified.
  • the thickness of the aluminum plate is preferably from 0.1 mm to 0.5 mm, and more preferably from 0.2 mm to 0.5 mm.
  • the chemical conversion treated thin film improves the corrosion resistance and adhesion of the metal plate.
  • the thickness of the chemical conversion thin film is not particularly limited, but is preferably 1 to 300 A (0.1 to 300 nm). If the thickness of the chemical conversion thin film is less than 50 A (5 nm), the workability may be inferior, for example, when the resin-coated metal plate is drawn, the coating resin may be peeled off. If it exceeds 300 nm), it may be difficult to form a thin film.
  • the range of 500 to 200 A (0, 05 to 2 m) is preferable, and the range of 100 to 200 A is preferable. (0.1 to 2 m) is more preferable. In the case of other thin films, the range of 50 to 300 A (5 to 300 nm) is preferable. If the thickness of the anodic oxide coating is less than 0.05 m, it may not be possible to improve the adhesion, while if it exceeds 2, a long oxidation treatment may be required and the productivity may be poor. .
  • the thickness of the anodic oxide film can be adjusted to the above range by adjusting the processing conditions, in particular, the energizing conditions and the energizing time.
  • the anodized thin film may be an alumite-treated thin film that has been treated with at least an electrolyte containing phosphoric acid.
  • an alumite-treated thin film using phosphoric acid as an electrolyte An alumite-treated thin film using phosphoric acid and sulfuric acid, an alumite-treated thin film using phosphoric acid and oxalic acid as the electrolyte, and an electrolyte And alumite-treated thin films using phosphoric acid and chromic acid.
  • the treatment with phosphoric acid alumite is preferred.
  • electrolytic treatment was performed in a silane coupling addition bath, followed by film lamination.
  • electrolytic treatment was performed in an epoxy mulsion bath. After laminating the film, forming alumite phosphate, electrolytic treatment in a mixed bath of silane coupling agent and epoxy emulsion, and then film laminating. Silane capping treatment or epoxy treatment After emulsion coating, film lamination can also be used.
  • anodic oxide film By forming an anodic oxide film on the surface of the aluminum plate, it is possible to improve the adhesion (adhesion or adhesive strength) between the aluminum plate and the interface of the thermoplastic resin-coated resin film.
  • the surface of the metal plate is composed of a single layer film of chromium hydrated oxide, or a metal chromium layer (lower layer) and a chromium hydrated oxide layer (upper layer).
  • the amount of chromium is 2 to 200 mg / m 2 and the amount of chromium in the upper layer is about 5 to 3 O mg / m 2 .
  • the silane coupling agent thin film is formed by applying the silane coupling agent on the metal plate or the chemical conversion thin film and drying. This thin film functions to improve the adhesion between the metal plate and the thermoplastic resin coating film.
  • the silane coupling agent is an organic silicon compound having two or more different reactive groups in its molecule.
  • One of the two reactive groups is a reactive group that chemically bonds to an inorganic material such as glass or metal, and the other is a reactive group that chemically bonds to an organic material such as various synthetic resins.
  • the reactive group bonded to the metal plate or the chemical conversion thin film, which is an inorganic material is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, and a silanol group.
  • examples of the reactive group chemically bonded to the organic material include an epoxy group, an amino group, a vinyl group, a methacryl group, and a mercapto group.
  • Typical silane coupling agents include ⁇ -glycoxydoxypropyl ethoxylate. Examples thereof include silane, araminopropyltriethoxysilane, and 3-methacryloxypropyltrimethoxysilane.
  • the aluminum plate and the silane coupling agent form a bond of A1-0-Si to form a strong bond, and the thermoplastic resin and the silane coupling agent form an organic functional group of the silane coupling agent. Reacts with thermoplastic resin to form a strong bond. For this reason, the interface between the aluminum plate and the thermoplastic resin coating film is firmly bonded via the silane coupling agent.
  • silane capping agents examples include vinyltrimethoxysilane, clopropylproprimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and N-aminopropyltriethoxysilane.
  • a silane force Dzupuri ring agent 0. 0 1 ⁇ 1 0 0 O mg / m 2 laid is preferred to apply to form, 0. More preferably, it is formed by applying 5 to 500 mg / m 2 .
  • the coating amount of Shiranka Dzupuri ring agent is zero.
  • a silane coupling agent onto a metal plate or anodized film dilute the silane coupling agent with alcohol or water to uniformly dissolve or disperse the silane coupling agent in order to increase the surface wettability, and reduce the surface tension. It is preferable to lower and apply evenly.
  • a method for lowering the surface tension there is a method of adding an organic compound such as an organic solvent or a surfactant.
  • the concentration of the silane coupling agent aqueous solution is not particularly limited, but the silane coupling agent is added to 100 parts by weight of water. It is preferred that the content be contained in a proportion of 0.01 to 10 parts by weight. If the amount of the silane coupling agent is less than 0.01 part by weight, the above-mentioned adhesive function may not be sufficiently achieved. Meanwhile, 10 parts by weight If the ratio exceeds the above range, the silane coupling agent tends to agglomerate, and similarly, the adhesive function may not be sufficiently performed.
  • the aqueous solution of the silane coupling agent so that the contact angle when applied to the surface of the metal plate or the chemical conversion thin film is 55 ° or less.
  • the magnitude of the contact angle is determined by the surface tension between the metal plate and the aqueous solution of the silane coupling agent, and this surface tension is easily determined by the type and amount of the organic solvent and the surfactant added to the aqueous solution of the silane coupling agent.
  • the organic solvent include ethanol, isopropanol, and the like.
  • the surfactant include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant. be able to. These organic solvents and surfactants are appropriately selected from those which do not impair the stability of the aqueous solution of the silane coupling agent, and are added in appropriate amounts.
  • the contact angle is greater than 55 °, the surface tension between the metal plate and the aqueous solution of the silane coupling agent increases, making it difficult to form a uniform coating film on the surface of the metal plate. In some cases, this cannot be achieved sufficiently.
  • a kind and amount of a thickener or an antiseptic that maintains a contact angle of 55 ° or less can be added to the aqueous solution of the silane coupling agent.
  • the contact angle is measured by a so-called droplet method in which the contact angle of a droplet of the aqueous solution of the silane coupling agent attached to the surface of the metal plate is measured by various measuring instruments.
  • a method of applying the silane coupling agent aqueous solution to the surface of the metal plate a commonly used method, for example, a dip method, a spray method, a roll coating method, a gravure roll method, a reverse roll method, or an air knife is used.
  • Method, kiss roll method, spray coat method, bar coat method, date coating method, gravure orifice method, reverse roll method, air-nife coat method and the like can be employed.
  • organic and inorganic additives such as a viscosity modifier, an antifoaming agent, a coloring agent such as a pigment and a dye, a stabilizer, and a solvent for adjusting the solubility can also be added to the silane coupling agent. .
  • the temperature is raised from room temperature to 150 ° C. at a rate of 5 to 50 ° C./s.
  • the coating film formed by applying and drying the above silane coupling agent aqueous solution has a Si element amount of 5 to 1 when its surface is measured by X-ray photoelectron spectroscopy (hereinafter referred to as “ESCA method”). Preferably, it is 5 atomic%. If the content of the Si element is lower than 5 atomic%, it is not preferable because the adhesive function of the aqueous solution of the silane coupling agent cannot be sufficiently obtained. Further, even if the amount of the Si element exceeds 15 atomic%, the adhesive function of the aqueous solution of the silane coupling agent is not further improved.
  • the ESCA method is a solid surface analysis method using electron spectroscopy, and irradiates soft X-rays under high vacuum to the surface of solid samples such as metals, ceramics, inorganic compounds, and polymer materials.
  • the photoelectrons emitted from the surface of the solid sample are detected by an electrostatic energy analyzer, and the type, oxidation state, bonding state, and the like of elements on the surface of the solid sample are analyzed.
  • the measurement conditions of this ESCA method can use ordinary measurement conditions without limitation. For example, MgK, A1K, etc. can be used as the X-ray source, and the output is 15 kvx3. 3 mA, it is possible to set the degree of vacuum such as 5 x 1 0- 8 T orr a.
  • thermoplastic resin coating film improves the electrical insulation and chemical resistance of the resin-coated metal plate, and is used as a printing surface for identification display.
  • thermoplastic resin coating film examples include a film made of a thermoplastic resin.
  • thermoplastic resin examples include a polyester resin and a polyamide resin.
  • polyester resin examples include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, poly-1,4-cyclohexadimethylene terephthalate, and copolyesters thereof, and polyester resins described above.
  • Polyolefin resins such as poly (ethylene / polypropylene), ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, copolymers of ethylene and acrylic acid derivatives, and polyesters of these Examples of the mixture include a resin mixture.
  • polyamide resin examples include polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610, polyamide 612, polyamide 46- Aromatic polyamides such as copolymerized polyamides, mixed polyamides, polymethaxylenediene adipamides containing at least 90 mol% of structural units formed by the polycondensation reaction of metaxylylenediamine and adipic acid, and amorphous polyamides And polyamide-based elastomers, impact-resistant polyamides, and mixtures of these polyamide-based resins.
  • Aromatic polyamides such as copolymerized polyamides, mixed polyamides, polymethaxylenediene adipamides containing at least 90 mol% of structural units formed by the polycondensation reaction of metaxylylenediamine and adipic acid, and amorphous polyamides And polyamide-based elastomers, impact-resistant polyamides, and mixtures of these polyamide-based resins.
  • polyamide-based resin with a melting point of 180 ° C or more is used to manufacture a capacitor exterior container from a resin laminate. It can be suitably used when performing.
  • thermoplastic land resin coating film is not particularly limited, and may be extrusion molding using a coat hanger die, a T-die, an I-die, an inflation die, or a calender. It can be manufactured by a conventionally known method such as a molding method.
  • This thermoplastic land resin coating film may be unstretched or biaxially stretched.
  • thermoplastic resin coating film may be laminated on the silane coupling agent thin film using the film formed above, and the thermoplastic resin may be coated on a die such as a T die or an I die. It may be laminated on the silane coupling agent thin film while extruding it into a thin film by an extruder equipped with a silane coupling agent.
  • Resin additives can be added to the thermoplastic resin as needed before forming the film.
  • Resin additives include colorants such as dyes and pigments, lubricants, antiblocking agents, heat stabilizers, antistatic agents, light stabilizers, antioxidants, ultraviolet absorbers, impact modifiers, and antioxidants. Agents, antistatic agents and the like. These resin additives can be blended within a range that does not adversely affect the thermoplastic resin coating film.
  • surface treatment such as corona treatment or flame treatment can be performed for the purpose of improving adhesion (the thickness of the thermoplastic resin coating film is preferably 5 to 200 m, and 5 to 100 m.
  • the thickness of the coating film is less than 5 zm, pinholes are likely to occur, and the corrosion resistance and electrical insulation properties of the aluminum plate, etc. In some cases, it may be difficult to improve the heat resistance, and it may be extremely difficult to laminate the thermoplastic resin coating film on the metal plate. Not only is it too thick, cracks and the like tend to occur during drawing and ironing, and it is not economically favorable.
  • a coating film made of a thermoplastic resin is formed on the silane coupling agent thin film,
  • the layering method includes a continuous method and a patch method.
  • the silane coupling agent is applied on the metal plate or the chemical conversion thin film.
  • the liquid component in which the silane coupling agent is dispersed is scattered by heating to a temperature of 250 to 350 ° C.
  • the thermoplastic resin is extruded into a thin film by an extruder equipped with a die such as a T-die or an I-die, and is laminated while extruding the thermoplastic resin.
  • Pressure lamination is performed using a heated nip roll or the like. After stacking, it is immediately cooled by air cooling or water cooling.
  • the temperature at the time of lamination is lower than 250 ° C, the adhesion between the aluminum plate and the coating film made of thermoplastic resin may not be sufficient, and if the temperature is higher than 350 ° C, Thermal degradation of the film progresses, and the coating film may be damaged or cracked during drawing or ironing.
  • the above-mentioned patch method means that a metal plate on which a silane coupling agent thin film is formed is heated to a melting point of up to 350 ° C. (preferably, at 200 ° C. to 350 ° C.). It is a NIPPRO that extrudes it into a thin film by using an extruder equipped with a die such as a T-die or an I-die, stacks it, or heats an already formed thermoplastic resin coating film below the melting point of the thermoplastic resin. This is a method of cooling by air cooling or water cooling immediately after lamination.
  • the thermoplastic land thermoplastic resin coating film does not adhere sufficiently, and when the resin-coated metal plate is processed, the thermoplastic resin coating film becomes inconsistent.
  • the resin-coated metal sheet may be peeled off, and the thermoplastic resin coating film of the resin-coated metal plate may be too hard, resulting in poor moldability.
  • the temperature is higher than 350 ° C, the metal of the resin-coated metal plate becomes too soft and its strength is remarkably reduced, and dents and the like may easily occur. It may deteriorate.
  • the above melting point refers to the peak temperature of the crystal melting temperature when the temperature is raised at 10 ° C./min by a differential scanning calorimeter (DSC).
  • the hardness of the resin measured from the outer surface of the thermoplastic resin coating film constituting the resin-coated metal sheet is in the range of 25 to 60. . If the Vickers hardness of the resin-coated surface of the aluminum thin plate is less than 25, the resin-coated metal plate may be too soft and formability may be deteriorated.On the other hand, if the Vickers hardness exceeds 60, the resin Coated metal plate is too hard There are cases.
  • the above-mentioned “Pitka hardness” refers to hardness measured in accordance with JISZ2244 “Beakers hardness test-one test method”.
  • an anodic oxide film having a thickness of 0.05 to 2 ⁇ m is formed on the surface of an aluminum plate, and a silane printing agent is applied to the anodic oxide film in a thickness of 0.5 to 500 ⁇ m. was applied at a rate of mg / m 2, further thickness on the thin film of the Shirankappuri ring agent 5 - 2 0 0 a thermoplastic resin covering layer of m, the 2 5 0 ⁇ 3 5 0 ° C
  • a method of producing a resin-coated metal plate by melt-coating in a temperature range is exemplified.
  • a chemical conversion thin film is formed on one side of an aluminum plate having a thickness of 0.1 to 0.5 mm, and then a silane coupling agent is applied on this thin film in a thickness of 0.01 to 10 mm. 0 0 mg / m 2 coating to form a thin film, further, heating the Aruminiumu plate film was laminated in the chemical conversion treatment film ⁇ beauty Shirankatsupuri ring agent in a temperature range of 2 0 0 ⁇ 3 5 0 ° C , the A thermoplastic resin film with a thickness of 5 to 200 mz is coated and pressed from above the thin film of the silane coupling agent, and the Vickers hardness of the thermoplastic resin coating film is in the range of 25 to 60.
  • a silane coupling agent is added in a proportion of 0.01 to 10 parts by weight with respect to 100 parts by weight of water, and the contact angle when applied to the surface of the metal plate is 55 to 50 parts by weight. ° C or less is applied to the surface of the metal plate, and dried at a heating rate of 50 ° C / s or less to form a coating film.
  • a resin-coated metal plate is produced by heating in a temperature range of 50 ° C. and laminating a coating film made of a thermoplastic resin on the surface of the coating film.
  • the resin-coated metal plate according to the present invention When the resin-coated metal plate according to the present invention is processed by the ironing method, cracks are not easily generated in the thermoplastic resin coating film, and the thermoplastic resin coating film is easily peeled off from the metal plate. Since there is no such material, the tree-covered metal plate can be suitably used as a material for a container manufactured through a plurality of secondary processes such as a bending process, a drawing process, and an ironing process. In addition, this resin-coated metal plate was manufactured using this resin-coated metal plate because the thermoplastic resin coating film does not easily peel off from the metal plate even when heated after processing by various processing methods. The container can withstand heating.
  • the resin-coated metal plate is excellent in pre-processability such as drawing, and can be suitably used for production of a container for an aluminum electrolytic capacitor exterior.
  • resin coating If the Vickers hardness of the cover is in the range of 25 to 60, even if the containers come into contact with each other during press working, or even if the product containers come into contact with each other, dents will occur on the top and side surfaces of the container. This makes it harder to cause such problems, improves the pressure resistance, and makes it possible to provide a beautiful identification printed indication on the top surface of the container.
  • the above resin-coated metal plate can be suitably used as a material for a wall of a building, a partition plate, a design material, a material for manufacturing various cans, and particularly, a container for a capacitor.
  • a resin-coated metal plate on which a coating film made of thermoplastic thermoplastic resin with excellent heat resistance is laminated. It is also preferable to process the coating so that the coating film made of thermoplastic thermoplastic resin is on the outside.
  • the outer container for the capacitor include an outer container for an electrolytic capacitor, an electrolytic capacitor cap, and the like.
  • the resin-coated metal sheet obtained in the test example described below was evaluated by the following method.
  • ⁇ (1) Drawability The resin-coated metal sheet obtained in the test example was Sent to a lance progressive drawing machine and manufactured 100 cylindrical containers (ironing rate 20%) of l O mm 0 x 2 O mm with the thermoplastic resin coating film on the outer surface of the container, and the surface of the aluminum plate The interface between the coating and the coating film was visually observed, and if no delamination was observed at the interface, it was regarded as a non-defective product and indicated as a non-defective product rate (%) or “ ⁇ ”.
  • Diaminosilane N— 2-aminoethyl-3-aminopropyl trimethoxysilane
  • Anodized phosphoric acid-treated coatings with a thickness of 0.05 to 2 / m are excellent in drawing and caulking, and are suitable for each process. No delamination was observed at the interface, and no change over time (deterioration) was observed (see Test Examples 2, 4, and 5).
  • the one coated with silane coupling agent is excellent in drawability and caulking, no delamination is observed at the interface in each process, and no change over time (deterioration) is observed.
  • Both surfaces of a 0.3 mm thick aluminum plate (JISA1500 H22) are anodized with a 20% phosphoric acid solution to form a 0.5 m thick aluminum phosphate.
  • a treated film was formed.
  • a silane coupling agent having a peridode group was applied at 20 mg / m 2 on the coating, and the coated surface was heated to 250 ° C.
  • a film having a thickness of 15 m separately manufactured using the resin shown in Table 3 was overlaid on the heated application surface, and laminated by pressing with a pair of pressure rolls to obtain a resin-coated metal plate. With respect to the obtained resin-coated metal plate, an evaluation test of the above items was performed. Table 3 shows the evaluation test results. Table 3
  • the coating film of the aluminum plate is a polyester resin or polyamide resin, it has excellent drawability and caulking workability, no delamination is observed at the interface in each process, and there is a change with time (deterioration). Not recognized (see Test Examples 13 and 14).
  • a resin-coated metal plate was obtained according to the method of Test Example 13 except that the anodizing treatment was performed as described below. With respect to the obtained resin-coated metal plate, an evaluation test of the above items was performed. Table 5 shows the evaluation test results.
  • Anodizing treatment was performed according to the methods of electrolyte numbers 1 to 4 shown in Table 4.
  • the organic acids used in electrolyte No. 4 are dicarboxylic acid (maleic acid, malonic acid), aromatic sulfonic acid (sulfosalicylic acid, sulfofuric acid), carboxylic acid sulfonate (sulfomaleic acid), and sulfonic acid. (Sulfamic acid) and the like.
  • the treatment conditions are as follows: phosphoric acid concentration: 0.1 to 500 g / l, sulfuric acid 'oxalic acid' chromic acid, concentration of any of the above organic acids: 0.1 to 500 gZl, voltage : 1 to: L00 vA C,:! ⁇ L OO vD C alone or superimposed, time ::! ⁇ 60 min, Thin film Thickness: 50 A ⁇ 50 ⁇ m, Phosphate anion content::! 5500 ppm. Table 4
  • 'Other condition number 2 After forming alumite phosphate, perform AC or DC electrolysis (substrate is negative electrode) in an epoxy emulsion bath, and then perform film lamination.
  • condition number 3 After forming the alumite phosphate, perform AC electrolysis or DC electrolysis (substrate is negative electrode) in a mixed bath of silane capping agent and Epoxy marjon, and then perform film lamination.
  • condition number 4 After electrolytic treatment of other condition numbers 1 to 3 above, perform silane coupling treatment or epoxy emulsion coating, and then perform film lamination.
  • test Examples 20 to 33 shown below The evaluation method will be described.
  • a polyimide resin-coated metal plate was obtained in the same manner as in Test Example 21 except that the chemical conversion-treated thin film was replaced with a thin film formed by alumite phosphate chemical conversion treatment. .
  • Table 6 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
  • Example 20 In the example described in Test Example 20, the same procedure as in Example 2 was repeated except that the coupling agent was changed to methacryloxypropyl methoxysilane and the temperature of the aluminum plate was changed to 380 ° C. Thus, a polyimide resin-coated metal plate was obtained.
  • Table 7 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
  • silane coupling agents are as follows. The same applies to the following table.
  • Epoxysilane type ⁇ -glycidoxypropyltriethoxysilane
  • Aminosilane type y-aminopropyltriethoxysilane
  • Acrylic silanes 3-methacryloxypropyl trimethoxysilane Table 7
  • a chemical conversion thin film is provided on the surface of an aluminum thin plate, a layer of a silane-based coupling agent is provided thereon, and the temperature of the aluminum thin plate is heated to a temperature in the range of 200 to 350 ° C to form a resin film.
  • a chemical conversion thin film and a silane-based coupling agent layer are provided on the surface of the aluminum sheet, and the temperature of the aluminum sheet is coated at 200 ° C.
  • the hardness of the resin-coated surface exceeds 60 in Vickers hardness, the aluminum thin plate of the substrate is damaged during the press working (see Test Example 28).
  • Example 23 the procedure was the same as in Example 2, except that the coating amount of the capping agent was changed to 500 mg / m 2 and the temperature of the aluminum plate was changed to 290 ° C. Thus, a polyimide resin-coated metal plate was obtained.
  • Table 8 shows the results of the evaluation of the obtained polyamide resin-coated metal plate by the above evaluation method.
  • Test Example 3 1 In the example described in Test Example 3 0, except for changing the coating amount of Katsupuri ring agent 1 0 0 0 m gZm 2, to obtain a made of Polyamide resin-coated metal sheet by the same procedure as in the Example.
  • Table 8 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
  • Table 8 reveals the following.
  • a thin film is provided on the surface of an aluminum thin plate, a layer of a silane coupling agent is provided thereon, and the coating amount of the silane coupling agent is 0.01 to 100 mg / m 2.
  • the press workability is excellent, and even if the containers come into contact with each other, the wall surface is unlikely to be dented (see Test Examples 29 to 31).
  • the application amount of the silane-based coupling agent was 0.05 mg / m 2 In the case of a small amount, the adhesion between the aluminum thin plate and the coating film was poor, and the coating film was peeled off during pressing (see Test Example 32).
  • test Examples 34 to 52 shown below are shown.
  • the evaluation method of the silane coupling agent aqueous solution was based on the method described in the following (1) and (2).
  • the evaluation method of the resin laminate is based on the following methods (3) to (6).
  • An aluminum plate (same type as that prepared in Test Example 38) was continuously transferred as a long strip, and 100 g of water was added to the surface of this aluminum plate with a silane coupling agent (alumino). Propylene triethoxysilane) 0.1 lg and nonionic surfactant (Same type as used in Test Example 34) An aqueous solution of a silane coupling agent in which 0.4 g was blended and the contact angle was adjusted to 50 ° when applied to the surface of the aluminum plate.
  • silane coupling agent alumino
  • Propylene triethoxysilane 0.1 lg
  • nonionic surfactant (Same type as used in Test Example 34)
  • Resin laminates were prepared by laminating boriamid 6 thin films having a melting point of 220 ° C and a thickness of 20 m. In the step of preparing the resin laminate, the measurement (3) was performed, and the obtained resin laminate was subjected to the evaluation tests (4) to (6). Table 11 shows the results.
  • the specific range of the amount of the silane coupling agent, the contact angle of the aqueous solution of the silane coupling agent, the rate of temperature rise during drying after applying the aqueous solution of the silane coupling agent, and the heating temperature of the coating film are all within a specific range.
  • the resin laminate prepared as the inside had a Si element content on the surface of the coating film within the range of 5 to 15 atomic%, and was excellent in workability and adhesion after processing (Test Examples 46 to 60). See 48).
  • a resin laminate prepared using a silane coupling agent aqueous solution containing a silane coupling agent in an amount of 0.01 part by weight or less has a coating element surface with an elemental Si content of less than 5 parts. % And lower adhesion after processing (see Test Example 49).
  • a resin laminate prepared by heating the coating film at a temperature higher than 350 ° C has poor workability such as cracks in the polyethylene terephthalate thin film during processing, and also has poor adhesion after processing. Was inferior. (See Test Example 52). Industrial applicability
  • the present invention has the following particularly advantageous effects, and its industrial utility value is extremely large.
  • the surface of the aluminum plate and the aluminum plate can be removed. Excellent adhesiveness (adhesion or adhesive strength) at the interface of the coating film. Even if drawn or ironed, the coating film made of thermoplastic resin will not be damaged or cracked. Peeling is unlikely to occur.
  • the hardness of the resin-coated surface of the aluminum sheet is in the range of 25 to 60 in terms of Vickers hardness. Excellent, and even if the containers obtained by processing are in contact with each other, dents do not easily occur on the wall surface.
  • the outer container for an aluminum electrolytic capacitor according to the present invention does not require a step of coating with a heat-shrinkable tube unlike the conventional case, and the manufacturing process is simple.
  • the resin-coated metal plate of the present invention forms a coating film by applying an aqueous solution of a specific silane coupling agent to the surface of the metal plate and drying it at a specific heating rate, and forming the coating film at a specific temperature.
  • a specific silane coupling agent a specific silane coupling agent
  • the thermoplastic resin thin film is prepared by laminating the thermoplastic resin thin film by heating in the above process, when the resin-coated metal plate is processed by the ironing method, the thermoplastic resin thin film is hardly cracked, and the thermoplastic resin thin film is hardened. It does not easily peel off from the metal plate.
  • the resin-coated metal plate according to the present invention forms a coating film by applying a specific aqueous solution of a silane coupling agent to the surface of the metal plate and drying it at a specific heating rate.
  • a specific aqueous solution of a silane coupling agent to the surface of the metal plate and drying it at a specific heating rate.
  • the resin-coated metal plate according to the present invention heats the coating film formed on the surface of the metal plate in a temperature range of 350 ° C. from the melting point of the thermoplastic resin thin film to form the thermoplastic resin thin film.
  • the strength of the metal plate does not decrease, and the thermoplastic resin thin film does not deteriorate.
  • the resin-coated metal plate according to the present invention heats the coating film formed on the surface of the metal plate in a temperature range of 350 ° C. from the melting point of the thermoplastic resin thin film to form the thermoplastic resin thin film.
  • the economic disadvantages of conventional high-temperature heat treatment are eliminated.
  • the external container for a capacitor according to the present invention is prepared by squeezing or ironing the resin-coated metal plate, so that even if it is heated after being commercialized,
  • the thermoplastic resin thin film that constitutes the outer packaging container for the capacitor does not peel off from the metal plate, and has high commercial value.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A resin-coated metal sheet which comprises a metal sheet, a thin chemical conversion coating film formed on the surface of the metal sheet, a thin film of a silane coupling agent formed on the surface of the coating film, and a coating film of a thermoplastic resin formed on the surface of the thin film. The resin-coated metal sheet is excellent in adhesiveness (adhesive property or adhesion strength), and is free from the occurrence of delamination at the interface of an aluminum sheet and a thermoplastic resin coating film and the damage or cracks of the thermoplastic resin coating film and is less prone to delamination for a long period of time, even when it is subjected to deep drawing or ironing, and further, can be produced with good efficiency.

Description

明 細 書 樹脂被覆金属板およびその製造方法 技術分野  Description Resin-coated metal sheet and manufacturing method
本発明は、 樹脂被覆金属板及びその製造方法、 並びにこの樹脂被覆金属板を用 いたコンデンサ外装用容器に関する。 背景技術  The present invention relates to a resin-coated metal plate and a method for producing the same, and a container for a capacitor exterior using the resin-coated metal plate. Background art
従来、 アルミニウム板等の金属板の表面に、 熱可塑性樹脂製の被覆膜で被覆し た樹脂被覆金属板は、 耐蝕性、 電気絶縁性および意匠性などに優れており、 種々 の分野で使用されている。 例えば、 アルミニウム電解コンデンサーは、 アルミ二 ゥム板を絞り加工した円筒状の容器に電解液を含浸させたコンデンサー素子を収 納し、 容器の開口部をゴムなどで封じ、 更に外周面に電気絶縁および内容表示を 目的と して、 塩化ビニル系樹脂またはォレフィ ン系樹脂などの熱収縮性チューブ によつて被覆されている。  Conventionally, a resin-coated metal plate in which the surface of a metal plate such as an aluminum plate is coated with a thermoplastic resin coating film has excellent corrosion resistance, electrical insulation, and design, and is used in various fields. Have been. For example, an aluminum electrolytic capacitor stores a capacitor element impregnated with an electrolyte in a cylindrical container formed by drawing an aluminum plate, and seals the opening of the container with rubber, etc., and electrically insulates the outer peripheral surface. It is covered with a heat-shrinkable tube made of vinyl chloride resin or olefin resin for the purpose of displaying contents.
近年、 電子部品の小型化が図られ、 アルミニウム電解コンデンサーも同様に小 型化の傾向にあり、 さらに表面実装用のリ一ド線をなく したチップ型電解コンデ ンサ一の開発が進められている。 このようなアルミニウム電解コンデンサーでは、 外装容器が小さ くなるため熱収縮性チューブによる被覆が極めて困難となり、 外 装容器に収納したコンデンサ一素子が外装容器の内面と接触し、 絶縁性が達成さ れないという欠点があった。  In recent years, the size of electronic components has been reduced, and aluminum electrolytic capacitors have also tended to be miniaturized.In addition, the development of chip-type electrolytic capacitors that eliminate lead wires for surface mounting is underway. . In such an aluminum electrolytic capacitor, it becomes extremely difficult to cover with a heat-shrinkable tube due to the small outer container, and the capacitor element contained in the outer container comes into contact with the inner surface of the outer container to achieve insulation. There was a disadvantage that there was no.
上記欠点を排除する目的で、 アルミ二ゥム板等の金属板の表面を絶縁樹脂によ つて被覆した樹脂被覆板とし、 この樹脂被覆板を絞り加工、 しごき加工などによ つて外装容器またはキヤップとし、 熱収縮性チューブによる被覆工程を省略し、 同時に絶縁性を達成する技術が提案されている (例えば、 特開平 1 — 1 7 5 2 2 2号公報、 実開平 3 - 7 9 9 7 4号公報などを参照) 。  In order to eliminate the above drawbacks, a metal-coated plate such as an aluminum plate is coated with an insulating resin to form a resin-coated plate. This resin-coated plate is drawn or ironed to form an outer container or cap. There has been proposed a technique for omitting the step of covering with a heat-shrinkable tube and at the same time achieving an insulating property (for example, Japanese Patent Laid-Open No. 1-17522, Japanese Utility Model Application Laid-Open No. 3-799974). No., etc.).
アルミニゥム板の表面を絶縁樹脂によって被覆して樹脂被覆板とする技術とし ては、 アルミニウム板の表面にエポキシ系樹脂、 塩化ビニル系樹脂またはポリエ ステル系樹脂などを塗布する方法と、 アルミニゥム板の表面に樹脂フイルムを積 層する方法がある。 しかしながら、 これら従来から知られている手法によって被覆膜を形成した樹 脂被覆金属板は、 絞り加工、 しごき加工などの二次加工工程で、 アルミニウム板 と被覆膜の界面が剥離するという欠点があった。 Techniques for coating the surface of an aluminum plate with an insulating resin to form a resin-coated plate include a method of applying an epoxy resin, a vinyl chloride resin, or a polyester resin to the surface of an aluminum plate, and a method of coating the surface of the aluminum plate. There is a method of laminating a resin film on the substrate. However, the resin-coated metal sheet with the coating film formed by these conventionally known methods has the disadvantage that the interface between the aluminum plate and the coating film is peeled off in secondary processing steps such as drawing and ironing. was there.
そこで、 この発明は、 密着性 (接着性または接着強度) に優れ、 絞り加工やし ごき加工を行なっても、 アルミニゥム板と熱可塑性樹脂製被覆膜との界面に層間 剥離、 熱可塑性樹脂製被覆膜の破損、 クラックなどが発生せず、 経時的に層間剥 離も生じ難く、 さらに、 効率的に製造できる樹脂被覆金属板を提供することを目 的とする。 発明の開示  Therefore, the present invention provides excellent adhesion (adhesion or adhesive strength), and even when drawing or ironing is performed, delamination occurs at the interface between the aluminum plate and the thermoplastic resin coating film, and the thermoplastic resin is removed. An object of the present invention is to provide a resin-coated metal plate that does not cause breakage or cracks of a coating film produced, hardly causes delamination over time, and that can be efficiently manufactured. Disclosure of the invention
上記課題を解決するために、 この発明は金属板の表面に化成処理薄膜を形成し、 この化成処理薄膜の表面にシランカツプリ ング剤の薄膜を形成し、 その薄膜の表 面に熱可塑性樹脂製の被覆膜を形成することにより、 上記課題を解決したのであ る。  In order to solve the above problems, the present invention forms a chemical conversion thin film on the surface of a metal plate, forms a thin film of a silane coupling agent on the surface of the chemical conversion thin film, and forms a thin film of a thermoplastic resin on the surface of the thin film. The above problem was solved by forming a coating film.
化成処理薄膜を設けるので、 金属板の耐食性を向上させ、 また、 金属板と熱可 塑性樹脂製被覆膜との密着性を向上させることができる。  Since the chemical conversion thin film is provided, the corrosion resistance of the metal plate can be improved, and the adhesion between the metal plate and the coating film made of a thermoplastic resin can be improved.
さらに、 シランカップリ ング剤の薄膜を介在させるので、 シランカップリ ング 剤の有機官能基が熱可塑性樹脂と反応して強固に結合し、 金属板や化成処理薄膜 と熱可塑性樹脂製被覆膜の界面は、 シラン力ップリ ング剤を介して強固に結合さ れる。 このため、 金属板と熱可塑性樹脂製被覆膜との間の眉間剥離、 熱可塑性樹 脂製被覆膜の破損等を防止できる。  Furthermore, since a thin film of the silane coupling agent is interposed, the organic functional group of the silane coupling agent reacts with the thermoplastic resin to form a strong bond, thereby forming an interface between the metal plate or the chemical conversion-treated thin film and the coating film made of the thermoplastic resin. Are firmly bound via the silane coupling agent. For this reason, peeling between eyebrows between the metal plate and the thermoplastic resin coating film, breakage of the thermoplastic resin coating film, and the like can be prevented.
以下、 この発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
この発明にかかる樹脂被覆金属板は、 金属板の表面に化成処理薄膜を形成し、 この化成処理薄膜の表面にシランカップリ ング剤の薄膜 (以下、 「シランカップ リ ング剤薄膜」 と称する。 ) を形成し、 その薄膜の表面に熱可塑性樹脂製の被覆 膜 (以下、 「熱可塑性樹脂製被覆膜」 と称する。 ) を形成したものである。  In the resin-coated metal plate according to the present invention, a chemical conversion treatment thin film is formed on the surface of the metal plate, and a thin film of a silane coupling agent is formed on the surface of the chemical conversion treatment thin film (hereinafter, referred to as a “silane coupling agent thin film”). And a coating film made of a thermoplastic resin (hereinafter, referred to as a “thermoplastic resin coating film”) formed on the surface of the thin film.
上記金属板とは、 鉄、 各種ステンレス、 銅、 銅合金、 アルミニウム、 アルミ二 ゥム合金、 錫合金、 鋼板、 ニッケル、 亜鉛等の各種金属からなる板をいう。 この 中でも、 アルミニウム板がより好ましい。  The above-mentioned metal plate refers to a plate made of various metals such as iron, various stainless steels, copper, copper alloy, aluminum, aluminum alloy, tin alloy, steel plate, nickel, and zinc. Among these, an aluminum plate is more preferable.
上記アルミニウム板を構成するアルミニウムとは、 純 A 1及び A 1合金を意味 する。 具体的には、 純 A 1、 J I S A 1 0 5 0、 A 1 1 0 0、 A 1 2 0 0等の J I S 1 0 0 0系合金、 J I S A 3 0 0 3、 A 3 0 04等の A l — Mn系の J I S 3 0 0 0系合金、 A l— M g系の J I S 5 0 0 0系合金な どがあげられるが、 アルミニウムはこれら例示したものに限定されるものではな い。 The aluminum constituting the aluminum plate means pure A1 and A1 alloy. More specifically, pure A1, JISA1500, A1100, A1200 JIS 1000 series alloys such as 0, Al-Mn series JIS 300-series alloys such as JISA300, A3004, etc. Al-Mg JIS 50,000 series Alloys, etc., but aluminum is not limited to those exemplified.
上記アルミニウム板の厚みは、 0. l mm〜 0. 5 mmがよく、 0. 2〜 0. 5 mmの範囲が好ま しい。  The thickness of the aluminum plate is preferably from 0.1 mm to 0.5 mm, and more preferably from 0.2 mm to 0.5 mm.
上記化成処理薄膜は、 金属板の耐食性及び密着性を向上させるものである。 ァ ルミニゥム薄板に化成処理薄膜としては、  The chemical conversion treated thin film improves the corrosion resistance and adhesion of the metal plate. As a chemical conversion thin film on a thin aluminum plate,
(a) リ ン酸クロメート化成処理によって得られる リ ン酸クロノメート化成処理 薄膜、  (a) Phosphoric acid chromate conversion thin film obtained by phosphoric acid chromate conversion treatment,
(b) 有機熱可塑性樹脂製被覆膜とクロムとよ り構成される薄膜、  (b) a thin film composed of an organic thermoplastic resin coating film and chromium,
( c ) 化成処理によってジルコニウムを含む化成処理薄膜、  (c) a chemical conversion treated thin film containing zirconium by the chemical conversion treatment,
(d) 化成処理によってチタニウムを含む化成処理薄膜、 及び、  (d) a chemical conversion thin film containing titanium by chemical conversion; and
( e ) 陽極酸化処理によって得られる陽極酸化処理薄膜  (e) Anodized thin film obtained by anodizing
等があげられる。 And the like.
上記化成処理薄膜の厚みは、 特に限定されないが、 1〜 3 0 0 0 A ( 0. 1〜 3 0 0 nm) がよい。 化成処理薄膜の厚みが 5 0 A ( 5 n m) 未満だと、 樹脂被 覆金属板を絞り加工する際に、 被覆樹脂が剥離する等、 加工性が劣る場合があり、 3 0 0 0 A ( 3 0 0 n m) を超えると薄膜の形成が困難となる場合がある。  The thickness of the chemical conversion thin film is not particularly limited, but is preferably 1 to 300 A (0.1 to 300 nm). If the thickness of the chemical conversion thin film is less than 50 A (5 nm), the workability may be inferior, for example, when the resin-coated metal plate is drawn, the coating resin may be peeled off. If it exceeds 300 nm), it may be difficult to form a thin film.
また、 化成処理薄膜が陽極酸化処理薄膜の場合は、 5 0 0~ 2 0 0 0 0 A ( 0 , 0 5 ~ 2 m) の範囲が好ま しく、 1 0 0 0〜 2 0 0 0 0 A ( 0. l〜 2 m) の範囲がよ り好ましい。 その他の薄膜の場合は、 5 0〜 3 0 0 0 A ( 5〜 3 0 0 nm) の範囲が好ま しい。 陽極酸化被膜の厚さが 0. 0 5 m未満であると密着 性を向上させることができない場合があり、 一方、 2 を超えると長時間の酸 化処理が必要で生産性が劣る場合がある。 この陽極酸化被膜の厚さは、 処理条件、 特に通電条件と通電時間を調節することによって、 上記範囲の厚さとすることが できる。  Further, when the chemical conversion treated thin film is an anodized thin film, the range of 500 to 200 A (0, 05 to 2 m) is preferable, and the range of 100 to 200 A is preferable. (0.1 to 2 m) is more preferable. In the case of other thin films, the range of 50 to 300 A (5 to 300 nm) is preferable. If the thickness of the anodic oxide coating is less than 0.05 m, it may not be possible to improve the adhesion, while if it exceeds 2, a long oxidation treatment may be required and the productivity may be poor. . The thickness of the anodic oxide film can be adjusted to the above range by adjusting the processing conditions, in particular, the energizing conditions and the energizing time.
上記陽極酸化処理薄膜としては、 少なく とも リ ン酸を含む電解質で処理された アルマイ ト処理薄膜であればよく、 例えば、 電解液としてリ ン酸を用いる リ ン酸 アルマイ ト処理薄膜、 電解液としてリ ン酸及び硫酸を用いるアルマイ ト処理薄膜、 電解液としてリ ン酸及びシユウ酸を用いるアルマイ ト処理薄膜、 及び電解液と し てリン酸及びクロム酸を用いるアルマイ ト処理薄膜等があげられる。 この中でも、 リ ン酸アルマイ ト処理によるのが好ま しい。 The anodized thin film may be an alumite-treated thin film that has been treated with at least an electrolyte containing phosphoric acid.For example, an alumite-treated thin film using phosphoric acid as an electrolyte, An alumite-treated thin film using phosphoric acid and sulfuric acid, an alumite-treated thin film using phosphoric acid and oxalic acid as the electrolyte, and an electrolyte And alumite-treated thin films using phosphoric acid and chromic acid. Of these, the treatment with phosphoric acid alumite is preferred.
また、 上記以外に、 リ ン酸アルマイ ト形成後、 シランカップリ ング添加浴中に て電解処理した後にフィ ルムラミネートする方法、 リ ン酸アルマイ ト形成後、 ェ ポキシェマルジョ ン浴中にて電解処理した後にフィルムラミネートする方法、 リ ン酸アルマイ ト形成後、 シランカップリ ング剤とエポキシェマルジョン混合浴中 にて電解処理した後にフ ィルムラ ミネートする方法、 上記の各電解処理後、 シラ ンカヅプリ ング処理又はエポキシェマルジョ ンコートをした後にフィルムラ ミネ ートする方法も採用できる。  In addition to the methods described above, after the formation of alumite phosphate, electrolytic treatment was performed in a silane coupling addition bath, followed by film lamination.After the formation of alumite phosphate, electrolytic treatment was performed in an epoxy mulsion bath. After laminating the film, forming alumite phosphate, electrolytic treatment in a mixed bath of silane coupling agent and epoxy emulsion, and then film laminating. Silane capping treatment or epoxy treatment After emulsion coating, film lamination can also be used.
アルミニウム板の表面に陽極酸化被膜を形成すると、 アルミニウム板と熱可塑 性樹脂製の被覆樹脂フィ ルム界面との密着性 (接着性または接着強度) を向上さ せることができる。  By forming an anodic oxide film on the surface of the aluminum plate, it is possible to improve the adhesion (adhesion or adhesive strength) between the aluminum plate and the interface of the thermoplastic resin-coated resin film.
ところで、 金属表面の処理としてほ、 化成処理薄膜を形成させる以外に、 単層 めっき、 複層めっきまたは合金めつきを施したり、 浸漬クロム酸処理、 リ ン酸ク ロム酸処理を施す方法があげられる。 また、 電解クロム酸処理を施すことによ り、 上記金属板の表面にクロム水和酸化物からなる単層皮膜や、 金属クロム層 (下 層) とクロム水和酸化物層 (上層) からなる二層皮膜を形成することができ、 単 層皮膜を形成する場合にはクロム量を 3〜 3 O m g Z m 2程度とするのが好ま し く、 二層皮膜を形成する場合には下層のクロム量を 2〜 2 0 0 m g / m 2、 上層 のクロム量を 5〜 3 O m g / m 2程度とするのが好ましい。 By the way, as a treatment of the metal surface, other than forming a chemical conversion thin film, there is a method of performing single-layer plating, multiple-layer plating or alloy plating, immersion chromic acid treatment, and phosphoric acid chromic acid treatment. Can be In addition, by performing electrolytic chromic acid treatment, the surface of the metal plate is composed of a single layer film of chromium hydrated oxide, or a metal chromium layer (lower layer) and a chromium hydrated oxide layer (upper layer). it is possible to form a two-layer film, when forming a single-layer coating rather then preferable for it to the 3~ 3 O mg Z m 2 about chromium content, lower in the case of forming a two-layer film It is preferable that the amount of chromium is 2 to 200 mg / m 2 and the amount of chromium in the upper layer is about 5 to 3 O mg / m 2 .
上記のシランカツプリ ング剤薄膜は、 シランカツプリ ング剤を上記金属板又は 化成処理薄膜上に塗布し、 乾燥することによ り形成される。 この薄膜は、 金属板 と熱可塑性樹脂製被覆膜との接着力を向上させるように機能する。  The silane coupling agent thin film is formed by applying the silane coupling agent on the metal plate or the chemical conversion thin film and drying. This thin film functions to improve the adhesion between the metal plate and the thermoplastic resin coating film.
上記シランカツプリ ング剤とは、 その分子中に 2個以上の異なった反応基を有 する有機ケィ素化合物をいう。 2個の反応基のうちの一方は、 ガラス、 金属など の無機材料と化学結合する反応基であり、 他方は各種合成樹脂などの有機材料と 化学結合する反応基である。 無機材料である金属板又は化成処理薄膜と結合する 反応基は、 特に限定されないが、 例えばメ トキシ基、 エトキシ基、 シラノール基 等があげられる。 一方、 有機系材料と化学結合する反応基としては、 エポキシ基、 アミノ基、 ビニル基、 メタク リル基、 メルカブト基などをあげることができる。 代表的なシランカップリ ング剤と しては、 ァ一グリ シ ドキシプロビルト リエトキ シシラン、 ァ一ァミノプロピルト リエトキシシラン、 3—メタク リ ロキシプロピ ルト リメ トキシシラン等をあげることができる。 The silane coupling agent is an organic silicon compound having two or more different reactive groups in its molecule. One of the two reactive groups is a reactive group that chemically bonds to an inorganic material such as glass or metal, and the other is a reactive group that chemically bonds to an organic material such as various synthetic resins. The reactive group bonded to the metal plate or the chemical conversion thin film, which is an inorganic material, is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, and a silanol group. On the other hand, examples of the reactive group chemically bonded to the organic material include an epoxy group, an amino group, a vinyl group, a methacryl group, and a mercapto group. Typical silane coupling agents include α-glycoxydoxypropyl ethoxylate. Examples thereof include silane, araminopropyltriethoxysilane, and 3-methacryloxypropyltrimethoxysilane.
アルミニウム板とシラン力ヅプリング剤は、 A 1— 0— S iの結合を形成して 強固に結合し、 また、 熱可塑性樹脂とシランカップリ ング剤とは、 シランカップ リ ング剤の有機官能基が熱可塑性樹脂と反応して強固に結合する。 このため、 ァ ルミニゥム板と熱可塑性樹脂製被覆膜の界面は、 シランカップリ ング剤を介して 強固に結合される。  The aluminum plate and the silane coupling agent form a bond of A1-0-Si to form a strong bond, and the thermoplastic resin and the silane coupling agent form an organic functional group of the silane coupling agent. Reacts with thermoplastic resin to form a strong bond. For this reason, the interface between the aluminum plate and the thermoplastic resin coating film is firmly bonded via the silane coupling agent.
. 使用できる上記シランカヅプリ ング剤の例としては、 ビニルト リメ トキシシラ ン、 クロ口プロビルト リメ トキシシラン、 3 —グリシ ドキシプロピルト リメ トキ シシラン、 3—メタク リ ロキシプロビルト リメ トキシシラン、 3 —ァミノプロピ ルト リエトキシシラン、 N— 2 —アミノエチル一 3 —ァミノプロピルト リメ トキ シシラン、 3 —メルカプトプロピルト リメ トキシシラン、 3— ( N —スチリルメ チルー 2—ァミノェチルァミノ) プロピルト リメ トキシシラン塩酸塩、 ウレイ ド ァミノプロピルヱ トキシシランなどがあげられる。  Examples of the above silane capping agents that can be used include vinyltrimethoxysilane, clopropylproprimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and N-aminopropyltriethoxysilane. — 2—aminoethyl-1 3—aminopropyltrimethoxysilane, 3—mercaptopropyltrimethoxysilane, 3— (N—styrylmethyl-2-aminoethylamino) propyltrimethoxysilane hydrochloride, ureidoaminopropyldiethoxysilane, etc. Can be
シランカップリ ング剤薄膜の層は、 金属板又は化成処理薄膜の上に、 シラン力 ヅプリ ング剤を 0 . 0 1 〜 1 0 0 O m g / m 2塗布して形成するのが好ま しく、 0 . 5〜 5 0 0 m g / m 2塗布して形成するのがよ り好ましい。 シランカ ヅプリ ング剤の塗布量が 0 . 0 1 m g / m 2未満であると、 界面の密着性 (接着性) が 十分とならない場合があ り、 1 0 0 0 m g / m 2を超えると接着強度が飽和に達 し、 接着強度の増加が塗布量に比例せず、 また、 シランカップリ ング剤が凝集し 易くなり、 均一に塗布するのが困難となる場合がある。 Shirankappuri ring agent layer of the thin film on the metal plate or the chemical conversion treatment film, a silane force Dzupuri ring agent 0. 0 1 ~ 1 0 0 O mg / m 2 laid is preferred to apply to form, 0. More preferably, it is formed by applying 5 to 500 mg / m 2 . When the coating amount of Shiranka Dzupuri ring agent is zero. Less than 0 1 mg / m 2, when the interface adhesion (adhesiveness) is not sufficient there is, more than 1 0 0 0 mg / m 2 and the adhesive When the strength reaches saturation, the increase in adhesive strength is not proportional to the amount of application, and the silane coupling agent tends to agglomerate, making it difficult to apply uniformly.
金属板又は陽極酸化被膜の上にシランカツプリ ング剤を塗布するには、 その表 面の濡れ性を高めるため、 シランカツプリ ング剤をアルコールや水などによって 希釈して均一に溶解または分散させ、 表面張力を下げて均一に塗布するのが好ま しい。 また、 表面張力を低下させる方法として、 有機溶剤や界面活性剤等の有機 化合物を添加する方法があげられる。  To apply a silane coupling agent onto a metal plate or anodized film, dilute the silane coupling agent with alcohol or water to uniformly dissolve or disperse the silane coupling agent in order to increase the surface wettability, and reduce the surface tension. It is preferable to lower and apply evenly. As a method for lowering the surface tension, there is a method of adding an organic compound such as an organic solvent or a surfactant.
上記シランカツプリ ング剤を水溶液として金属板又は化成処理薄膜の表面に塗 布する場合、 そのシランカップリ ング剤水溶液の濃度は、 特に限定されないが、 水 1 0 0重量部に対して上記シランカヅプリ ング剤を 0 . 0 1〜 1 0重量部の割 合で含有させるのが好ま しい。 このシランカップリ ング剤が 0 . 0 1重量部よ り 少ないと上記した接着機能を十分に果たし得ない場合がある。 一方、 1 0重量部 を超えるとシランカツプリ ング剤が凝集し易くなり、 同様に接着機能を十分に果 たし得ない場合がある。 When the silane coupling agent is applied as an aqueous solution to the surface of a metal plate or a chemical conversion treated thin film, the concentration of the silane coupling agent aqueous solution is not particularly limited, but the silane coupling agent is added to 100 parts by weight of water. It is preferred that the content be contained in a proportion of 0.01 to 10 parts by weight. If the amount of the silane coupling agent is less than 0.01 part by weight, the above-mentioned adhesive function may not be sufficiently achieved. Meanwhile, 10 parts by weight If the ratio exceeds the above range, the silane coupling agent tends to agglomerate, and similarly, the adhesive function may not be sufficiently performed.
また、 金属板又は化成処理薄膜の表面に塗布した際の接触角が 5 5 ° 以下とな るように、 シランカップリ ング剤水溶液を調整するのが好ましい。 この接触角の 大きさは、 金属板ーシランカツプリ ング剤水溶液間の表面張力によって定ま り、 この表面張力は、 シランカツプリ ング剤水溶液に添加される有機溶剤や界面活性 剤の種類、 添加量によって容易に調整することができる。 上記有機溶剤と しては、 ェタノ一ル、 イソプロパノールなどをあげることができ、 上記界面活性剤として は、 ァニオン界面活性剤、 カチオン界面活性剤、 両性界面活性剤、 非イオン界面 活性剤などをあげることができる。 これら有機溶剤や界面活性剤は、 シランカツ プリ ング剤水溶液の安定性を阻害しない種類を適宜選択し、 適切な添加量で添加 される。  Further, it is preferable to adjust the aqueous solution of the silane coupling agent so that the contact angle when applied to the surface of the metal plate or the chemical conversion thin film is 55 ° or less. The magnitude of the contact angle is determined by the surface tension between the metal plate and the aqueous solution of the silane coupling agent, and this surface tension is easily determined by the type and amount of the organic solvent and the surfactant added to the aqueous solution of the silane coupling agent. Can be adjusted. Examples of the organic solvent include ethanol, isopropanol, and the like. Examples of the surfactant include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant. be able to. These organic solvents and surfactants are appropriately selected from those which do not impair the stability of the aqueous solution of the silane coupling agent, and are added in appropriate amounts.
上記接触角が 5 5 ° より も大きいと、 金属板—シランカップリ ング剤水溶液間 の表面張力が大きくなって金属板の表面に均一な塗膜が形成されにく く、 上記し た接着機能を十分に果たし得ない場合が生じる。  If the contact angle is greater than 55 °, the surface tension between the metal plate and the aqueous solution of the silane coupling agent increases, making it difficult to form a uniform coating film on the surface of the metal plate. In some cases, this cannot be achieved sufficiently.
上記シランカツプリ ング剤水溶液には、 上記有機溶剤や界面活性剤のほかに、 接触角が 5 5 ° 以下を維持する種類および量の増粘剤や防腐剤などを添加するこ どもできる。 なお、 上記接触角を測定する方法は、 金属板の表面に付着させたシ ランカツプリ ング剤水溶液の液滴の接触角を各種測定機器で測定する、 いわゆる 液滴法によるものとする。  In addition to the organic solvent and the surfactant, a kind and amount of a thickener or an antiseptic that maintains a contact angle of 55 ° or less can be added to the aqueous solution of the silane coupling agent. The contact angle is measured by a so-called droplet method in which the contact angle of a droplet of the aqueous solution of the silane coupling agent attached to the surface of the metal plate is measured by various measuring instruments.
上記シランカツプリ ング剤水溶液を金属板の表面に塗布する方法としては、 通 常用いられている方法、 例えば、 ディ ップ法、 スプレー法、 ロールコート法、 グ ラビアロール法、 リバースロール法、 エアーナイフ法、 キスロール法、 スプレー コート法、 バーコート法、 デイ ツビング法、 グラビア口一ル法、 リバースロール 法、 エア一ナイ フコート法等を採用することができる。  As a method of applying the silane coupling agent aqueous solution to the surface of the metal plate, a commonly used method, for example, a dip method, a spray method, a roll coating method, a gravure roll method, a reverse roll method, or an air knife is used. Method, kiss roll method, spray coat method, bar coat method, date coating method, gravure orifice method, reverse roll method, air-nife coat method and the like can be employed.
上記シランカップリ ング剤には、 粘度調整剤、 消泡剤、 顔料 , 染料などの着色 剤、 安定剤、 溶解性を調整するための溶剤など、 有機 · 無機系各種添加剤を添加 することもできる。  Various organic and inorganic additives such as a viscosity modifier, an antifoaming agent, a coloring agent such as a pigment and a dye, a stabilizer, and a solvent for adjusting the solubility can also be added to the silane coupling agent. .
塗布した後は、 溶媒等を揮発、 飛散させて乾燥させるのが好ましい。 乾燥させ る際には、 5 0 °C / s以下の昇温速度で昇温するのが好ま しい。 5 0 °C / s を超 える昇温速度で昇温する と、 塗布されたシランカツプリ ング剤水溶液が変性しや すく、 シランカツプリ ング剤水溶液によって形成された塗膜の接着機能が低下す る場合がある。 なお、 昇温は、 室温から 1 5 0 °Cまでの範囲を 5〜 5 0 °C/ sの 昇温速度とするのが特に好ましい。 After application, it is preferable to dry by evaporating and scattering the solvent and the like. When drying, it is preferable to raise the temperature at a heating rate of 50 ° C / s or less. If the temperature is increased at a rate exceeding 50 ° C / s, the applied silane coupling agent aqueous solution may be denatured. In short, the adhesive function of the coating film formed by the silane coupling agent aqueous solution may be reduced. It is particularly preferable that the temperature is raised from room temperature to 150 ° C. at a rate of 5 to 50 ° C./s.
上記シランカップリ ング剤水溶液の塗布、 乾燥によって形成される塗膜は、 そ の表面を X線光電子分光法 (以下、 「E S CA法」 という) により測定した際の S i元素量が 5〜 1 5原子%であるのが好ま しい。 この S i元素量が 5原子%よ り低いと、 シランカップリング剤水溶液の接着機能が十分に得られないので好ま しくない。 また、 上記 S i元素量が 1 5原子%を超えても、 シランカツプリ ング 剤水溶液の接着機能はそれ以上向上することがない。  The coating film formed by applying and drying the above silane coupling agent aqueous solution has a Si element amount of 5 to 1 when its surface is measured by X-ray photoelectron spectroscopy (hereinafter referred to as “ESCA method”). Preferably, it is 5 atomic%. If the content of the Si element is lower than 5 atomic%, it is not preferable because the adhesive function of the aqueous solution of the silane coupling agent cannot be sufficiently obtained. Further, even if the amount of the Si element exceeds 15 atomic%, the adhesive function of the aqueous solution of the silane coupling agent is not further improved.
なお、 E S CA法とは、 電子分光法による固体表面分析法であって、 金属、 セ ラミ ック、 無機化合物、 高分子材料などの固体試料の表面に高真空下で軟質 X線 を照射し、 この固体試料の表面から放出される光電子を静電型エネルギー分析器 により検知して、 この固体試料の表面における元素の種類、 酸化状態、 結合状態 などの分析を行う方法である。 この E S C A法の測定条件は、 通常の測定条件を 制限なく用いることができ、 例えば、 X線源と しては MgK 、 A 1 Kひなどを 採用するこ とができ、 出力を 1 5 k v x 3 3 mA、 真空度を 5 x 1 0— 8 T o r rなどと設定することができる。 The ESCA method is a solid surface analysis method using electron spectroscopy, and irradiates soft X-rays under high vacuum to the surface of solid samples such as metals, ceramics, inorganic compounds, and polymer materials. In this method, the photoelectrons emitted from the surface of the solid sample are detected by an electrostatic energy analyzer, and the type, oxidation state, bonding state, and the like of elements on the surface of the solid sample are analyzed. The measurement conditions of this ESCA method can use ordinary measurement conditions without limitation. For example, MgK, A1K, etc. can be used as the X-ray source, and the output is 15 kvx3. 3 mA, it is possible to set the degree of vacuum such as 5 x 1 0- 8 T orr a.
上記シランカツプリ ング剤の層の上には、 熱可塑性樹脂製の被覆膜が形成され る。 この熱可塑性樹脂製被覆膜は、 樹脂被覆金属板の電気絶縁性、 耐薬品性など を向上させ、 識別用表示の印刷面とされる。  A coating film made of a thermoplastic resin is formed on the silane coupling agent layer. This thermoplastic resin coating film improves the electrical insulation and chemical resistance of the resin-coated metal plate, and is used as a printing surface for identification display.
この熱可塑性樹脂製被覆膜としては、 熱可塑性樹脂からなるフィルムがあげら れる。 上記熱可塑性樹脂としては、 ポリエステル系樹脂又はポリアミ ド系樹脂が あげられる。 上記ポリエステル系樹脂としては、 ポリエチレンテレフタレート、 ポリブチレンテレフタレ一ト、 ポリ一 1 , 4—シクロへキサジメチレンテレフタ レート、 これらの共重合ポリエステルなどのポリエステル系樹脂、 上記各ポリエ ステル系樹脂と、 ポリ 'ェチレンゃポリ プロピレンなどのポリオレフィ ン系樹脂、 エチレン一酢酸ビニル共重合体、 エチレン一ビニルアルコール共重合体、 ェチレ ンとァク リル酸誘導体等との共重合体、 及びこれらのポリエステル系樹脂の混合 物などがあげられる。  Examples of the thermoplastic resin coating film include a film made of a thermoplastic resin. Examples of the thermoplastic resin include a polyester resin and a polyamide resin. Examples of the polyester resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, poly-1,4-cyclohexadimethylene terephthalate, and copolyesters thereof, and polyester resins described above. , Polyolefin resins such as poly (ethylene / polypropylene), ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, copolymers of ethylene and acrylic acid derivatives, and polyesters of these Examples of the mixture include a resin mixture.
上記ポリアミ ド系樹脂としては、 ポリアミ ド 6、 ポリアミ ド 1 1、 ポリアミ ド 1 2、 ポリアミ ド 6 6、 ポリアミ ド 6 1 0、 ポリアミ ド 6 1 2、 ポリアミ ド 46 - これらの共重合ポリアミ ド、 混合ポリアミ ド、 メタキシリ レンジァミンとアジピ ン酸の重縮合反応で生成する構造単位を 9 0モル%以上を含有するポリメタキシ リ レンアジパミ ド等の芳香族ポリアミ ド、 非晶性ポリアミ ド、 ポリアミ ド系エラ ス トマー、 耐衝撃性ポリアミ ドこれらポリアミ ド系樹脂の混合物などがあげられ る。 Examples of the polyamide resin include polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610, polyamide 612, polyamide 46- Aromatic polyamides such as copolymerized polyamides, mixed polyamides, polymethaxylenediene adipamides containing at least 90 mol% of structural units formed by the polycondensation reaction of metaxylylenediamine and adipic acid, and amorphous polyamides And polyamide-based elastomers, impact-resistant polyamides, and mixtures of these polyamide-based resins.
これらの中でも、 耐熱性、 特にハンダリ フロ一工程における耐熱性の観点から、 融点が 1 8 0 °C以上のポリアミ ド系樹脂ゃポリエステル系樹脂は、 樹脂積層板か らコンデンサ一外装用容器を製造する際に好適に用いることができる。  Among these, from the viewpoint of heat resistance, especially from the viewpoint of heat resistance in one step of solder reflow, polyamide-based resin with a melting point of 180 ° C or more is used to manufacture a capacitor exterior container from a resin laminate. It can be suitably used when performing.
上記熱可塑陸樹脂製被覆膜の成形方法は特に制限されるものではなく、 コ一ト ハンガーダイ、 T —ダイ、 I 一ダイ、 インフレ一シヨンダイなどを使用しての押 出成形法、 カレンダー成形法など、 従来から知られている方法によって製造する ことができる。 この熱可塑陸樹脂製被覆膜は未延伸でも、 二軸延伸されていても よい。  The method for forming the above-mentioned thermoplastic land resin coating film is not particularly limited, and may be extrusion molding using a coat hanger die, a T-die, an I-die, an inflation die, or a calender. It can be manufactured by a conventionally known method such as a molding method. This thermoplastic land resin coating film may be unstretched or biaxially stretched.
また、 熱可塑性樹脂製被覆膜は、 上記の製膜したものを用いて、 シランカップ リ ング剤薄膜上に積層してもよく、 また、 熱可塑性樹脂を、 Tダイ、 I ダイなど の口金を装備した押出機によ り薄膜状に押し出しながらシランカツプリ ング剤薄 膜上に積層してもよい。  Moreover, the thermoplastic resin coating film may be laminated on the silane coupling agent thin film using the film formed above, and the thermoplastic resin may be coated on a die such as a T die or an I die. It may be laminated on the silane coupling agent thin film while extruding it into a thin film by an extruder equipped with a silane coupling agent.
熱可塑性樹脂には、 製膜する前に、 必要に応じて各種の樹脂添加剤を配合する ことができる。 樹脂添加剤と しては、 染料、 顔料などの着色剤、 滑剤、 ブロッキ ング防止剤、 熱安定剤、 帯電防止剤、 光安定剤、 防鲭剤、 紫外線吸収剤、 耐衝撃 改良剤、 酸化防止剤、 帯電防止剤等があげられる。 これら樹脂添加剤は、 熱可塑 性樹脂製被覆膜に悪影響を与えない範囲で配合することができる。 さらに、 密着 性を向上させる目的でコロナ処理、 火炎処理などの表面処理を施すことができる ( 熱可塑性樹脂製被覆膜の厚さは、 5〜 2 0 0 mがよく、 5 ~ 1 0 0 z mが好 ましく、 1 0 At m ~ 5 0 mの範囲がより好ま しい。 被覆膜の厚さ 5 z m未満で あると、 ピンホールが生じ易く、 アルミニウム板の耐蝕性、 電気絶縁性などを向 上させることができにく くなる場合があり、 また、 熱可塑性樹脂製被覆膜を金属 板に積層するのが著しく困難となる場合がある。 一方、 2 0 0 z mを超えると、 厚くなり過ぎて絞り加工やしごき加工の際にクラックなどが発生し易くなるばか りでなく、 経済的にも好ましくない。 Various kinds of resin additives can be added to the thermoplastic resin as needed before forming the film. Resin additives include colorants such as dyes and pigments, lubricants, antiblocking agents, heat stabilizers, antistatic agents, light stabilizers, antioxidants, ultraviolet absorbers, impact modifiers, and antioxidants. Agents, antistatic agents and the like. These resin additives can be blended within a range that does not adversely affect the thermoplastic resin coating film. Furthermore, surface treatment such as corona treatment or flame treatment can be performed for the purpose of improving adhesion ( the thickness of the thermoplastic resin coating film is preferably 5 to 200 m, and 5 to 100 m. zm is preferred, and the range of 10 Atm to 50 m is more preferred If the thickness of the coating film is less than 5 zm, pinholes are likely to occur, and the corrosion resistance and electrical insulation properties of the aluminum plate, etc. In some cases, it may be difficult to improve the heat resistance, and it may be extremely difficult to laminate the thermoplastic resin coating film on the metal plate. Not only is it too thick, cracks and the like tend to occur during drawing and ironing, and it is not economically favorable.
上記シランカツプリ ング剤薄膜上に熱可塑性樹脂製被覆膜を形成、 すなわち積 層する方法としては、 連続法やパッチ法があげられる。 A coating film made of a thermoplastic resin is formed on the silane coupling agent thin film, The layering method includes a continuous method and a patch method.
上記連続法とは、 まず、 上記金属板又は化成処理薄膜上に上記シランカツプリ ング剤を塗布する。 次いで、 2 5 0〜 3 5 0 °Cの温度に加熱してシランカツプリ ング剤を分散している液体成分を飛散させる。 そして、 直ちに、 熱可塑性樹脂を Tダイ、 Iダイなどの口金を装備した押出機により薄膜状に押し出しながら積層 したり、 既に製膜した熱可塑性樹脂製被覆膜を、 熱可塑性樹脂の融点以下に加熱 したニップロール等によって加圧積層する。 そして、 積層した後は、 直ちに空冷 又は水冷によつて冷却する方法である。  In the continuous method, first, the silane coupling agent is applied on the metal plate or the chemical conversion thin film. Next, the liquid component in which the silane coupling agent is dispersed is scattered by heating to a temperature of 250 to 350 ° C. Immediately, the thermoplastic resin is extruded into a thin film by an extruder equipped with a die such as a T-die or an I-die, and is laminated while extruding the thermoplastic resin. Pressure lamination is performed using a heated nip roll or the like. After stacking, it is immediately cooled by air cooling or water cooling.
この場合、 積層する際の温度が 2 5 0 °Cより低いと、 アルミニウム板と熱可塑 性樹脂製の被覆膜との密着性が十分でない場合があり、 3 5 0 °Cより高いと被覆 膜の熱劣化が進み、 絞り加工やしごき加工の際に被覆膜が破損したり、 クラック などが発生し易くなる場合がある。  In this case, if the temperature at the time of lamination is lower than 250 ° C, the adhesion between the aluminum plate and the coating film made of thermoplastic resin may not be sufficient, and if the temperature is higher than 350 ° C, Thermal degradation of the film progresses, and the coating film may be damaged or cracked during drawing or ironing.
一方、 上記パッチ法とは、 シランカップリ ング剤薄膜を形成した金属板を融点 〜 3 5 0 ° (:、 好ましくは 2 0 0 ~ 3 5 0 °Cに加熱し、 次に、 熱可塑性樹脂を Tダ ィ、 Iダイなどの口金を装備した押出機によ り薄膜状に押し出しながら積層した り、 既に製膜した熱可塑性樹脂製被覆膜を、 熱可塑性樹脂の融点以下に加熱した ニヅプロ一ル等によって加圧積層する。 そして、 積層した後は、 直ちに空冷まは た水冷によって冷却する方法である。  On the other hand, the above-mentioned patch method means that a metal plate on which a silane coupling agent thin film is formed is heated to a melting point of up to 350 ° C. (preferably, at 200 ° C. to 350 ° C.). It is a NIPPRO that extrudes it into a thin film by using an extruder equipped with a die such as a T-die or an I-die, stacks it, or heats an already formed thermoplastic resin coating film below the melting point of the thermoplastic resin. This is a method of cooling by air cooling or water cooling immediately after lamination.
この場合、 熱可塑性樹脂の融点より低い場合には、 熱可塑陸熱可塑性樹脂製被 覆膜が十分に密着せず、 樹脂被覆金属板を加工した際に、 この熱可塑性樹脂製被 覆膜が剥離する場合があり、 また、 樹脂被覆金属板の熱可塑性樹脂製被覆膜が硬 くなりすぎで成形性が悪くなる場合がある。 一方、 3 5 0 °Cより高くすると、 樹 脂被覆金属板の金属が柔らかくなりすぎてその強度が著しく低下し、 凹みなどが 生じ易くなる場合があり、 また、 熱可塑性樹脂製被覆膜が劣化する場合がある。 なお、 上記の融点とは、 示差走査熱量計 (D S C ) により 1 0 °C /分で昇温させ たときの結晶融解温度のピ一ク温度をいう。  In this case, if the melting point is lower than the melting point of the thermoplastic resin, the thermoplastic land thermoplastic resin coating film does not adhere sufficiently, and when the resin-coated metal plate is processed, the thermoplastic resin coating film becomes inconsistent. The resin-coated metal sheet may be peeled off, and the thermoplastic resin coating film of the resin-coated metal plate may be too hard, resulting in poor moldability. On the other hand, if the temperature is higher than 350 ° C, the metal of the resin-coated metal plate becomes too soft and its strength is remarkably reduced, and dents and the like may easily occur. It may deteriorate. The above melting point refers to the peak temperature of the crystal melting temperature when the temperature is raised at 10 ° C./min by a differential scanning calorimeter (DSC).
この発明に係る樹脂被覆金属板は、 その樹脂被覆金属板を構成する熱可塑性樹 脂製被覆膜の外表面から測定したピツカ一ス硬度が 2 5〜 6 0の範囲にあるこ と が好ま しい。 アルミニゥム薄板の樹脂被覆面のビヅカース硬度が 2 5未満である と、 樹脂被覆金属板が柔らかくなりすぎて成形性が悪くなる場合があり、 一方、 ビッカース硬度が 6 0を超えると、 この場合も樹脂被覆金属板が硬くな りすぎる 場合がある。 なお、 上記 「ピツカ一ス硬度」 とは、 J I S Z 2 2 4 4 「ビヅ カース硬さ試験一試験方法」 に準拠して測定した硬度をいう。 In the resin-coated metal sheet according to the present invention, it is preferable that the hardness of the resin measured from the outer surface of the thermoplastic resin coating film constituting the resin-coated metal sheet is in the range of 25 to 60. . If the Vickers hardness of the resin-coated surface of the aluminum thin plate is less than 25, the resin-coated metal plate may be too soft and formability may be deteriorated.On the other hand, if the Vickers hardness exceeds 60, the resin Coated metal plate is too hard There are cases. In addition, the above-mentioned “Pitka hardness” refers to hardness measured in accordance with JISZ2244 “Beakers hardness test-one test method”.
次に、 この発明に係る樹脂被覆金属板の製造法を具体的に数例示す。  Next, several specific examples of the method for producing the resin-coated metal sheet according to the present invention will be described.
第 1例としては、 アルミニウム板の表面に厚さ 0 . 0 5 ~ 2〃mの陽極酸化被 膜を形成し、 この陽極酸化被膜の上にシラン力ヅプリ ング剤を 0 . 5〜 5 0 0 m g / m 2の割合で塗布し、 さらにこのシランカップリ ング剤の薄膜上に厚さが 5 - 2 0 0 mの熱可塑性樹脂製の被覆膜を、 2 5 0 ~ 3 5 0 °Cの温度範囲で溶融 被覆して樹脂被覆金属板を製造する方法があげられる。 As a first example, an anodic oxide film having a thickness of 0.05 to 2 μm is formed on the surface of an aluminum plate, and a silane printing agent is applied to the anodic oxide film in a thickness of 0.5 to 500 μm. was applied at a rate of mg / m 2, further thickness on the thin film of the Shirankappuri ring agent 5 - 2 0 0 a thermoplastic resin covering layer of m, the 2 5 0 ~ 3 5 0 ° C A method of producing a resin-coated metal plate by melt-coating in a temperature range is exemplified.
また、 第 2例としては、 厚さ 0 . l m m ~ 0 . 5 m mのアルミニウム板の片面 に化成処理薄膜を形成し、 ついで、 この薄膜の上にシランカップリ ング剤を 0 . 0 1〜 1 0 0 0 m g / m 2塗布して薄膜を形成し、 さらに、 この化成処理薄膜及 びシランカツプリ ング剤の薄膜を積層したアルミニゥム板を 2 0 0〜 3 5 0 °Cの 温度範囲で加熱し、 上記シランカツプリ ング剤の薄膜の上方から厚さが 5 ~ 2 0 0 m zの熱可塑性樹脂フィルムを被覆 · 圧着し、 熱可塑性樹脂製の被覆膜面のビ ッカース硬度が 2 5〜 6 0の範囲である樹脂被覆金属板の製造する方法があげら れる。 As a second example, a chemical conversion thin film is formed on one side of an aluminum plate having a thickness of 0.1 to 0.5 mm, and then a silane coupling agent is applied on this thin film in a thickness of 0.01 to 10 mm. 0 0 mg / m 2 coating to form a thin film, further, heating the Aruminiumu plate film was laminated in the chemical conversion treatment film及beauty Shirankatsupuri ring agent in a temperature range of 2 0 0~ 3 5 0 ° C , the A thermoplastic resin film with a thickness of 5 to 200 mz is coated and pressed from above the thin film of the silane coupling agent, and the Vickers hardness of the thermoplastic resin coating film is in the range of 25 to 60. There is a method for producing a resin-coated metal plate.
さらに、 第 3例として、 水 1 0 0重量部に対してシランカップリ ング剤を 0 . 0 1〜 1 0重量部の割合で配合し、 金属板の表面に塗布した際の接触角が 5 5 ° 以下とされたシランカツプリ ング剤水溶液を金属板の表面に塗布し、 5 0 °C / s 以下の昇温速度で乾燥させて塗膜を形成し、 この塗膜を熱可塑性樹脂の融点から 3 5 0 °Cの温度範囲で加熱し、 この塗膜の表面に熱可塑性樹脂製被覆膜を積層し て樹脂被覆金属板を製造する方法があげられる。  Further, as a third example, a silane coupling agent is added in a proportion of 0.01 to 10 parts by weight with respect to 100 parts by weight of water, and the contact angle when applied to the surface of the metal plate is 55 to 50 parts by weight. ° C or less is applied to the surface of the metal plate, and dried at a heating rate of 50 ° C / s or less to form a coating film. There is a method in which a resin-coated metal plate is produced by heating in a temperature range of 50 ° C. and laminating a coating film made of a thermoplastic resin on the surface of the coating film.
この発明に係る樹脂被覆金属板をしごき加工法によって加工した場合、 熱可塑 性樹脂製被覆膜に亀裂が発生し難く、 かつ、 熱可塑性樹脂製被覆膜が金属板から 容易に剥離することがないので、 この樹皡被覆金属板は、 曲げ加工法、 絞り加工 法、 しごき加工法などの複数の二次加工を経て製造される容器の材料と して好適 に使用することができる。 また、 この樹脂被覆金属板は、 各種加工法による加工 後に加熱しても熱可塑性樹脂製被覆膜が金属板から容易に剥離することがないの で、 この樹脂被覆金属板を用いて製造した容器は加熱に耐え得る。  When the resin-coated metal plate according to the present invention is processed by the ironing method, cracks are not easily generated in the thermoplastic resin coating film, and the thermoplastic resin coating film is easily peeled off from the metal plate. Since there is no such material, the tree-covered metal plate can be suitably used as a material for a container manufactured through a plurality of secondary processes such as a bending process, a drawing process, and an ironing process. In addition, this resin-coated metal plate was manufactured using this resin-coated metal plate because the thermoplastic resin coating film does not easily peel off from the metal plate even when heated after processing by various processing methods. The container can withstand heating.
また、 上記樹脂被覆金属板は、 絞り加工などのプレル加工性に優れ、 アルミ二 ゥム電解コンデンサー外装用容器の製造として好適に使用できる。 また、 樹脂被 覆面のビッカース硬度が 2 5 ~ 6 0の範囲にされている場合は、 プレス加工時に 容器同士が接触し合っても、 製品容器同士が接触し合っても、 容器の天面部や側 面部に凹みなどが生じ難くなるとともに、 耐圧性が向上し、 しかも容器の天面部 に、 美麗な識別用の印刷表示を施すことができる。 Further, the resin-coated metal plate is excellent in pre-processability such as drawing, and can be suitably used for production of a container for an aluminum electrolytic capacitor exterior. In addition, resin coating If the Vickers hardness of the cover is in the range of 25 to 60, even if the containers come into contact with each other during press working, or even if the product containers come into contact with each other, dents will occur on the top and side surfaces of the container. This makes it harder to cause such problems, improves the pressure resistance, and makes it possible to provide a beautiful identification printed indication on the top surface of the container.
さらに、 上記樹脂被覆金属板はは、 建造物の壁面材、 仕切板材、 意匠材、 各種 缶製造用の材料のほか、 特に、 コンデンサ一外装用容器の材料として好適に使用 することができる。 なお、 このコンデンサ一外装用容器を製造する際には、 ハン ダリ フロー工程を経る必要があるので、 耐熱性に優れた熱可塑性熱可塑性樹脂製 被覆膜が積層された樹脂被覆金属板を用いるのが好ましく、 また、 熱可塑性熱可 塑性樹脂製被覆膜が外側となるように加工するのが好ましい。 上記コンデンサ一 外装用容器としては、 電解コンデンサー用外装容器、 電解コンデンサーキャップ 等があげられる。 実施例  Further, the above resin-coated metal plate can be suitably used as a material for a wall of a building, a partition plate, a design material, a material for manufacturing various cans, and particularly, a container for a capacitor. In addition, when manufacturing this container for an exterior of a capacitor, it is necessary to go through a solder reflow process, so use a resin-coated metal plate on which a coating film made of thermoplastic thermoplastic resin with excellent heat resistance is laminated. It is also preferable to process the coating so that the coating film made of thermoplastic thermoplastic resin is on the outside. Examples of the outer container for the capacitor include an outer container for an electrolytic capacitor, an electrolytic capacitor cap, and the like. Example
以下、 本発明を試験例に基づいて更に詳細に説明するが、 本発明はその趣旨を 超えない限り、 以下の記載例に限定されるものではない。 なお、 以下に記載の試 験例で得られた樹脂被覆金属板は、 次に記載の方法によって評価したものである < ( 1 ) 絞り加工性 : 試験例で得られた樹脂被覆金属板を、 ランス順送り絞り機に 送り、 熱可塑性樹脂の被覆膜を容器外側面とし、 l O mm 0 x 2 O mmの円筒容 器 (しごき率 2 0 %) を 1 0 0個製造し、 アルミニウム板表面と被覆膜の界面を 目視観察し、 界面に層間剥離が認められなかったものを良品と し、 良品率 (%) または 「〇」 と して表示した。  Hereinafter, the present invention will be described in more detail based on test examples, but the present invention is not limited to the following description examples without departing from the gist thereof. The resin-coated metal sheet obtained in the test example described below was evaluated by the following method. <(1) Drawability: The resin-coated metal sheet obtained in the test example was Sent to a lance progressive drawing machine and manufactured 100 cylindrical containers (ironing rate 20%) of l O mm 0 x 2 O mm with the thermoplastic resin coating film on the outer surface of the container, and the surface of the aluminum plate The interface between the coating and the coating film was visually observed, and if no delamination was observed at the interface, it was regarded as a non-defective product and indicated as a non-defective product rate (%) or “〇”.
( 2 ) かしめ加工性 : 1 0 mm ø X 2 0 mmの円筒容器を 1 0 0個製造し、 1 0 0 r p mで回転させながら、 厚さが 3 mmの円板状のかしめごま (側面は R = l , 5 mmの半円状) を押し当てて、 直径が 7. 5 mm (直径変化率 = 2 5 %) にな るようにかしめ加工を行い、 アルミニゥム板表面と被覆膜の界面を目視観察し、 界面に層間剥離が認められなかったものを良品とし、 良品率 (%) または 「〇」 として表示した。  (2) Caulking workability: Manufacture 100 cylindrical containers of 10 mm ø X 20 mm, rotate them at 100 rpm, and make a disk-shaped caulking sesame with a thickness of 3 mm. R = l, 5 mm semi-circular shape) and caulking so that the diameter becomes 7.5 mm (diameter change rate = 25%), and the interface between the aluminum plate surface and the coating film Was visually observed, and a sample without delamination at the interface was regarded as a non-defective product and indicated as a non-defective product rate (%) or “ま た は”.
( 3 ) 経時変化 : 上記 ( 2 ) のかしめ加工性の評価試験を行った 1 0 0個の容器 を、 常温で 1 0 日間放置した後、 再度アルミニウム板表面と被覆膜の界面を目視 観察し、 界面に層間剥離が認められなかったものを良品と し、 良品率 (%) とし て表示した。 (3) Temporal change: 100 containers subjected to the caulking workability evaluation test described in (2) above were allowed to stand at room temperature for 10 days, and then visually observed again at the interface between the aluminum plate surface and the coating film. The product with no delamination at the interface was regarded as a non-defective product, and was regarded as a non-defective product ratio (%) Displayed.
[実験例 1 ]  [Experimental example 1]
(試験例 1 ~ 5 )  (Test Examples 1 to 5)
<樹脂被覆金属板の製造 > <Manufacture of resin-coated metal plate>
厚さが 0 . 3 mmのアルミニウム板 (J I S A 1 0 5 0 H 2 2 ) の両面 に、 2 0 %リ ン酸溶液により陽極酸化処理を施し、 表 1 に示した厚さのリ ン酸ァ ルマイ ト処理被膜を形成した。 次いで、 この陽極酸化被膜に表一 1 に示したシラ ンカヅプリ ング剤を 5 O m g/m2の割合で塗布し、 この塗布面を 2 8 0 °Cに加 熱した。 加熱した塗布面に、 別途製造した厚さが 1 5〃mのポリアミ ド 6 (融点 2 2 3 °C ) のフィルムを重ね、 一対の加圧ロールによって加圧して積層し、 樹脂 被覆金属板を得た。 得ちれた樹脂被覆金属板につき、 上記項目の評価試験を行つ た。 評価試験結果を、 表 1 に示す。 Both sides of a 0.3 mm thick aluminum plate (JISA1500H22) were anodized with a 20% phosphoric acid solution, and phosphoric acid with the thickness shown in Table 1 was obtained. A lumite-treated film was formed. Next, the silane capping agent shown in Table 11 was applied to the anodic oxide coating at a rate of 5 Omg / m 2 , and the coated surface was heated to 280 ° C. A film of polyimide 6 (melting point: 222 ° C), separately manufactured and having a thickness of 15 μm, was stacked on the heated application surface, and laminated by pressing with a pair of pressure rolls. Obtained. The obtained resin-coated metal sheet was subjected to the above-described evaluation tests. Table 1 shows the evaluation test results.
(試験例 6〜 7 )  (Test Examples 6 to 7)
試験例 1 に記載の例において、 2 0 %リ ン酸溶液による陽極酸化処理に代えて リン酸クロメー ト処理 (クロム量 1 O m g/m2、 試験例 6 ) 、 またはシユウ酸 アルマイ ト処理 (試験例 7 ) をおこないそれぞれの被膜を形成した。 得られた樹 脂被覆金属板につき、 上記項目の評価試験を行った。 評価試験結果を、 表 1 に示 す。 In the example described in Test Example 1, in place of the anodizing treatment with a 20% phosphoric acid solution, treatment with phosphoric acid chromate (chromium amount 1 O mg / m 2 , Test Example 6) or treatment with alumite oxalate ( Test Example 7) was performed to form respective coatings. An evaluation test of the above items was performed on the obtained resin-coated metal plate. Table 1 shows the evaluation test results.
Figure imgf000013_0001
Figure imgf000013_0001
[* 1] カップリング剤の略号は、 次の意味である。  [* 1] The abbreviation of the coupling agent has the following meaning.
*アミノシラン = 3—ァミノプロピルトリエトキシシラン  * Aminosilane = 3-aminopropyltriethoxysilane
氺グリシドキシ =3—グリシドキシプロピルトリメトキシシラン  氺 Glycidoxy = 3-glycidoxypropyltrimethoxysilane
*ジアミノシラン =N— 2—アミノエチル一 3—ァミノプロビルトリメトキシシラン  * Diaminosilane = N— 2-aminoethyl-3-aminopropyl trimethoxysilane
(結東) 表 1から、 次のことが明らかとなる。 (Yuto) From Table 1, the following becomes clear.
( 1 ) 陽極酸化被膜としてリ ン酸アルマイ ト処理被膜であって、 厚さが 0. 0 5 ~ 2 / mの被膜を形成したものは、 絞り加工性、 かしめ加工性に優れ、 各工程で 界面に層間剥離が認められず、 経時変化.(劣化) も認められない (試験例 2、 試 験例 4、 試験例 5参照) 。  (1) Anodized phosphoric acid-treated coatings with a thickness of 0.05 to 2 / m are excellent in drawing and caulking, and are suitable for each process. No delamination was observed at the interface, and no change over time (deterioration) was observed (see Test Examples 2, 4, and 5).
(2 ) これに対して、 リ ン酸アルマイ ト処理被膜を形成しても厚さが 0. l m 未満の被膜を形成したもの (試験例 1参照) は、 かしめ加工工程で界面に層間剥 離が認められ、 著しい経時変化が認められる。 しかしながら、 それなりの絞り加 ェは可能である。  (2) On the other hand, when the alumite-treated film was formed but the film was less than 0.1 lm thick (see Test Example 1), the interface was delaminated at the interface in the caulking process. Is observed, and remarkable changes with time are observed. However, some squeezing is possible.
( 3 ) また、 おなじ陽極酸化被膜であっても リ ン酸クロメート処理被膜を形成し たものは、 絞り加工は問題ないものの、 かしめ加工性に劣 り、 著しい経時変化 (3) Even with the same anodic oxide coating, a phosphoric acid chromate-treated coating was formed, but although there was no problem with drawing, it was inferior in crimpability and markedly changed with time.
(劣化) が認められる (試験例 6参照) 。 (Deterioration) is observed (see Test Example 6).
(4) さらに、 おなじ陽極酸化被膜であってもシユウ酸アルマイ ト処理被膜を形 成したものは、 かしめ加工性、 経時変化ともに著しく劣る (試験例 7参照) 。 (4) Furthermore, even if the same anodic oxide coating was formed with the oxalic acid alumite-treated coating, both the caulking workability and the change over time were remarkably inferior (see Test Example 7).
( 5 ) リ ン酸アルマイ ト処理被膜を形成しても、 これにシランカップリ ング剤を 塗布しなかったものは、 かしめ加工性に劣り、 著しい経時変化 (劣化) が認めら れる (試験例 3参照) 。 (5) Even if the alumite-treated coating film was formed and the silane coupling agent was not applied thereto, the caulking processability was inferior and remarkable aging (deterioration) was observed (Test Example 3). See).
(試験例 8〜: L 2 )  (Test Example 8: L 2)
厚さが 0. 3 mのアルミニウム板 (J I S A 1 0 5 0 H 2 2 ) の両面に、 2 0 %リ ン酸溶液により陽極酸化処理を施し、 厚さが 0. 6 zmのリ ン酸アルマ イ ト処理被膜を形成した。 この被膜の上に、 表 2に示した官能基を有するシラン カップリ ング剤を 2 0 m g/m2塗布し、 この塗布面を 2 8 0 °Cに加熱した。 加 熱した塗布面に、 別途製造した厚さが 1 5〃mのポリアミ ド 6 (融点 2 2 3 °C) のフィルムを重ね、 一対の加圧ロールによって加圧して積層し、 樹脂被覆金属板 を得た。 得られた樹脂被覆金属板につき、 上記項目の評価試験を行った。 評価試 験結果を、 表 2に示す。 表 2 Both sides of a 0.3 m thick aluminum plate (JISA1500 H22) are anodized with a 20% phosphoric acid solution to form a 0.6 zm thick aluminum phosphate. An it-treated film was formed. A silane coupling agent having a functional group shown in Table 2 was applied to the coating at 20 mg / m 2, and the coated surface was heated to 280 ° C. A 15 mm thick polyimide 6 (melting point: 22 ° C) film was separately laminated on the heated coating surface, and laminated by pressing with a pair of pressure rolls. I got With respect to the obtained resin-coated metal plate, an evaluation test of the above items was performed. Table 2 shows the evaluation test results. Table 2
Figure imgf000015_0001
Figure imgf000015_0001
[*2] それそれの活性基を有するカップリング剤は、 次の意味である。  [* 2] The coupling agent having each active group has the following meaning.
*アミノ基 = 3—ァミノプロピルトリエトキシシラン  * Amino group = 3-aminopropyltriethoxysilane
*ジァミニ基 =N— 2—アミノエチル一 3—ァミノプロピルトリメトキシシラン  * Dimini group = N— 2-aminoethyl-3-aminopropyltrimethoxysilane
*グリシドキシ基 =3—グリシドキシプロピルトリメトキシシラン  * Glycidoxy group = 3—Glycidoxypropyltrimethoxysilane
*メタクリロキシ基 =3—メタクリロキシプロビルトリメトキシシラン  * Methacryloxy group = 3—Methacryloxypropyl trimethoxysilane
*ゥレイド基 =ウレイドアミノブ口ピルトリエトキシシラン  * ゥ laid group = uretaminobutyral pyrtriethoxysilane
(結果) (Result)
表 2から、 次のことが明らかとなる。  From Table 2, the following becomes clear.
( 1 ) シランカップリ ング剤を塗布したものは、 絞り加工性、 かしめ加工性に優 れ、 各工程で界面に層間剥離が認められず、 経時変化 (劣化) も認められない (1) The one coated with silane coupling agent is excellent in drawability and caulking, no delamination is observed at the interface in each process, and no change over time (deterioration) is observed.
(試験例 8〜 1 2参照) 。 (See Test Examples 8 to 12).
(試験例 1 3〜 : 1 5 )  (Test Examples 13 to: 15)
厚さが 0. 3 mmのアルミニウム板 (J I S A 1 0 5 0 H 2 2) の両面に、 2 0 %リ ン酸溶液により陽極酸化処理を施し、 厚さが 0. 5 mのリン酸アルマ ィ ト処理被膜を形成した。 この被膜の上に、 ゥレイ ド基をもつシランカップリ ン グ剤を 2 0 mg/m2塗布し、 この塗布面を 2 5 0 °Cに加熱した。 加熱した塗布 面に、 表 3に示した樹脂で別途製造した厚さが 1 5 mのフィルムを重ね、 一対 の加圧ロールによって加圧して積層し、 樹脂被覆金属板を得た。 この得られた樹 脂被覆金属板につき、 上記項目の評価試験を行った。 評価試験結果を、 表 3に示 す。 表 3 Both surfaces of a 0.3 mm thick aluminum plate (JISA1500 H22) are anodized with a 20% phosphoric acid solution to form a 0.5 m thick aluminum phosphate. A treated film was formed. A silane coupling agent having a peridode group was applied at 20 mg / m 2 on the coating, and the coated surface was heated to 250 ° C. A film having a thickness of 15 m separately manufactured using the resin shown in Table 3 was overlaid on the heated application surface, and laminated by pressing with a pair of pressure rolls to obtain a resin-coated metal plate. With respect to the obtained resin-coated metal plate, an evaluation test of the above items was performed. Table 3 shows the evaluation test results. Table 3
Figure imgf000016_0001
Figure imgf000016_0001
(結果) (Result)
表 3から、 次のことが明らかとなる。  Table 3 reveals the following.
( 1 ) アルミニウム板の被覆膜がポリエステル系樹脂、 ポリアミ ド系樹脂の場合 は、 絞り加工性、 かしめ加工性に優れ、 各工程で界面に層間剥離が認められず、 経時変化 (劣化) も認められない (試験例 1 3、 試験例 1 4参照) 。  (1) When the coating film of the aluminum plate is a polyester resin or polyamide resin, it has excellent drawability and caulking workability, no delamination is observed at the interface in each process, and there is a change with time (deterioration). Not recognized (see Test Examples 13 and 14).
( 2 ) これに対して、 被覆膜がポリプロピレンの場合には、 絞り加工の工程で界 面に層間剥離が認められ、 絞り加工性に劣る (試験例 1 5参照) 。  (2) On the other hand, when the coating film is polypropylene, delamination is observed on the surface during the drawing process, and the drawing process is poor (see Test Example 15).
(試験例 1 6〜 : 1 9 )  (Test example 16-: 19)
陽極酸化処理法を下記の方法と した以外は、 試験例 1 3の方法に従って樹脂被 覆金属板を得た。 この得られた樹脂被覆金属板につき、 上記項目の評価試験を行 つた。 評価試験結果を、 表 5に示す。  A resin-coated metal plate was obtained according to the method of Test Example 13 except that the anodizing treatment was performed as described below. With respect to the obtained resin-coated metal plate, an evaluation test of the above items was performed. Table 5 shows the evaluation test results.
(陽極酸化処理方法)  (Anodizing treatment method)
陽極酸処理条件は表 4に示す電解質番号 1 ~ 4の方法に従って行った。  Anodizing treatment was performed according to the methods of electrolyte numbers 1 to 4 shown in Table 4.
なお、 電解質番号 4で使用される有機酸は、 ジカルボン酸 (マレイン酸、 マロ ン酸) 、 芳香族スルホン酸 (スルホサリチル酸、 スルホフ夕一ル酸) 、 カルボン 酸スルホネート (スルホマレイ ン酸) 、 スルホン酸ァミン. (スルファミ ン酸) 等 から選ばれる。  The organic acids used in electrolyte No. 4 are dicarboxylic acid (maleic acid, malonic acid), aromatic sulfonic acid (sulfosalicylic acid, sulfofuric acid), carboxylic acid sulfonate (sulfomaleic acid), and sulfonic acid. (Sulfamic acid) and the like.
また、 その処理条件は、 リ ン酸濃度 : 0. l ~ 5 0 0 g/l、 硫酸 ' シユウ 酸 ' クロム酸 ' 上記有機酸のいずれかの濃度 : 0. l〜5 0 0 gZl、 電圧 : 1 〜 : L 0 0 vA C、 :! 〜 l O O vD Cの単独又は重畳、 時間 : :! 〜 6 0分、 薄膜 厚 : 5 0 A~ 5 0〃m、 リ ン酸ァニオン含有率 : :!〜 5 0 0 0 p pmの範囲内と した。 表 4 The treatment conditions are as follows: phosphoric acid concentration: 0.1 to 500 g / l, sulfuric acid 'oxalic acid' chromic acid, concentration of any of the above organic acids: 0.1 to 500 gZl, voltage : 1 to: L00 vA C,:! ~ L OO vD C alone or superimposed, time ::! ~ 60 min, Thin film Thickness: 50 A ~ 50 、 m, Phosphate anion content::! 5500 ppm. Table 4
Figure imgf000017_0001
さらに、 その伴の条件として下記に示す条件を用いた。
Figure imgf000017_0001
Furthermore, the following conditions were used as accompanying conditions.
• その他の条件番号 1 : リ ン酸アルマイ ト形成後、 シランカップリ ング添加浴中 にて交流電解若しくは直流電解 (基材がマイナス極) した後、 フ ィ ルムラ ミネ一 トする。  • Other condition No. 1: After the formation of alumite phosphate, perform AC or DC electrolysis (substrate is negative electrode) in a silane coupling addition bath, and then perform film luminescence.
' その他の条件番号 2 : リ ン酸アルマイ ト形成後、 エポキシェマルジヨ ン浴中に て交流電解若しくは直流電解 (基材がマイナス極) した後、 フィルムラ ミネート する。  'Other condition number 2: After forming alumite phosphate, perform AC or DC electrolysis (substrate is negative electrode) in an epoxy emulsion bath, and then perform film lamination.
. その他の条件番号 3 : リ ン酸アルマイ ト形成後、 シランカヅプリ ング剤とェポ キシェマルジョ ン混合浴中にて交流電解若しくは直流電解 (基材がマイナス極) した後、 フィルムラ ミネートする。  Other condition number 3: After forming the alumite phosphate, perform AC electrolysis or DC electrolysis (substrate is negative electrode) in a mixed bath of silane capping agent and Epoxy marjon, and then perform film lamination.
. その他の条件番号 4 : 上記のその他の条件番号 1 ~ 3 までの電解処理後、 シラ ンカヅプリ ング処理又はエポキシェマルジョンコートをした後に、 フィルムラ ミ ネートする。  Other condition number 4: After electrolytic treatment of other condition numbers 1 to 3 above, perform silane coupling treatment or epoxy emulsion coating, and then perform film lamination.
表 5  Table 5
Figure imgf000017_0002
Figure imgf000017_0002
[実験例 2 ] [Experimental example 2]
次に、 別の評価に基づく試験例を示す。 以下に示す試験例 2 0 ~ 3 3で用いた 評価方法を示す。 Next, a test example based on another evaluation is shown. Used in Test Examples 20 to 33 shown below The evaluation method will be described.
(a) ピツカ一ス硬度 : 調製した樹脂被覆金属板のアルミニウム薄板の樹脂被覆 面について、 J I S Z 2 2 4 4 「ビヅカース硬さ試験一試験方法」 に準拠してビ ッカース硬度を測定した。 なお、 硬度測定の際の荷重は、 0 . 9 8 0 7 Nとした ( (a) Picker hardness: Vickers hardness was measured on the resin-coated surface of the prepared thin aluminum sheet of the resin-coated metal plate in accordance with JISZ2244 "Vikars hardness test-one test method". The load at the time of hardness measurement was 0.9987 N (
( ) 加工性 : 調製した樹脂被覆金属板を用い、 ランス順送り絞り機によって 7 段の絞り加工を行ない、 樹脂被覆層を容器外側面として l O mm 0 x 2 O mm高 さの円筒容器 (しごき率 2 0 %) を作成し、 層間の剥離状態を目視観察した。 層 間剥離が全く認められなかったものを 「〇」 、 眉間剥離が認められたものを() Workability: Using the prepared resin-coated metal plate, perform 7-step drawing with a lance progressive drawing machine, and use a resin-coated layer as the outer surface of the container to create a cylindrical container with a l O mm 0 x 2 O mm height. 20%), and the state of delamination between layers was visually observed. "〇" indicates no interlaminar peeling, and "を" indicates
「X」 と表示した。 Displayed as "X".
( c ) 凹み性 : 上記 1 0 m ø X 2 0 mm高さの円筒容器に、 コンデンサ一用素子 を充填して封口用ゴムを入れてかしめ加工した試料容器を作成した。 この試料容 器 1 0 0個を 2 0 0 mm X 2 0 0 m m X 2 0 0 mmの紙製容器に入れて、 1 0 c m/秒の振動速度で縦の振動を 1時間加えた。 1時間後に試料容器を取り出し、 天面部の外観を観察した。 この時に、 試料容器の底部、 側壁部に凹みが認められ たものを 「X」 、 凹みが認められなかったものを 「〇」 と表示した。  (c) Concavity: A cylindrical container with a height of 10 m øX20 mm was filled with a capacitor element, rubber was sealed, and a sample container was prepared by caulking. The 100 sample containers were placed in a 200 mm × 200 mm × 200 mm paper container, and longitudinal vibration was applied at a vibration speed of 10 cm / sec for 1 hour. One hour later, the sample container was taken out, and the appearance of the top surface was observed. At this time, samples with dents on the bottom and side walls of the sample container were marked with “X” and those without dents were marked with “〇”.
(d) 総合評価 : 上記 (a) ~ ( c ) の総ての評価項目において合格品質のもの を 「〇」 、 一評価項目でも不合格のものを 「 X」 と判定した。  (d) Comprehensive evaluation: In all of the above evaluation items (a) to (c), those with acceptable quality were judged as “〇”, and those with one evaluation item failed were judged as “X”.
[試験例 2 0 ]  [Test Example 20]
厚さが 0 . 3 mmのアルミニウム ( J I S A 1 1 0 0 ) 板の表面を、 5 0 °Cとした 1 0 %水酸化ナト リ ウム水溶液で 3 0秒間エッチングした後、 1 0 % 硝酸水溶液で中和処理を行ない、 1 0秒間水洗した。 ついで、 このアルミニウム 板の片面に、 リ ン酸クロメート化成処理薄膜 ( C r = 2 0 m g/m2) を形成し た。 この化成処理薄膜の上に、 カヅプリング剤としてのァ一ァミノプロピルト リ エ トキシシランを S O m gZm 2 塗布して乾燥した後に、 アルミニウム板を 2 1 0 °Cの温度に加熱し、 カツプリ ング剤を塗布した面に、 厚さが 1 5 mのポリ アミ ド 6 フィルムを圧着し、 ポリアミ ド樹脂被覆金属板を得た。 得られたポリア ミ ド樹脂被覆金属板につき、 上記評価方法で評価した結果を、 表 6 に示した。 The surface of a 0.3 mm thick aluminum (JISA 110) plate was etched with a 10% aqueous sodium hydroxide solution at 50 ° C for 30 seconds and then with a 10% aqueous nitric acid solution. A neutralization treatment was performed, followed by washing with water for 10 seconds. Next, a phosphoric acid chromate chemical conversion thin film (Cr = 20 mg / m 2 ) was formed on one surface of the aluminum plate. On this chemical conversion treatment film, a § one Aminopuropiruto Li et Tokishishiran as Kadzupuringu agent after drying and SO m gZm 2 coating, heating the aluminum plate to a temperature of 2 1 0 ° C, was applied to Katsupuri ing agent A polyamide 6 film having a thickness of 15 m was pressure-bonded to the surface to obtain a polyamide resin-coated metal plate. Table 6 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
[試験例 2 1 ]  [Test Example 2 1]
試験例 2 0に記載の例において、 化成処理薄膜をシユウ酸アルマイ ト化成処理 によって形成した厚さが 1 0 0 0 Aの薄膜に代え、 カツプリ ング剤をァーグリシ ドキシプロビルト リ エ トキシシランに代え、 アルミニウム板の温度を 2 5 0 °Cに それそれ代えたほかは、 同例におけると同様の手順でポリアミ ド樹脂被覆金属板 を得た。 得られたポリアミ ド樹脂被覆金属板につき、 上記評価方法で評価した結 果を、 表 6に示した。 In the example described in Test Example 20, the chemical conversion-treated thin film was replaced with a thin film having a thickness of 1000 A formed by oxalic acid alumite chemical conversion treatment, and the coupling agent was replaced with α-glycidoxyprovir triethoxysilane. Temperature to 250 ° C Other than that, a polyamide resin-coated metal plate was obtained in the same procedure as in the same example. Table 6 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
[試験例 2 2 ]  [Test Example 2 2]
試験例 2 1 に記載の例において、 化成処理薄膜をリ ン酸アルマイ ト化成処理に よって形成した薄膜に代えたほかは、 同例におけると同様の手順でポリアミ ド樹 脂被覆金属板を得た。 得られたポリアミ ド樹脂被覆金属板につき、 上記評価方法 で評価した結果を、 表 6 に示した。  A polyimide resin-coated metal plate was obtained in the same manner as in Test Example 21 except that the chemical conversion-treated thin film was replaced with a thin film formed by alumite phosphate chemical conversion treatment. . Table 6 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
[試験例 2 3 ]  [Test Example 2 3]
試験例 2 1 に記載の例において、 化成処理薄膜をリ ン酸クロメ一ト処理によつ て形成した薄膜に代えたほかは、 同例におけると同様の手順でポリアミ ド樹脂被 覆金属板を得た。 得られたポリアミ ド樹脂被覆金属板につき、 上記評価方法で評 価した結果を、 表 6 に示した。  In the example described in Test Example 21, except that the chemical conversion treated thin film was replaced with a thin film formed by phosphoric acid chromate treatment, a polyamide resin-coated metal plate was formed in the same procedure as in the same example. Obtained. Table 6 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
[試験例 2 4 ]  [Test Example 2 4]
試験例 2 3 に記載の例において、 カ ヅプリ ング剤を y—ァミノプロビルト リ エ トキシシランに代えたほかは、 同例におけると同様の手順でポリアミ ド樹脂被覆 金属板を得た。 得られたポリアミ ド樹脂被覆金属板につき、 上記評価方法で評価 した結果を、 表 6に示した。  In the example described in Test Example 23, a polyamide resin-coated metal plate was obtained in the same procedure as in Example 2, except that the capping agent was changed to y-aminoprovir triethoxysilane. Table 6 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
[試験例 2 5 ]  [Test Example 25]
試験例 2 0に記載の例において、 カップリ ング剤を塗布しなかったほかは、 同 例におけると同様の手順でポリアミ ド樹脂被覆金属板を得た。 得られたポリァミ ド樹脂被覆金属板につき、 上記評価方法で評価した結果を、 表 7に示した。  In the example described in Test Example 20, except that the coupling agent was not applied, a polyamide resin-coated metal plate was obtained in the same procedure as in the same example. Table 7 shows the results of the evaluation of the obtained polyimide resin-coated metal sheet by the above evaluation method.
[試験例 2 6 ]  [Test Example 26]
試験例 2 0に記載の例において、 カップリ ング剤をァ一メタク リ ロキシプロピ ルト リメ トキシシランに代え、 アルミニウム板の温度を 3 8 0 °Cにそれそれ代え たほかは、 同例における と同様の手順でポリアミ ド樹脂被覆金属板を得た。 得ら れたポリアミ ド樹脂被覆金属板につき、 上記評価方法で評価した結果を、 表 7 に した  In the example described in Test Example 20, the same procedure as in Example 2 was repeated except that the coupling agent was changed to methacryloxypropyl methoxysilane and the temperature of the aluminum plate was changed to 380 ° C. Thus, a polyimide resin-coated metal plate was obtained. Table 7 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
[試験例 2 7 ]  [Test Example 2 7]
試験例 2 3 に記載の例において、 アルミニウム板の温度を 3 8 0 °Cに代えたほ かは、 同例におけると同様の手順でポリアミ ド樹脂被覆金属板を得た。 得られた ポリアミ ド樹脂被覆金属板につき、 上記評価方法で評価した結果を、 表 7 に示し た。 In the example described in Test Example 23, a polyamide resin-coated metal plate was obtained in the same procedure as in the example except that the temperature of the aluminum plate was changed to 38O 0 C. Got Table 7 shows the results of the evaluation performed on the polyamide resin-coated metal plate by the above evaluation method.
[試験例 2 8 ]  [Test Example 28]
試験例 2 4 に記載の例において、 アルミニウム板の温度を 2 0 0 °Cに代えたほ かは、 同例における と同様の手順でポリアミ ド樹脂被覆金属板を得た。 得られた ポリア ミ ド樹脂被覆金属板につき、 上記評価方法で評価した結果を、 表 7 に示し た。  In the example described in Test Example 24, except that the temperature of the aluminum plate was changed to 200 ° C., a polyamide resin-coated metal plate was obtained in the same procedure as in the same example. Table 7 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
表 6  Table 6
Figure imgf000020_0001
Figure imgf000020_0001
[ 注] シランカップリング剤は、 次のとおりである。 以下の表でも同じ意味である。  [Note] The silane coupling agents are as follows. The same applies to the following table.
エポキシシラン系: ァ一グリシドキシプロピルトリエトキシシラン  Epoxysilane type: α-glycidoxypropyltriethoxysilane
アミノシラン系 : y—ァミノプロピルトリエトキシシラン  Aminosilane type: y-aminopropyltriethoxysilane
アクリルシラン系: 3—メタクリロキシプロビルトリメトキシシラン 表 7  Acrylic silanes: 3-methacryloxypropyl trimethoxysilane Table 7
Figure imgf000020_0002
Figure imgf000020_0002
(結果) 表 6および表 7 よ り、 次のことが明らかとなる。 (result) Tables 6 and 7 reveal the following.
( 1 ) アルミニウム薄板の表面に化成処理薄膜を設け、 この上にシラン系カヅプ リング剤の層を設け、 アルミニゥム薄板の温度を 2 0 0 ~ 3 5 0 °Cの範囲に加熱 して樹脂フィルムを被覆 · 圧着し、 アルミニウム薄板の樹脂被覆面の硬度がビカ —ス硬度で 2 5〜 6 0の範囲にある樹脂被覆金属板は、 アルミニウム薄板と被覆 フィルムとの密着性に優れてプレス加工する際に被覆フィルムが剥離せず、 容器 同士が接触しあっても、 壁面に凹みが生じ難い (試験例 2 0 ~ 2 4参照) 。  (1) A chemical conversion thin film is provided on the surface of an aluminum thin plate, a layer of a silane-based coupling agent is provided thereon, and the temperature of the aluminum thin plate is heated to a temperature in the range of 200 to 350 ° C to form a resin film. Coating and crimping resin-coated metal plates with a Vickers hardness of 25 to 60 in terms of the hardness of the resin-coated surface of the aluminum sheet when pressed with excellent adhesion between the aluminum sheet and the coating film. Even when the coating film does not peel off and the containers come into contact with each other, dents do not easily occur on the wall surface (see Test Examples 20 to 24).
( 2 ) これに対して、 アルミニウム薄板の表面に化成処理薄膜を設けてもシラン 系カヅプリ ング剤の層を設けず、 樹脂フィルムを被覆 ·圧着したものは、 プレス 加工時に被覆フィルムが剥離する (試験例 2 5参照) 。  (2) On the other hand, even if a chemical conversion thin film is provided on the surface of an aluminum thin plate, a layer of a silane-based capping agent is not provided and a resin film is coated and pressed, the coated film peels off during press working ( See Test Example 25).
( 3 ) また、 アルミニウム薄板の表面に化成処理薄膜を設け、 この上にシラン系 カップリ ング剤の層を設けても、 アルミニウム薄板の温度を 3 5 0 °Cよ り も高く して被覆 · 圧着したものは、 樹脂被覆金属板の表面硬度がビカース硬度で 2 5 よ り小さ くなり、 容器同士が接触しあう と壁面に凹みが生じ易い (試験例 2 6〜 2 7参照) 。  (3) Even if a chemical conversion treatment thin film is provided on the surface of an aluminum thin plate and a silane-based coupling agent layer is provided thereon, the temperature of the aluminum thin plate is raised above 350 ° C to cover and crimp. In this case, the surface hardness of the resin-coated metal plate is lower than 25 in terms of Vickers hardness, and when the containers come into contact with each other, dents easily occur on the wall surface (see Test Examples 26 to 27).
( 4 ) さらに、 アルミニウム薄板の表面に化成処理薄膜、 およびシラン系カップ リング剤の層を設け、 この上にアルミニゥム薄板の温度を 2 0 0 °Cで被覆 ' 圧着 しても、 樹脂被覆金属板の樹脂被覆面の硬度がビッカース硬度で 6 0を超えるも のは、 プレス加工の際に基体のアルミニウム薄板が破損してしまう (試験例 2 8 参照) 。  (4) Further, a chemical conversion thin film and a silane-based coupling agent layer are provided on the surface of the aluminum sheet, and the temperature of the aluminum sheet is coated at 200 ° C. In the case where the hardness of the resin-coated surface exceeds 60 in Vickers hardness, the aluminum thin plate of the substrate is damaged during the press working (see Test Example 28).
[試験例 2 9 ]  [Test Example 2 9]
試験例 2 0に記載の例において、 カヅプリ ング剤の塗布量を 1 0 0 m g / m 2 に代え、 アルミニウム板の温度を 2 9 0 °Cに代えたほかは、 同例におけると同様 の手順でポリアミ ド樹脂被覆金属板を得た。 得られたポリアミ ド樹脂被覆金属板 にっき、 上記評価方法で評価した結果を、 表 8に示した。 In the example described in Test Example 2 0, changing the coating amount of Kadzupuri ring agent 1 0 0 mg / m 2, except that a temperature of the aluminum plate 2 9 0 ° C is the same as in the example procedure Thus, a polyimide resin-coated metal plate was obtained. Table 8 shows the results of the evaluation of the obtained polyamide resin-coated metal plate by the above evaluation method.
[試験例 3 0 ]  [Test Example 30]
試験例 2 3に記載の例において、 カヅプリ ング剤の塗布量を 5 0 0 m g / m 2 に代え、 アルミニウム板の温度を 2 9 0 °Cに代えたほかは、 同例におけると同様 の手順でポリアミ ド樹脂被覆金属板を得た。 得られたポリアミ ド樹脂被覆金属板 にっき、 上記評価方法で評価した結果を、 表 8に示した。 In the example described in Test Example 23, the procedure was the same as in Example 2, except that the coating amount of the capping agent was changed to 500 mg / m 2 and the temperature of the aluminum plate was changed to 290 ° C. Thus, a polyimide resin-coated metal plate was obtained. Table 8 shows the results of the evaluation of the obtained polyamide resin-coated metal plate by the above evaluation method.
[試験例 3 1 ] 試験例 3 0に記載の例において、 カツプリ ング剤の塗布量を 1 0 0 0 m gZm 2に代えたほかは、 同例におけると同様の手順でポリアミ ド樹脂被覆金属板を得 た。 得られたポリアミ ド樹脂被覆金属板につき、 上記評価方法で評価した結果を、 表 8に示した。 [Test Example 3 1] In the example described in Test Example 3 0, except for changing the coating amount of Katsupuri ring agent 1 0 0 0 m gZm 2, to obtain a made of Polyamide resin-coated metal sheet by the same procedure as in the Example. Table 8 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
[試験例 3 2 ]  [Test Example 3 2]
試験例 2 9に記載の例において、 カヅプリ ング剤の塗布量を 0. 0 0 5 mg/ m2に代えたほかは、 同例におけると同様の手順でポリアミ ド樹脂被覆金属板を 得た。 得られたポリアミ ド樹脂被覆金属板につき、 上記評価方法で評価した結果 を、 表 8に示した。 In the example described in Test Example 29, a polyamide resin-coated metal plate was obtained in the same procedure as in the example described above, except that the coating amount of the capping agent was changed to 0.05 mg / m 2 . Table 8 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
[試験例 3 3 ]  [Test Example 3 3]
試験例 3 1に記載の例において、 カツプリ ング剤の塗布量を 1 3 0 0 m g/m 2に代えたほかは、 同例におけると同様の手順でポリアミ ド樹脂被覆金属板を得 た。 得られたポリアミ ド樹脂被覆金属板につき、 上記評価方法で評価した結果を- 表 8に示した。 In the example described in Test Example 31, a polyamide resin-coated metal plate was obtained in the same procedure as in the example described above, except that the amount of the coating agent applied was changed to 1300 mg / m 2 . Table 8 shows the results of the evaluation of the obtained polyamide resin-coated metal sheet by the above evaluation method.
表 8  Table 8
Figure imgf000022_0001
Figure imgf000022_0001
(結果) (Result)
表 8よ り、 次のことが明らかとなる。  Table 8 reveals the following.
( 1 ) アルミニウム薄板の表面に薄膜を設け、 この上にシラン系カップリ ング剤 の層を設け、 この際のシラン系カップリ ング剤の塗布量を 0. 0 1〜 1 0 0 0 m g/m2の範囲と したものは、 プレス加工性に優れ、 容器同士が接触しあっても、 壁面に凹みが生じ難い (試験例 2 9〜 3 1参照) 。 (1) A thin film is provided on the surface of an aluminum thin plate, a layer of a silane coupling agent is provided thereon, and the coating amount of the silane coupling agent is 0.01 to 100 mg / m 2. In the range of, the press workability is excellent, and even if the containers come into contact with each other, the wall surface is unlikely to be dented (see Test Examples 29 to 31).
( 2 ) これに対して、 シラン系カップリ ング剤の塗布量が 0. 0 0 5 m g/m2 と少ない場合は、 アルミニウム薄板と被覆フィルムとの密着性に劣り、 プレス加 ェ時に被覆フィルムが剥離した (試験例 3 2参照) 。 (2) On the other hand, the application amount of the silane-based coupling agent was 0.05 mg / m 2 In the case of a small amount, the adhesion between the aluminum thin plate and the coating film was poor, and the coating film was peeled off during pressing (see Test Example 32).
( 3 ) また、 シ ン系カップリ ング剤の塗布量を 1 3 0 0 m g/m2と多く した 場合は、 カップリ ング剤液の安定性が悪く、 アルミニウム薄板の表面に均一に塗 布することができなかった (試験例 3 3参照) 。 (3) When it is more the coating amount of Thin type couplings agent 1 3 0 0 mg / m 2 , poor stability of the couplings agent solution, uniformly be coated cloth to the surface of the aluminum sheet (See Test Example 33).
[実験例 3 ] ;  [Experiment 3];
次に、 別の評価に基づく試験例を示す。 以下に示す試験例 3 4〜 5 2で用いた 評価方法を示す。 なお、 シランカップリ ング剤水溶液の評価方法は、 次の ( 1 ) 及び ( 2 ) 記載の方法によったものである。 また、 樹脂積層板の評価方法は、 次 の ( 3 ) 乃至 ( 6 ) 記載の方法によったものである。  Next, a test example based on another evaluation is shown. The evaluation methods used in Test Examples 34 to 52 shown below are shown. The evaluation method of the silane coupling agent aqueous solution was based on the method described in the following (1) and (2). The evaluation method of the resin laminate is based on the following methods (3) to (6).
( 1 ) 接触角の測定 : 気温 2 3 °C、 湿度 5 0 %の条件下で、 準備した金属板の表 面にシランカップリ ング剤水溶液を必要量滴下し、 接触角計 (協和界面科学社製、 商品名 : CA— A) を用いてその接触角を測定する。  (1) Measurement of contact angle: At a temperature of 23 ° C and a humidity of 50%, a required amount of silane coupling agent aqueous solution was dropped on the surface of the prepared metal plate, and a contact angle meter (Kyowa Interface Science Co., Ltd.) The contact angle is measured using a product name: CA-A).
( 2 ) ぬれ性の評価 : 準備した金属板を A 4サイズに切断し、 この表面にシラン カヅプリ ング剤水溶液をバーコ一夕一を用いて 1 0 g/m2塗布し、 塗膜の状態 を目視観察する。 観察結果は、 はじきがなく均一な塗膜が形成されたものを〇、 はじいて塗膜が斑点状になったものを Xと判定した。 (2) Evaluation of wettability: The prepared metal plate was cut into A4 size, and an aqueous solution of a silane capping agent was applied to the surface using a barco 10g / m 2 to check the state of the coating film. Observe visually. Observation results were evaluated as 〇 if a uniform coating film was formed without repelling, and X if the coating film was repelled and had a spotted shape.
( 3 ) S i元素量の測定 : 樹脂積層板を調製する工程において、 シランカツプリ ング剤水溶液を金属板の表面に塗布して乾燥させて塗膜を形成した後、 E S C A 法 (X線源 : M g K a、 出力 : 1 5 k v X 3 3 mA、 真空度 : 5 x 1 0— 8 T o r r ) によって、 上記塗膜の表面の S i元素量 (原子%) を測定する。 (3) Measurement of Si element content: In the process of preparing a resin laminate, an aqueous solution of a silane coupling agent is applied to the surface of a metal plate and dried to form a coating film, and then the ESCA method (X-ray source: M g K a, output: 1 5 kv X 3 3 mA , vacuum: by 5 x 1 0- 8 T orr) , measured S i element of the surface of the coating film (atomic%).
(4) 加工性の評価 : 樹脂積層板を、 ランス順送り絞り機によって 7段絞り加工 して、 熱可塑性樹脂薄膜を積層した面が容器外側面となるように、 直径 1 0 mm で高さ 2 0 mmの円筒容器を調製し、 金属板から熱可塑性樹脂薄膜が剥離してい るか否かを目視観察する。 観察結果は、 剥離が全く認められないものを〇、 剥離 が認められたものを Xと判定した。  (4) Evaluation of processability: The resin laminate was subjected to 7-step drawing with a lance progressive drawing machine, and the diameter of the resin layer was 10 mm and the height was 2 so that the surface on which the thermoplastic resin thin film was laminated was the outer surface of the container. Prepare a 0 mm cylindrical container and visually observe whether the thermoplastic resin thin film has peeled off from the metal plate. Observation results were evaluated as 〇 when no peeling was observed, and as X when peeling was observed.
( 5 ) 加工後密着性の評価 : 上記の加工性の評価用に調製した円筒容器を、 2 7 0 °Cの熱風乾燥炉内に入れて 1分間放置し、 その後、 この円筒容器を熱風乾燥炉 からと り出し、 容器外側面に積層された熱可塑性樹脂薄膜が剥離しているか否か を目視観察する。 観察結果は、 剥離が全く認められないものを〇、 剥離が認めら れたものを Xと判定した。 ( 6 ) 総合評価 : 上記加工性 ·加工後密着性の双方が〇と判定されたものを総合 評価でも〇と判定し、 これら双方が Xと判定されたもの、 および、 いずれか一方 が Xと判定されたものを総合評価では Xと判定した。 (5) Evaluation of adhesion after processing: The cylindrical container prepared for the evaluation of workability described above was placed in a hot air drying oven at 270 ° C and left for 1 minute, and then the cylindrical container was dried with hot air. Take out of the furnace and visually observe whether the thermoplastic resin thin film laminated on the outer surface of the container has peeled off. Observation results were evaluated as 〇 when no peeling was observed, and as X when peeling was observed. (6) Comprehensive evaluation: If both the above processability and post-working adhesion were judged as “〇”, the overall evaluation also judged as “〇”. If both were judged as “X”, and either of them was judged as “X” Those judged were judged as X in the comprehensive evaluation.
〔試験例 3 4〜 4 5 ]  [Test Examples 34 to 45]
<シランカヅプリ ング剤水溶液の調製 > <Preparation of silane coupling agent aqueous solution>
水 1 0 0 gに、 シランカツプリ ング剤と非ィオン系界面活性剤 (有効成分 : ポ リオキシエチレンアルキルエーテル、 曇点 : 42. 1 °C) とを、 それぞれ表 9に 示した量配合して、 4種類のシランカップリ ング剤水溶液を調製した。 表 9  100 g of water was mixed with a silane coupling agent and a nonionic surfactant (active ingredient: polyoxyethylene alkyl ether, cloud point: 42.1 ° C) in the amounts shown in Table 9 respectively. Four kinds of aqueous solutions of silane coupling agents were prepared. Table 9
Figure imgf000024_0001
Figure imgf000024_0001
<金属板の準備 > <Preparation of metal plate>
厚さ 0. 3 mmのステンレス板 (S U S 4 3 0— 2 B) 、 厚さ 0. 3 mmのリ ン酸クロメ一ト酸処理を施したアルミ二ゥム板 (合金番号 : A 1 1 0 0 P H 2 4、 クロム水和酸化物内のクロム量 : 2 0 mg/m2) 、 及び、 厚さ 0. 3 mm の電解ク口ム酸処理鋼板 (下層の金属クロム量 : 1 0 0 m g/m2、 上層のクロ ム水和酸化物内のクロム量日 1 8 mg/m2) の 3種類の金属板を準備した。 <シランカップリ ング剤水溶液の評価 > 0.3 mm thick stainless steel plate (SUS430-2B), 0.3 mm thick aluminum chromate-treated aluminum plate (alloy number: A110) 0 PH 24, chromium content in chromium hydrated oxide: 20 mg / m 2 ) and 0.3 mm thick electrolytic cupric acid treated steel sheet (lower layer metal chromium content: 100 mg / m 2 , and the amount of chromium in the upper layer hydrated oxide of 18 mg / m 2 ) were prepared. <Evaluation of aqueous solution of silane coupling agent>
表 9に示した 4種類のシランカツプリ ング剤水溶液を、 上記 3種類の金属板の 表面にそれそれ滴下し、 前記した ( 1 ) の測定を行った。 さらに、 表 9に示した 4種類のシランカヅプリ ング剤水溶液を、 上記 3種類の金属板の表面にそれそれ 塗布し、 前記した ( 2) の評価試験を行った。 これらの結果を表 1 0に示す。 表 1 0 The four types of silane coupling agent aqueous solutions shown in Table 9 were dropped on the surfaces of the three types of metal plates, respectively, and the above-mentioned (1) was measured. Further, the four types of silane capping agent aqueous solutions shown in Table 9 were applied to the surfaces of the above three types of metal plates, respectively, and the above-described evaluation test (2) was performed. Table 10 shows the results. Table 10
Figure imgf000025_0001
Figure imgf000025_0001
表 9および表 1 0から、 次のことが明らかとなる。  From Table 9 and Table 10, the following becomes clear.
(ィ) 上記 3種類の金属板の表面に 4種類のシランカツプリ ング剤水溶液を滴下 して接触角を測定した結果、 いずれの金属板においても, シランカップリ ング剤 水溶液 I ないしシランカップリ ング剤水溶液 I I I の接触角は 5 5 ° 以下であつ た (試験例 3 4 〜 3 6、 試験例 3 8 ~ 4 0、 試験例 4 2 ~ 4 4参照) 。 これに対 し、 シランカツプリ ング剤水溶液 I Vの接触角は 5 5 ° より大きかった (試験例 (A) The contact angle was measured by dropping four types of silane coupling agent aqueous solutions on the surfaces of the above three types of metal plates. As a result, the silane coupling agent aqueous solution I or the silane coupling agent aqueous solution III was obtained for all metal plates. Had a contact angle of 55 ° or less (see Test Examples 34 to 36, Test Examples 38 to 40, and Test Examples 42 to 44). On the other hand, the contact angle of the silane coupling agent aqueous solution IV was greater than 55 ° (Test Example).
3 7 、 4 1 、 4 5参照) 。 これは、 シランカップリ ング剤水溶液 I V中の非ィォ ン系界面活性剤の量が不足しているためである。 37, 41, 45). This is because the amount of the nonionic surfactant in the aqueous solution IV of the silane coupling agent is insufficient.
(口) また、 上記 3種類の金属板の表面に 4種類のシランカップリ ング剤水溶液 を塗布してぬれ性を評価した結果、 シラン力ッブリ ング剤水溶液 Iないしシラン カツプリ ング剤水溶液 I I I を塗布した金属板の表面にはいずれも均一な塗膜が 形成され、 ぬれ性が良好だった (試験例 3 4 〜 3 6、 試験例 3 8 〜 4 0、 試験例 (Mouth) In addition, four types of silane coupling agent aqueous solutions were applied to the surfaces of the three types of metal plates to evaluate the wettability. As a result, the silane coupling agent aqueous solution I to the silane coupling agent aqueous solution III were applied. A uniform coating was formed on the surface of each metal plate, and the wettability was good (Test Examples 34 to 36, Test Examples 38 to 40, Test Examples
4 2 - 4 4参照) 。 これに対し、 シランカツプリ ング剤水溶液 I Vを塗布した金 属板の表面にはいずれも均一な塗膜が形成されず (塗膜が斑点状になり、 ぬれ性 が劣っていた (試験例 3 7 、 4 1 、 4 5参照) 。 これは、 シランカヅプリ ング剤 水溶液 I Vの接触角が 5 5 ° より大きいためである。 4 2-4 4). On the other hand, no uniform coating film was formed on the surface of the metal plate coated with the silane coupling agent aqueous solution IV (the coating film became spot-like and the wettability was poor (Test Example 37, (See 41 and 45.) This is because the contact angle of the silane coupling agent aqueous solution IV is larger than 55 °.
[試験例 4 6 ]  [Test Example 4 6]
アルミニウム板 (試験例 3 8で準備したものと同種) を長尺帯状と して連続的 に移送し、 このアルミニウム板の表面に、 水 1 0 0 gにシランカップリ ング剤 (ァ—ァミ ノ プロ ピル ト リ ヱ トキシシラ ン) 0 . l gと非イオン系界面活性剤 (試験例 3 4で使用したものと同種) 0. 4 gとを配合して、 上記アルミニゥム 板の表面に塗布した際の接触角を 5 0 ° に調整したシランカツプリ ング剤水溶液An aluminum plate (same type as that prepared in Test Example 38) was continuously transferred as a long strip, and 100 g of water was added to the surface of this aluminum plate with a silane coupling agent (alumino). Propylene triethoxysilane) 0.1 lg and nonionic surfactant (Same type as used in Test Example 34) An aqueous solution of a silane coupling agent in which 0.4 g was blended and the contact angle was adjusted to 50 ° when applied to the surface of the aluminum plate.
1 0 g/m2を塗布し、 昇温速度 5 °C/ sで乾燥させて塗膜を形成し、 次いで、 この塗膜を 2 5 0 °Cで加熱し、 この塗膜の表面に、 融点が 2 2 0 °Cで厚さが 2 0 mのボリアミ ド 6薄膜を積層して、 樹脂積層板を調製した。 この樹脂積層板を 調製する工程において、 前記 ( 3 ) の測定を行い、 得られた樹脂積層板について、 前記 ( 4) ないし ( 6 ) の評価試験を行った。 これらの結果を表 1 1に示す。10 g / m 2 was applied and dried at a heating rate of 5 ° C./s to form a coating film.The coating film was then heated at 250 ° C. Resin laminates were prepared by laminating boriamid 6 thin films having a melting point of 220 ° C and a thickness of 20 m. In the step of preparing the resin laminate, the measurement (3) was performed, and the obtained resin laminate was subjected to the evaluation tests (4) to (6). Table 11 shows the results.
〔試験例 4 7〜 5 2 ] [Test Examples 4 7 to 5 2]
試験例 4 6に記載の例において、 シランカップリ ング剤の種類および配合量、 シランカップリ ング剤水溶液塗布後の乾燥の際の昇温速度 (塗膜の加熱温度、 熱 可塑性樹脂薄膜の種類を、 それぞれ表 1 1に記載したものに変更したほかは、 同 例におけると同種の手法で樹脂積層板を調製した。 これらの樹脂積層板を調製す る工程において、 同例におけると同様に測定を行い、 得られた樹脂積層板につい て、 同例におけると同様に評価試験を行った。 これらの結果を表 1 1に示す。 In the example described in Test Example 46, the type and amount of the silane coupling agent, the rate of temperature rise during drying after the application of the aqueous solution of the silane coupling agent (the heating temperature of the coating film, the type of the thermoplastic resin thin film, Resin laminates were prepared in the same manner as in the same example except that they were changed to those described in Table 11. In the process of preparing these resin laminates, measurement was performed in the same manner as in the same example. An evaluation test was performed on the obtained resin laminate in the same manner as in the same example, and the results are shown in Table 11.
シランかソフ。リンク、、剤 難の 加工性 試 昇温速度 熱可塑性 Si量 Silane or soft. Linkability, agent difficult processability Test Heating rate Thermoplastic Si content
の種類 加熱温度 総 "tl 験 樹脂被覆 加工後  Type of heating temperature Total "tl test Resin coating After processing
配合量 評価 例 (°C/s) (°C) 膜の種類  Compounding amount Evaluation example (° C / s) (° C) Film type
(g/ (原子 ¾) 密着性  (g / (atomic ¾) adhesion
水 100g)  (100 g of water)
ァ-アミノフ。口ヒ。ル  A-Aminoff. Mouth. Le
o  o
46 (実施例) トリエトキシシラン 5 250 ホ。リアミト、、 6 7.34 〇  46 (Example) Triethoxysilane 5 250 e. Reamite, 6 7.34 〇
0.1 〇 ァ-ァミノフ°0ヒ°ル  0.1 mm
o  o
47 (細例) トリエトキシシラン 20 330 ホ。リアミ 6 10.52 〇  47 (Example) Triethoxysilane 20 330 e. Liami 6 10.52 〇
2.0 〇 ァ- リ外、、キシフ。ロヒ。ル o  2.0 Outside the library, kissif. Lohi. Le o
48 (実施例) トリエトキシシラン 5 280 PET 9.15 〇  48 (Example) Triethoxysilane 5 280 PET 9.15 〇
0.1 〇 ァ-ァミノ 7°ロヒ。ル  0.1 ° Amino 7 ° Lohi. Le
験 o  Experiment o
49 (比較例) トリエトキシシラン 40 250 ホ°リアミ 6 4.10 X 例  49 (Comparative Example) Triethoxysilane 40 250 Holia 6 4.10 X Example
3 0.009 X  3 0.009 X
ァ-ァミノフ°11ヒ°ル  A-Aminoff ° 11 °
ο  ο
50 (比較例) トリエトキシシラン 53 280 ホ。リアミド 6 4.14 X  50 (Comparative Example) Triethoxysilane 53 280 e. Riamide 6 4.14 X
0.5 X  0.5 X
ァ-ァミノ ΓΠヒ。ル  A-amino. Le
X  X
51 (比較例) トリエトキシシラン 5 200 ホ。リァミト、、 6 12.12 X  51 (Comparative Example) Triethoxysilane 5 200 e. Ramito, 6 12.12 X
3.0 不実施 ァ-アミノフ。 Πヒ。) 1/ X  3.0 Not implemented a-Aminof. Π ヒ. ) 1 / X
52 (比較例) トリエトキシシラン 45 380 PET 8.35 X  52 (Comparative Example) Triethoxysilane 45 380 PET 8.35 X
1.0 X 表 1 0及び表 1 1 から、 次のことが明らかとなる。  1.0 X From Table 10 and Table 11, the following becomes clear.
(ハ) シランカップリ ング剤の配合量、 シランカップリ ング剤水溶液の接触角、 シランカツプリ ング剤水溶液塗布後の乾燥の際の昇温速度、 塗膜の加熱温度のい ずれの条件をも特定の範囲内として調製した樹脂積層板は、 塗膜の表面の S i元 素量が 5〜 1 5原子%の範囲内となり、 かつ、 加工性および加工後密着性に優れ ていた (試験例 4 6 ~ 4 8参照) 。  (C) The specific range of the amount of the silane coupling agent, the contact angle of the aqueous solution of the silane coupling agent, the rate of temperature rise during drying after applying the aqueous solution of the silane coupling agent, and the heating temperature of the coating film are all within a specific range. The resin laminate prepared as the inside had a Si element content on the surface of the coating film within the range of 5 to 15 atomic%, and was excellent in workability and adhesion after processing (Test Examples 46 to 60). See 48).
(二) シランカップリ ング剤の配合量が 0 . 0 1重量部以下であるシラン力ヅプ リ ング剤水溶液を用いて調製した樹脂積層板は、 塗膜の表面の S i元素量が 5原 子%よ り低くなり、 かつ、 加工後密着性に劣っていた (試験例 4 9参照) 。 (2) A resin laminate prepared using a silane coupling agent aqueous solution containing a silane coupling agent in an amount of 0.01 part by weight or less has a coating element surface with an elemental Si content of less than 5 parts. % And lower adhesion after processing (see Test Example 49).
(ホ) シランカツプリ ング剤水溶液塗布後の乾燥の際の昇温速度を 5 0 °C / s よ り大きく して調製した樹脂積層板は、 塗膜の表面の S i元素量が 5原子%より低 くなり、 かつ、 加工後密着性に劣っていた (試験例 5 0参照) 。 (E) In a resin laminate prepared by increasing the temperature rising rate during drying after applying the silane coupling agent aqueous solution to more than 50 ° C / s, the amount of Si element on the surface of the coating film is less than 5 atomic%. It was low and had poor adhesion after processing (see Test Example 50).
(へ) 塗膜の加熱温度を熱可塑性樹脂の融点 ( 2 2 0 °C ) より低く して調製した 樹脂積層板は、 ボリアミ ド 6薄膜が加工時に剥離するなど加工性に劣っていた。 なお、 この場合、 加工後密着性の評価は不可能であるため実施していない (試験 例 5 1参照) 。 (F) The resin laminate prepared by setting the heating temperature of the coating film lower than the melting point of the thermoplastic resin (220 ° C) was inferior in workability such as the removal of the boronamide 6 thin film during processing. In this case, since the evaluation of adhesion after processing was impossible, it was not carried out (see Test Example 51).
( 卜) 塗膜の加熱温度を 3 5 0 °Cより高く して調製した樹脂積層板は、 加工時に ポリエチレンテレフタレート薄膜に亀裂が発生するなど加工性に劣り、 また、 加 ェ後密着性にも劣っていた。 (試験例 5 2参照) 。 産業上の利用可能性  (G) A resin laminate prepared by heating the coating film at a temperature higher than 350 ° C has poor workability such as cracks in the polyethylene terephthalate thin film during processing, and also has poor adhesion after processing. Was inferior. (See Test Example 52). Industrial applicability
本発明は、 以上詳細に説明したとおりであ り、 次のような特別に有利な効果を 奏し、 その産業上の利用価値は極めて大である。  As described in detail above, the present invention has the following particularly advantageous effects, and its industrial utility value is extremely large.
( 1 ) 本発明に係る樹脂被覆金属板が、 陽極酸化被膜として厚さが 0 . 0 5〜 2 mのリ ン酸アルマイ ト処理被膜を形成している場合、 アルミ二ゥム板表面と ¾ 覆膜の界面の密着性 (接着性または接着強度) に優れ、 絞り加工やしごき加工を 行なっても熱可塑性樹脂製被覆膜の破損、 クラックなどが発生せず、 経時的に劣 化し難く層間剥離も生じ難い。  (1) In the case where the resin-coated metal plate according to the present invention has a phosphoric acid alumite-treated film having a thickness of 0.05 to 2 m as an anodized film, the surface of the aluminum plate and the aluminum plate can be removed. Excellent adhesiveness (adhesion or adhesive strength) at the interface of the coating film. Even if drawn or ironed, the coating film made of thermoplastic resin will not be damaged or cracked. Peeling is unlikely to occur.
( 2 ) 本発明に係る樹脂被覆金属板が、 リン酸アルマイ ト処理被膜と樹脂被膜の 間にシランカツプリ ング剤を介在させている場合、 アルミニウム板表面と被覆膜 の界面の密着性 (接着性または接着強度) に優れ、 絞り加工やしごき加工を行な つても熱可塑性樹脂製被覆膜の破損、 クラックなどが発生せず、 経時的に劣化し 難く層間剥離も生じ難い。  (2) In the resin-coated metal plate according to the present invention, when a silane coupling agent is interposed between the anodized phosphate coating and the resin coating, the adhesion between the aluminum plate surface and the coating film (adhesion Or adhesive strength). Even if drawn or ironed, the thermoplastic resin coating does not break, crack, etc., hardly deteriorates over time, and delamination hardly occurs.
( 3 ) 本発明に係る製造方法によれば、 特開平 1 一 6 6 0 3 0号公報、 特開平 2 - 1 6 0 4 3号公報に記載の方法のように、 絞り加工やしごき加工を行なった後 に、 熱可塑性樹脂製被覆膜を加熱して再溶融させる必要がなく、 アルミニウム板 表面と被覆膜の界面の密着性 (接着性または接着強度) に優れた樹脂被覆金属板 を、 効率良く製造することができる。  (3) According to the production method according to the present invention, drawing and ironing are performed as in the method described in Japanese Patent Application Laid-Open No. After performing the process, there is no need to heat and re-melt the thermoplastic resin coating film, and a resin-coated metal plate with excellent adhesion (adhesion or adhesive strength) between the aluminum plate surface and the coating film interface can be obtained. , It can be manufactured efficiently.
( 4 ) 本発明に係る樹脂被覆金属板の製造方法によれば、 絞り加工などのプレス 加工性に優れ、 加工時に被覆フィルムが剥離し難い、 樹脂被覆金属板が得られる, (4) According to the method for producing a resin-coated metal sheet according to the present invention, a resin-coated metal sheet having excellent press workability such as drawing and hardly peeling off the coating film during processing can be obtained.
( 5 ) 本発明に係る樹脂被覆金属板の製造方法によれば、 基体のアルミニウム薄 板の片面が樹脂フィルムによって被覆されているので、 容易に美麗な識別用の印 刷表示を施すことができる。 (5) According to the method for producing a resin-coated metal plate according to the present invention, since one side of the base aluminum sheet is covered with the resin film, a beautiful printed display for identification can be easily provided. .
( 6 ) 本発明に係る樹脂被覆金属板の製造方法によれば、 アルミニウム薄板の樹 脂被覆面の硬度をビカース硬度で 2 5〜 6 0の範囲とするので、 プレス加工性に 優れ、 しかも加工して得られる容器同士が接触しあっても、 壁面に凹みが生じ難 い。 (6) According to the method for producing a resin-coated metal sheet according to the present invention, the hardness of the resin-coated surface of the aluminum sheet is in the range of 25 to 60 in terms of Vickers hardness. Excellent, and even if the containers obtained by processing are in contact with each other, dents do not easily occur on the wall surface.
( 7 ) 本発明に係るアルミニウム電解コンデンサー用外装容器は、 従来のように 熱収縮性チューブで被覆する工程が不要で、 製造工程が簡単である。  (7) The outer container for an aluminum electrolytic capacitor according to the present invention does not require a step of coating with a heat-shrinkable tube unlike the conventional case, and the manufacturing process is simple.
( 8 ) 本発明の樹脂被覆金属板が、 金属板の表面に特定のシランカップリ ング剤 水溶液を塗布して特定の昇温速度で乾燥させて塗膜を形成し、 この塗膜を特定の 温度で加熱して熱可塑性樹脂薄膜を積層して調製される場合、 この樹脂被覆金属 板をしごき加工法によって加工した際に、 熱可塑性樹脂薄膜に亀裂が発生し難く、 かつ、 熱可塑性樹脂薄膜が金属板から容易に剥離することがない。  (8) The resin-coated metal plate of the present invention forms a coating film by applying an aqueous solution of a specific silane coupling agent to the surface of the metal plate and drying it at a specific heating rate, and forming the coating film at a specific temperature. When the thermoplastic resin thin film is prepared by laminating the thermoplastic resin thin film by heating in the above process, when the resin-coated metal plate is processed by the ironing method, the thermoplastic resin thin film is hardly cracked, and the thermoplastic resin thin film is hardened. It does not easily peel off from the metal plate.
( 9 ) 本発明に係る樹脂被覆金属板が、 金属板の表面に特定のシランカップリ ン グ剤水溶液を塗布して特定の昇温速度で乾燥させて塗膜を形成し、 この塗膜を特 定の温度で加熱して熱可塑陸樹脂薄膜を積層して調製される場合、 この樹脂被覆 金属板に、 各種加工法による加工後に加熱処理を施しても、 熱可塑性樹脂薄膜が 金属板から容易に剥離することがない。  (9) The resin-coated metal plate according to the present invention forms a coating film by applying a specific aqueous solution of a silane coupling agent to the surface of the metal plate and drying it at a specific heating rate. When prepared by laminating a thermoplastic land resin thin film by heating at a constant temperature, even if this resin-coated metal plate is subjected to heat treatment after processing by various processing methods, the thermoplastic resin thin film can be easily formed from the metal plate. Does not peel off.
( 1 0 ) 本発明に係る樹脂被覆金属板が、 金属板の表面に形成された塗膜を、 熱 可塑性樹脂薄膜の融点から 3 5 0 °Cの温度範囲で加熱して熱可塑性樹脂薄膜を積 層して調製される場合、 金属板の強度が低下することがなく、 かつ、 熱可塑性樹 脂薄膜が劣化することがない。  (10) The resin-coated metal plate according to the present invention heats the coating film formed on the surface of the metal plate in a temperature range of 350 ° C. from the melting point of the thermoplastic resin thin film to form the thermoplastic resin thin film. When prepared by lamination, the strength of the metal plate does not decrease, and the thermoplastic resin thin film does not deteriorate.
( 1 1 ) 本発明に係る樹脂被覆金属板が、 金属板の表面に形成された塗膜を、 熱 可塑性樹脂薄膜の融点から 3 5 0 °Cの温度範囲で加熱して熱可塑性樹脂薄膜を積 層して調製される場合、 従来の高温の加熱処理の際に生じていた経済的不利益が 解消される。  (11) The resin-coated metal plate according to the present invention heats the coating film formed on the surface of the metal plate in a temperature range of 350 ° C. from the melting point of the thermoplastic resin thin film to form the thermoplastic resin thin film. When prepared in layers, the economic disadvantages of conventional high-temperature heat treatment are eliminated.
( 1 2 ) 本発明に係る樹脂被覆金属板の製造方法によれば、 上記各効果を奏する 樹脂被覆金属板を製造することができる。  (12) According to the method for producing a resin-coated metal plate according to the present invention, a resin-coated metal plate having the above-described effects can be produced.
( 1 3 ) 本発明に係るコンデンサ一外装用容器は、 上記樹脂被覆金属板が絞り加 工法またはしごき加工法によって調製されてなるので、 製品化された後に加熱処 理が施された場合でも、 このコンデンサ一外装用容器を構成する熱可塑性樹脂薄 膜が金属板から剥離することがなく、 商品価値が高い。  (13) The external container for a capacitor according to the present invention is prepared by squeezing or ironing the resin-coated metal plate, so that even if it is heated after being commercialized, The thermoplastic resin thin film that constitutes the outer packaging container for the capacitor does not peel off from the metal plate, and has high commercial value.

Claims

請 求 の 範 囲 The scope of the claims
1. 金属板の表面に化成処理薄膜を形成し、 この化成処理薄膜の表面にシラン力 ップリ ング剤の薄膜を形成し、 その薄膜の表面に熱可塑性樹脂製の被覆膜を形成 した樹脂被覆金属板。 1. A resin coating formed by forming a chemical conversion thin film on the surface of a metal plate, forming a thin film of a silane coupling agent on the surface of the chemical conversion thin film, and forming a coating film made of a thermoplastic resin on the surface of the thin film Metal plate.
2. 上記化成処理薄膜が、 リ ン酸クロメート化成処理薄膜、 有機樹脂薄膜とクロ ムとよ り構成される薄膜、 ジルコニウムを含む化成処理薄膜、 チタニウムを含む 化成処理薄膜、 及び陽極酸化処理薄膜からなる群から選択されるいずれか 1種で ある請求項 1に記載の樹脂被覆金属板。  2. The above-mentioned chemical conversion thin film is composed of a phosphoric acid chromate chemical conversion thin film, a thin film composed of an organic resin thin film and chromium, a chemical conversion thin film containing zirconium, a chemical conversion thin film containing titanium, and an anodized thin film. 2. The resin-coated metal plate according to claim 1, which is any one selected from the group consisting of:
3. 上記熱可塑性樹脂製の被覆膜が、 ポリエステル系樹脂又はポリアミ ド系樹脂 から選択される樹脂からなる被覆膜である請求項 1又は 2いずれかに記載の樹脂 被覆金属板。  3. The resin-coated metal plate according to claim 1, wherein the coating film made of a thermoplastic resin is a coating film made of a resin selected from a polyester resin or a polyamide resin.
4. 上記金属板はアルミニウム板であり、 上記化成処理薄膜は、 厚さが 0. 0 5 〜 2 mの陽極酸化薄膜であり、 上記熱可塑性樹脂製の被覆膜は、 厚さが 5 ~ 2 0 0 mの被覆膜である請求項 1に記載の樹脂被覆金属板。  4. The metal plate is an aluminum plate, the chemical conversion thin film is an anodized thin film having a thickness of 0.05 to 2 m, and the thermoplastic resin coating film has a thickness of 5 to 5 m. 2. The resin-coated metal plate according to claim 1, which is a coating film of 200 m.
5. 上記陽極酸化薄膜被膜は、 少なく ともリ ン酸を含む電解質で処理されたアル マイ ト処理薄膜である請求項 4に記載の樹脂被覆金属板。  5. The resin-coated metal sheet according to claim 4, wherein the anodized thin film is an alumite-treated thin film that has been treated with an electrolyte containing at least phosphoric acid.
6. アルミニウム板の表面に厚さ 0. 0 5 ~ 2 mの陽極酸化被膜を形成し、 こ の陽極酸化被膜の上にシランカップリ ング剤を 0. 5〜 5 0 0 m g/m2 の割 合で塗布し、 さらにこのシランカツプリ ング剤の薄膜上に厚さが 5〜 2 0 0〃 m の熱可塑性樹脂製の被覆膜を、 2 5 0 ~ 3 5 0 °Cの温度範囲で溶融被覆した樹脂 被覆金属板の製造方法。 6. forming an anodic oxide coating having a thickness of 0. 0 5 ~ 2 m on the surface of the aluminum plate, on the anodic oxide coating in this the Shirankappuri ring agent 0. 5~ 5 0 0 mg / m 2 split The silane coupling agent is then coated with a thermoplastic resin coating film with a thickness of 5 to 200 μm over a thin film of this silane coupling agent in a temperature range of 250 to 350 ° C. Of manufacturing a resin-coated metal sheet.
7. 上記金属板が厚さ 0. l mm〜 0. 5 m mのアルミニウム板であり、 上記シ ランカップリ ング剤の薄膜は、 シラン系カップリ ング剤を 0. 0 1〜 1 0 0 0 m g/m2塗布することにより形成した層であ り、 上記熱可塑性樹脂製の被覆膜は、 厚さが 5〜 2 0 0 zmのフィルムであり、 上記熱可塑性樹脂製被覆膜を形成した 後のピツカ一ス硬度が 2 5 - 6 0の範囲である請求項 1に記載の樹脂被覆金属板 c7.The metal plate is an aluminum plate with a thickness of 0.1 to 0.5 mm, and the thin film of the silane coupling agent is 0.01 to 100 mg / m2 of a silane coupling agent. (2 ) The layer formed by coating, the thermoplastic resin coating film is a film having a thickness of 5 to 200 zm, and is formed after the thermoplastic resin coating film is formed. 2. The resin-coated metal plate c according to claim 1, wherein the hardness of the resin is in the range of 25 to 60.
8. 厚さ 0. l mm〜 0. 5 m mのアルミニウム板の片面に化成処理薄膜を形成 し、 ついで、 この薄膜の上にシランカップリ ング剤を 0. 0 1〜 1 0 0 0 mg/ m2塗布して薄膜を形成し、 さらに、 この化成処理薄膜及びシランカップリ ング 剤の薄膜を積層したアルミニウム板を 2 0 0〜 3 5 0 °Cの温度範囲で加熱し、 上 記シランカップリ ング剤の薄膜の上方から厚さが 5 ~ 2 0 0 m //の熱可塑性樹脂 フィルムを被覆 ·圧着した、 熱可塑性樹脂製の被覆膜面のビッカース硬度が 2 5 - 6 0の範囲である樹脂被覆金属板の製造方法。 8.A chemical conversion thin film is formed on one side of an aluminum plate with a thickness of 0.1 to 0.5 mm, and then a silane coupling agent is applied on this thin film in a thickness of 0.01 to 100 mg / m. (2) A thin film is formed by coating, and the aluminum plate on which the chemical conversion treated thin film and the thin film of the silane coupling agent are laminated is heated in a temperature range of 200 to 350 ° C. The Vickers hardness of the thermoplastic resin coating film surface is 5 to 200 m / m2 from the top of the thin film of the silane coupling agent. A method for producing a resin-coated metal sheet, which is in the range of the above.
9 . 上記シラン力ヅブリ ング剤の薄膜は、 水 1 0 0重量部に対してシランカップ リ ング剤を 0 . 0 1 ~ 1 0重量部の割合で配合し、 上記金属板の表面に塗布した 際の接触角が 5 5 ° 以下としたシランカツプリ ング剤水溶液を金属板の表面に塗 布し、 5 0 °C / s以下の昇温速度で乾燥させて形成されたものであ り、 熱可塑性 樹脂製の被覆膜は、 その融点から 3 5 0 °Cの温度範囲で加熱された上記シランカ ップリ ング剤薄膜の表面に積層されたものである請求項 1 に記載の樹脂被覆金属 板。  9. The thin film of the silane coupling agent was prepared by mixing the silane coupling agent in a proportion of 0.01 to 10 parts by weight with respect to 100 parts by weight of water, and applied to the surface of the metal plate. It is formed by applying an aqueous solution of a silane coupling agent with a contact angle of 55 ° or less to the surface of the metal plate and drying it at a heating rate of 50 ° C / s or less. 2. The resin-coated metal plate according to claim 1, wherein the resin-coated film is laminated on the surface of the silane coupling agent thin film heated in a temperature range of 350 ° C. from its melting point.
1 0 . 上記シランカップリ ング剤の薄膜は、 その表面を X線光電子分光法によ り 測定した際の S i元素量が 5 ~ 1 5原子%である請求項 1 に記載の樹脂被覆金属 板。  10. The resin-coated metal plate according to claim 1, wherein the thin film of the silane coupling agent has an Si element content of 5 to 15 atomic% when its surface is measured by X-ray photoelectron spectroscopy. .
1 1 . 水 1 0 0重量部に対してシランカップリ ング剤を 0 . 0 1〜 1 0重量部の 割合で配合し、 金属板の表面に塗布した際の接触角が 5 5 ° 以下とされたシラン カツプリ ング剤水溶液を金属板の表面に塗布し、 5 0 °C / s以下の昇温速度で乾 燥させて塗膜を形成し、 この塗膜を熱可塑性樹脂の融点から 3 5 0 °Cの温度範囲 で加熱し、 この塗膜の表面に熱可塑性樹脂製被覆膜を積層する樹脂被覆金属板の 製造方法。  1.1. 100 to 100 parts by weight of water, 0.01 to 10 parts by weight of a silane coupling agent is mixed, and the contact angle when applied to the surface of a metal plate is set to 55 ° or less. The aqueous solution of the silane coupling agent was applied to the surface of the metal plate and dried at a heating rate of 50 ° C / s or less to form a coating film. A method for producing a resin-coated metal plate in which a coating film made of a thermoplastic resin is laminated on the surface of this coating film by heating in a temperature range of ° C.
1 2 . 請求項 1乃至請求項 5、 請求項 7、 請求項 9又は請求項 1 0のいずれかに 記載の樹脂被覆金属板を、 絞り加工法又はしごき加工法によって調製したコンデ ンサ一外装用容器。  1 2. For the exterior of a capacitor prepared by drawing or ironing the resin-coated metal plate according to any one of claims 1 to 5, claim 7, claim 9 or claim 10. container.
1 3 . 上記の熱可塑性樹脂製の被覆膜を外側となるようにした請求項 1 2に記載 のコンデンサ一外装用容器。  13. The external container for a capacitor according to claim 12, wherein the coating film made of the thermoplastic resin is provided outside.
PCT/JP2001/003137 2000-04-12 2001-04-11 Metal sheet coated with resin and method for its production WO2001076865A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001574361A JP4065693B2 (en) 2000-04-12 2001-04-11 Resin-coated metal plate and method for producing the same
KR1020027013745A KR100663762B1 (en) 2000-04-12 2001-04-11 Metal sheet coated with resin and method for its production

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000110611 2000-04-12
JP2000-110611 2000-04-12
JP2000-221692 2000-07-24
JP2000221692 2000-07-24
JP2000-242635 2000-08-10
JP2000242635 2000-08-10

Publications (1)

Publication Number Publication Date
WO2001076865A1 true WO2001076865A1 (en) 2001-10-18

Family

ID=27343066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003137 WO2001076865A1 (en) 2000-04-12 2001-04-11 Metal sheet coated with resin and method for its production

Country Status (6)

Country Link
JP (1) JP4065693B2 (en)
KR (1) KR100663762B1 (en)
CN (1) CN1216736C (en)
MY (1) MY129078A (en)
TW (1) TW590883B (en)
WO (1) WO2001076865A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286581A (en) * 2002-03-29 2003-10-10 Sumitomo Metal Ind Ltd Surface treated stainless steel plate and manufacturing method thereof
WO2005041226A1 (en) * 2003-10-29 2005-05-06 Showa Denko K. K. Electrolytic capacitor
JP2005210069A (en) * 2003-10-29 2005-08-04 Showa Denko Kk Electrolytic capacitor
JP2006316834A (en) * 2005-05-11 2006-11-24 Honda Motor Co Ltd Pressure vessel liner manufacturing method
JP2007258422A (en) * 2006-03-23 2007-10-04 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2007266202A (en) * 2006-03-28 2007-10-11 Saga Sanyo Industries Co Ltd Manufacturing method of electrolytic capacitor
US7495888B2 (en) 2003-10-29 2009-02-24 Showa Denko K.K. Electrolytic capacitor
JP2009059287A (en) * 2007-09-03 2009-03-19 Mitsubishi Electric Corp Method for manufacturing rfid tag
JP2009212117A (en) * 2008-02-29 2009-09-17 Nichicon Corp Capacitor case, capacitor including the same, and manufacturing method of capacitor case
JP2013091855A (en) * 2005-08-31 2013-05-16 Castrol Ltd Alkoxysilane coating
JP2013150964A (en) * 2012-01-26 2013-08-08 Mitsubishi Alum Co Ltd Method of manufacturing surface treated aluminum plate superior in workability
JP2013221210A (en) * 2012-04-19 2013-10-28 Hitachi Ltd Corrosion-proof aluminum material and method for producing the same
WO2015150116A1 (en) * 2014-03-31 2015-10-08 Volkswagen Ag Plastic-metal hybrid component and method for producing same
JP2019085459A (en) * 2017-11-02 2019-06-06 株式会社放電精密加工研究所 Surface-coated base material that can be used as substitute material of anodized aluminum material, and coating composition for forming top coat layer on the substrate surface
CN114799031A (en) * 2022-04-20 2022-07-29 无锡神意环件法兰有限公司 Production process and application of forging for tire mold

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4382389B2 (en) * 2003-05-15 2009-12-09 三菱製鋼株式会社 Manufacturing method of magnesium or magnesium alloy product
CN101900245B (en) * 2009-05-27 2014-08-13 晟铭电子科技股份有限公司 Plate structure and manufacturing method thereof
JPWO2011001862A1 (en) * 2009-06-30 2012-12-13 関西ペイント株式会社 Method for producing stainless steel member having coating
CN102505134B (en) * 2011-12-21 2014-11-26 广东生益科技股份有限公司 Aluminum plate for radiating substrate and treatment method thereof
CN104711651B (en) * 2012-02-24 2017-05-31 比亚迪股份有限公司 A kind of aluminum alloy resin complex
JP6066896B2 (en) 2013-12-17 2017-01-25 日新製鋼株式会社 Molding material manufacturing method
CN104790009B (en) * 2014-01-16 2017-09-29 深圳富泰宏精密工业有限公司 The preparation method of the complex of metal and resin and complex obtained by this method
CN105729717B (en) * 2014-12-09 2018-05-29 深圳富泰宏精密工业有限公司 The preparation method of the complex of metal and resin and complex obtained by this method
TWI727112B (en) * 2017-10-31 2021-05-11 中國鋼鐵股份有限公司 Manufacturing method of insulating aluminum material and insulating aluminum material, insulating aluminum shell and electronic component products
CN108660495A (en) * 2018-03-30 2018-10-16 江苏三锋汽车饰件有限公司 A kind of aluminium alloy polychrome finish anticorrosive treatment process
CN109066503A (en) * 2018-07-02 2018-12-21 安徽坤和电气有限公司 A kind of corrosion resistant high-strength plastic steel cable bridge
JP6764517B1 (en) * 2019-11-08 2020-09-30 ドングァン ディーエスピー テクノロジー カンパニー リミテッド Aluminum surface treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145348A (en) * 1976-05-18 1977-12-03 Sumitomo Light Metal Ind Coating process for aluminum products
JPS6143552A (en) * 1984-08-06 1986-03-03 日本ガスケツト株式会社 Composite material and manufacture thereof
JPH11216804A (en) * 1998-02-03 1999-08-10 Kobe Steel Ltd Laminate aluminum or aluminum alloy plate for deep drawing/ironing, and manufacture thereof
JPH11302898A (en) * 1998-04-23 1999-11-02 Toyo Kohan Co Ltd Surface treatment of steel sheet, surface treated steel sheet and thermoplastic resin coated steel sheet using surface treated steel sheet
JP2000025154A (en) * 1998-07-14 2000-01-25 Kobe Steel Ltd Laminated aluminum panel for drawing/squeezing processing and production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145348A (en) * 1976-05-18 1977-12-03 Sumitomo Light Metal Ind Coating process for aluminum products
JPS6143552A (en) * 1984-08-06 1986-03-03 日本ガスケツト株式会社 Composite material and manufacture thereof
JPH11216804A (en) * 1998-02-03 1999-08-10 Kobe Steel Ltd Laminate aluminum or aluminum alloy plate for deep drawing/ironing, and manufacture thereof
JPH11302898A (en) * 1998-04-23 1999-11-02 Toyo Kohan Co Ltd Surface treatment of steel sheet, surface treated steel sheet and thermoplastic resin coated steel sheet using surface treated steel sheet
JP2000025154A (en) * 1998-07-14 2000-01-25 Kobe Steel Ltd Laminated aluminum panel for drawing/squeezing processing and production thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286581A (en) * 2002-03-29 2003-10-10 Sumitomo Metal Ind Ltd Surface treated stainless steel plate and manufacturing method thereof
JP4532235B2 (en) * 2003-10-29 2010-08-25 昭和電工株式会社 Capacitor
WO2005041226A1 (en) * 2003-10-29 2005-05-06 Showa Denko K. K. Electrolytic capacitor
JP2005210069A (en) * 2003-10-29 2005-08-04 Showa Denko Kk Electrolytic capacitor
US7495888B2 (en) 2003-10-29 2009-02-24 Showa Denko K.K. Electrolytic capacitor
JP2006316834A (en) * 2005-05-11 2006-11-24 Honda Motor Co Ltd Pressure vessel liner manufacturing method
JP2013091855A (en) * 2005-08-31 2013-05-16 Castrol Ltd Alkoxysilane coating
JP2007258422A (en) * 2006-03-23 2007-10-04 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP4688710B2 (en) * 2006-03-28 2011-05-25 佐賀三洋工業株式会社 Electrolytic capacitor manufacturing method
JP2007266202A (en) * 2006-03-28 2007-10-11 Saga Sanyo Industries Co Ltd Manufacturing method of electrolytic capacitor
JP2009059287A (en) * 2007-09-03 2009-03-19 Mitsubishi Electric Corp Method for manufacturing rfid tag
JP4706677B2 (en) * 2007-09-03 2011-06-22 三菱電機株式会社 RFID tag manufacturing method
JP2009212117A (en) * 2008-02-29 2009-09-17 Nichicon Corp Capacitor case, capacitor including the same, and manufacturing method of capacitor case
JP2013150964A (en) * 2012-01-26 2013-08-08 Mitsubishi Alum Co Ltd Method of manufacturing surface treated aluminum plate superior in workability
JP2013221210A (en) * 2012-04-19 2013-10-28 Hitachi Ltd Corrosion-proof aluminum material and method for producing the same
WO2015150116A1 (en) * 2014-03-31 2015-10-08 Volkswagen Ag Plastic-metal hybrid component and method for producing same
US10213961B2 (en) 2014-03-31 2019-02-26 Volkswagen Aktiengesellschaft Plastic-metal hybrid component and method for producing same
JP2019085459A (en) * 2017-11-02 2019-06-06 株式会社放電精密加工研究所 Surface-coated base material that can be used as substitute material of anodized aluminum material, and coating composition for forming top coat layer on the substrate surface
JP7148237B2 (en) 2017-11-02 2022-10-05 株式会社放電精密加工研究所 A surface-coated substrate that can be used as an alternative material to an alumite material, and a coating composition for forming a topcoat layer on the surface of the substrate
CN114799031A (en) * 2022-04-20 2022-07-29 无锡神意环件法兰有限公司 Production process and application of forging for tire mold
CN114799031B (en) * 2022-04-20 2023-05-26 无锡神意环件法兰有限公司 Production process and application of forging for tire mold

Also Published As

Publication number Publication date
JP4065693B2 (en) 2008-03-26
CN1216736C (en) 2005-08-31
MY129078A (en) 2007-03-30
KR100663762B1 (en) 2007-01-02
CN1436122A (en) 2003-08-13
TW590883B (en) 2004-06-11
KR20030001419A (en) 2003-01-06

Similar Documents

Publication Publication Date Title
WO2001076865A1 (en) Metal sheet coated with resin and method for its production
KR101473021B1 (en) Multilayer body
WO2007029755A1 (en) Resin-coated seamless aluminum can and resin-coated aluminum alloy lid
JP2018122562A (en) Gas barrier film laminate
JP2003342790A (en) Surface treated aluminum material and thermoplastic resin-coated aluminum material
JP5311266B2 (en) Resin-coated seamless aluminum can with excellent corrosion resistance and adhesion
JP3876652B2 (en) Polyester resin coated tinned steel sheet
JP3124040B2 (en) High workability polyester resin film-coated metal sheet and method for producing the same
JP4483372B2 (en) Resin coated tin alloy plated steel sheet
JP3853702B2 (en) Method for producing surface-treated aluminum material
WO2016104579A1 (en) Film-laminated metal sheet for food container, twist cap in which said sheet is used, and can lid
JP4774629B2 (en) Polyester resin coated tin alloy plated steel sheet
JP2002155397A (en) Thermoplastic resin-coated aluminum sheet, and molding thereof
JP2005349691A (en) Thermoplastic resin-coated aluminum sheet for general can
JP3893964B2 (en) Polyethylene film coated tin alloy plated steel sheet
JP2008230117A (en) Resin coating tin plated steel sheet, can, and can lid
JP3552896B2 (en) Laminate aluminum or aluminum alloy plate for drawing and ironing and method for producing the same
JP2004068063A (en) Polyester resin-coated tin alloy plated steel sheet
JPS58126154A (en) Method of coating metallic base material with resin
JP4233943B2 (en) Method for producing resin-coated can lid material
JPH0825550A (en) Two-layer resin coated stel sheet for vessel
JP4376475B2 (en) Surface-treated aluminum material excellent in adhesiveness and method for producing the same
JPH07207431A (en) Polyester film for base body for vapor deposition, barrier laminated body using the same, and these production
JP2005350775A (en) Surface-treated aluminum material and production method therefor
JP2008127625A (en) Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 574361

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027013745

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 01810956X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027013745

Country of ref document: KR