WO2001075123A1 - Nouveau polypeptide, facteur nucleolaire hepatique 12, et polynucleotide codant pour ce polypeptide - Google Patents

Nouveau polypeptide, facteur nucleolaire hepatique 12, et polynucleotide codant pour ce polypeptide Download PDF

Info

Publication number
WO2001075123A1
WO2001075123A1 PCT/CN2001/000264 CN0100264W WO0175123A1 WO 2001075123 A1 WO2001075123 A1 WO 2001075123A1 CN 0100264 W CN0100264 W CN 0100264W WO 0175123 A1 WO0175123 A1 WO 0175123A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
polynucleotide
nuclear factor
hepatocyte nuclear
human hepatocyte
Prior art date
Application number
PCT/CN2001/000264
Other languages
English (en)
French (fr)
Inventor
Yumin Mao
Yi Xie
Original Assignee
Fudan University
Biodoor Gene Technology Ltd. Shanghai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University, Biodoor Gene Technology Ltd. Shanghai filed Critical Fudan University
Priority to AU2001289281A priority Critical patent/AU2001289281A1/en
Publication of WO2001075123A1 publication Critical patent/WO2001075123A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a novel polypeptide, human hepatocyte nuclear factor 12, and a polynucleotide sequence encoding the polypeptide. The invention also relates to a preparation method and application of the polynucleotide and the polypeptide. Background technique
  • the hepatocyte nuclear factor 3 / fork head (HNF / fkh) domain is an evolutionarily conserved DNA-binding motif. This structural motif is found in many transcription factors in all eukaryotes, from yeast to mammals. These transcription factors play an important role in embryonic development, maintaining the state of cell differentiation and the expression of proto-oncogenes.
  • HNF / fkh hepatocyte nuclear factor 3 / fork head domain
  • HNF / fkh protein family members can be divided into several different subclasses according to the original sequence of their domains. The family members of different subclasses have no significant similarity except for the highly conserved DNA binding domain (Chuan Li, Phi l io. Tucker; Proc. Nat l. Acad. Sci. USA 1993, 90: 11583-11587).
  • HNF / fkh domain is a kind of DNA protein binding domain. It mainly participates in binding with specific DNA sequences in organisms to regulate the expression of various genes and make it perform normal biological functions.
  • the HNF / fkh domain is composed of 10 independent structural units. Its N-terminus has a hook-shaped structure followed by two hydrophilic spiral structures. These two helical structures are separated by a corner structure, namely the ⁇ -helix-turn- ⁇ -helix structure in the fancy structure of the DNA binding domain. This domain plays an important role in the interaction of transcription factors with specific DNA sequences and regulating the expression of various genes.
  • the human hepatocyte nuclear factor 12 protein plays an important role in regulating important functions of the body such as cell division and embryonic development, and it is believed that a large number of proteins are involved in these regulatory processes, so there has been a need in the art to identify more involved in these processes.
  • Human hepatocyte nuclear factor 12 protein especially the amino acid sequence of this protein. Isolation of the new human hepatocyte nuclear factor 12 protein encoding gene also provides a basis for research to determine the role of this protein in health and disease states. This protein may form the basis for the development of diagnostic and / or therapeutic drugs for diseases, so it is important to isolate its coding DNA. Disclosure of invention
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a recombinant vector containing a polynucleotide encoding human hepatocyte nuclear factor 12.
  • Another object of the present invention is to provide a genetically engineered host cell containing a polynucleotide encoding human hepatocyte nuclear factor 12.
  • Another object of the present invention is to provide a method for producing human hepatocyte nuclear factor 12.
  • Another object of the present invention is to provide an antibody against the polypeptide " ⁇ a human hepatocyte nuclear factor" of the present invention.
  • Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors directed to the polypeptide of the present invention, human hepatocyte nuclear factor 12.
  • Another object of the present invention is to provide a method for diagnosing and treating diseases associated with abnormalities of human hepatocyte nuclear factor 12.
  • the present invention relates to an isolated polypeptide, which is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID No. 2, or a conservative variant, biologically active fragment or derivative thereof.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
  • the sequence of the polynucleotide is one selected from: (a) a sequence having positions 338-661 in SEQ ID NO: 1; and (b) having a sequence of 1-1636 in SEQ ID NO: 1 Sequence of bits.
  • the invention further relates to a vector, in particular an expression vector, containing the polynucleotide of the invention; a host cell genetically engineered with the vector, including a transformed, transduced or transfected host cell; and a method comprising culturing said Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
  • the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
  • the invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit human hepatocyte nuclear factor 12 protein activity, which comprises utilizing the polypeptide of the invention.
  • the present invention also relates to the use of the method.
  • the present invention also relates to a method for detecting a disease or disease susceptibility related to abnormal expression of human hepatocyte nuclear factor 12 protein in vitro, which comprises detecting the polypeptide or a polynucleotide sequence encoding the same Mutations, or the amount or biological activity of a polypeptide of the invention in a biological sample.
  • the present invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide of the present invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
  • the present invention also relates to the use of the polypeptide and / or polynucleotide of the present invention in the manufacture of a medicament for treating ⁇ cancer, developmental disease or immune disease ⁇ or other diseases caused by abnormal expression of human hepatocyte nuclear factor 1 2.
  • Nucleic acid sequence refers to an oligonucleotide, a nucleotide or a polynucleotide and a fragment or part thereof, and may also refer to a genomic or synthetic DNA or RNA, they can be single-stranded or double-stranded, representing the sense or antisense strand.
  • amino acid sequence refers to oligopeptide, peptide, polypeptide or protein sequences and fragments or portions thereof.
  • amino acid sequence in the present invention relates to the amino acid sequence of a naturally occurring protein molecule, such "polypeptide” or “protein” does not mean to limit the amino acid sequence to a complete natural amino acid related to the protein molecule .
  • a “variant" of a protein or polynucleotide refers to an amino acid sequence having one or more amino acids or nucleotide changes or a polynucleotide sequence encoding it.
  • the changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or the nucleotide sequence.
  • Variants can have "conservative" changes, in which the substituted amino acid has a structural or chemical property similar to the original amino acid, such as replacing isoleucine with leucine.
  • Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
  • “Deletion” refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
  • Insert or “addition” refers to a change in the amino acid sequence or nucleotide sequence that results in an increase in one or more amino acids or nucleotides compared to a naturally occurring molecule.
  • Replacement refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
  • Bioactivity refers to a protein that has the structure, regulation, or biochemical function of a natural molecule.
  • immunologically active refers to natural, recombinant, or synthetic proteins and fragments thereof The ability of a segment to induce a specific immune response and to bind specific antibodies in a suitable animal or cell.
  • An "agonist” refers to a molecule that, when combined with human hepatocyte nuclear factor 12, causes a change in the protein to regulate the activity of the protein.
  • An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that binds human hepatocyte nuclear factor 12.
  • Antagonist refers to a molecule that can block or regulate the biological or immunological activity of human hepatocyte nuclear factor 12 when combined with human hepatocyte nuclear factor 12.
  • Antagonists and inhibitors can include proteins, nucleic acids, carbohydrates, or any other molecule that binds human hepatocyte nuclear factor 12.
  • Regular refers to a change in the function of human hepatocyte nuclear factor 12, including an increase or decrease in protein activity, a change in binding characteristics, and any other biological, functional, or immune properties of human hepatocyte nuclear factor 12.
  • substantially pure means substantially free of other proteins, lipids, sugars or other substances with which it is naturally associated.
  • Those skilled in the art can purify human hepatocyte nuclear factor 12 using standard protein purification techniques. Essentially pure human hepatocyte nuclear factor 12 produces a single main band on a non-reducing polyacrylamide gel. The purity of human hepatocyte nuclear factor 12 polypeptide can be analyzed by amino acid sequence.
  • Complementary refers to the natural binding of polynucleotides by base-pairing under conditions of acceptable salt concentration and temperature.
  • sequence C-T-G-A
  • complementary sequence G-A-C-T.
  • the complementarity between two single-stranded molecules may be partial or complete.
  • the degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
  • “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous. "Partially homologous” refers to a partially complementary sequence that at least partially inhibits the hybridization of a fully complementary sequence to a target nucleic acid. The inhibition of such hybridization can be measured by performing hybridization (Southern blotting or Nor thern blotting, etc.) under conditions of reduced stringency. Substantially homologous sequences or hybridization probes can compete and inhibit the binding of completely homologous sequences to the target sequence under conditions of reduced stringency. This does not mean that the conditions of reduced stringency allow non-specific binding, because the conditions of reduced stringency require that two sequences bind to each other as a specific or selective interaction.
  • Percent identity refers to the percentage of sequences that are identical or similar in the comparison of two or more amino acid or nucleic acid sequences. The percent identity can be determined electronically, such as by the MEGALIGN program (Lasergene sof tware package, DNASTAR, Inc., Madi son Wis.). The MEGALIGN program can compare two or more sequences according to different methods such as the Clus ter method (Higg ins, DG and PM Sharp (1988) Gene 73: 237-244). 0 The C lus ter method will check the distance between all pairs by Groups of sequences are arranged in clusters. The clusters are then assigned in pairs or groups. The percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula:
  • nucleic acid sequences 100 Number of residues in sequence A-number of spaced residues in sequence A-number of spaced residues in sequence B
  • percent identity between nucleic acid sequences can also be determined by the Clus ter method or by methods known in the art such as Jotun He in (He in J., (1990) Methods in emzumo ogy 183: 625-645).
  • Similarity refers to the degree of identical or conservative substitutions of amino acid residues at corresponding positions in the alignment of amino acid sequences.
  • Amino acids used for conservative substitutions for example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having an uncharged head group is Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
  • Antisense refers to a nucleotide sequence that is complementary to a particular DNA or RNA sequence.
  • Antisense strand refers to a nucleic acid strand that is complementary to the “sense strand”.
  • Derivative refers to a chemical modification of HFP or a nucleic acid encoding it. This chemical modification may be the replacement of a hydrogen atom with an alkyl, acyl or amino group. Nucleic acid derivatives can encode polypeptides that retain the primary biological properties of natural molecules.
  • Antibody refers to a complete antibody molecule and its fragments, such as Fa,? ( ⁇ ) 2 and? ⁇ It can specifically bind to human hepatocyte nuclear factor 12 epitopes.
  • a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
  • isolated refers to the removal of a substance from its original environment (for example, its natural environment if it occurs naturally).
  • a naturally occurring polynucleotide or polypeptide is not isolated when it is present in a living thing, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system.
  • Such a polynucleotide may be part of a vector, or such a polynucleotide or polypeptide may be part of a composition. Even if the carrier or composition is not a component of its natural environment, they are still isolated.
  • isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances in the natural state .
  • isolated human hepatocyte nuclear factor 12 means that human hepatocyte nuclear factor 12 is substantially free of other proteins, lipids, carbohydrates or other substances naturally associated with it. Those skilled in the art can purify human hepatocyte nuclear factor 12 using standard protein purification techniques. Substantially pure peptides produce a single main band on a non-reducing polyacrylamide gel. The purity of human hepatocyte nuclear factor 12 polypeptide can be analyzed by amino acid sequence.
  • the present invention provides a new polypeptide, human hepatocyte nuclear factor 12, which basically consists of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide Peptide, synthetic polypeptide, preferably recombinant polypeptide.
  • the polypeptides of the present invention can be naturally purified products or chemically synthesized products, or can be produced from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells) using recombinant techniques. Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
  • the invention also includes fragments, derivatives and analogs of human hepatocyte nuclear factor 12.
  • fragment refers to a polypeptide that substantially maintains the same biological function or activity of the human hepatocyte nuclear factor 12 of the present invention.
  • a fragment, derivative or analog of the polypeptide of the present invention may be: (I) a kind in which one or more amino acid residues are substituted with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substitution
  • the amino acid may or may not be encoded by a genetic codon; or ( ⁇ ) such a type in which one or more amino acid residues are substituted with other groups to include a substituent; or (III) such A type in which a mature polypeptide is fused to another compound (such as a compound that extends the half-life of a polypeptide, such as polyethylene glycol); or (IV) a type of polypeptide sequence in which an additional amino acid sequence is fused into a mature polypeptide (such as the leader sequence or secreted sequence or the sequence used to purify this polypeptide or protease sequence)
  • such fragments, 00 derivatives and analogs are considered to be within the knowledge of those skilled in the art.
  • the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1.
  • the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a polynucleotide sequence of 1636 bases in length and its open reading frame 338-661 encodes 107 amino acids. According to the comparison of gene chip expression profiles, it was found that this polypeptide has a similar expression profile with human FD23, and it can be deduced that the human hepatocyte nuclear factor 12 has similar functions to human FD23.
  • the polynucleotide of the present invention may be in the form of DNA or RNA.
  • DNA forms include cDNA, genomic DNA or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • DNA can be encoded or non-encoded.
  • the coding region sequence encoding a mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
  • the "degenerate variant” refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but different from the coding region sequence shown in SEQ ID NO: 1 in the present invention.
  • the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide J '; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences) ) And non-coding sequences.
  • polynucleotide encoding a polypeptide is meant to include polynucleotides that encode such polypeptides and polynucleotides that include additional coding and / or noncoding sequences.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention. Variants of this polynucleotide may be naturally occurring allelic variants or non-naturally occurring variants. These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
  • the invention also relates to a polynucleotide that hybridizes to the sequence described above (having at least 50%, preferably 70% identity between the two sequences).
  • the present invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the present invention under stringent conditions.
  • “strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 60 ° C; or (2) Add denaturants during hybridization, such as 50% (v / v) formamide, 0.1% calf serum / 0.1% Fico ll, 42 ° C, etc .; or (3) only between the two sequences Hybridization occurs only when the identity is at least 95%, and more preferably 97%.
  • the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • nucleic acid fragments that hybridize to the sequences described above.
  • a "nucleic acid fragment” contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 nuclei. Glycylic acid or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques, such as PCR, to identify and / or isolate polynucleotides encoding human hepatocyte nuclear factor 12.
  • polypeptide and polynucleotide in the present invention are preferably provided in an isolated form, and more preferably purified to a specific polynucleotide sequence encoding the human hepatocyte nuclear factor 12 of the present invention, which can be obtained by various methods.
  • polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
  • the DNA fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the DNA sequence to obtain the double-stranded DNA of the polypeptide.
  • genomic DM is the least commonly used. Direct chemical synthesis of DNA sequences is often the method of choice. The more commonly used method is the isolation of cDNA sequences.
  • the standard method for isolating the cDNA of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
  • the construction of cDNA libraries is also a common method (Sambrook, Etal., Molecu lar Cloning, A Laboraty Manua, Cold Spring Harbor Labora tory. New York, 1989).
  • cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned. These genes can be screened from these cDNA libraries by conventional methods. These methods include (but are not limited to): (DDNA-DNA or DNA-RNA hybridization; (2) the presence or absence of a marker gene function; (3) determination of the level of human liver cell nuclear factor 12 transcripts; (4) immunity Technology or measuring biological activity to detect protein products expressed by genes. The above methods can be used alone or in combination.
  • the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides.
  • the length of the probe is usually within 2,000 nucleotides, preferably within 1000 nucleotides.
  • the probe used here is usually a DNA sequence chemically synthesized based on the gene sequence information of the present invention.
  • the gene of the invention itself or a fragment thereof can of course be used as a probe.
  • DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
  • immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) can be used to detect protein products expressed by human hepatocyte nuclear factor 12 gene.
  • ELISA enzyme-linked immunosorbent assay
  • a method of amplifying DNA / RNA by PCR is preferably used to obtain the gene of the present invention.
  • the RACE method RACE-rapid amplification of cDNA ends
  • the primers used for PCR can be appropriately based on the polynucleotide sequence information of the present invention disclosed herein. Select and synthesize using conventional methods.
  • the amplified DNA / RNA fragments can be separated and purified by conventional methods such as by gel electrophoresis.
  • polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be determined by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain a full-length cDNA sequence, sequencing must be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
  • the present invention also relates to a vector comprising the polynucleotide of the present invention, and a host cell that is genetically engineered using the vector of the present invention or directly using a human hepatocyte nuclear factor 12 coding sequence, and a method for producing a polypeptide of the present invention by recombinant technology.
  • a polynucleotide sequence encoding human hepatocyte nuclear factor 12 can be inserted into a vector to constitute a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses, or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors (Rosenberg, et al.
  • any plasmid and vector can be used to construct a recombinant expression vector.
  • An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
  • Methods known to those skilled in the art can be used to construct expression vectors containing a DNA sequence encoding human hepatocyte nuclear factor 12 and appropriate transcriptional / translational regulatory elements. These methods include in vitro recombinant DNA technology, DNA synthesis technology, in vivo recombination technology, etc. (Sambroook, e t a l. Mo l e c c a r C l oning, a Labora tory Manua l, co ld Spr ing Harbor Labora t ory. New York, 1989).
  • the DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide mRNA synthesis.
  • promoters are: the l ac or trp promoter of E. coli; the PL promoter of lambda phage; eukaryotic promoters include the CMV immediate early promoter, the HSV thymidine kinase promoter, and the early and late SV40 promoters Promoters, retroviral LTRs, and other known promoters that control the expression of genes in prokaryotic or eukaryotic cells or their viruses.
  • the expression vector also includes a ribosome binding site for translation initiation, a transcription terminator, and the like. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells.
  • Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription.
  • Illustrative examples include SV40 enhancers with 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenoviral enhancers.
  • the expression vector preferably contains one or more selectable marker groups, so as to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance for eukaryotic cell culture. And green fluorescent protein (GFP), or tetracycline or ampicillin resistance for E. coli.
  • selectable marker groups such as dihydrofolate reductase, neomycin resistance for eukaryotic cell culture.
  • GFP green fluorescent protein
  • tetracycline or ampicillin resistance for E. coli.
  • a polynucleotide encoding human hepatocyte nuclear factor 12 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to constitute a genetically engineered host cell containing the polynucleotide or a recombinant vector.
  • the term "host cell” refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
  • coli Streptomyces
  • bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells such as fly S2 or Sf 9
  • animal cells such as CH0, COS, or Bowes melanoma cells.
  • Transformation of a host cell with a DNA sequence described in the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of absorbing DNA can be harvested after the exponential growth phase and treated with CaCl.
  • the steps used are well known in the art.
  • M g C l 2 is used.
  • transformation can also be performed by electroporation.
  • the host is a eukaryote, the following DNA transfection methods can be used.
  • Method Calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome encapsulation through conventional recombinant DNA technology.
  • the polynucleotide sequence of the present invention can be used to express or produce recombinant human hepatocyte nuclear factor 12 (Sc ience, 1 984; 224: 1 431). Generally there are the following steps:
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
  • a suitable method such as temperature conversion or chemical induction
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell. If necessary, recombinant proteins can be isolated and purified by various separation methods using their physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromat
  • FIG. 1 is a comparison diagram of gene chip expression profiles of human hepatocyte nuclear factor 12 and human FD23 according to the present invention.
  • the upper graph is a graph of the expression profile of human hepatocyte nuclear factor 12, and the lower sequence is the graph of the expression profile of human FD23.
  • Figure 2 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of isolated human hepatocyte nuclear factor 12. 12kDa is the molecular weight of the protein. The arrow indicates the isolated protein band. The best way to implement the invention
  • Total human fetal brain RNA was extracted by one-step method with guanidine isothiocyanate / phenol / chloroform.
  • the Quik mRNA Isolation Kit product of Qiegene was used to isolate poly (A) mRNA s 2ug poly (A) mRNA from reverse total RNA to form cDNA.
  • a Smart cDNA cloning kit purchased from Clontech was used to insert the cDNA fragment into the pCSK (+) vector (CI on tech) multi-cloning site to transform DH5 o, and the bacteria formed a cDNA library.
  • Dye terminate cycle reaction sequencing kit Perkin-Elmer
  • ABI 377 automatic sequencer Perkin-Elmer
  • the determined cDNA sequence was compared with an existing public DNA sequence database (Genebank), and it was found that the cDNA sequence of one of the clones, 0067a06, was a new DNA.
  • a series of primers were synthesized to determine the inserted cDNA fragments of the clone in both directions.
  • CDNA was synthesized using fetal brain cell total RNA as a template and oligo-dT as a primer for reverse transcription reaction. After purification with Qiagene's kit, the following primers were used for PCR amplification:
  • Primer 1 5, one CTGCCTCAGGCTGTTAAAATGCTG-3, (SEQ ID NO: 3)
  • Primer2 5'- TGTCTATTTTTCTTTATATCTGTT-3 '(SEQ ID NO: 4)
  • Primerl is a forward sequence starting at lbp of the 5th end of SEQ ID NO: 1;
  • Primer2 is the 3 'end reverse sequence in SEQ ID NO: 1.
  • Amplification reaction conditions 50 leg ol / L KC1, 10 mmol / L Tris-Cl, (pH 8.5), 1.5 mol / L MgCl 2 , 200 ⁇ mol / L dNTP in 50 ⁇ 1 reaction volume, lOpmol primer, 1U Taq DNA polymerase (Clontech).
  • the reaction was performed on a PE9600 DNA thermal cycler (Perkin-Elmer) for 25 cycles under the following conditions: 94. C 30sec; 55 ° C 30sec; 72 ° C 2rain.
  • ⁇ -actin was set as a positive control and template blank was set as a negative control.
  • the amplified product was purified using a QIAGEN kit, and ligated to a pCR vector using a TA cloning kit (manufactured by Nvitrogen).
  • the DNA sequence analysis results showed that the DNA sequence of the PCR product was exactly the same as that of 1-1636bp shown in SEQ ID NO: 1.
  • Example 3 Northern blot analysis of human hepatocyte nuclear factor 12 gene expression:
  • RNA extraction in one step [Anal. Biochem 1987, 162, 156-159] 0
  • This method involves acid guanidinium thiocyanate-chloroform extraction. That is, 4M guanidine isothiocyanate-25mM sodium citrate, 0.2M sodium acetate (PH4.0) were used to uniformly paddle the tissue, and 1 volume of phenol and 1/5 volume of chloroform-isopentanol (49: 1 ), Mix and centrifuge. Aspirate the aqueous layer, add isopropanol (0.8 vol) and mix Centrifuge to obtain RNA pellet. The obtained MA precipitate was washed with 70% ethanol, dried and dissolved in water.
  • RNA was electrophoresis was performed on a 1.2% agarose gel containing 20 mM 3- (N-morpholino) propanesulfonic acid (pH 7.0)-5 mM sodium acetate-1 mM EDTA-2.2M formaldehyde. It was then transferred to a nitrocellulose membrane.
  • ex - 32 P dATP DNA probes prepared by random primer SYSTEM 32 P- labeled.
  • the DNA probe used was the PCR amplified human hepatocyte nuclear factor 12 coding region sequence (338bp to 661bp) shown in FIG.
  • the 32P- labeled probes (about 2 x l0 6 cpm / ml) and RNA was transferred to nitrocellulose membrane 42 in a solution. C hybridization overnight, the solution contains 50% formamide-25mM KH 2 P0 4 (pH7.4) -5 x SSC-5 x Denhardt's solution and 200 M g / ml salmon sperm DNA. After hybridization, the filters were placed in 1 x SSC-0.1% SDS at 55. C for 30 min. Then, Phosphor Imager was used for analysis and quantification.
  • Example 4 In vitro expression, isolation and purification of recombinant human hepatocyte nuclear factor 12
  • Primer 3 5,-CCCCATATGATGCATCGGCCTGATTTCCCTCAC- 3, (Seq ID No: 5)
  • Primer 4 5,-CCCAAGCTTTCATCCAGGCCAGTCTTGAATTCC- 3 '(Seq ID No: 6)
  • the 5' ends of these two primers contain Ndel and BamHI restriction sites, respectively , followeded by the coding sequences of the 5 'and 3' ends of the gene of interest, respectively, and the Ndel and BamHI restriction sites correspond to the selectivity on the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865.3) Endonuclease site.
  • a PCR reaction was performed using the pBS-0067a06 plasmid containing the full-length target gene as a template.
  • the PCR reaction conditions were as follows: a total volume of 50 ⁇ 1 containing 10 pg of pBS-0067a06 plasmid, primers Primer-3 and Primer-4 were 10 pmol, and Advantage polymerase Mix (Clontech) 1 ⁇ 1. Cycle parameters: 94. C 20s, 60 ° C 30s, 68 ° C 2 min, a total of 25 cycles. Ndel and BamHI were used to double-digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase.
  • the ligation product was transformed into E. coli DH50 by the calcium chloride method. After being cultured overnight on LB plates containing kanamycin (final concentration 30 ⁇ g / ml), positive clones were selected by colony PCR method and sequenced. A positive clone (pET-0067a06) with a correct sequence was selected, and the recombinant plasmid was transformed into E. coli BL21 (DE3) plySs (product of Novagen) using the calcium chloride method.
  • a peptide synthesizer (product of PE company) was used to synthesize the following human hepatocyte nuclear factor 12-specific peptides:
  • the polypeptide is coupled to hemocyanin and bovine serum albumin to form a complex, respectively.
  • hemocyanin and bovine serum albumin For the method, see: Avramea s, et al. Immunochemi s try, 1969; 6: 43. Rabbits were immunized with 1 ⁇ 2 g of the hemocyanin-polypeptide complex plus complete Freund's adjuvant, and 15 days later, the hemocyanin-polypeptide complex plus incomplete Freund's adjuvant was used to boost immunity once.
  • a titer plate coated with a 15 g / ml bovine serum albumin peptide complex was used as an ELISA to determine the antibody titer in rabbit serum.
  • Protein A-Sepharose was used to isolate total I gG from antibody-positive rabbit serum.
  • the peptide was bound to a cyanogen bromide-activated Sephai-ose4B column, and anti-peptide antibodies were separated from the total IgG by affinity chromatography. Immunoprecipitation demonstrated that the purified antibody specifically binds to human hepatocyte nuclear factor 12.
  • Example 6 Application of the polynucleotide fragment of the present invention as a hybridization probe
  • Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in various aspects.
  • the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected. Further, the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or pathology. Whether the expression in tissue cells is abnormal.
  • the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method.
  • Filter hybridization methods include dot blotting, Southern blotting, Nor thern blotting, and copying methods, etc. They are all used to fix the polynucleotide sample to be tested on the filter and then hybridize using basically the same steps.
  • the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer to saturate the non-specific binding sites of the sample on the filter with the carrier and synthetic polymer.
  • the pre-hybridization solution is then replaced with a hybridization buffer containing labeled probes and incubated to hybridize the probes to the target nucleic acid.
  • the unhybridized probes are removed by a series of membrane washing steps.
  • This embodiment uses higher-intensity membrane washing conditions (such as lower salt concentration and higher temperature), so that the hybridization background is reduced and only strong specific signals are retained.
  • the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; the second type of probes are partially related to the present invention
  • the polynucleotide SEQ ID NO: 1 is the same or complementary oligonucleotide fragment.
  • the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
  • oligonucleotide fragments from the polynucleotide SEQ ID NO: 1 of the present invention for use as hybridization probes should follow the following principles and several aspects to be considered: 1.
  • the preferred range of probe size is 18-50 nucleotides;
  • Those that meet the above conditions can be used as primary selection probes, and then further computer sequence analysis, including the primary selection probe and its source sequence region (ie, SEQ ID NO: 1) and other known genomic sequences and their complements The regions are compared for homology. If the homology with the non-target molecular region is greater than 85% or there are more than 15 consecutive bases, then the primary probe should not be used;
  • Probe 1 which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt):
  • Probe 2 (probe2), which belongs to the second type of probe, is equivalent to the replacement mutant sequence (41Nt) of the gene fragment of SEQ ID NO: 1 or its complementary fragment:
  • PBS phosphate buffered saline
  • step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
  • NC membranes nitrocellulose membranes
  • the 32P-Probe (the second peak is free ⁇ -2P-dATP) is prepared.
  • Gene chip or DNA microarray is a new technology that many national laboratories and large pharmaceutical companies are currently developing and developing. It refers to the orderly and high-density arrangement of a large number of target gene fragments on glass, The data is compared and analyzed on a carrier such as silicon using fluorescence detection and computer software to achieve the purpose of rapid, efficient, and high-throughput analysis of biological information.
  • the polynucleotide of the present invention can be used as target DNA for gene chip technology for high-throughput research of new gene functions; search for and screen new tissue-specific genes, especially new genes related to diseases such as tumors; diagnosis of diseases such as hereditary diseases .
  • the specific method steps have been reported in the literature. For example, see DeRisi, JL, Lyer, V. & Brown, P.0. (1997) Science 278, 680-686. And Helle, RA, Schema, M. , Chai, A., Shalom, D., (1997) PNAS 94: 2150-2155.
  • a total of 4,000 polynucleotide sequences of various full-length cDNAs are used as target DNA, including the polynucleotides of the present invention. They were amplified by PCR respectively. After purification, the amplified product was adjusted to a concentration of about 500 ng / ul, and spotted on a glass medium with a Cartesian 7500 spotter (purchased from Cartesian, USA). The distance is 280 ⁇ m. The spotted slides were hydrated, dried, and cross-linked in a UV cross-linking instrument. After elution, the DNA was fixed on the glass slides to prepare chips. The specific method steps have been variously reported in the literature. The post-spotting processing steps of this embodiment are:
  • Total mRNA was extracted from human mixed tissues and specific tissues (or stimulated cell lines) using a one-step method, and the mRNA was purified using Oligotex mRNA Midi Kit (purchased from QiaGen).
  • the fluorescent reagent Cy3dUTP 5-Amino-propargyl-2-deoxyur idine 5'-triphate coupled to Cy3 fluorescent dye (purchased from Amersham Pharaacia Biotech) was used to label the mRNA of human mixed tissue, and the fluorescent reagent Cy5dUTP (5-Amino-propargyl-2'-deoxyur idine) was used.
  • the probes from the two types of tissues and the chips were hybridized in a UniHyb TM Hybridization Solution (purchased from TeleChem) hybridization solution for 16 hours, washed with a washing solution (1 X SSC, 0.2 SDS) at room temperature and scanned with ScanArray 3000.
  • the instrument purchased from General Scanning Company, USA
  • the scanned image was analyzed and processed with Imagene software (Biodiscovery Company, USA) to calculate the Cy3 / Cy5 ratio of each point.
  • the above specific tissues are thymus, testis, muscle, spleen, lung, skin, thyroid, liver, PMA + Ecv304 cell line, PMA-Ecv304 cell line, non-starved L02 cell line, Arsenic stimulated the L02 cell line and prostate tissue for 1 hour.
  • polypeptides of the present invention as well as antagonists, agonists and inhibitors of the polypeptides, can be directly used in the treatment of diseases, for example, they can treat malignant tumors, adrenal deficiency, skin diseases, various types of inflammation, HIV infection, and immune diseases.
  • polypeptides of the present invention can be directly used in the treatment of diseases.
  • they can treat the abnormalities of aortic morphology of embryonic and tissue-developing neurospinal cells; Diseases; coronary heart disease; various liver diseases; various tumors and cancers.
  • the polypeptide of the present invention or a fragment or a derivative thereof can be used to treat embryonic dysplasia and various acquired and inherited diseases related thereto; dysplasia of various organs and tissues; neural spine Abnormal morphology of synovial aorta; osteogenic dysfunction; immune-deficient diseases such as AIDS; various tumors and cancers.
  • human FD9 is highly expressed in early embryonic tissues, its abnormal expression may cause diseases such as dysplasia of various organs and abnormal cell differentiation.
  • These proteins include, but are not limited to, the following: sarcoidosis, rheumatoid arthritis, rheumatoid Arthritis, osteoarthritis, cholecystitis, glomerulonephritis, immune complex glomerulonephritis, acute anterior uveitis, osteoporosis, dermatomyositis, urticaria, specific dermatitis, hemochromatosis Disease, polymyositis, Addison's disease, Graves' disease, chronic active hepatitis, bowel emergency syndrome, Atrophic gastritis, systemic lupus erythematosus, myasthenia gravis, cerebrospinal multiple sclerosis, Guillain-Barre syndrome, intracranial granuloma, Wegener granulomatosis
  • HNF / fkh domain directly affects formation of functional dimers of the transcription factor domain.
  • Members of the HNF / fkh transcription factor family can bind to specific DNA sequences only when their DNA-binding domains form a functional dimer, and perform normal biological functions, regulating the normal differentiation and differentiation of various tissue cells in the body. expression. Normally, the active dimer and unactivated monomer in the biological body's domain are in a dynamic equilibrium state. When this equilibrium state is destroyed, the organism will automatically repair the system.
  • abnormal cell differentiation in the early stage of embryonic development causes dysplasia of various organs such as liver, kidney and pancreas; in mature cells Diseases such as tumors and cancers caused by abnormal cell differentiation and proliferation.
  • These diseases include, but are not limited to, the following: adenocarcinoma, sarcoma, lymphoma, leukemia, melanoma, myeloma, etc .; especially cancers of various organs in the body These organs include the bladder, bone, brain, breast, heart, kidney, liver, lung, ovary, uterus, cervix, prostate, penis, testis, skin, thyroid, parathyroid, thymus, etc .; due to abnormal secretion of lipoproteins Caused by fatty liver, coronary heart disease and other diseases. It may also cause various other diseases associated with abnormal transcription expression.
  • the invention also provides methods for screening compounds to identify agents that increase (agonist) or suppress (antagonist human hepatocyte nuclear factor 12).
  • Agonists increase biological functions such as human hepatocyte nuclear factor 12 stimulates cell proliferation, while antagonists prevent and treat Disturbances related to excessive cell proliferation, such as various cancers.
  • mammalian cells or membrane preparations expressing human hepatocyte nuclear factor 12 can be cultured with labeled human hepatocyte nuclear factor 12 in the presence of drugs. Then measured The ability of drugs to increase or block this interaction.
  • Antagonists of human hepatocyte nuclear factor 12 include antibodies, compounds, receptor deletions, and the like that have been screened. Antagonists of human hepatocyte nuclear factor 12 can bind to human hepatocyte nuclear factor 12 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot perform biological functions.
  • human hepatocyte nuclear factor 12 When screening compounds as antagonists, human hepatocyte nuclear factor 12 can be added to bioanalytical assays to determine whether the compound is an antagonist by measuring the effect of the compound on the interaction between human hepatocyte nuclear factor 12 and its receptor. Receptor deletions and analogs that act as antagonists can be screened in the same way as for screening compounds described above.
  • Polypeptide molecules capable of binding to human hepatocyte nuclear factor 12 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. In screening, human hepatocyte nuclear factor 12 molecules should generally be labeled.
  • the present invention provides a method for producing an antibody using a polypeptide, a fragment, a derivative, an analog thereof, or a cell thereof as an antigen.
  • These antibodies can be polyclonal or monoclonal antibodies.
  • the invention also provides antibodies against human hepatocyte nuclear factor 12 epitopes. These antibodies include (but not (Limited to): Polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments and fragments generated from Fab expression libraries.
  • Polyclonal antibodies can be produced by injecting human hepatocyte nuclear factor 12 directly into immunized animals (such as rabbits, mice, rats, etc.).
  • immunized animals such as rabbits, mice, rats, etc.
  • adjuvants can be used to enhance the immune response, including but not limited to Freund's adjuvant.
  • Techniques for preparing monoclonal antibodies against human hepatocyte nuclear factor 12 include, but are not limited to, hybridoma technology (Kohler and Miste in. Nature, 1975, 256: 495-497), triple tumor technology, human beta-cell hybridization Tumor technology, EBV-hybridoma technology, etc.
  • Chimeric antibodies that bind human constant regions to non-human variable regions can be produced using existing techniques (Morris on e t a l, PNAS, 1985, 81: 6851).
  • the existing technology for producing single chain antibodies (U.S. Pat No. 4946778) can also be used to produce single chain antibodies against human hepatocyte nuclear factor 12.
  • Antibodies against human hepatocyte nuclear factor 12 can be used in immunohistochemical techniques to detect human hepatocyte nuclear factor 12 in biopsy specimens.
  • Monoclonal antibodies that bind to human hepatocyte nuclear factor 12 can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • human hepatocyte nuclear factor 12 high affinity monoclonal antibodies can covalently bind to bacterial or phytotoxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of the antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds.
  • This hybrid antibody can be used to kill human hepatocyte nuclear factor 12 positive cells.
  • the antibodies of the present invention can be used to treat or prevent diseases associated with human hepatocyte nuclear factor 12. Administration of appropriate doses of antibodies can stimulate or block the production or activity of human hepatocyte nuclear factor-12.
  • the invention also relates to a diagnostic test method for quantitative and localized detection of human hepatocyte nuclear factor 12 levels.
  • tests are well known in the art and include FI SH assays and radioimmunoassays.
  • the levels of human hepatocyte nuclear factor 12 detected in the test can be used to explain the importance of human hepatocyte nuclear factor 12 in various diseases and to diagnose diseases in which human hepatocyte nuclear factor 12 plays a role.
  • polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzyme, and one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
  • Polynucleotides encoding human hepatocyte nuclear factor 12 can also be used for a variety of therapeutic purposes. Gene therapy technology can be used to treat abnormal cell proliferation, development or metabolism caused by the non-expression or abnormal / inactive expression of human hepatocyte nuclear factor 12.
  • Recombinant gene therapy vectors (such as viral vectors) can be designed to express mutant human hepatocyte nuclear factor 12 to inhibit endogenous human hepatocyte nuclear factor 12 activity.
  • a mutated human hepatocyte nuclear factor 12 may be a shortened human hepatocyte nuclear factor 12 lacking a signaling domain, and although it can bind to downstream substrates, it lacks signaling activity.
  • recombinant gene therapy vectors can be used to treat nuclear factor 12 expression or activity in human hepatocytes. Often caused by diseases.
  • Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, herpes simplex virus, parvovirus, etc. can be used to transfer a polynucleotide encoding human hepatocyte nuclear factor 12 into a cell.
  • Methods for constructing recombinant viral vectors carrying a polynucleotide encoding human hepatocyte nuclear factor 12 can be found in existing literature (Sambrook, eta l.).
  • a recombinant polynucleotide encoding human hepatocyte nuclear factor 12 can be packaged into liposomes and transferred into cells.
  • Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RNA and DNA
  • ribozymes that inhibit nuclear factor 12 mRNA of human hepatocytes are also within the scope of the present invention.
  • a ribozyme is an enzyme-like RNA molecule that specifically decomposes specific RNA. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
  • Antisense RNA, DNA, and ribozymes can be obtained using any existing RNA or DNA synthesis technology. For example, solid-phase phosphate amide chemical synthesis of oligonucleotides has been widely used.
  • Antisense RNA molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the RNA. This MA sequence has been integrated downstream of the RNA polymerase promoter of the vector. In order to increase the stability of the nucleic acid molecule, it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the linkage between ribonucleosides using phosphate thioester or peptide bonds instead of phosphodiester bonds.
  • the polynucleotide encoding human hepatocyte nuclear factor 12 can be used for the diagnosis of diseases related to human hepatocyte nuclear factor 12.
  • the polynucleotide encoding human hepatocyte nuclear factor 12 can be used to detect the expression of human hepatocyte nuclear factor 12 or the abnormal expression of human hepatocyte nuclear factor 12 in a disease state.
  • the DNA sequence encoding human hepatocyte nuclear factor 12 can be used to hybridize biopsy specimens to determine the expression status of human hepatocyte nuclear factor 12.
  • Hybridization techniques include Sou thern blotting, Nor thern blotting, and in situ hybridization. These techniques and methods are all mature and open technologies, and related kits are commercially available.
  • polynucleotides of the present invention can be used as probes to be fixed on a micro array (Mi croar ray) or a DNA chip (also known as a "gene chip") for analyzing differential expression analysis of genes and genetic diagnosis in tissues .
  • a micro array Micro croar ray
  • a DNA chip also known as a "gene chip”
  • Human liver cell nuclear factor 1 2 specific primers for RNA-polymerase chain reaction (RT-PCR) amplification in vitro can also detect the transcription of human liver cell nuclear factor 12 detection of human liver cell nuclear factor 1 2 mutations can also be used to diagnose human Hepatocyte Nuclear Factor 12 Related Diseases
  • Human hepatocyte nuclear factor 12 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to normal wild-type human hepatocyte nuclear factor 12 DM sequences. Mutations can be detected using existing techniques such as Southern blotting, DNA sequence analysis, PCR, and in situ hybridization. In addition, mutations may affect protein expression. Therefore, Nor thern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
  • the sequences of the invention are also valuable for chromosome identification.
  • the sequence specifically targets a specific position on a human chromosome and can hybridize to it. At present, it is necessary to identify the bases on the chromosome Because of the specific site.
  • an important first step is to locate these DNA sequences on a chromosome.
  • a PCR primer (preferably 15-35bp) is prepared from the cDNA, and the sequence can be located on the chromosome. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those hybrid cells that contain the human gene corresponding to the primer will produce amplified fragments.
  • PCR localization of somatic hybrid cells is a quick way to locate DNA to specific chromosomes.
  • oligonucleotide primers of the present invention by a similar method, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and pre-selection of hybridization to construct chromosome-specific cDNA libraries.
  • Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the physical location of the sequence on the chromosome can be correlated with the gene map data. These data can be found in, for example,
  • Linkage analysis can then be used to determine the relationship between genes and diseases that have been mapped to chromosomal regions.
  • the difference in cDNA or genomic sequence between the affected and unaffected individuals needs to be determined. If a mutation is observed in some or all diseased individuals and the mutation is not observed in any normal individual, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in the chromosome, such as deletions or translocations that are visible at the chromosomal level or detectable with cDNA sequence-based PCR. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the chromosomal region associated with the disease can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution) Capacity and each 20kb corresponds to a gene).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients that do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the present invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the present invention.
  • a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the present invention.
  • these containers there may be instructional prompts given by government regulatory agencies that manufacture, use or sell pharmaceuticals or biological products, which prompts reflect Government agencies that produce, use, or sell permit their use on humans.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • Human hepatocyte nuclear factor 12 is administered in an amount effective to treat and / or prevent a specific indication.
  • the amount and dose range of human hepatocyte nuclear factor 1 2 to be administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

一种新的多肽——人肝细胞核因子 12和编码这种多肽的多核苷酸 技术领域
本发明属于生物技术领域, 具体地说, 本发明描述了一种新的多肽—— 人肝细胞核因子 12 , 以及编码此多肽的多核苷酸序列。 本发明还涉及此多核 苷酸和多肽的制备方法和应用。 背景技术
肝细胞核因子 3/fork head (HNF/fkh)结构域是一进化上保守的 DNA结合 基序。 从酵母到哺乳动物的所有真核生物的许多转录因子中均含有该结构基 序。 这些转录因子在胚胎发育过程中起着重要的作用, 维持着细胞分化的状 态及原癌基因的表达。 1996 年, Kaufmann 等已从 Xenopous l aev i s 中克隆 得到了 14个编码 fork head相似蛋白的不同的基因 XFD1_10、 XFLIP、 XFKH4 及 XFKH5 ; 同年, Chen 等还克隆得到了编码 FAST-蛋白的基因; 1998 年, Manfred Kos ter等人又从 Xenopus laevi s中克隆得到了编码 XFD- 11蛋白的 基因, 该蛋白也含有进化上保守的 fork head/HNF-3 结构域, 其为肝细胞核 因子 3/fork head (HNF/fkh)蛋白家族 [Manf red Koser, Kar in Di l l inger et a l. , Mech. Dev. , 1998, 76: 169- 173]肝细胞核因子 3/fork head (HNF/fkh) 蛋白家族在生物体内分布非常广泛, 该家族的成员均含有一由 84-105 个氨 基酸残基组成的长度不等的特征性结构与 --- HNF/fkh 结构域。 HNF/fkh 蛋白 家族成员按其结构域原始序列的不同又可分为几个不同的亚类, 不同亚类的 家族成员除 DNA 结合结构域高度保守外, 其余区域均没有明显的相似性 ( Chuan l i, Phi l io . Tucker; Proc. Nat l. Acad. Sc i. USA 1993, 90: 11583-11587 ) 。 HNF/fkh 结构域为 DNA 蛋白结合结构域的一种, 其在生 物体内主要参与与特定的 DNA序列结合以调控各种不同的基因的表达, 并使 其发挥正常的生物学功能。 研究发现, HNF/fkh 蛋白家族的成员在生物体内 具有许多重要的生物学功能, 其与胚胎发育、 细胞分化和增殖、 各种器官形 成、 艾滋病等免疫缺陷性疾病、 冠心病、 各种肝脏疾病及各种肿瘤、 癌症的 发生均有一定的关系 HNF/fkh结构域由 10个独立的结构单位组成。 其 N末 端有一钩状结构, 后跟两个亲水性螺旋结构。 这两个螺旋结构被一转角结构 分开, 既 DNA 结合结构域花式结构中的 α螺旋 -转角 - α螺旋结构。 该结构域 在转录因子与特定 DNA序列相互作用, 调节各种基因的表达过程中起着重要 的作用。
通过基因芯片的分析发现, 在胸腺、 睾丸、 肌肉、 脾脏、 肺、 皮肤、 甲状 腺、 肝、 ΡΜΑ+的 Ecv304 细胞株、 PMA -的 Ecv304 细胞株、 未饥饿的 L02 细 胞株、 砷刺激 1小时的 L02细胞株以及前列腺组织中, 本发明的多肽的表达 谱与人 FD23 的表达谱非常近似, 因此二者功能也可能类似。 本发明被命名 为人肝细胞核因子 12。
由于如上所述人肝细胞核因子 12 蛋白在调节细胞分裂和胚胎发育等机 体重要功能中起重要作用, 而且相信这些调节过程中涉及大量的蛋白, 因而 本领域中一直需要鉴定更多参与这些过程的人肝细胞核因子 12 蛋白, 特别 是鉴定这种蛋白的氨基酸序列。 新人肝细胞核因子 12 蛋白编码基因的分离 也为研究确定该蛋白在健康和疾病状态下的作用提供了基础。 这种蛋白可能 构成开发疾 1 病诊断和 /或治疗药的基础, 因此分离其编码 DNA 是非常重要 的。 发明的公开
本发明的一个目的是提供分离的新的多肽——人肝细胞核因子 12 以及其 片段、 类似物和衍生物。
本发明的另一个目的是提供编码该多肽的多核苷酸。
本发明的另一个目的是提供含有编码人肝细胞核因子 12 的多核苷酸的重 组载体。
本发明的另一个目的是提供含有编码人肝细胞核因子 12 的多核苷酸的基 因工程化宿主细胞。
本发明的另一个目的是提供生产人肝细胞核因子 12的方法。
本发明的另一个目的是提供针对本发明的多肽" ~一人肝细胞核因子 的 抗体。
本发明的另一个目的是提供了针对本发明多肽——人肝细胞核因子 12 的模 拟化合物、 拮抗剂、 激动剂、 抑制剂。
本发明的另一个目的是提供诊断治疗与人肝细胞核因子 12 异常相关的疾病 的方法。
本发明涉及一种分离的多肽, 该多肽是人源的, 它包含: 具有 SEQ ID No. 2 氨基酸序列的多肽、 或其保守性变体、 生物活性片段或衍生物。 较佳地, 该 多肽是具有 SEQ ID NO: 2氨基酸序列的多肽。
本发明还涉及一种分离的多核苷酸, 它包含选自下组的一种核苷酸序列 或其变体:
(a)编码具有 SEQ ID No. 2氨基酸序列的多肽的多核苷酸;
(b)与多核苷酸(a)互补的多核苷酸;
(c)与 (a)或(b)的多核苷酸序列具有至少 70%相同性的多核苷酸。
更佳地, 该多核苷酸的序列是选自下组的一种: (a)具有 SEQ ID NO: 1中 338-661位的序列; 和(b)具有 SEQ ID NO: 1中 1-1636位的序列。 本发明另外涉及一种含有本发明多核苷酸的载体, 特别是表达载体; 一 种用该载体遗传工程化的宿主细胞, 包括转化、 转导或转染的宿主细胞; 一 种包括培养所述宿主细胞和回收表达产物的制备本发明多肽的方法。
本发明还涉及一种能与本发明多肽特异性结合的抗体。
本发明还涉及一种筛选的模拟、 激活、 拮抗或抑制人肝细胞核因子 1 2蛋 白活性的化合物的方法, 其包括利用本发明的多肽。 本发明还涉及用该方法 本发明还涉及一种体外检测与人肝细胞核因子 12 蛋白异常表达相关的 疾病或疾病易感性的方法, 包括检测生物样品中所述多肽或其编码多核苷酸 序列中的突变, 或者检测生物样品中本发明多肽的量或生物活性。
本发明也涉及一种药物组合物, 它含有本发明多肽或其模拟物、 激活 剂、 拮抗剂或抑制剂以及药学上可接受的载体。
本发明还涉及本发明的多肽和 /或多核苷酸在制备用于治疗 {癌症、 发育 性疾病或免疫性疾病 }或其它由于人肝细胞核因子 1 2 表达异常所引起疾病的 药物的用途。
本发明的其它方面由于本文的技术的公开, 对本领域的技术人员而言是 显而易见的。
本说明书和权利要求书中使用的下列术语除非特别说明具有如下的含 义: "核酸序列" 是指寡核苷酸、 核苷酸或多核苷酸及其片段或部分, 也可 以指基因组或合成的 DNA 或 RNA, 它们可以是单链或双链的, 代表有义链或 反义链。 类似地, 术语 "氨基酸序列" 是指寡肽、 肽、 多肽或蛋白质序列及 其片段或部分。 当本发明中的 "氨基酸序列" 涉及一种天然存在的蛋白质分 子的氨基酸序列时, 这种 "多肽" 或 "蛋白质" 不意味着将氨基酸序列限制 为与所述蛋白质分子相关的完整的天然氨基酸。
蛋白质或多核苷酸 "变体" 是指一种具有一个或多个氨基酸或核苷酸改变 的氨基酸序列或编码它的多核苷酸序列。 所述改变可包括氨基酸序列或核苷 酸序列中氨基酸或核苷酸的缺失、 插入或替换。 变体可具有 "保守性" 改 变, 其中替换的氨基酸具有与原氨基酸相类似的结构或化学性质, 如用亮氨 酸替换异亮氨酸。 变体也可具有非保守性改变, 如用色氨酸替换甘氨酸。
"缺失" 是指在氨基酸序列或核苷酸序列中一个或多个氨基酸或核苷酸 的缺失。
"插入" 或 "添加" 是指在氨基酸序列或核苷酸序列中的改变导致与天 然存在的分子相比, 一个或多个氨基酸或核苷酸的增加。 "替换" 是指由不 同的氨基酸或核苷酸替换一个或多个氨基酸或核苷酸。
"生物活性" 是指具有天然分子的结构、 调控或生物化学功能的蛋白 质。 类似地, 术语 "免疫学活性" 是指天然的、 重组的或合成蛋白质及其片 段在合适的动物或细胞中诱导特定免疫反应以及与特异性抗体结合的能力。
"激动剂" 是指当与人肝细胞核因子 12结合时, 一种可引起该蛋白质改 变从而调节该蛋白质活性的分子。 激动剂可以包括蛋白质、 核酸、 碳水化合 物或任何其它可结合人肝细胞核因子 12的分子。
"拮抗剂" 或 "抑制物" 是指当与人肝细胞核因子 12结合时, 一种可封 闭或调节人肝细胞核因子 12的生物学活性或免疫学活性的分子。 拮抗剂和抑 制物可以包括蛋白质、 核酸、 碳水化合物或任何其它可结合人肝细胞核因子 12的分子。
"调节" 是指人肝细胞核因子 12的功能发生改变, 包括蛋白质活性的升 高或降低、 结合特性的改变及人肝细胞核因子 12的任何其它生物学性质、 功 能或免疫性质的改变。
"基本上纯"是指基本上不含天然与其相关的其它蛋白、 脂类、 糖类或其 它物质。 本领域的技术人员能用标准的蛋白质纯化技术纯化人肝细胞核因子 12。 基本上纯的人肝细胞核因子 12 在非还原性聚丙烯酰胺凝胶上能产生单 一的主带。 人肝细胞核因子 12多肽的纯度可用氨基酸序列分析。
"互补的" 或 "互补" 是指在允许的盐浓度和温度条件下通过碱基配对 的多核苷酸天然结合。 例如, 序列 "C- T- G- A" 可与互补的序列 "G-A-C - T" 结合。 两个单链分子之间的互补可以是部分的或全部的。 核酸链之间的互补 程度对于核酸链之间杂交的效率及强度有明显影响。
"同源性" 是指互补的程度, 可以是部分同源或完全同源。 "部分同 源" 是指一种部分互补的序列, 其至少可部分抑制完全互补的序列与靶核酸 的杂交。 这种杂交的抑制可通过在严格性程度降低的条件下进行杂交 ( Southern印迹或 Nor thern印迹等) 来 测。 基本上同源的序列或杂交探针 可竟争和抑制完全同源的序列与靶序列在的严格性程度降低的条件下的结 合。 这并不意味严格性程度降低的条件允许非特异性结合, 因为严格性程度 降低的条件要求两条序列相互的结合为特异性或选择性相互作用。
"相同性百分率" 是指在两种或多种氨基酸或核酸序列比较中序列相同 或相似的百分率。 可用电子方法测定相同性百分率, 如通过 MEGALIGN程序 ( Lasergene sof tware package, DNASTAR, Inc. , Madi son Wi s. ) 。 MEGALIGN程序可根据不同的方法如 Clus ter法比较两种或多种序列 (Higg ins, D. G. 和 P. M. Sharp (1988) Gene 73: 237-244) 0 C lus ter法通过检查所 有配对之间的距离将各组序列排列成簇。 然后将各簇以成对或成组分配。 两 个氨基酸序列如序列 A和序列 B之间的相同性百分率通过下式计算:
序列 A与序列 B之间匹配的残基个数
100 序列 A的残基数一序列 A中间隔残基数一序列 B中间隔残基数 也可以通过 Clus ter法或用本领域周知的方法如 Jotun He in 测定核酸序 列之间 的相同性百分率 (He in J. , (1990) Methods in emzumo l ogy 183: 625-645)。
"相似性 " 是指氨基酸序列之间排列对比时相应位置氨基酸残基的相同 或保守性取代的程度。 用于保守性取代的氨基酸例如, 带负电荷的氨基酸可 包括天冬氨酸和谷氨酸; 带正电荷的氨基酸可包括赖氨酸和精氨酸; 具有不 带电荷的头部基团有相似亲水性的氨基酸可包括亮氨酸、 异亮氨酸和缬氨 酸; 甘氨酸和丙氨酸; 天冬酰胺和谷氨酰胺; 丝氨酸和苏氨酸; 苯丙氨酸和 酪氨酸。
"反义" 是指与特定的 DNA或 RNA序列互补的核苷酸序列。 "反义链" 是 指与 "有义链" 互补的核酸链。
"衍生物" 是指 HFP或编码其的核酸的化学修饰物。 这种化学修饰物可以 是用烷基、 酰基或氨基替换氢原子。 核酸衍生物可编码保留天然分子的主要 生物学特性的多肽。
"抗体" 是指完整的抗体分子及其片段, 如 Fa、 ?(^) 2及?^ 其能特 异性结合人肝细胞核因子 12的抗原决定簇。
"人源化抗体" 是指非抗原结合区域的氨基酸序列被替换变得与人抗体更 为相似, 但仍保留原始结合活性的抗体。
"分离的" 一词指将物质从它原来的环境 (例如, 若是自然产生的就指 其天然环境) 之中移出。 比如说, 一个自然产生的多核苷酸或多肽存在于 活动物中就是没有被分离出来, 但同样的多核苷酸或多肽同一些或全部在 自然系统中与之共存的物质分开就是分离的。 这样的多核苷酸可能是某一 载体的一部分, 也可能这样的多核苷酸或多肽是某一组合物的一部分。 既 然载体或组合物不是它天然环境的成分, 它们仍然是分离的。 如本发明所用, "分离的" 是指物质从其原始环境中分离出来 (如果是 天然的物质, 原始环境即是天然环境) 。 如活体细胞内的天然状态下的多聚 核苷酸和多肽是没有分离纯化的, 但同样的多聚核苷酸或多肽如从天然状态 中同存在的其他物质中分开, 则为分离纯化的。
如本文所用, "分离的人肝细胞核因子 12" 是指人肝细胞核因子 12基 本上不含天然与其相关的其它蛋白、 脂类、 糖类或其它物质。 本领域的技 术人员能用标准的蛋白质纯化技术纯化人肝细胞核因子 12。 基本上纯的多 肽在非还原聚丙烯酰胺凝胶上能产生单一的主带。 人肝细胞核因子 12 多肽 的纯度能用氨基酸序列分析。
本发明提供了一种新的多肽——人肝细胞核因子 12 , 其基本上是由 SEQ ID N0: 2所示的氨基酸序列组成的。 本发明的多肽可以是重组多肽、 天然多 肽、 合成多肽, 优选重组多肽。 本发明的多肽可以是天然纯化的产物, 或是 化学合成的产物, 或使用重组技术从原核或真核宿主(例如, 细菌、 酵母、 高等植物、 昆虫和哺乳动物细胞)中产生。 根据重组生产方案所用的宿主, 本发明的多肽可以是糖基化的, 或可以是非糖基化的。 本发明的多肽还可包 括或不包括起始的甲硫氨酸残基。
本发明还包括人肝细胞核因子 12 的片段、 衍生物和类似物。 如本发明所 用, 术语 "片段" 、 "衍生物" 和 "类似物" 是指基本上保持本发明的人肝 细胞核因子 12 相同的生物学功能或活性的多肽。 本发明多肽的片段、 衍生 物或类似物可以是: ( I ) 这样一种, 其中一个或多个氨基酸残基被保守或 非保守氨基酸残基 (优选的是保守氨基酸残基) 取代, 并且取代的氨基酸可 以是也可以不是由遗传密码子编码的; 或者 ( Π ) 这样一种, 其中一个或多 个氨基酸残基上的某个基团被其它基团取代包含取代基; 或者 ( I I I ) 这样 一种, 其中成熟多肽与另一种化合物 (比如延长多肽半衰期的化合物, 例如 聚乙二醇) 融合; 或者 ( IV ) 这样一种, 其中附加的氨基酸序列融合进成熟 多肽而形成的多肽序列 (如前导序列或分泌序列或用来纯化此多肽的序列或 蛋白原序列) 通过本文的阐述, 这样的片段、 00 衍生物和类似物被认为在本 领域技术人员的知识范围之内。
本发明提供了分离的核酸 (多核苷酸) , 基本由编码具有 SEQ ID NO: 2 氨 基酸序列的多肽的多核苷酸组成。 本发明的多核苷酸序列包括 SEQ ID N0: 1 的核苷酸序列。 本发明的多核苷酸是从人胎脑组织的 cDNA 文库中发现的。 它包含的多核苷酸序列全长为 1636个碱基, 其开放读框 338-661编码了 107 个氨基酸。 根据基因芯片表达谱比较发现, 此多肽与人 FD23 有相似的表达 谱, 可推断出该人肝细胞核因子 12具有人 FD23相似的功能。
本发明的多核苷酸可以是 DNA形式或是 RNA形式。 DNA形式包括 cDNA、 基因组 DNA或人工合成的 DNA。 DNA可以是单链的或是双链的。 DNA可以是编 码链或非编码链。 编码成熟多肽的编码区序列可以与 SEQ ID NO: 1 所示的编 码区序列相同或者是简并的变异体。 如本发明所用, "简并的变异体" 在本 发明中是指编码具有 SEQ ID NO: 2 的蛋白质或多肽, 但与 SEQ ID NO: 1 所示 的编码区序列有差别的核酸序列。 编码 SEQ ID NO: 2 的成熟多肽的多核苷酸包括: 只有成熟多肽的编码序 歹' J ; 成熟多肽的编码序列和各种附加编码序列; 成熟多肽的编码序列 (和任 选的附加编码序列) 以及非编码序列。
术语 "编码多肽的多核苷酸" 是指包括编码此多肽的多核苷酸和包括附 加编码和 /或非编码序列的多核苷酸。 本发明还涉及上述描述多核苷酸的变异体, 其编码与本发明有相同的氨 基酸序列的多肽或多肽的片断、 类似物和衍生物。 此多核苷酸的变异体可以 是天然发生的等位变异体或非天然发生的变异体。 这些核苷酸变异体包括取 代变异体、 缺失变异体和插入变异体。 如本领域所知的, 等位变异体是一个 多核苷酸的替换形式, 它可能是一个或多个核苷酸的取代、 缺失或插入, 但 不会从实质上改变其编码的多肽的功能。
本发明还涉及与以上所描述的序列杂交的多核苷酸 (两个序列之间具有 至少 50% , 优选具有 70%的相同性) 。 本发明特别涉及在严格条件下与本发 明所述多核苷酸可杂交的多核苷酸。 在本发明中, "严格条件" 是指: (1) 在较低离子强度和较高温度下的杂交和洗脱, 如 0. 2xSSC, 0. 1%SDS, 60 °C ;或 (2)杂交时加用变性剂, 如 50% (v/v)甲酰胺, 0. 1%小牛血清 / 0. l%Fico l l, 42 °C等; 或(3)仅在两条序列之间的相同性至少在 95%以上,更好是 97%以上时 才发生杂交。 并且, 可杂交的多核苷酸编码的多肽与 SEQ ID NO: 2 所示的 成熟多肽有相同的生物学功能和活性。
本发明还涉及与以上所描述的序列杂交的核酸片段。 如本发明所用, "核 酸片段"的长度至少含 10个核苷酸, 较好是至少 20- 30个核苷酸, 更好是至 少 50- 60个核苷酸, 最好是至少 100个核苷酸以上。 核酸片段也可用于核酸 的扩增技术(如 PCR)以确定和 /或分离编码人肝细胞核因子 12的多核苷酸。
本发明中的多肽和多核苷酸优选以分离的形式提供, 更佳地被纯化至均 本发明的编码人肝细胞核因子 12 的特异的多核苷酸序列能用多种方法 获得。 例如, 用本领域熟知的杂交技术分离多核苷酸。 这些技术包括但不 局限于: 1)用探针与基因组或 cDNA 文库杂交以检出同源的多核苷酸序列, 和 2)表达文库的抗体筛选以检出具有共同结构特征的克隆的多核苷酸片 段。
本发明的 DNA 片段序列也能用下列方法获得: 1)从基因组 DNA 分离双 链 DNA序列; 2)化学合成 DNA序列以获得所述多肽的双链 DNA。
上述提到的方法中, 分离基因组 DM最不常用。 DNA序列的直接化学合 成是经常选用的方法。 更经常选用的方法是 cDNA序列的分离。 分离感兴趣 的 cDNA 的标准方法是从高表达该基因的供体细胞分离 mRNA 并进行逆转 录, 形成质粒或噬菌体 cDNA 文库。 提取 mRNA 的方法已有多种成熟的技 术, 试剂盒也可从商业途径获得(Qiagene)。 而构建 cDNA 文库也是通常的 方法 (Sambrook, e t a l. , Molecu lar Clon ing, A Labora t ory Manua l , Co ld Spr ing Harbor Labora tory. New York , 1989)。 还可得到商业供应 的 cDNA文库, 如 C lontech公司的不同 cDNA文库。 当结合使用聚合酶反应 技术时, 即使极少的表达产物也能克隆。 可用常规方法从这些 cDNA 文库中筛选本发明的基因。 这些方法包括 (但不限于): (DDNA-DNA 或 DNA- RNA 杂交; (2)标志基因功能的出现或丧 失; (3)测定人肝细胞核因子 12 的转录本的水平; (4)通过免疫学技术或测 定生物学活性, 来检测基因表达的蛋白产物。 上述方法可单用, 也可多种 方法联合应用。
在第(1)种方法中, 杂交所用的探针是与本发明的多核苷酸的任何一部 分同源, 其长度至少 10 个核苷酸, 较好是至少 30 个核苷酸, 更好是至少 50 个核苷酸, 最好是至少 100 个核苷酸。 此外, 探针的长度通常在 2000 个核苷酸之内, 较佳的为 1000个核苷酸之内。 此处所用的探针通常是在本 发明的基因序列信息的基础上化学合成的 DNA 序列。 本发明的基因本身或 者片段当然可以用作探针。 DNA探针的标记可用放射性同位素, 荧光素或酶 (如碱性磷酸酶)等。
在第(4)种方法中, 检测人肝细胞核因子 12 基因表达的蛋白产物可用 免疫学技术如 Western 印迹法, 放射免疫沉淀法, 酶联免疫吸附法(ELISA) 等。
应用 PCR 技术扩增 DNA/RNA 的方法 (Saiki, et al. Science 1985; 230: 1350- 1354)被优选用于获得本发明的基因。 特别是很难从文库中 得到全长的 cDNA时, 可优选使用 RACE法(RACE - cDNA末端快速扩增法), 用于 PCR 的引物可根据本文所公开的本发明的多核苷酸序列信息适当地选 择, 并可用常规方法合成。 可用常规方法如通过凝胶电泳分离和纯化扩增 的 DNA/RNA片段。
如上所述得到的本发明的基因, 或者各种 DNA 片段等的多核苷酸序列 可用常规方法如双脱氧链终止法(Sanger et al. PNAS, 1977, 74: 5463- 5467)测定。 这类多核苷酸序列测定也可用商业测序试剂盒等。 为了获得全 长的 cDNA序列, 测序需反复进行。 有时需要测定多个克隆的 cDNA序列, 才能拼接成全长的 cDNA序列。
本发明也涉及包含本发明的多核苷酸的载体, 以及用本发明的载体或 直接用人肝细胞核因子 12 编码序列经基因工程产生的宿主细胞, 以及经重 组技术产生本发明所述多肽的方法。
本发明中, 编码人肝细胞核因子 12 的多核苷酸序列可插入到载体中, 以构成含有本发明所述多核苷酸的重组载体。 术语 "载体" 指本领域熟知 的细菌质粒、 噬菌体、 酵母质粒、 植物细胞病毒、 哺乳动物细胞病毒如腺 病毒、 逆转录病毒或其它载体。 在本发明中适用的载体包括但不限于: 在 细菌中表达的基于 T7启动子的表达载体(Rosenberg, et al. Gene, 1987, 56: 125); 在哺乳动物细胞中表达的 pMSXND表达载体(Lee and Nathans, J Bio Chem. 263: 3521, 1988)和在昆虫细胞中表达的来源于杆状病毒的载 体。 总之, 只要能在宿主体内复制和稳定, 任何质粒和载体都可以用于构 建重组表达载体。 表达载体的一个重要特征是通常含有复制起始点、 启动 子、 标记基因和翻译调控元件。
本领域的技术人员熟知的方法能用于构建含编码人肝细胞核因子 12 的 DNA 序列和合适的转录 /翻译调控元件的表达载体。 这些方法包括体外重组 DNA技术、 DNA合成技术、 体内重组技术等(Sambroook, e t a l . Mo l ecu l a r C l oning, a Labora tory Manua l , co ld Spr ing Harbor Labora t ory. New York, 1989)。 所述的 DNA序列可有效连接到表达载体中的适当启动子上, 以指导 mRNA合成。 这些启动子的代表性例子有: 大肠杆菌的 l ac或 t rp启 动子; λ噬菌体的 PL启动子; 真核启动子包括 CMV 立即早期启动子、 HSV 胸苷激酶启动子、 早期和晚期 SV40 启动子、 反转录病毒的 LTRs 和其它一 些已知的可控制基因在原核细胞或真核细胞或其病毒中表达的启动子。 表 达载体还包括翻译起始用的核糖体结合位点和转录终止子等。 在载体中插 入增强子序列将会使其在高等真核细胞中的转录得到增强。 增强子是 DNA 表达的顺式作用因子, 通常大约有 10到 300个碱基对, 作用于启动子以增 强基因的转录。 可举的例子包括在复制起始点晚期一侧的 100 到 270 个碱 基对的 SV40增强子、 在复制起始点晚期一侧的多瘤增强子以及腺病毒增强 子等。
此外, 表达载体优选地包含一个或多个选择性标记基.因, 以提供用于 选择转化的宿主细胞的表型性状, 如真核细胞培养用的二氢叶酸还原酶、 新霉素抗性以及绿色荧光蛋白(GFP) , 或用于大肠杆菌的四环素或氨苄青霉 素抗性等。
本领域一般技术人员都清楚如何选择适当的载体 /转录调控元件 (如 启动子、 增强子等) 和选择性标记基因。
本发明中, 编码人肝细胞核因子 12 的多核苷酸或含有该多核苷酸的重 组载体可转化或转导入宿主细胞, 以构成含有该多核苷酸或重组载体的基 因工程化宿主细胞。 术语 "宿主细胞" 指原核细胞, 如细菌细胞; 或是低 等真核细胞, 如酵母细胞; 或是高等真核细胞, 如哺乳动物细胞。 代表性 例子有: 大肠杆菌, 链霉菌属; 细菌细胞如鼠伤寒沙门氏菌; 真菌细胞如 酵母; 植物细胞; 昆虫细胞如果蝇 S2 或 Sf 9 ; 动物细胞如 CH0、 COS 或 Bowes黑素瘤细胞等。
用本发明所述的 DNA 序列或含有所述 DNA序列的重组载体转化宿主细 胞可用本领域技术人员熟知的常规技术进行。 当宿主为原核生物如大肠杆 菌时, 能吸收 DNA的感受态细胞可在指数生长期后收获, 用 CaCl 处理, 所用的步骤在本领域众所周知。 可供选择的是用 MgC l2。 如果需要, 转化也 可用电穿孔的方法进行。 当宿主是真核生物, 可选用如下的 DNA 转染方 法: 磷酸钙共沉淀法, 或者常规机械方法如显微注射、 电穿孔、 脂质体包 通过常规的重组 DNA 技术, 利用本发明的多核苷酸序列可用来表达或 生产重组的人肝细胞核因子 12 (Sc i ence, 1 984 ; 224 : 1 431)。 一般来说有 以下步骤:
(1) .用本发明的编码人 人肝细胞核因子 1 2 的多核苷酸(或变异体), 或用含有该多核苷酸的重组表达载体转化或转导合适的宿主细胞;
(2) .在合适的培养基中培养宿主细胞;
(3) .从培养基或细胞中分离、 纯化蛋白质。
在步骤 (2 ) 中, 根据所用的宿主细胞, 培养中所用的培养基可选自 各种常规培养基。 在适于宿主细胞生长的条件下进行培养。 当宿主细胞生 长到适当的细胞密度后, 用合适的方法(如温度转换或化学诱导)诱导选择 的启动子, 将细胞再培养一段时间。
在步骤 (3 ) 中, 重组多肽可包被于细胞内、 或在细胞膜上表达、 或分 泌到细胞外。 如果需要, 可利用其物理的、 化学的和其它特性通过各种分 离方法分离和纯化重组的蛋白。 这些方法是本领域技术人员所熟知的。 这 些方法包括但并不限于: 常规的复性处理、 蛋白沉淀剂处理(盐析方法)、 离心、 渗透破菌、 超声波处理、 超离心、 分子筛层析(凝胶过滤)、 吸附层 析、 离子交换层析、 高效液相层析(HPLC)和其它各种液相层析技术及这些 方法的结合。 附图的简要说明
下列附图用于说明本发明的具体实施方案, 而不用于限定由权利要求 书所界定的本发明范围。
图 1是本发明人肝细胞核因子 12和人 FD23的基因芯片表达谱比较图。 上图是人肝细胞核因子 12的表达谱折方图, 下方序列是人 FD2 3的表达谱折 方图。
图 2 为分离的人肝细胞核因子 12 的聚丙烯酰胺凝胶电泳图 (SDS - PAGE ) 。 12kDa为蛋白质的分子量。 箭头所指为分离出的蛋白条带。 实现本发明的最佳方式
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于 说明本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实 验方法, 通常按照常规条件如 Sambrook 等人, 分子克隆: 实验室手册 (New York: Co l d Spr ing Harbor Labora tory Pres s , 1989)中所述的条件, 或按 照制造厂商所建议的条件。 实施例 1: 人肝细胞核因子 12的克隆
用异硫氰酸胍 /酚 /氯仿一步法提取人胎脑总 RNA。 用 Quik mRNA Isolation Kit ( Qiegene 公司产品) 从总 RNA中分离 poly (A) mRNA s 2ug poly (A) mRNA经逆转录形成 cDNA。 用 Smart cDNA克隆试剂盒 ( 购 自 Clontech) 将 cDNA片段定向插入到 pBSK (+)载体(CI on tech公司产品)的多克 隆位点上, 转化 DH5 o , 细菌形成 cDNA文库。 用 Dye terminate cycle reaction sequencing ki t (Perkin- Elmer公司产品) 和 ABI 377自动测序仪 (Perkin- Elmer公司)测定所有克隆的 5 '和 3'末端的序列。 将测定的 cDNA序列 与已有的公共 DNA序列数据库 (Genebank ) 进行比较, 结果发现其中一个克 隆 0067a06的 cDNA序列为新的 DNA。 通过合成一系列引物对该克隆所含的插入 cDNA片段进行双向测定。 结果表明, 0067a06克隆所含的全长 cDNA为 1636^ (如 Seq ID N0: 1所示) , 从第 338 至^^ b 有一个 W ^的开放阅读框架 (0RF) , 编码一个新的蛋白质 (如 Seq ID NO: 2所示) 。 我们将此克隆命名 为 pBS-0067a06, 编码的蛋白质命名为人肝细胞核因子 12。 实施例 2: 用 RT-PCR方法克隆编码人肝细胞核因子 12的基因
用胎脑细胞总 RNA为模板,以 oligo-dT为引物进行逆转录反应合成 cDNA, 用 Qiagene的试剂盒纯化后,用下列引物进行 PCR扩增:
Primer 1: 5,一 CTGCCTCAGGCTGTTAAAATGCTG-3, (SEQ ID NO: 3) Primer2: 5'- TGTCTATTTTTCTTTATATCTGTT-3' (SEQ ID NO: 4)
Primerl为位于 SEQ ID NO: 1的 5,端的第 lbp开始的正向序列;
Primer2为 SEQ ID NO: 1的中的 3'端反向序列。
扩增反应的条件: 在 50 μ 1的反应体积中含有 50腿 ol/L KC1, 10mmol/L Tris-Cl, (pH8.5), 1.5匪 ol/L MgCl2, 200 μ mol/L dNTP, lOpmol引物, 1U的 Taq DNA聚合酶(Clontech公司产品)。 在 PE9600型 DNA热循环仪(Perkin- Elmer公司)上按下列条件反应 25个周期: 94。C 30sec; 55°C 30sec; 72°C 2rain。 在 RT- PCR时同时设 β-actin为阳性对照和模板空白为阴性对照。 扩增 产物用 QIAGEN公司的试剂盒纯化, 用 TA克隆试剂盒连接到 pCR载体上 (工 nvitrogen公司产品) 。 DNA序列分析结果表明 PCR产物的 DNA序列与 SEQ ID NO: 1所示的 1- 1636bp完全相同。 实施例 3: Northern 印迹法分析人肝细胞核因子 12基因的表达:
用一步法提取总 RNA[Anal. Biochem 1987, 162, 156-159] 0 该法包括酸 性硫氰酸胍苯酚 -氯仿抽提。 即用 4M异硫氰酸胍- 25mM柠檬酸钠, 0.2M乙酸钠 ( PH4.0 ) 对组织进行匀桨, 加入 1倍体积的苯酚和 1/5体积的氯仿-异戊醇 (49: 1 ) , 混合后离心。 吸出水相层, 加入异丙醇 (0.8体积) 并将混合物 离心得到 RNA沉淀。 将得到的 MA沉淀用 70%乙醇洗涤, 干燥并溶于水中。 用 20 μ g RNA, 在含 20mM 3- ( N-吗啉代) 丙磺酸 ( pH7.0 ) - 5mM乙酸钠 - ImM EDTA-2.2M甲醛的 1.2%琼脂糖凝胶上进行电泳。 然后转移至硝酸纤维素膜 上。 用 ex - 32P dATP通过随机引物法制备 32P-标记的 DNA探针。 所用的 DNA探针 为图 1所示的 PCR扩增的人肝细胞核因子 12编码区序列(338bp至 661bp)。 将 32P-标记的探针 (约 2 x l06cpm/ml ) 与转移了 RNA的硝酸纤维素膜在一溶液中 于 42。C杂交过夜, 该溶液包含 50%甲酰胺 -25mM KH2P04 ( pH7.4 ) -5 χ SSC-5 χ Denhardt's溶液和 200 M g/ml鲑精 DNA。 杂交之后, 将滤膜在 1 χ SSC- 0.1%SDS 中于 55。C洗 30min。 然后, 用 Phosphor Imager进行分析和定量。 实施例 4: 重组人肝细胞核因子 12的体外表达、 分离和纯化
根据 SEQ ID N0: 1和图 1所示的编码区序列, 设计出一对特异性扩增引 物, 序列如下:
Primer 3: 5,- CCCCATATGATGCATCGGCCTGATTTCCCTCAC- 3, ( Seq ID No: 5 ) Primer4: 5,- CCCAAGCTTTCATCCAGGCCAGTCTTGAATTCC- 3' ( Seq ID No: 6 ) 此两段引物的 5'端分别含有 Ndel和 BamHI酶切位点, 其后分别为目的基因 5'端和 3'端的编码序列, Ndel和 BamHI酶切位点相应于表达载体质粒 pET - 28b(+) (Novagen公司产品, Cat. No.69865.3)上的选择性内切酶位点。 以含 有全长目的基因的 pBS-0067a06质粒为模板, 进行 PCR反应。 PCR反应条件 为: 总体积 50 μ 1中含 pBS- 0067a06质粒 10pg、 引物 Primer- 3和 Primer- 4分别 为 10pmol、 Advantage polymerase Mix ( Clontech公司产品 ) 1 μ 1。 循环参 数: 94。C 20s, 60°C 30s, 68°C 2 min,共 25个循环。 用 Ndel和 BamHI分别对扩 增产物和质粒 pET- 28 (+)进行双酶切,分别回收大片段,并用 T4连接酶连接。 连接产物转化用氯化钙法大肠杆细菌 DH50 ,在含卡那霉素 (终浓度 30 μ g/ml ) 的 LB平板培养过夜后, 用菌落 PCR方法筛选阳性克隆, 并进行测序。 挑选序列正确的阳性克隆 (pET-0067a06 )用氯化钙法将重组质粒转化大肠 杆菌 BL21 (DE3)plySs (Novagen公司产品)。 在含卡那霉素 (终浓度 30 μ g/ml ) 的 LB液体培养基中, 宿主菌 BL21 ( PET-0067a06 )在 37°C培养至对数生 长期, 加入 IPTG至终浓度 1讓 ol/L, 继续培养 5小时。 离心收集菌体, 经超声 波破菌,离心收集上清, 用能与 6个组氨酸 (6His-Tag ) 结合的亲和层析柱 His. Bind Quick Cartridge ( Novagen公司产品) 进行层析, 得到了纯化的 目的蛋白人肝细胞核因子 12。 经 SDS- PAGE电泳, 在 10kDa处得到一单一的条 带 (图 2 ) 。 将该条带转移至 PVDF膜上用 Edams水解法进行 N-端氨基酸序列分 析, 结果 N-端 15个氨基酸与 SEQ ID NO: 2所示的 N-端 15个氨基酸残基完全相 同。 实施例 5 抗人肝细胞核因子 12抗体的产生
用多肽合成仪 (PE公司产品 ) 合成下述人肝细胞核因子 12特异性的多 肽:
NH2-Met-H i s-Arg-Pro-Asp-Phe-Pro-Hi s-Leu-Met-Cys-Phe-Phe-Al a-Ala- CO0H (SEQ ID NO: 7)。 将该多肽分别与血蓝蛋白和牛血清白蛋白耦合形成复 合, 方法参见: Avramea s, et a l. Immunochemi s try, 1969; 6: 43。 用 ½g上述 血蓝蛋白多肽复合物加上完全弗氏佐剂免疫家兔, 15天后再用血蓝蛋白多肽 复合物加不完全弗氏佐剂加强免疫一次。 采用经 15 g/ml牛血清白蛋白多肽 复合物包被的滴定板做 ELISA测定兔血清中抗体的滴度。 用蛋白 A-Sepharose 从抗体阳性的家兔血清中分离总 I gG。 将多肽结合于溴化氰活化的 Sephai-ose4B柱上, 用亲和层析法从总 IgG中分离抗多肽抗体。 免疫沉淀法证 明纯化的抗体可特异性地与人肝细胞核因子 12结合。 实施例 6: 本发明的多核苷酸片段用作杂交探针的应用
从本发明的多核苷酸中挑选出合适的寡核苷酸片段用作杂交探针有多方 面的用途, 如用该探针可与不同来源的正常组织或病理组织的基因组或 cDNA 文库杂交以鉴定其是否含有本发明的多核苷酸序列和检出同源的多核 苷酸序列,进一步还可用该探针检测本发明的多核苷酸序列或其同源的多核 苷酸序列在正常组织或病理组织细胞中的表达是否异常。
本实施例的目的是从本发明的多核苷酸 SEQ ID NO: 1 中挑选出合适的 寡核苷酸片段用作杂交探针, 并用滤膜杂交方法鉴定一些组织中是否含有本 发明的多核苷酸序列或其同源的多核苷酸序列。 滤膜杂交方法包括斑点印迹 法、 Southern 印迹法、 Nor thern 印迹法和复印方法等, 它们都是将待测的 多核苷酸样品固定在滤膜上后使用基本相同的步骤杂交。 这些相同的步骤 是: 固定了样品的滤膜首先用不含探针的杂交缓冲液进行预杂交, 以使滤膜 上样品的非特异性的结合部位被载体和合成的多聚物所饱和。 然后预杂交液 被含有标记探针的杂交缓冲液替换, 并保温使探针与靶核酸杂交。 杂交步骤 之后, 未杂交上的探针被一系列洗膜步骤除掉。 本实施例利用较高强度的洗 膜条件 (如较低盐浓度和较高的温度) , 以使杂交背景降低且只保留特异性 强的信号。 本实施例选用的探针包括两类: 第一类探针是完全与本发明的多 核苷酸 SEQ ID NO: 1 相同或互补的寡核苷酸片段; 第二类探针是部分与本 发明的多核苷酸 SEQ ID NO: 1 相同或互补的寡核苷酸片段。 本实施例选用 斑点印迹法将样品固定在滤膜上, 在较高强度的的洗膜条件下, 第一类探针 与样品的杂交特异性最强而得以保留。
一、 探针的选用
从本发明的多核苷酸 SEQ ID NO: 1 中选择寡核苷酸片段用作杂交探 针, 应遵循以下原则和需要考虑的几个方面: 1, 探针大小优选范围为 18- 50个核苷酸;
2, GC含量为 30%- 70%, 超过则非特异性杂交增加;
3, 探针内部应无互补区域;
4, 符合以上条件的可作为初选探针, 然后进一步作计算机序列分析, 包 括将该初选探针分别与其来源序列区域 (即 SEQ ID NO: 1 ) 和其它已知 的基因组序列及其互补区进行同源性比较, 若与非靶分子区域的同源性 大于 85%或者有超过 15 个连续碱基完全相同, 则该初选探针一般就不应 该使用;
5, 初选探针是否最终选定为有实际应用价值的探针还应进一步由实验确 定。
完成以上各方面的分析后挑选并合成以下二个探针:
探针 1 (probel ) , 属于第一类探针, 与 SEQ ID NO: 1 的基因片 段完全同源或互补 (41Nt) :
5 ' -TGCATCGGCCTGATTTCCCTCACTTGATGTGTTTCTTTGCT-3 ' ( SEQ ID NO:
8)
探针 2 (probe2) , 属于第二类探针, 相当于 SEQ ID NO: 1 的基 因片段或其互补片段的替换突变序列 (41Nt) :
5 ' -TGCATCGGCCTGATTTCCCTCACTTGATGTGTTTCTTTGCT-3 ' ( SEQ ID NO:
9)
与以下具体实验步骤有关的其它未列出的常用试剂及其配制方法请参考 文献: DNA PROBES G. H. Keller; M. M. Manak; Stockton Press, 1989 (USA)以 及更常用的分子克隆实验手册书籍如 《分子克隆实验指南》 ( 1998 年第二 版) [美]萨姆布鲁克等著, 科学出版社。
样品制备:
1, 从新鲜或冰冻组织中提取 DNA
步骤: 1 ) 将新鲜或新鲜解冻的正常肝组织放入浸在冰上并盛有磷酸盐 缓冲液 (PBS) 的平皿中。 用剪刀或手术刀将组织切成小块。 操作中应保持 组织湿润。 2 ) 以 1000g 离心切碎组织 10 分钟。 3 ) 用冷匀浆缓冲液 ( 0.25mol/L 蔗糖; 25mmol/L Tris- HC1, pH7.5; 25誦 ol/LnaCl; 25mmol/L MgC12) 悬浮沉淀 (大约 10ml/g) 。 4 )在 4oC 用电动匀浆器以全速匀浆组 织悬液, 直至组织被完全破碎。 5 ) 1000g 离心 10 分钟。 6)用重悬细胞沉 淀(每 0. lg最初组织样品加 1- 5ml ) , 再以 1000g 离心 10分钟。 7)用裂 解缓冲液重悬沉淀(每 0. lg 最初组织样品加 1ml ) , 然后接以下的苯酚抽 提法。
2, DNA的苯酚抽提法
步骤: 1)用 l-10ml冷 PBS洗细胞, 1000g离心 10分钟。 2)用冷细胞 裂解液重悬浮沉淀的细胞 ( 1 X 108细胞 /ml ) 最少应用 lOOul裂解缓冲液- 3)加 SDS至终浓度为 1%, 如果在重悬细胞之前将 SDS直接加入到细胞沉淀 中, 细胞可能会形成大的团块而难以破碎, 并降低的总产率。 这一点在抽提 >107细胞时特别严重。 4)加蛋白酶 K至终浓度 200ug/ml。 5) 50oC保温反 应 1小时或在 37oC轻轻振摇过夜。 6)用等体积苯酚: 氯仿: 异戊醇 (25: 24: 1 )抽提, 在小离心机管中离心 10分钟。 两相应清楚分离, 否则重新进 行离心。 7 ) 将水相转移至新管。 8 ) 用等体积氯仿: 异戊醇 (24: 1 ) 抽 提, 离心 10分钟。 9) 将含 DNA的水相转移至新管。 然后进行 DNA的纯化和 乙醇沉淀。
3, DNA的纯化和乙醇沉淀
步骤: 1 ) 将 1/10体积 2mol/L醋酸钠和 2倍体积冷 100%乙醇加到 DNA 溶液中, 混匀。 在- 20oC放置 1 小时或至过夜。 2) 离心 10分钟。 3) 小心 吸出或倒出乙醇。 4)用 70%冷乙醇 500ul洗涤沉淀, 离心 5分钟。 5) 小心 吸出或倒出乙醇。 用 500ul冷乙醇洗涤沉淀, 离心 5分钟。 6)小心吸出或 倒出乙醇, 然后在吸水纸上倒置使残余乙醇流尽。 空气干燥 10-15分钟, 以 使表面乙醇挥发。 注意不要使沉淀完全干燥, 否则较难重新溶解。 7 ) 以小 体积 TE 或水重悬 DNA 沉淀。 低速涡旋振荡或用滴管吹吸, 同时逐渐增加 TE, 混合至 DNA充分溶解, 每 1-5 X 106细胞所提取的大约加 lul。
以下第 8-13步骤仅用于必须除去污染时, 否则可直接进行第 14步骤。
8)将 RNA酶 A加到 DNA溶液中, 终浓度为 100ug/ml, 37oC保温 30分钟。
9)加入 SDS和蛋白酶 K, 终浓度分别为 0.5%和 100ug/ml。 37oC保温 30分 钟。 10) 用等体积的苯酚: 氯仿: 异戊醇 ( 25: 24: 1 ) 抽提反应液, 离心 10 分钟。 11 ) 小心移出水相, 用等体积的氯仿: 异戊醇 (24: 1 ) 重新抽 提, 离心 10分钟。 12)小心移出水相, 加 1/10体积 2mol/L醋酸钠和 2.5 体积冷乙醇, 混匀置 - 20oC 1小时。 13)用 70%乙醇及 100%乙醇洗涤沉淀, 空气干燥, 重悬核酸, 过程同第 3-6 步骤。 14) 测定 A260和 A280 以检测 DNA的纯度及产率。 15)分装后存放于 -20oC。
样膜的制备:
D M 4 x 2 张适当大小的硝酸纤维素膜(NC 膜) , 用铅笔在其上轻轻标 出点样位置及样号, 每一探针需两张 NC膜, 以便在后面的实验步骤中分别 用高强度条件和强度条件洗膜 。
2) 吸取及对照各 15微升, 点于样膜上, 在室温中晾干。
3 ) 置于浸润有 0. Imol/LNaOH, 1.5mol/LNaCl的滤纸上 5分钟 (两次 ) , 晾干置于浸润有 0.5mol/L Tris-HCl ( pH7.0 ) , 3mol/LNaCl 的滤纸上 5分 钟 (两次) , 晾干。
4) 夹于干净滤纸中, 以铝箔包好, 60-80oC真空干燥 2小时。 探针的标记
1 ) 3 μ lProbe ( 0.10D/10 μ 1 ) , 加入 2 μ IKinase 缓冲液, 8-10 uCi γ- 2P-dATP+2U Kinase, 以补加至终体积 20 μ 1。
2 ) 37 °C 保温 2小时。
3)加 1/5体积的溴酚蓝指示剂 (BPB) 。
4 )过 Sephadex G-50柱。
5 ) 至有 32P- Probe洗出前开始收集第一峰 (可用 Monitor监测) 。
6) 5滴 /管, 收集 10-15管。
7 )用液体闪烁仪监测同位素量
8 ) 合并第一峰的收集液后即为所需制备的 32P-Probe (第二峰为游离 γ- 2P-dATP ) 。
预杂交
将样膜置于塑料袋中, 加入 3- 10mg预杂交液 ( lOxDenhardt, s; 6xSSC, 0. lmg/ml CT DNA (小牛胸腺 DNA ) 。 ) , 封好袋口后, 68oC 水浴摇 1 小 时。 ,
杂交 '
将塑料袋剪去一角, 加入制备好的探针, 封好袋口后, 42oC 水浴摇过 洗膜:
高强度洗膜:
1 )取出已杂交好的样膜。
2 ) 2xSSC, 0.1%SDS中, 40oC洗 15分钟 ( 2次) 。
3 ) 0. lxSSC, 0.1%SDS中, 40oC洗 15分钟 ( 2次) 。
4 ) 0. lxSSC, 0.1°/。SDS中, 55oC洗 30分钟 ( 2次) , 室温晾干。 低强度洗膜:
1 ) 取出已杂交好的样膜。
2 ) 2xSSC, 0.1%SDS中 , 37oC洗 15分钟 ( 2次) 。
3 ) 0. lxSSC, 0.1%SDS中 , 37oC洗 15分钟 ( 2次) 。
4 ) 0. lxSSC, 0.1%SDS中, 40oC洗 15分钟 ( 2次) , 室温晾干。
X -光自显影:
-70oC, X-光自显影 (压片时间根据杂交斑放射性强弱而定) 。
实验结果:
采用低强度洗膜条件所进行的杂交实验, 以上两个探针杂交斑放射性强 弱没有明显区别; 而釆用高强度洗膜条件所进行的杂交实验, 探针 1的杂交 斑放射性强度明显强于另一个探针杂交斑的放射性强度。 因而可用探针 1定 性和定量地分析本发明的多核苷酸在不同组织中的存在和差异表达。 实施例 7 DNA Microarray
基因芯片或基因微矩阵 (DNA Microarray)是目前许多国家实验室和大 制药公司都在着手研制和开发的新技术, 它是指将大量的靶基因片段有序 地、 高密度地排列在玻璃、 硅等载体上, 然后用荧光检测和计算机软件进行 数据的比较和分析, 以达到快速、 高效、 高通量地分析生物信息的目的。 本 发明的多核苷酸可作为靶 DNA 用于基因芯片技术用于高通量研究新基因功 能; 寻找和筛选组织特异性新基因特别是肿瘤等疾病相关新基因; 疾病的诊 断, 如遗传性疾病。 其具体方法步骤在文献中已有多种报道, 如可参阅文献 DeRisi, J. L. , Lyer, V. &Brown, P.0. (1997) Science278, 680-686. 及 文 献 Helle, R. A. , Schema, M. , Chai, A. , Shalom, D. , (1997) PNAS 94: 2150-2155.
(一) 点样
各种不同的全长 cDNA共计 4000条多核苷酸序列作为靶 DNA,其中包括本 发明的多核苷酸。 将它们分别通过 PCR进行扩增, 纯化所得扩增产物后将其 浓度调到 500ng/ul 左右, 用 Cartesian 7500 点样仪(购自美国 Cartesian 公司)点于玻璃介质上, 点与点之间的距离为 280 μιη。 将点样后的玻片进行 水合、 干燥、 置于紫外交联仪中交联, 洗脱后干燥使 DNA固定在玻璃片上制 备成芯片。 其具体方法步骤在文献中已有多种报道, 本实施例的点样后处理 步骤是:
1. 潮湿环境中水合 4小时;
2. 0.2%SDS洗涤 1分钟;
3. ddH20洗涤两次, 每次 1分钟;
4. NaBH4封闭 5分钟;
5. 95°C水中 2分钟;
6. 0.2%SDS洗涤 1分钟;
7. ddH20冲洗两次;
8. 凉干, 25°C储存于暗处备用。
(二)探针标记
用一步法分别从人体混合组织与机体特定组织 (或经过刺激的细胞 株) 中抽提总 mRNA, 并用 Oligotex mRNA Midi Kit (购自 QiaGen公司)纯化 mRNA, 通过反转录分别将荧光试剂 Cy3dUTP (5-Amino-propargyl-2- deoxyur idine 5'- triphate coupled to Cy3 fluorescent dye , 购 自 Amersham Pharaacia Biotech公司)标记人体混合组织的 mRNA, 用荧光试剂 Cy5dUTP (5-Amino-propargyl-2'-deoxyur idine 5'-triphate coupled to Cy5 fluorescent dye, 购自 Amersham Phamacia Biotech公司)标记机体特 定组织 (或经过刺激的细胞株) mRNA, 经纯化后制备出探针。 具体步骤参照 及方法见:
Schena,
M. , Shalon, D. , Heller, R. (1996) Proc. Natl. Acad. Sci. USA. Vol.93: 10614- 10619. Schena, M., Shalon, Dari. , Davis, R. W. (1995)
Science.270. (20) : 467-480.
(三) 杂交
分别将来自以上两种组织的探针与芯片一起在 UniHyb™ Hybridization Solution (购自 TeleChem公司)杂交液中进行杂交 16 小时, 室温用洗涤液 ( 1 X SSC, 0.2 SDS ) 洗涤后用 ScanArray 3000 扫描仪(购自美囯 General Scanning 公司 ) 进行扫描, 扫描的 图象用 Imagene 软件 ( 美国 Biodiscovery公司)进行数据分析处理, 算出每个点的 Cy3/Cy5比值。
以上机体特定组织 (或经过刺激的细胞株)分别为胸腺、 睾丸、 肌肉、 脾脏、 肺、 皮肤、 甲状腺、 肝、 PMA+的 Ecv304细胞株、 PMA -的 Ecv304细胞 株、 未饥饿的 L02细胞株、 砷刺激 1小时的 L02细胞株以及前列腺组织。 根据 这 13个 Cy3/Cy5比值绘出折方图。 (图 1) 。 由图可见本发明所述的人肝细胞 核因子 12和人 FD23表达谱很相似。 工业实用性
本发明的多肽以及该多肽的拮抗剂、 激动剂和抑制剂可直接用于疾病 治疗, 例如, 可治疗恶性肿瘤、 肾上腺缺乏症、 皮肤病、 各类炎症、 HIV 感 染和免疫性疾病等。
本发明的多肽以及该多肽的拮抗剂、 激动剂和抑制剂可直接用于疾病治 疗, 例如, 可治疗胚胎及组织发育不 神经脊突细胞大动脉形态异常; 造 骨功能障碍; 爱滋病等免役缺陷型疾病; 冠心病; 各种肝脏疾病; 各种肿瘤 及癌症等疾病。 具体就人 FD9 蛋白而言, 本发明的多肽或其片段或其衍生物 可以用来治疗胚胎发育不良及与之相关的各种获得性和遗传性疾病; 各种器 官、 组织发育不良; 神经脊突细胞大动脉形态异常; 造骨功能障碍; 爱滋病 等免役缺陷型疾病; 各种胂瘤及癌症等。 因人 FD9 在早期胚胎组织中高表 达, 其表达异常可能会引起各器官发育不良、 细胞分化异常等方面的疾病, 这些蛋白包括但不限于以下所述, 结节病、 风湿样关节炎、 类风湿样关节 炎、 骨关节炎、 胆囊炎、 肾小球性肾炎、 免疫复合物型肾小球肾炎、 急性前 葡萄膜炎、 骨质疏松症、 皮肤肌炎、 荨麻疹、 特异性皮炎、 血色素沉着症、 多肌炎、 阿狄森氏病、 格雷夫斯氏病、 慢性活动性肝炎、 肠应急性综合症、 萎缩性胃炎、 系统性红斑狼疮、 重症肌无力、 脑脊髓多发性硬化、 格林-巴 利综合症、 颅内肉芽肿、 Wegener 肉芽肿病等。 研究发现, HNF/fkh 结构域 的磷酸化与去磷酸化直接影响着转录因子结构域有功能二聚体的形成。 HNF/fkh 转录因子家族的成员只有当其 DNA 结合结构域形成有功能的二聚体 后才能与特定的 DNA序列结合, 并发挥正常的生物学功能, 调节生物体内各 种组织细胞的正常分化与表达。 通常在生物体内结构域的活性二聚体与未活 化的单聚体处于一动态平衡状态, 当这一平衡状态被破坏时, 生物体会自动 修复这一系统。 但当生物体不能自动控制这一平衡时, 生物体就会出现各种 疾病, 如: 在胚胎发育早期各种细胞分化异常而引起肝、 肾、 胰腺等各种器 官发育不良; 在成熟细胞中, 因细胞分化、 增殖异常而引发的胂瘤、 癌症等 疾病, 这些疾病包括但不限于以下所述, 腺癌、 肉瘤、 淋巴瘤、 白血病、 黑 色素瘤、 骨髓瘤等; 尤其体内各器官的癌症, 这些器官包括, 膀胱、 骨、 大 脑、 乳房、 心脏、 肾脏、 肝、 肺、 卵巢、 子宫、 子宫颈、 前列腺、 阴茎、 睾 丸、 皮肤、 甲状腺、 甲状旁腺、 胸腺等; 因脂蛋白分泌异常而引发的脂肪 肝、 冠心病等疾病。 其还可能引起其他各种与转录表达异常相关的疾病。
本发明也提供了筛选化合物以鉴定提高(激动剂)或阻遏(拮抗剂 人肝 细胞核因子 12 的药剂的方法。 激动剂提高人肝细胞核因子 12 刺激细胞增 殖等生物功能, 而拮抗剂阻止和治疗与细胞过度增殖有关的紊乱如各种癌 症。 例如, 能在药物的存在下, 将哺乳动物细胞或表达人肝细胞核因子 1 2 的膜制剂与标记的人肝细胞核因子 12 —起培养。 然后测定药物提高或阻遏 此相互作用的能力。
人肝细胞核因子 12 的拮抗剂包括筛选出的抗体、 化合物、 受体缺失物 和类似物等。 人肝细胞核因子 12 的拮抗剂可以与人肝细胞核因子 12 结合 并消除其功能, 或是抑制该多肽的产生, 或是与该多肽的活性位点结合使 该多肽不能发挥生物学功能。
在筛选作为拮抗剂的化合物时, 可以将人肝细胞核因子 12 加入生物分 析测定中, 通过测定化合物对人肝细胞核因子 1 2 和其受体之间相互作用的 影响来确定化合物是否是拮抗剂。 用上述筛选化合物的同样方法, 可以筛 选出起拮抗剂作用的受体缺失物和类似物。 能与人肝细胞核因子 12 结合的 多肽分子可通过筛选由各种可能组合的氨基酸结合于固相物组成的随机多 肽库而获得。 筛选时, 一般应对人肝细胞核因子 12分子进行标记。
本发明提供了用多肽, 及其片段、 衍生物、 类似物或它们的细胞作为抗 原以生产抗体的方法。 这些抗体可以是多克隆抗体或单克隆抗体。 本发明 还提供了针对人肝细胞核因子 12 抗原决定簇的抗体。 这些抗体包括(但不 限于): 多克隆抗体、 单克隆抗体、 嵌合抗体、 单链抗体、 Fab 片段和 Fab 表达文库产生的片段。
多克隆抗体的生产可用人肝细胞核因子 12 直接注射免疫动物 (如家 兔, 小鼠, 大鼠等) 的方法得到, 多种佐剂可用于增强免疫反应, 包括但 不限于弗氏佐剂等。 制备人肝细胞核因子 12 的单克隆抗体的技术包括但不 限于杂交瘤技术(Koh l er and Mi l s te in. Na ture, 1975, 256: 495-497) , 三瘤技术, 人 Β-细胞杂交瘤技术, EBV-杂交瘤技术等。 将人恒定区和非人 源的可变 区结合的嵌合抗体可用 已有的技术生产 (Mor r i s on e t a l , PNAS, 1985, 81: 6851) 。 而已有的生产单链抗体的技术 (U. S. Pa t No. 4946778)也可用于生产抗人肝细胞核因子 12的单链抗体。
抗人肝细胞核因子 12 的抗体可用于免疫组织化学技术中, 检测活检标 本中的人肝细胞核因子 12。
与人肝细胞核因子 12 结合的单克隆抗体也可用放射性同位素标记, 注 入体内可跟踪其位置和分布。 这种放射性标记的抗体可作为一种非创伤性 诊断方法用于肿瘤细胞的定位和判断是否有转移。
抗体还可用于设计针对体内某一特殊部位的免疫毒素。 如人肝细胞核 因子 12 高亲和性的单克隆抗体可与细菌或植物毒素(如白喉毒素, 蓖麻蛋 白, 红豆碱等)共价结合。 一种通常的方法是用巯基交联剂如 SPDP , 攻击抗 体的氨基, 通过二硫键的交换, 将毒素结合于抗体上, 这种杂交抗体可用 于杀灭人肝细胞核因子 12阳性的细胞。
本发明中的抗体可用于治疗或预防与人肝细胞核因子 12 相关的疾病。 给予适当剂量的抗体可以刺激或阻断人肝细胞核因子 12的产生或活性。
本发明还涉及定量和定位检测人肝细胞核因子 12 水平的诊断试验方 法。 这些试验是本领域所熟知的, 且包括 FI SH测定和放射免疫测定。 试验 中所检测的人肝细胞核因子 12 水平, 可以用作解释人肝细胞核因子 12 在 各种疾病中的重要性和用于诊断人肝细胞核因子 12起作用的疾病。
本发明的多肽还可用作肽谱分析, 例如, 多肽可用物理的、 化学或酶 进行特异性切割, 并进行一维或二维或三维的凝胶电泳分析,更好的是进行 质谱分析。
编码人肝细胞核因子 12 的多核苷酸也可用于多种治疗目的。 基因治疗 技术可用于治疗由于人肝细胞核因子 12 的无表达或异常 /无活性表达所致 的细胞增殖、 发育或代谢异常。 重组的基因治疗载体(如病毒载体)可设计 用于表达变异的人肝细胞核因子 12, 以抑制内源性的人肝细胞核因子 12活 性。 例如, 一种变异的人肝细胞核因子 12 可以是缩短的、 缺失了信号传导 功能域的人肝细胞核因子 12 , 虽可与下游的底物结合, 但缺乏信号传导活 性。 因此重组的基因治疗载体可用于治疗人肝细胞核因子 12表达或活性异 常所致的疾病。 来源于病毒的表达载体如逆转录病毒、 腺病毒、 腺病毒相 关病毒、 单纯疱疹病毒、 细小病毒等可用于将编码人肝细胞核因子 12 的多 核苷酸转移至细胞内。 构建携带编码人肝细胞核因子 12 的多核苷酸的重组 病毒载体的方法可见于已有文献(Sambrook,e t a l. )。 另外重组编码人肝细 胞核因子 1 2的多核苷酸可包装到脂质体中转移至细胞内。
多核苷酸导入组织或细胞内的方法包括: 将多核苷酸直接注入到体内 组织中; 或在体外通过载体(如病毒、 噬菌体或质粒等)先将多核苷酸导入 细胞中, 再将细胞移植到体内等。
抑制人肝细胞核因子 1 2 mRNA 的寡核苷酸(包括反义 RNA 和 DNA)以及 核酶也在本发明的范围之内。 核酶是一种能特异性分解特定 RNA的酶样 RNA 分子, 其作用机制是核酶分子与互补的靶 RNA 特异性杂交后进行核酸内切 作用。 反义的 RNA 和 DNA 及核酶可用已有的任何 RNA 或 DNA 合成技术获 得, 如固相磷酸酰胺化学合成法合成寡核苷酸的技术已广泛应用。 反义 RNA 分子可通过编码该 RNA 的 DNA序列在体外或体内转录获得。 这种 MA序列 已整合到载体的 RNA 聚合酶启动子的下游。 为了增加核酸分子的稳定性, 可用多种方法对其进行修饰, 如增加两侧的序列长度, 核糖核苷之间的连 接应用磷酸硫酯键或肽键而非磷酸二酯键。
编码人肝细胞核因子 1 2 的多核苷酸可用于与人肝细胞核因子 12 的相 关疾病的诊断。 编码人肝细胞核因子 12 的多核苷酸可用于检测人肝细胞核 因子 12 的表达与否或在疾病状态下人肝细胞核因子 12 的异常表达。 如编 码人肝细胞核因子 12 的 DNA序列可用于对活检标本进行杂交以判断人肝细 胞核因子 12的表达状况。 杂交技术包括 Sou thern 印迹法, Nor thern印迹 法、 原位杂交等。 这些技术方法都是公开的成熟技术, 相关的试剂盒都可 从商业途径得到。 本发明的多核苷酸的一部分或全部可作为探针固定在微 阵列(Mi croar ray)或 DNA 芯片(又称为 "基因芯片" )上, 用于分析组织中 基因的差异表达分析和基因诊断。 用人肝细胞核因子 1 2 特异的引物进行 RNA-聚合酶链反应(RT-PCR)体外扩增也可检测人肝细胞核因子 12 的转录产 检测人肝细胞核因子 1 2 基因的突变也可用于诊断人肝细胞核因子 12 相关的疾病。 人肝细胞核因子 12 突变的形式包括与正常野生型人肝细胞核 因子 12 DM序列相比的点突变、 易位、 缺失、 重组和其它任何异常等。 可 用已有的技术如 Southern 印迹法、 DNA序列分析、 PCR 和原位杂交检测突 变。 另外, 突变有可能影响蛋白的表达, 因此用 Nor thern 印迹法、 Wes t ern印迹法可间接判断基因有无突变。
本发明的序列对染色体鉴定也是有价值的。 该序列会特异性地针对某 条人染色体具体位置且并可以与其杂交。 目前, 需要鉴定染色体上的各基 因的具体位点。 现在, 只有很少的基于实际序列数据(重复多态性)的染色 体标记物可用于标记染色体位置。 根据本发明, 为了将这些序列与疾病相 关基因相关联, 其重要的第一步就是将这些 DNA序列定位于染色体上。
简而言之, 根据 cDNA制备 PCR引物(优选 15- 35bp) , 可以将序列定位于 染色体上。 然后, 将这些引物用于 PCR筛选含各条人染色体的体细胞杂合 细胞。 只有那些含有相应于引物的人基因的杂合细胞会产生扩增的片段。
体细胞杂合细胞的 PCR定位法, 是将 DNA定位到具体染色体的快捷方 法。 使用本发明的寡核苷酸引物, 通过类似方法, 可利用一组来自特定染 色体的片段或大量基因组克隆而实现亚定位。 可用于染色体定位的其它类 似策略包括原位杂交、 用标记的流式分选的染色体预筛选和杂交预选, 从 而构建染色体特异的 cDNA库。
将 cDNA克隆与中期染色体进行荧光原位杂交(FISH) , 可以在一个步骤 中精确地进行染色体定位。 此技术的综述, 参见 Verma等, Human Chromosomes: a Manual of Basic Techniques, Pergamon Press , New York (1988)。
一旦序列被定位到准确的染色体位置, 此序列在染色体上的物理位置 就 可 以 与 基 因 图 数 据 相 关 联 。 这 些 数 据 可 见 于 例 如 ,
V. Mckus ick, Mendel ian Inheritance in Man (可通过与 Johns Hopkins
University Welch Medical Library联机获得)。 然后可通过连锁分析, 确定基因与业已定位到染色体区域上的疾病之间的关系。
接着, 需要测定患病和未患病个体间的 cDNA或基因组序列差异。 如果 在一些或所有的患病个体中观察到某突变, 而该突变在任何正常个体中未 观察到, 则该突变可能是疾病的病因。 比较患病和未患病个体, 通常涉及 首先寻找染色体中结构的变化, 如从染色体水平可见的或用基于 cDNA序列 的 PCR可检测的缺失或易位。 根据目前的物理作图和基因定位技术的分辨 能力, 被精确定位至与疾病有关的染色体区域的 cDNA, 可以是 50至 500个 潜在致病基因间之一种(假定 1兆碱基作图分辨能力和每 20kb对应于一个基 因)。
可以将本发明的多肽、 多核苷酸及其模拟物、 激动剂、 拮抗剂和抑制 剂与合适的药物载体组合后使用。 这些载体可以是水、 葡萄糖、 乙醇、 盐 类、 缓冲液、 甘油以及它们的组合。 组合物包含安全有效量的多肽或拮抗 剂以及不影响药物效果的载体和赋形剂。 这些组合物可以作为药物用于疾 病治疗。
本发明还提供含有一种或多种容器的药盒或试剂盒, 容器中装有一种 或多种本发明的药用组合物成分。 与这些容器一起, 可以有由制造、 使用 或销售药品或生物制品的政府管理机构所给出的指示性提示, 该提示反映 出生产、 使用或销售的政府管理机构许可其在人体上施用。 此外, 本发明 的多肽可以与其它的治疗化合物结合使用。
药物组合物可以以方便的方式给药, 如通过局部、 静脉内、 腹膜内 . 肌内、 皮下、 鼻内或皮内的给药途径。 人肝细胞核因子 12 以有效地治疗 /或预防具体的适应症的量来给药。 施用于患者的人肝细胞核因子 1 2 的量 和剂量范围将取决于许多因素, 如给药方式、 待治疗者的健康条件和诊断 医生的判断。

Claims

权 利 要 求 书
1、 一种分离的多肽-人肝细胞核因子 12, 其特征在于它包含有: SEQ I D NO: 2所示的氨基酸序列的多肽、 或其多肽的活性片段、 类似物或衍生物。
2、 如权利要求 1 所述的多肽, 其特征在于所述多肽、 类似物或衍生物的氨 基酸序列具有与 SEQ ID NO: 2所示的氨基酸序列至少 95%的相同性。
3、 如权利要求 1 所述的多肽, 其特征在于它包含具有 SEQ ID NO: 2 所示的 氨基酸序列的多肽。
4、 一种分离的多核苷酸, 其特征在于所述多核苷酸包含选自下组中的一 种:
(a) 编码具有 SEQ ID NO: 2 所示氨基酸序列的多肽或其片段、 类似 物、 衍生物的多核苷酸;
(b) 与多核苷酸 ) 互补的多核苷酸; 或
(c) 与 (a )或 (b ) 有至少 7d相同性的多核苷酸。
5、 如权利要求 4 所述的多核苷酸, 其特征在于所述多核苷酸包含编码具 有 SEQ ID NO: 2所示氨基酸序列的多核苷酸。
6、 如权利要求 4 所述的多核苷酸, 其特征在于所述多核苷酸的序列包含有 SEQ ID NO: 1中 338-661位的序列或 SEQ ID NO: 1中 1-1636位的序列。
7、 一种含有外源多核苷酸的重组载体, 其特征在于它是由权利要求 4 - 6 中 的任一权利要求所述多核苷酸与质粒、 病毒或运载体表达载体构建而成的重 组载体。
8、 一种含有外源多核苷酸的遗传工程化宿主细胞, 其特征在于它是选自于 下列一种宿主细胞:
(a) 用权利要求 7所述的重组载体转化或转导的宿主细胞; 或
(b) 用权利要求 4-6 中的任一权利要求所述多核苷酸转化或转导的宿主 细胞。
9、 一种具有人肝细胞核因子 12 活性的多肽的制备方法, 其特征在于所述方 法包括:
(a) 在表达人肝细胞核因子 12 条件下, 培养权利要求 8 所述的工程化宿 主细胞;
(b) 从培养物中分离出具有人肝细胞核因子 1 2活性的多肽。
1 0、 一种能与多肽结合的抗体,其特征在于所述抗体是能与人肝细胞核因子 1 2特异性结合的抗体。
1 1、 一类模拟或调节多肽活性或表达的化合物, 其特征在于它们是模拟、 促 进、 拮抗或抑制人肝细胞核因子 1 2的活性的化合物。
12、 如权利要求 1 1 所述的化合物, 其特征在于它是 SEQ ID N0: 1 所示的多 核苷酸序列或其片段的反义序列。
13、 一种权利要求 11 所述化合物的应用, 其特征在于所述化合物用于调节 人肝细胞核因子 12在体内、 体外活性的方法。
14、 一种检测与权利要求 1-3 中的任一权利要求所述多肽相关的疾病或疾病 易感性的方法, 其特征在于其包括检测所述多肽的表达量, 或者检测所述多 肽的活性, 或者检测多核苷酸中引起所述多肽表达量或活性异常的核苷酸变
15、 如权利要求 1-3 中的任一权利要求所述多肽的应用, 其特征在于它应用 于筛选人肝细胞核因子 12 的模拟物、 激动剂, 拮抗剂或抑制剂; 或者用于 肽指紋图谱鉴定。
16、 如权利要求 4-6 中的任一权利要求所述的核酸分子的应用, 其特征在于 它作为引物用于核酸扩增反应, 或者作为探针用于杂交反应, 或者用于制造 基因芯片或微阵列。
17、 如权利要求 1-6 及 11 中的任一权利要求所述的多肽、 多核苷酸或化合 物的应用, 其特征在于用所述多肽、 多核苷酸或其模拟物、 激动剂、 拮抗剂 或抑制剂以安全有效剂量与药学上可接受的载体组成作为诊断或治疗与人肝 细胞核因子 12异常相关的疾病的药物组合物。
18、 权利要求 1-6 及 11 中的任一权利要求所述的多肽、 多核苷酸或化合物 的应用, 其特征在于用所述多肽、 多核苷酸或化合物制备用于治疗如恶性肿 瘤, 血液病, HIV感染和免疫性疾病和各类炎症的药物。
PCT/CN2001/000264 2000-02-29 2001-02-26 Nouveau polypeptide, facteur nucleolaire hepatique 12, et polynucleotide codant pour ce polypeptide WO2001075123A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001289281A AU2001289281A1 (en) 2000-02-29 2001-02-26 Novel polypeptide--- a human hepatic nuclear factor 12 and polynucleotide encoding it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN00111755.6 2000-02-29
CN 00111755 CN1311200A (zh) 2000-02-29 2000-02-29 一种新的多肽——人肝细胞核因子12和编码这种多肽的多核苷酸

Publications (1)

Publication Number Publication Date
WO2001075123A1 true WO2001075123A1 (fr) 2001-10-11

Family

ID=4581653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000264 WO2001075123A1 (fr) 2000-02-29 2001-02-26 Nouveau polypeptide, facteur nucleolaire hepatique 12, et polynucleotide codant pour ce polypeptide

Country Status (3)

Country Link
CN (1) CN1311200A (zh)
AU (1) AU2001289281A1 (zh)
WO (1) WO2001075123A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315871C (zh) * 2005-09-15 2007-05-16 中国医学科学院肿瘤医院肿瘤研究所 一种肿瘤相关蛋白及其编码基因与应用
CN101524529B (zh) * 2008-03-04 2011-09-28 中国人民解放军第二军医大学 HNF4α诱导分化治疗人体恶性实体瘤
CN102552935B (zh) * 2011-02-23 2015-02-18 中国人民解放军第二军医大学 肝细胞核因子1α治疗慢性肝病的用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021363A1 (en) * 1996-11-15 1998-05-22 Millennium Pharmaceuticals, Inc. Compositions and methods for treating type ii diabetes involving hnf-4
US5800998A (en) * 1996-11-12 1998-09-01 Millennium Pharmaceuticals, Inc. Assays for diagnosing type II diabetes in a subject

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800998A (en) * 1996-11-12 1998-09-01 Millennium Pharmaceuticals, Inc. Assays for diagnosing type II diabetes in a subject
WO1998021363A1 (en) * 1996-11-15 1998-05-22 Millennium Pharmaceuticals, Inc. Compositions and methods for treating type ii diabetes involving hnf-4

Also Published As

Publication number Publication date
AU2001289281A1 (en) 2001-10-15
CN1311200A (zh) 2001-09-05

Similar Documents

Publication Publication Date Title
WO2001072786A1 (fr) Nouveau polypeptide, facteur d'inhibition tumorale 63, et polynucleotide codant pour ce polypeptide
WO2001075123A1 (fr) Nouveau polypeptide, facteur nucleolaire hepatique 12, et polynucleotide codant pour ce polypeptide
WO2001068689A1 (fr) Nouveau polypeptide, 1alpha sous-unite 13 humaine du facteur adaptatif de l'hypoxie, et polynucleotide codant pour ce polypeptide
WO2001083538A1 (fr) Nouveau polypeptide, proteine humaine 36 du gene k-ras, et polynucleotide codant pour ce polypeptide
WO2001079423A2 (en) A novel polypeptide, human bcr protein 10 and the polynucleotide encoding said polypeptide
WO2001074876A1 (fr) Nouveau polypeptide, phosphatidylinositol-3 kinase humaine 14, et polynucleotide codant pour ce polypeptide
WO2001066575A1 (fr) Nouveau polypeptide, actine 49, et polynucleotide codant pour ce polypeptide
WO2001066724A1 (fr) Nouveau polypeptide, actine humaine 14, et polynucleotide codant pour ce polypeptide
WO2001064729A1 (fr) Nouveau polypeptide, fd17 humain, et polynucleotide codant pour ce polypeptide
WO2001074892A1 (fr) Nouveau polypeptide, proteine antigene prostatique specifique membranaire 12, et polynucleotide codant pour ce polypeptide
WO2001073061A1 (fr) Nouveau polypeptide, proteine humaine 22 du retinoblastome, et polynucleotide codant pour ce polypeptide
WO2001066591A1 (fr) Nouveau polypeptide, proteine humaine 11 de reception tyrosine phosphatase, et polynucleotide codant pour ce polypeptide
WO2001075059A2 (en) A novel polypeptide, human gtp-regulatory protein 11 and a polynucleotide encoding the same
WO2001064918A1 (fr) Nouveau polypeptide, proteine humaine de translocation nucleaire 12 contenant un domaine de liaison atp/gtp, et polynucleotide codant pour ce polypeptide
WO2001070983A1 (fr) Nouveau polypeptide, proteine antigene prostatique specifique membranaire 9, et polynucleotide codant pour ce polypeptide
WO2001066586A1 (fr) Nouveau polypeptide, arn helicase humaine 13, et polynucleotide codant pour ce polypeptide
WO2001081592A1 (fr) Nouveau polypeptide, proteine humaine 11 contenant un fragment de sequence particulier d'une signal peptidase i, et polynucleotide codant pour ce polypeptide
WO2001075002A2 (fr) Nouveau polypeptide, gène de regulation du cycle cellulaire humain 28, et polynucléotide codant pour ce polypeptide
WO2001074128A2 (fr) Nouveau polypeptide, microtubuline 11, et polynucléotide codant pour ce polypeptide
WO2001075124A1 (fr) Nouveau polypeptide, proteine humaine de regulation de la transcription 9, et polynucleotide codant pour ce polypeptide
WO2001055188A1 (fr) Nouveau polypeptide, proteine humaine a doigt de zinc 46, et polynucleotide codant pour ce polypeptide
WO2001083542A1 (en) A novel polypeptide, human p18 protein 21 and the polynucleotide encoding said polypeptide
WO2001081535A2 (fr) Nouveau polypeptide, proteine pax humaine 9.9, et polynucleotide codant pour ce polypeptide
WO2001068691A1 (fr) Nouveau polypeptide, fd11 humaine, et polynucleotide codant pour ce polypeptide
WO2001055184A1 (fr) Nouveau polypeptide, proteine humaine a doigt de zinc 19, et polynucleotide codant pour ce polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP