WO2001072639A1 - Water desalting apparatus - Google Patents

Water desalting apparatus Download PDF

Info

Publication number
WO2001072639A1
WO2001072639A1 PCT/JP2001/002784 JP0102784W WO0172639A1 WO 2001072639 A1 WO2001072639 A1 WO 2001072639A1 JP 0102784 W JP0102784 W JP 0102784W WO 0172639 A1 WO0172639 A1 WO 0172639A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw water
evaporator
concentrated
desalination apparatus
desalination
Prior art date
Application number
PCT/JP2001/002784
Other languages
French (fr)
Japanese (ja)
Inventor
Yuzo Narasaki
Ichiro Kamiya
Naoyuki Inoue
Kiichi Irie
Toru Tokumaru
Tomoyuki Uchimura
Motoyasu Sato
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000096837A external-priority patent/JP4140677B2/en
Priority claimed from JP2000096840A external-priority patent/JP4112772B2/en
Priority claimed from JP2000096839A external-priority patent/JP4112771B2/en
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to AU2001244680A priority Critical patent/AU2001244680A1/en
Publication of WO2001072639A1 publication Critical patent/WO2001072639A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/26Multiple-effect evaporating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • the present invention is a self-contained desalination method that uses solar energy and other heat sources to obtain fresh water (distilled water) from raw water such as seawater, salt-containing groundwater (brine water), and industrial wastewater by evaporation and condensation.
  • the present invention relates to an apparatus, and particularly to a desalination apparatus provided with a control device.
  • this type of desalination apparatus includes a solar heat collector, an evaporator, a raw water supply pump for supplying raw water to the evaporator, and a heat medium connected to the evaporator and the solar heat collector to circulate a heat medium.
  • a heat medium circulation pump for using the heat medium heated by the heat collector as a heat source of raw water in the evaporator, and condensing to receive and condense water vapor generated in the evaporator from the evaporator to form distilled water.
  • the system is equipped with a device, a freshwater drainage pump for discharging manufactured freshwater, a concentrated raw water discharge pump for discharging raw water that has been heated and evaporated in the evaporator, and a vacuum pump for vacuuming the inside of the evaporator.
  • a freshwater drainage pump for discharging manufactured freshwater
  • a concentrated raw water discharge pump for discharging raw water that has been heated and evaporated in the evaporator
  • a vacuum pump for vacuuming the inside of the evaporator.
  • These various pumps and electric devices such as electric valves provided in the supply / discharge flow path of the raw water / the discharge flow path of the fresh water are provided by attaching power supply equipment including solar cells to the desalination apparatus. Usually, they can operate independently without relying on external power.
  • such power supply equipment usually includes a battery and a charge controller for preventing overcharging of the battery, and the generated power is charged through the charge controller.
  • the DC output charged in the battery is supplied to a DC drive electric device such as an electric valve or an AC drive electric device such as a vacuum pump via a DC transformer or a DC Z AC converter.
  • the present invention has been made in view of the above points, and has as its object to provide a desalination apparatus provided with a control device for performing proper operation. Disclosure of the invention
  • the present invention relates to a desalination apparatus, comprising: a solar heat collector; an evaporator including a plurality of evaporators, and the plurality of evaporators connected in a multiple effect relationship; and an evaporator and a solar heat collector.
  • a heat medium circulating circuit circulates a heat medium between the evaporator and the heat medium heated by the solar heat collector to generate heat from the raw water in the evaporator.
  • a condenser for receiving steam from the lowermost evaporator of the evaporator and condensing it into distilled water; a vacuum device for reducing the space in the evaporator of the evaporator to an atmospheric pressure or less; and a desalination device.
  • a power supply circuit including a power supply such as a solar cell for supplying electric power for driving an electric device such as the vacuum device, and an electric power supply to the electric device when a power generation amount of the power supply falls below a predetermined amount.
  • Examples of the electric equipment include, in addition to a vacuum device, a freshwater discharge pump for discharging distilled water produced by a condenser and a concentrated raw water discharge pump for discharging the concentrated raw water.
  • the power generation amount detection device detects that the power generation amount by the power supply has decreased to a predetermined amount or less
  • the power supply to the control device and the vacuum device is performed by the fresh water discharge pump and the concentrated raw water. It is preferable to stop the pump before the drain pump. This is to maintain the operation of the freshwater discharge pump and the concentrated raw water drainage pump as much as possible so that serious problems such as freshwater pollution do not occur.
  • the power generation amount is updated by the power generation amount detection device.
  • the power generation amount detection device When it is detected that the concentration of the raw water is reduced, it is preferable to stop the power supply to the fresh water discharge pump before the concentrated raw water discharge pump. Maintaining the operation of the concentrated raw water discharge pump is important to prevent freshwater contamination from the concentrated raw water.
  • the power supply may be a solar cell
  • the power generation amount detection device may be a pyranometer for detecting the amount of solar radiation or a small solar cell provided separately from the solar cell.
  • the electric equipment includes an electric open / close valve used in a supply / discharge flow path of raw water, and the electric open / close valve is preferably an electric valve that is mechanically closed when power supply is stopped.
  • the present invention also provides a solar heat collector, an evaporator, a raw water supply device for supplying raw water to the evaporator, and a heat medium circulating between the evaporator and the solar heat collector.
  • a heat medium circulation circuit for using the heat medium heated by the heater as a heat source of raw water in the evaporator; and a condensate for receiving and condensing water vapor generated in the evaporator from the evaporator to form distilled water.
  • a heat medium temperature detector for detecting a temperature of a heat medium entering the evaporator from the solar heat collector; a raw water flow controller for controlling a flow rate of raw water supplied from the raw water supply device; A control device is provided that controls the flow rate of raw water supplied to the evaporator by the raw water flow controller and controls the temperature of the hot soot supplied to the evaporator to a predetermined temperature or lower than a predetermined temperature.
  • a desalination apparatus According to this desalination apparatus, efficient heating can be performed by controlling the temperature of the heat medium.
  • the controller controls the raw water flow controller such that when the temperature of the heating medium supplied to the evaporator is equal to or higher than a predetermined temperature, the raw water flow supplied to the evaporator always keeps a predetermined minimum flow. Is preferred.
  • the raw water flow controller is an electric valve, and the control device is configured such that, even though the electric valve is at a predetermined opening, the raw water flow supplied to the evaporator is equal to or less than a predetermined value. It is preferable to judge that the raw water is cut off and stop the operation of the desalination plant.
  • the present invention provides a solar heat collector, an evaporator, a raw water supply device for supplying raw water to the evaporator, and a heat medium circulating between the evaporator and the solar heat collector.
  • a heat medium circulation circuit for using the heat medium heated by the collector as a heat source of raw water in the evaporator; and a heat medium circulation circuit for receiving water vapor generated in the evaporator from the evaporator and condensing it into distilled water.
  • a condenser a concentrated raw water storage tank for storing concentrated raw water that is supplied from a raw water supply device, passes through the evaporator, is heated and generates steam to be concentrated, and stores concentrated raw water in the concentrated raw water storage tank.
  • a concentrated raw water storage amount detector for detecting an amount of the concentrated raw water, wherein the condenser is configured to use the concentrated raw water in the concentrated raw water storage tank as cooling water for the condenser; Before operation, based on the output of the concentrated raw water storage amount detector, if the storage amount of the concentrated raw water is equal to or less than a predetermined amount, the raw water is supplied to the evaporator in advance by the raw water supply device, and the raw water passed through the evaporator.
  • the concentrated raw water storage A desalination apparatus is provided, which is provided with a control device for controlling the storage amount to the predetermined amount by supplying the storage amount to a tank. According to this desalination apparatus, it is possible to avoid a situation in which the concentrated raw water is not sufficiently condensed at the start of the operation due to insufficient concentrated raw water.
  • a concentrated raw water storage tank is provided in the condenser, and a concentrated raw water discharge pump that supplies concentrated raw water from the evaporator to the concentrated raw water storage tank is provided.
  • the raw water is supplied to the evaporator before the desalination unit is operated. It is preferable to supply the concentrated raw water to the concentrated raw water storage tank by operating the pump, and to adjust the storage amount of the concentrated raw water.
  • FIG. 1 is a diagram showing an example of the overall configuration of a desalination apparatus according to the present invention.
  • FIG. 2 is a diagram showing an example of a detailed configuration of a part of the desalination apparatus according to the present invention.
  • FIG. 3 is a diagram showing a detailed configuration example of a part of the desalination apparatus according to the present invention.
  • FIG. 4 is a diagram showing a configuration of a power supply facility of the desalination apparatus according to the present invention. Preferred embodiments of the invention
  • the present desalination apparatus includes the solar heat collector 1 and the steam collector. It consists of a generator 2, a cooling tower 3, a distilled water tank 4, a concentrated water tank 5, and a vacuum device 6 such as a vacuum pump 6-2.
  • the solar heat collector 1 is composed of a plurality of solar heat collecting panels 1 — 1 to 16 that heat the heat medium with solar energy.
  • the heat medium vapor heated by the solar heat collector 1 is sent to the evaporator 2 through the pipe 7, and the condensed heat medium from the evaporator 2 is stored in the buffer tank 9 through the pipe 8, and further, the buffer tank From 9, the heat medium circulating pump 26 and piping 10 return to the solar heat collector 1 and circulate.
  • a heat medium temperature detector 31 for measuring the temperature of the heat medium (heat medium vapor) is provided.
  • the evaporator 2 has a degassing chamber 2-1 at the top, and a plurality of evaporators (here, eight evaporators 2 to 2 to 8 to 9) are located below it. It is configured.
  • raw water (in this case, seawater) W supplied from a water source such as a raw water tank (not shown) that can always supply raw water at or above atmospheric pressure is preheated through a raw water preheating pipe 12, and the deaeration chamber 2-1 Supplied to The raw water W overflowing the deaeration chamber 2-1 passes through an overflow pipe 13 and a predetermined amount of raw water W is stored in each of the first evaporator 2-2 to the eighth evaporator 2-9 in sequence.
  • Raw water W is supplied using a raw water supply pump 11.
  • the flow rate of the supplied raw water W is controlled by a motor-operated valve (solenoid valve) V8.
  • the raw water flow rate is detected by a raw water flow rate detector 32.
  • the case where the pump 11 is used for supplying raw water is shown, but even without such a pump, the inside of the desalination apparatus is kept at atmospheric pressure by depressurizing the inside of the desalination apparatus with the vacuum apparatus.
  • Raw water can also be supplied into the equipment.
  • the heat medium vapor from the solar heat collector 1 passes through the heat exchanger 2-1a disposed in the degassing chamber 211, and flows between the raw water W stored in the degassing chamber 2-1.
  • the heat exchange is performed, and further, the heat exchange is performed between the raw water stored in the first evaporator 2-2 through the heat exchanger 2-2a disposed in the first evaporator 2-2.
  • the steam W a evaporated by heating the raw water in the first evaporator 2-2 is sent as a heat source to the heat exchanger 2-3 a in the second evaporator 2-3 through the steam pipe 15, and between the water and the raw water. Heat exchange takes place.
  • the concentrated raw water in the concentrated water tank 5 is sent to the lower tank 3-1a of the condenser 3-1 of the cooling tower 3 through the concentrated raw water flow control valve V6 and the pipe 27 by the concentrated raw water discharge pump 16. It is supplied to the sprinkling nozzle 3-1 c by the concentrated raw water circulation pump 17 and is sprinkled as cooling water on the condensation (heat transfer) pipe 3-1 b.
  • the water vapor Wa evaporated by heating the raw water in the eighth evaporator 2-9 in the final stage is sent to the condenser pipe 3-1b in the condenser 31 through the pipe 18 to be condensed with the concentrated raw water sprinkled. Heat is exchanged between the two and condensed to form distilled water, which is sent to the distilled water tank 4 through the pipe 19.
  • the concentrated water overflowing the lower tank 3-1a is discharged through the concentrated water discharge pipe 20.
  • a concentrated raw water storage amount detector 34 for detecting the concentrated raw water storage amount is provided in the lower tank 3-1a of the condenser 3-1. Also, the concentrated water overflowing the lower tank 3-1a is discharged through the concentrated water discharge pipe 20.
  • the vacuum device 6 includes a gas-liquid separator 6-1 and a vacuum pump 5-2 connected to the gas-liquid separator 6-1.
  • the gas-liquid separator 6-1 is connected to the pipe 21 through which the heat and soot from the solar heat collector 1 passes through the pipes 21, 22, 23.
  • the degassing chamber 2-1 of the evaporator 2, the condenser 3-1 Connected to header 3 — 1d.
  • V1 to V8 are valves. These valves use electric valves that automatically close mechanically when the drive voltage drops. This is to prevent the vacuum break by mechanically closing the valve when the driving voltage using the solar cell as a power source drops, as will be described in detail later.
  • FIG. 4 is a diagram showing the configuration of the power supply equipment of the desalination apparatus according to the present invention and the control unit thereof.
  • Reference numeral 41 denotes a solar cell, and a DC output generated by the solar cell 41 is input to a DC transformer 42 to be boosted.
  • DC transformer 4 2 is connected to DC transformer 4 2-1 and constant current
  • the constant voltage means 42-2 maintains the output voltage of the DC transformer 42 at a predetermined constant value, the amount of power generated by the solar cell 41 increases, and the DC transformer 42-1 Even if the output voltage of the power supply becomes overvoltage, it protects the subsequent electrical equipment:
  • the output of the DC transformer 42 is input to the DC / AC converter 43 and converted to AC (three-phase AC).
  • This AC output is supplied to the raw water supply pump 11, concentrated raw water discharge pump 16, distilled water pump 25, concentrated raw water circulation pump 17, and heat medium circulation pump 26 via drivers D 1 to D 6
  • the power is supplied to an AC drive electric device such as a blower fan 3-2, and is also supplied as a power source for the operation / stop control means 44.
  • the DC output of the DC transformer 42 is supplied to DC drive electric devices such as electric valves V 1 to V 8 via drivers D 11 to D 18. Further, the DC output of the solar cell 41 is also supplied to the DC-driven electric devices 30 and 33 via the drivers D 21, D 22 ⁇ .
  • each driver D l '', D ll '', D 21 '' is connected to the operation Z stop control means 44 via a control line 46, and the operation Z stop control means 44 is connected to each driver D
  • Each electric drive device can be operated and stopped via 1 ⁇ ⁇ ⁇ , ⁇ 1 1 ⁇ ⁇ , ⁇ 2 1 ⁇ ⁇ .
  • the output voltage of the solar cell 41 is detected by a voltage detector 45, and the detected output is input to the operation / stop control means 44.
  • the output of the solar cell 41 is input to the DC transformer 42 without passing through the battery, and the output of the DC transformer 42 is connected to the valve V 1 via the drivers D 11 to D 18.
  • the output of the DC transformer 42 is input to the DC / AC converter 43, and the AC output is supplied to the raw water supply pump via the drivers D1 to D6.
  • 1 Concentrated raw water discharge pump 16, Distilled water pump 25, Concentrated raw water circulation pump 17, Heat medium circulation pump 26, Blower fan 3-2, etc. Eliminates the need for batteries and charge controllers in the power supply equipment of the equipment.
  • the heat medium circulating pump 26 is driven by the AC output from the DC / AC converter 43 via the driver D5, but is driven by the DC transformer 42. It may be a small DC pump driven by the DC output. It should be noted that other electric devices may be appropriately driven by DC or AC.
  • the electric valves V1 to V8 use electric valves that are mechanically closed when the amount of power generated by the solar cell 41 decreases and the voltage drops. 4 Although the power generation amount of 1 also decreases, the electric valves V1 to V8 are mechanically closed, so that the vacuum in the evaporation space and the condensing space of the evaporator 2 and the condensing space of the condenser 3-1 are broken. None be.
  • the operation / stop control means 44 monitors the output of the voltage detector 45 and, when detecting that the amount of power generated by the solar cell 41 has dropped below a predetermined amount, switches the vacuum device 6 to distilled water (fresh water). )
  • the pump 25 and the concentrated raw water discharge pump 16 are stopped in priority.
  • the distilled water pump 25 is stopped with priority given to the concentrated raw water discharge pump 16.
  • a pyranometer 48 or a small solar cell 47 is provided and its output is provided. May be output to the operation Z stop control means 44.
  • the operation / stop control means 44 monitors the output of the pyranometer 48 or the small solar cell 47, and can know that the power generation of the solar cell 41 has decreased.
  • Operation Z stop control means 4 4 is connected to heat medium temperature detector 3 1 and raw water flow rate detector 3 2, and heat medium at the outlet of solar heat collector 1 detected by heat medium temperature detector 3 1. The temperature and raw water flow rate detected by the raw water flow rate detector 32 are input.
  • the operation Z stop control means 4 4 monitors the temperature of the heat medium at the outlet of the solar heat collector 1 from the output of the heat medium temperature detector 31 and determines that the heat medium temperature becomes a predetermined temperature or lower than a predetermined temperature.
  • the opening degree of the raw water flow control motor-operated valve V8 is controlled via the driver D18 to control the inflow of raw water W.
  • the heat medium of the solar heat collector 1 is controlled. It is possible to prevent the temperature and the temperature of the raw water W from increasing to a high temperature, thereby reducing the heat collection efficiency of the solar heat collector 1. Also, it is possible to prevent the inflow of the raw water w from the amount of insolation being too large, so that the temperature of the raw water w and the temperature of the heating medium become low, and the desalination ability of the device is reduced.
  • the operation / stop control means 4 4 monitors the inflow of the raw water W from the output of the raw water flow detector 32, and when the heat medium temperature of the solar heat collector 1 is higher than a predetermined temperature, the raw water flow detector 3
  • the opening of the raw water flow control motor-operated valve V8 is controlled via the driver D18 so that the inflow amount of the raw water W detected in step 2 always keeps a predetermined minimum flow rate.
  • overconcentration of the raw water W can be prevented by always securing the inflow of the raw water W to a predetermined minimum flow rate.
  • the operation Z stop control means 44 sends a stop signal to the control line 46 to close the raw water flow control electric valve V8.
  • the operation control means 4 4 monitors the output of the concentrated raw water storage amount detector 34 and determines the storage amount of the concentrated raw water W in the lower tank 3-1 a of the condenser 3-1. If the amount is less than the amount, the raw water is supplied by the raw water supply pump 11 and the raw water flow control electric valve V8 in advance.
  • W is supplied to the degassing chamber 2-1 of the evaporator 2 and each evaporator, and the concentrated raw water in the concentrated water tank 5 of the evaporator 2 is supplied by the concentrated raw water discharge pump 16 and the concentrated raw water flow control valve V 6. W is supplied to the lower tank 3_1a of the condenser 3-1.
  • the operation control means 4 4 supplies the raw water supply pump 11 and the raw water supply pump 11 when the concentrated raw water W in the lower tank 3-1 a of the condenser 3-1 returns to a predetermined amount from the output of the concentrated raw water storage amount detector 34.
  • the supply of the raw water W to the evaporator 2 is stopped by the raw water flow control electric valve V8, and the concentrated raw water W is condensed by the concentrated raw water discharge pump 16 and the concentrated raw water flow control valve V6.
  • the lower tank of the condenser 3-1 3-1 Stop supplying to a.
  • the concentrated raw water in the lower tank 3-1a of the condenser 3-1 recovers to a predetermined amount
  • the supply of the raw water to the evaporator 2 is stopped, and the concentrated raw water W is condensed in the condenser 3-1. Since the supply to the lower tank 3-1 a is stopped, the raw water is not supplied to the desalination unit more than necessary, and the temperature rise of the raw water heating by the heat medium from the solar heat collector 1 becomes slow. It is possible to prevent a decrease in the rate of generation of water vapor, that is, a rate of desalination due to a decrease in the temperature of raw water.
  • a desalination apparatus can be appropriately performed using a power source unique to the apparatus, and can efficiently produce fresh water even in a place where there is no other power supply facility such as a desert. Can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

A water desalting apparatus which comprises a controlling device which, when the electric power generated by a source such as a solar cell is reduced, stops the supply of electric power to individual motors according to the predetermined preferential ranking so as to maintain smooth operation; a raw water flow rate controller which controls the flow of the raw water supplied to an evaporating device so that a heating medium supplied to an evaporating device has a given or lower temperature; and a concentrated raw water storage tank for storing a raw water concentrated by generating steam and a stored amount measuring device for concentrated raw water for measuring the amount of the concentrated raw water in the concentrated raw water storage tank, wherein the concentrated raw water is used as the cooling water for use in a condenser for the steam from the raw water and, when the stored amount of the concentrated raw water is lower than a given amount, raw water is supplied in advance to the evaporating device by the raw water supplying device and the raw water having been passed through the evaporating device is supplied to the concentrated raw water storage tank so that a given storing amount is maintained. The water desalting apparatus can be appropriately controlled in accordance with the conditions wherein it is operated and be used for desalting with good efficiency.

Description

明細書 淡水化装置  Description Desalination equipment
技術分野 Technical field
本発明は、 太陽エネルギーやその他の熱源を利用して、 海水、 塩分を含んだ地 下水 (かん水)、 産業廃水等の原水から蒸発 ·凝縮法により淡水 (蒸留水) を得る 自立型の淡水化装置に係り、 特に、 制御装置を備えた淡水化装置に関するもので ある。  The present invention is a self-contained desalination method that uses solar energy and other heat sources to obtain fresh water (distilled water) from raw water such as seawater, salt-containing groundwater (brine water), and industrial wastewater by evaporation and condensation. The present invention relates to an apparatus, and particularly to a desalination apparatus provided with a control device.
背景技術 Background art
従来、 この種の淡水化装置は、 太陽熱集熱器、 蒸発装置、 該蒸発装置へ原水を 供給する原水供給ポンプ、該蒸発装置と太陽熱集熱器とを接続して熱媒を循環し、 太陽熱集熱器で加熱された熱媒を蒸発装置内の原水の熱源とするための熱媒循環 用ポンプ、 蒸発装置内で発生した水蒸気を当該蒸発装置から受け入れ凝縮させて 蒸留水とするための凝縮装置、 製造された淡水を排出する淡水排水ポンプ、 蒸発 装置内で加熱蒸発が行われ濃縮された原水を排出する濃縮原水排出ポンプ、 蒸発 装置内部を真空にする真空ポンプ等を具備している。 そして、 これら各種ポンプ や、 原水の供給 ·排出流路ゃ淡水の排出流路等に設けられる電動バルブ等の電動 装置は、 太陽電池等を備えた電源設備を当該淡水化装置に付設することにより、 外部電力に頼らず、 独立して稼動することができるようにしているのが普通であ る。  Conventionally, this type of desalination apparatus includes a solar heat collector, an evaporator, a raw water supply pump for supplying raw water to the evaporator, and a heat medium connected to the evaporator and the solar heat collector to circulate a heat medium. A heat medium circulation pump for using the heat medium heated by the heat collector as a heat source of raw water in the evaporator, and condensing to receive and condense water vapor generated in the evaporator from the evaporator to form distilled water. The system is equipped with a device, a freshwater drainage pump for discharging manufactured freshwater, a concentrated raw water discharge pump for discharging raw water that has been heated and evaporated in the evaporator, and a vacuum pump for vacuuming the inside of the evaporator. These various pumps and electric devices such as electric valves provided in the supply / discharge flow path of the raw water / the discharge flow path of the fresh water are provided by attaching power supply equipment including solar cells to the desalination apparatus. Usually, they can operate independently without relying on external power.
従来、 このような電源設備は通常、 バッテリーと、 該バッテリーの過充電を防 止するためのチャージコントローラを備え、 発電した電力を、 該チャージコント ローラを介してバッテリー充電している。 そしてこのバッテリーに充電した直流 出力を直流変圧手段又は直流 Z交流変換手段を介して電動バルブ等の直流駆動電 動機器、 又は、 真空ポンプ等の交流駆動電動機器に供給している。  Conventionally, such power supply equipment usually includes a battery and a charge controller for preventing overcharging of the battery, and the generated power is charged through the charge controller. The DC output charged in the battery is supplied to a DC drive electric device such as an electric valve or an AC drive electric device such as a vacuum pump via a DC transformer or a DC Z AC converter.
しかしながら、 上記バッテリー使用の電源設備とすると、 バッテリーだけでな くチャージコントローラ等も設置する必要があり、イニシャルコス卜が増大する。 また、 鉛蓄電池等のバッテリーは過放電すると、 寿命が低下するため、 例えばバ ッテリーを大型化する等の過放電対策を施さなければならない。 また、 充放電を 繰返すことにより、 バッテリーの蓄電能力が低下するため、 バッテリー液の補充 ゃバッテリー交換等のメンテナンスが必要となる。 However, if the above-mentioned power supply equipment using a battery is used, it is necessary to install not only a battery but also a charge controller and the like, thereby increasing initial costs. In addition, the life of a battery such as a lead storage battery is shortened if it is over-discharged, so it is necessary to take countermeasures for over-discharge, such as increasing the size of the battery. Also, charge and discharge Repeatedly reducing the storage capacity of the battery requires maintenance such as replenishment of the battery fluid and replacement of the battery.
上記バッテリーを設けることによる問題を避けるため、 淡水化装置においては 日射がある場合のみ淡水化運転できることに鑑み、 太陽電池を用いた電源設備に おいては、 バッテリーを設けず、 日射がなくなったら上記電動機器への通電を停 止し、 淡水化装置の運転を停止することが考えられる。  In order to avoid the problem of providing the above battery, in consideration of the fact that desalination equipment can be operated only when there is solar radiation, in the power supply equipment using solar cells, if no battery is provided, It is conceivable to stop energizing the electric equipment and stop the operation of the desalination plant.
しかし、 このような淡水化装置においては、 多くの電動開閉バルブが使用され ており、 太陽が急に陰り、 急激に発電能力がなくなった場合、 電動開閉バルブを 閉じることができず、例えば設備内の真空が破壊されてしまうという問題がある。 また、 そのような淡水化装置においては、 急激に発電能力がなくなった場合に 濃縮原水排出ポンプ、 淡水排出ポンプを急激に停止してしまうと、 複数の蒸発器 が多重効用関係に接続構成された多重効用サイクル利用の蒸発装置を具備する淡 水化装置では、 上記停止前に供給されていた原水が、 上位段の蒸発器から下位段 の蒸発器へ流下しても、 外部へ排出されないために、 流下した原水が淡水タンク に浸水し、 淡水を汚染する等の問題が発生する場合がある。  However, in such a desalination plant, many electric switching valves are used.If the sun suddenly goes down and the power generation capacity suddenly stops, the electric switching valves cannot be closed. There is a problem that the vacuum is destroyed. Also, in such a desalination plant, when the power generation capacity was suddenly lost and the concentrated raw water discharge pump and fresh water discharge pump were suddenly stopped, multiple evaporators were connected in a multi-effect relationship. In a desalination plant equipped with a multi-effect cycle-based evaporator, the raw water supplied before the above stoppage does not discharge to the outside even if it flows down from the upper evaporator to the lower evaporator. In some cases, the raw water that has flowed into the freshwater tank may cause problems such as contamination of the freshwater.
また、 そのような淡水化装置では、 日射量に対して原水量が少な過ぎると、 そ の分、 熱媒温度が高温となり、 太陽熱集熱器での集熱効率が低下したり、 また、 原水の蒸発が過ぎて過濃縮が生じるという問題もある。 また、 日射量に対して原 水量が多すぎると、 原水が十分に加熱されず、 そのために装置の淡水化能力が低 下するという問題もある。  Also, in such a desalination plant, if the amount of raw water is too small relative to the amount of solar radiation, the temperature of the heat medium will increase accordingly, and the heat collection efficiency of the solar heat collector will decrease. There is also a problem that over-concentration occurs due to evaporation. Also, if the amount of raw water is too large relative to the amount of solar radiation, there is also a problem that the raw water is not sufficiently heated, and the desalination capacity of the device is reduced.
一方、 上記従来の淡水化装置においては、 発生した水蒸気を凝縮するために凝 縮器で使用する冷却水としては、 一般的に、 淡水化装置に供給する前の原水を使 用するか、 若しくは巿水等を使用していた。 しかし、 原水を冷却水として使用す る淡水化装置では、 運転するに従い 2、 冷却水温度が上昇し、 淡水化能力が低下 するという問題がある。 また、 巿水等を冷却水として使用する場合は、 冷却水の 供給 Z補給手段を設ける必要があり、 コストが嵩むほか、 そのメンテナンスが必 要となるという等の問題がある。  On the other hand, in the above-mentioned conventional desalination apparatus, as the cooling water used in the condenser to condense the generated steam, generally, raw water before being supplied to the desalination apparatus is used, or巿 Water was used. However, in a desalination plant that uses raw water as cooling water, there is a problem that the cooling water temperature rises and the desalination capacity decreases as it operates2. In addition, when water or the like is used as cooling water, it is necessary to provide a cooling water supply Z replenishing means, which raises costs and requires maintenance.
このような問題を解決するため、 淡水化装置内での蒸発が行われ、 濃縮された 原水を、 排出 ·廃棄する前に、 凝縮器の冷却水として使用するようにした試みも ある。 この場合は、 淡水化装置に供給される前の原水を冷却水として使用した場 合のような上記の如き問題は解消するが、 当該淡水化装置の運転を開始し、 濃縮 原水が十分排出されるまでの間は、 凝縮器の冷却水が不足した状態で、 最悪の場 合は冷却水が全くない状態が発生するという問題がある。 In order to solve such problems, attempts have been made to use concentrated raw water, which is evaporated in the desalination plant, as cooling water for the condenser before discharging and discarding it. is there. In this case, the above-mentioned problems such as the case where the raw water before being supplied to the desalination unit is used as the cooling water are resolved, but the operation of the desalination unit is started, and the concentrated raw water is sufficiently discharged. In the meantime, there is a problem that the cooling water of the condenser is insufficient, and in the worst case, there is no cooling water at all.
本発明は上述の点に鑑みてなされたもので、 適正な運転を行うための制御装置 を備えた淡水化装置を供給することを目的とする。 発明の開示  The present invention has been made in view of the above points, and has as its object to provide a desalination apparatus provided with a control device for performing proper operation. Disclosure of the invention
すなわち、 本発明は、 淡水化装置であって、 太陽熱集熱器と、 複数の蒸発器を 具備し該複数の蒸発器を多重効用関係に接続構成した蒸発装置と、 該蒸発装置と 太陽熱集熱器との間で熱媒を循環し、 太陽熱集熱器で加熱された熱媒を蒸発装置 内の原水の熱源とするための熱媒循環回路と、 蒸発装置内で加熱された原水から 発生した水蒸気を当該蒸発装置の最下段の蒸発器から受け入れ凝縮させて蒸留水 とするための凝縮器と、 蒸発装置の蒸発器内の空間を大気圧以下に減圧する真空 装置と、 当該淡水化装置における前記真空装置などの電動機器を駆動するための 電力を供給する太陽電池等の電源を備える電力供給回路と、 電源の発電量が所定 量以下に低下したときに、 前記電動機器への電力供給を、 優先順位をつけて停止 する制御装置とを有することを特徴とする淡水化装置を提供する。 この淡水化装 置によれば、 発電量低下のときに、 当該淡水化装置を適正に対応させて、 発電量 低下によるトラブル発生を防ぐことが可能となる。  That is, the present invention relates to a desalination apparatus, comprising: a solar heat collector; an evaporator including a plurality of evaporators, and the plurality of evaporators connected in a multiple effect relationship; and an evaporator and a solar heat collector. A heat medium circulating circuit circulates a heat medium between the evaporator and the heat medium heated by the solar heat collector to generate heat from the raw water in the evaporator. A condenser for receiving steam from the lowermost evaporator of the evaporator and condensing it into distilled water; a vacuum device for reducing the space in the evaporator of the evaporator to an atmospheric pressure or less; and a desalination device. A power supply circuit including a power supply such as a solar cell for supplying electric power for driving an electric device such as the vacuum device, and an electric power supply to the electric device when a power generation amount of the power supply falls below a predetermined amount. , Prioritize and stop Providing desalination apparatus characterized by having a device. According to this desalination apparatus, it is possible to appropriately cope with the desalination apparatus when the amount of power generation is reduced, thereby preventing the occurrence of trouble due to the decrease in power generation.
電動機器としては、 真空装置の他に、 例えば、 凝縮器で作られた蒸留水を排出 するための淡水排出ポンプや前記濃縮原水を排出するための濃縮原水排出ポンプ があり、 そのようなポンプを備える装置においては、 発電量検出装置によって前 記電源での発電量が所定量以下に低下したことを検出したときに、 前記制御装置 、 真空装置への電力供給を、 これら淡水排出ポンプや濃縮原水排水ポンプより も先に停止させるようにすることが好ましい。 これは、 淡水排出ポンプや濃縮原 水排水ポンプの作動をできるだけ維持することにより、 淡水汚染といつた重大な 問題が起こらないようにするためである。  Examples of the electric equipment include, in addition to a vacuum device, a freshwater discharge pump for discharging distilled water produced by a condenser and a concentrated raw water discharge pump for discharging the concentrated raw water. When the power generation amount detection device detects that the power generation amount by the power supply has decreased to a predetermined amount or less, the power supply to the control device and the vacuum device is performed by the fresh water discharge pump and the concentrated raw water. It is preferable to stop the pump before the drain pump. This is to maintain the operation of the freshwater discharge pump and the concentrated raw water drainage pump as much as possible so that serious problems such as freshwater pollution do not occur.
前記真空装置への電力供給停止の後に、 発電量検出装置により前記発電量が更 に低下することが検知された場合、 前記淡水排出ポンプへの電力供給を、 濃縮原 水排出ポンプよりも先に停止させるようにすることが好ましい。 濃縮原水による 淡水の汚染を防ぐためには、 濃縮原水排出ポンプの稼動を維持することが重要だ からである。 After stopping the power supply to the vacuum device, the power generation amount is updated by the power generation amount detection device. When it is detected that the concentration of the raw water is reduced, it is preferable to stop the power supply to the fresh water discharge pump before the concentrated raw water discharge pump. Maintaining the operation of the concentrated raw water discharge pump is important to prevent freshwater contamination from the concentrated raw water.
前記電源は太陽電池とすることができ、 前記発電量検出装置を、 日射量を検出 する日射計又は、前記太陽電池とは別途設けた小型太陽電池とすることができる。 前記電動機器としては、 原水の供給 ·排出流路等で用いられる電動開閉バルブ があり、 該電動開閉バルブは電力供給停止が行われると、 機械的に閉止する電動 バルブとすることが好ましい。  The power supply may be a solar cell, and the power generation amount detection device may be a pyranometer for detecting the amount of solar radiation or a small solar cell provided separately from the solar cell. The electric equipment includes an electric open / close valve used in a supply / discharge flow path of raw water, and the electric open / close valve is preferably an electric valve that is mechanically closed when power supply is stopped.
また、 本発明は、 太陽熱集熱器と、 蒸発装置と、 該蒸発装置へ原水を供給する 原水供給装置と、 該蒸発装置と前記太陽熱集熱器との間で熱媒を循環し、 太陽熱 集熱器で加熱された熱媒を蒸発装置内の原水の熱源とするための熱媒循環回路と、 前記蒸発装置内で発生した水蒸気を当該蒸発装置から受け入れ凝縮させて蒸留水 とするための凝縮器と、 前記太陽熱集熱器から蒸発器へ入る熱媒の温度を検出す る熱媒温度検出器と、 前記原水供給装置から供給される原水の流量を制御する原 水流量制御器と、 前記原水流量制御器により蒸発装置へ供給する原水流量を制御 して前記蒸発装置へ供給される熱煤の温度が所定の温度或いは所定温度以下にな るように制御する制御装置を設けたことを特徴とする淡水化装置を提供する。 こ の淡水化装置によれば、 熱媒の温度を制御することにより、 効率の良い加熱を行 うことができる。  The present invention also provides a solar heat collector, an evaporator, a raw water supply device for supplying raw water to the evaporator, and a heat medium circulating between the evaporator and the solar heat collector. A heat medium circulation circuit for using the heat medium heated by the heater as a heat source of raw water in the evaporator; and a condensate for receiving and condensing water vapor generated in the evaporator from the evaporator to form distilled water. A heat medium temperature detector for detecting a temperature of a heat medium entering the evaporator from the solar heat collector; a raw water flow controller for controlling a flow rate of raw water supplied from the raw water supply device; A control device is provided that controls the flow rate of raw water supplied to the evaporator by the raw water flow controller and controls the temperature of the hot soot supplied to the evaporator to a predetermined temperature or lower than a predetermined temperature. And a desalination apparatus. According to this desalination apparatus, efficient heating can be performed by controlling the temperature of the heat medium.
前記制御装置は、 前記蒸発装置へ供給される熱媒温度が所定の温度以上である 場合、 同蒸発装置へ供給される原水流量が所定の最低流量を常に確保するように 原水流量制御器を制御することが好ましい。  The controller controls the raw water flow controller such that when the temperature of the heating medium supplied to the evaporator is equal to or higher than a predetermined temperature, the raw water flow supplied to the evaporator always keeps a predetermined minimum flow. Is preferred.
前記原水流量制御器を、 電動弁とし、 前記制御装置は、 前記電動弁が所定の開 度になったにも関わらず、 前記蒸発装置へ供給される原水流量が所定値以下であ る場合、 原水減断水と判断し、 淡水化装置の運転を停止するようにすることが好 ましい。  The raw water flow controller is an electric valve, and the control device is configured such that, even though the electric valve is at a predetermined opening, the raw water flow supplied to the evaporator is equal to or less than a predetermined value. It is preferable to judge that the raw water is cut off and stop the operation of the desalination plant.
更に、 本発明は、 太陽熱集熱器と、 蒸発装置と、 該蒸発装置へ原水を供給する 原水供給装置と、 該蒸発装置と前記太陽熱集熱器との間で熱媒を循環し、 太陽熱 集熱器で加熱された熱媒を蒸発装置内の原水の熱源とするための熱媒循環回路と、 前記蒸発装置内で発生した水蒸気を当該蒸発装置から受け入れ凝縮させて蒸留 水とするための凝縮器と、 原水供給装置から供給されて前記蒸発装置内を通され 加熱されて水蒸気を発生して濃縮された濃縮原水を貯留する濃縮原水貯留槽と、 該濃縮原水貯留槽内の濃縮原水貯留量を検出する濃縮原水貯留量検出器と、有し、 前記凝縮器が、 該濃縮原水貯留槽の濃縮原水を当該凝縮器の冷却水として使用す るようになされており、 当該淡水化装置の運転前、 前記濃縮原水貯留量検出器の 出力から、 濃縮原水の貯留量が所定量以下の場合、 予め前記原水供給装置により 原水を前記蒸発器に供給すると共に、 前記蒸発装置を通された原水を前記濃縮原 水貯留槽に供給することにより前記貯留量が前記所定量になるようにする制御装 置を設けたことを特徴とする淡水化装置を提供する。 この淡水化装置によれば、 運転開始時に、 濃縮原水が不充分のために適正な凝縮が行われないという事態を 回避することができる。 Further, the present invention provides a solar heat collector, an evaporator, a raw water supply device for supplying raw water to the evaporator, and a heat medium circulating between the evaporator and the solar heat collector. A heat medium circulation circuit for using the heat medium heated by the collector as a heat source of raw water in the evaporator; and a heat medium circulation circuit for receiving water vapor generated in the evaporator from the evaporator and condensing it into distilled water. A condenser, a concentrated raw water storage tank for storing concentrated raw water that is supplied from a raw water supply device, passes through the evaporator, is heated and generates steam to be concentrated, and stores concentrated raw water in the concentrated raw water storage tank. A concentrated raw water storage amount detector for detecting an amount of the concentrated raw water, wherein the condenser is configured to use the concentrated raw water in the concentrated raw water storage tank as cooling water for the condenser; Before operation, based on the output of the concentrated raw water storage amount detector, if the storage amount of the concentrated raw water is equal to or less than a predetermined amount, the raw water is supplied to the evaporator in advance by the raw water supply device, and the raw water passed through the evaporator. The concentrated raw water storage A desalination apparatus is provided, which is provided with a control device for controlling the storage amount to the predetermined amount by supplying the storage amount to a tank. According to this desalination apparatus, it is possible to avoid a situation in which the concentrated raw water is not sufficiently condensed at the start of the operation due to insufficient concentrated raw water.
具体的には、 濃縮原水貯留槽を凝縮器に設けると共に、 蒸発器からの濃縮原水 を該濃縮原水貯留槽に供給する濃縮原水排出ポンプを設け、 淡水化装置の運転前 に、 蒸発器へ原水を供給するとともに、 該ポンプを稼動させることにより、 濃縮 原水貯留槽への濃縮原水の供給を行い、 当該濃縮原水の貯留量を調整することが 好ましい。 図面の簡単な説明  Specifically, a concentrated raw water storage tank is provided in the condenser, and a concentrated raw water discharge pump that supplies concentrated raw water from the evaporator to the concentrated raw water storage tank is provided.The raw water is supplied to the evaporator before the desalination unit is operated. It is preferable to supply the concentrated raw water to the concentrated raw water storage tank by operating the pump, and to adjust the storage amount of the concentrated raw water. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る淡水化装置の全体構成例を示す図である。  FIG. 1 is a diagram showing an example of the overall configuration of a desalination apparatus according to the present invention.
図 2は、 本発明に係る淡水化装置の一部の詳細構成例を示す図である。  FIG. 2 is a diagram showing an example of a detailed configuration of a part of the desalination apparatus according to the present invention.
図 3は、 本発明に係る淡水化装置の一部の詳細構成例を示す図である。  FIG. 3 is a diagram showing a detailed configuration example of a part of the desalination apparatus according to the present invention.
図 4は、 本発明に係る淡水化装置の電源設備の構成を示す図である。 発明の好適な実施例  FIG. 4 is a diagram showing a configuration of a power supply facility of the desalination apparatus according to the present invention. Preferred embodiments of the invention
以下、 本発明の実施例を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1乃至図 4は、 本発明の実施例に係る太陽エネルギー利用の淡水化装置を開 示している。 すなわち、 この実施例に係る本淡水化装置は、 太陽熱集熱器 1、 蒸 発装置 2、 冷却塔 3、 蒸留水タンク 4、 濃縮水タンク 5及び真空ポンプ 6— 2等 の真空装置 6等から構成される。 1 to 4 show a desalination apparatus using solar energy according to an embodiment of the present invention. That is, the present desalination apparatus according to this embodiment includes the solar heat collector 1 and the steam collector. It consists of a generator 2, a cooling tower 3, a distilled water tank 4, a concentrated water tank 5, and a vacuum device 6 such as a vacuum pump 6-2.
太陽熱集熱器 1は太陽エネルギーにより熱媒を加熱する複数の太陽熱集熱パネ ル 1 _ 1〜1 一 6からなる。 該太陽熱集熱器 1で加熱された熱媒蒸気は配管 7を 通って蒸発装置 2に送られ、 蒸発装置 2からの凝縮した熱媒が配管 8を通してバ ッファタンク 9に収容され、 更に該バッファタンク 9から熱媒循環ポンプ 2 6及 び配管 1 0を通して太陽熱集熱器 1に戻り循環するようになっている。 太陽熱集 熱器 1の熱媒出口には熱媒 (熱媒蒸気) の温度を測定する熱媒温度検出器 3 1が 設けられている。  The solar heat collector 1 is composed of a plurality of solar heat collecting panels 1 — 1 to 16 that heat the heat medium with solar energy. The heat medium vapor heated by the solar heat collector 1 is sent to the evaporator 2 through the pipe 7, and the condensed heat medium from the evaporator 2 is stored in the buffer tank 9 through the pipe 8, and further, the buffer tank From 9, the heat medium circulating pump 26 and piping 10 return to the solar heat collector 1 and circulate. At the heat medium outlet of the solar heat collector 1, a heat medium temperature detector 31 for measuring the temperature of the heat medium (heat medium vapor) is provided.
蒸発装置 2は最上部に脱気室 2— 1が配置され、 その下に複数台の蒸発器 (こ こでは第 1蒸発器 2— 2〜第 8蒸発器 2— 9の 8台) が配置されて構成されてい る。 例えば大気圧以上で常に原水を供給できる原水タンク (図示せず) 等の水源 から供給される原水 (ここでは海水) Wは、 原水予熱配管 1 2を通って予熱され、 脱気室 2— 1に供給される。 脱気室 2— 1をオーバーフローした原水 Wはオーバ 一フロー管 1 3を通して、 順次第 1蒸発器 2— 2〜第 8蒸発器 2— 9の各蒸発器 に所定量の原水 Wが貯留され、 次第に濃縮されて、 最後にオーバーフロー管 1 4 を通って濃縮水タンク 5に収容されるようになっている。 なお、 原水 Wは原水供 給ポンプ 1 1を用いて供給される。 供給される原水 Wは電動弁 (電磁弁) V8によ り流量が制御されるようになっている。 また、 原水流量は原水流量検出器 3 2に より検出されるようになっている。 尚、 図示の例では、 原水供給にポンプ 1 1を 用いる場合を示したが、 そのようなポンプが無くても、 当該淡水化装置内部を真 空装置により減圧することにより、 大気圧下にある原水を、 同装置内へ供給する こともできる。  The evaporator 2 has a degassing chamber 2-1 at the top, and a plurality of evaporators (here, eight evaporators 2 to 2 to 8 to 9) are located below it. It is configured. For example, raw water (in this case, seawater) W supplied from a water source such as a raw water tank (not shown) that can always supply raw water at or above atmospheric pressure is preheated through a raw water preheating pipe 12, and the deaeration chamber 2-1 Supplied to The raw water W overflowing the deaeration chamber 2-1 passes through an overflow pipe 13 and a predetermined amount of raw water W is stored in each of the first evaporator 2-2 to the eighth evaporator 2-9 in sequence. It is gradually concentrated and finally stored in the concentrated water tank 5 through the overflow pipe 14. Raw water W is supplied using a raw water supply pump 11. The flow rate of the supplied raw water W is controlled by a motor-operated valve (solenoid valve) V8. The raw water flow rate is detected by a raw water flow rate detector 32. In the example shown in the figure, the case where the pump 11 is used for supplying raw water is shown, but even without such a pump, the inside of the desalination apparatus is kept at atmospheric pressure by depressurizing the inside of the desalination apparatus with the vacuum apparatus. Raw water can also be supplied into the equipment.
太陽熱集熱器 1からの熱媒蒸気は脱気室 2一 1内に配置された熱交換器 2— 1 aを通り、 該脱気室 2— 1に貯留されている原水 Wとの間で熱交換を行い、 更に 第 1蒸発器 2— 2内に配置された熱交換器 2— 2 aを通り、 該第 1蒸発器 2— 2 に貯留されている原水との間で熱交換を行う。 第 1蒸発器 2— 2の原水の加熱で 蒸発した水蒸気 W aは蒸気配管 1 5を通って第 2蒸発器 2— 3の熱交換器 2— 3 aに熱源として送られ原水との間で熱交換が行われる。 また、 第 3蒸発器 2— 4 〜第 7蒸発器 2— 8の原水の加熱で蒸発した水蒸気 W aも次段の蒸発器の熱交換 器に熱源として送られ原水との間で熱交換が行われ、 凝縮されて蒸留水となって 最後に蒸留水タンク 4に収容される。 The heat medium vapor from the solar heat collector 1 passes through the heat exchanger 2-1a disposed in the degassing chamber 211, and flows between the raw water W stored in the degassing chamber 2-1. The heat exchange is performed, and further, the heat exchange is performed between the raw water stored in the first evaporator 2-2 through the heat exchanger 2-2a disposed in the first evaporator 2-2. . The steam W a evaporated by heating the raw water in the first evaporator 2-2 is sent as a heat source to the heat exchanger 2-3 a in the second evaporator 2-3 through the steam pipe 15, and between the water and the raw water. Heat exchange takes place. Third evaporator 2-4 The steam W a evaporated by heating the raw water in the evaporator 2-8 is also sent as a heat source to the heat exchanger of the next evaporator, where it exchanges heat with the raw water, and is condensed with distilled water. Finally, it is stored in the distilled water tank 4.
濃縮水タンク 5の濃縮原水は濃縮原水排出ポンプ 1 6により濃縮原水流量制御 弁 V 6及び配管 2 7を通って冷却塔 3の凝縮器 3— 1の下部タンク 3— 1 aに送 られ、 更に濃縮原水循環ポンプ 1 7で散水ノズル 3— 1 cに供給され、 凝縮 (伝 熱) パイプ 3— 1 b上に冷却水として散水されるようになっている。 最終段の第 8蒸発器 2— 9の原水の加熱で蒸発した水蒸気 W aは配管 1 8を通って凝縮器 3 一 1の凝縮パイプ 3— 1 bに送られ、 上記散水された濃縮原水との間で熱交換が 行われ、 凝縮して蒸留水となり配管 1 9を通って蒸留水タンク 4に送られる。 下 部タンク 3— 1 aをオーバ一フローした濃縮水は濃縮水排出配管 2 0を通って排 水される。  The concentrated raw water in the concentrated water tank 5 is sent to the lower tank 3-1a of the condenser 3-1 of the cooling tower 3 through the concentrated raw water flow control valve V6 and the pipe 27 by the concentrated raw water discharge pump 16. It is supplied to the sprinkling nozzle 3-1 c by the concentrated raw water circulation pump 17 and is sprinkled as cooling water on the condensation (heat transfer) pipe 3-1 b. The water vapor Wa evaporated by heating the raw water in the eighth evaporator 2-9 in the final stage is sent to the condenser pipe 3-1b in the condenser 31 through the pipe 18 to be condensed with the concentrated raw water sprinkled. Heat is exchanged between the two and condensed to form distilled water, which is sent to the distilled water tank 4 through the pipe 19. The concentrated water overflowing the lower tank 3-1a is discharged through the concentrated water discharge pipe 20.
凝縮器 3— 1の下部タンク 3— 1 aには濃縮原水貯留量を検出する濃縮原水貯 留量検出器 3 4が設けられている。 また、 下部タンク 3— 1 aをオーバーフロー した濃縮水は濃縮水排出配管 2 0を通って排水されるようになっている。  A concentrated raw water storage amount detector 34 for detecting the concentrated raw water storage amount is provided in the lower tank 3-1a of the condenser 3-1. Also, the concentrated water overflowing the lower tank 3-1a is discharged through the concentrated water discharge pipe 20.
真空装置 6は気液分離器 6— 1及び該気液分離器 6— 1に接続された真空ボン プ 6— 2を具備する。 気液分離器 6— 1は配管 2 1、 2 2、 2 3を介して太陽熱 集熱器 1からの熱煤が通る配管 7、 蒸発装置 2の脱気室 2— 1、 凝縮器 3— 1の ヘッダー 3— 1 dに接続される。 これにより後に詳述するように、 蒸発装置 2の 蒸発空間及びこれに連通する凝縮空間、 及び、 蒸留水貯蔵空間を減圧状態にする ことができる。  The vacuum device 6 includes a gas-liquid separator 6-1 and a vacuum pump 5-2 connected to the gas-liquid separator 6-1. The gas-liquid separator 6-1 is connected to the pipe 21 through which the heat and soot from the solar heat collector 1 passes through the pipes 21, 22, 23. The degassing chamber 2-1 of the evaporator 2, the condenser 3-1 Connected to header 3 — 1d. As a result, the evaporating space of the evaporator 2, the condensing space communicating with the evaporating device, and the distilled water storage space can be reduced in pressure as described later in detail.
また、 蒸留水タンク 4の蒸留水 W bは蒸留水ポンプ 2 5により所定の場所に給 水するようになっている。 なお、 図 1において、 V 1〜V 8ばバルブである。 こ れらのバルブには駆動電圧が低下した場合に、 機械的に自動的に閉止する電動バ ルブを用いる。 これは後に詳述するように、 太陽電池を電源とする駆動電圧が低 下した場合、 機械的にバルブを閉じて真空破壊を防止するためである。  Further, the distilled water Wb in the distilled water tank 4 is supplied to a predetermined place by a distilled water pump 25. In FIG. 1, V1 to V8 are valves. These valves use electric valves that automatically close mechanically when the drive voltage drops. This is to prevent the vacuum break by mechanically closing the valve when the driving voltage using the solar cell as a power source drops, as will be described in detail later.
図 4は本発明に係る淡水化装置の電源設備及びその制御部の構成を示す図であ る。 4 1は太陽電池であり、 該太陽電池 4 1で発電された直流出力は直流変圧手 段 4 2に入力され、 昇圧される。 直流変圧手段 4 2は直流変圧器 4 2— 1と定電 圧手段 42一 2から構成され、 定電圧手段 42 - 2は直流変圧手段 42の出力電 圧を所定の一定値に維持し、 太陽電池 4 1の発電量が多くなり、 直流変圧器 42 - 1の出力電圧が過電圧となっても以降の電気機器を保護するようになっている: 直流変圧手段 42の出力は直流/交流変換手段 43に入力され、 交流 (3相交 流) に変換される。 この交流出力は、 ドライバー D 1〜D 6 · ' を介して、 原水 供給ポンプ 1 1、 濃縮原水排出ポンプ 1 6、 蒸留水ポンプ 2 5、 濃縮原水循環ポ ンプ 1 7、 熱媒循環ポンプ 2 6、 送風ファン 3— 2等の交流駆動電動機器に供給 されるようになつており、 更に運転/停止制御手段 44の電源としても供給され る。 FIG. 4 is a diagram showing the configuration of the power supply equipment of the desalination apparatus according to the present invention and the control unit thereof. Reference numeral 41 denotes a solar cell, and a DC output generated by the solar cell 41 is input to a DC transformer 42 to be boosted. DC transformer 4 2 is connected to DC transformer 4 2-1 and constant current The constant voltage means 42-2 maintains the output voltage of the DC transformer 42 at a predetermined constant value, the amount of power generated by the solar cell 41 increases, and the DC transformer 42-1 Even if the output voltage of the power supply becomes overvoltage, it protects the subsequent electrical equipment: The output of the DC transformer 42 is input to the DC / AC converter 43 and converted to AC (three-phase AC). This AC output is supplied to the raw water supply pump 11, concentrated raw water discharge pump 16, distilled water pump 25, concentrated raw water circulation pump 17, and heat medium circulation pump 26 via drivers D 1 to D 6 The power is supplied to an AC drive electric device such as a blower fan 3-2, and is also supplied as a power source for the operation / stop control means 44.
また、 直流変圧手段 42の直流出力はドライバ一 D 1 1〜D 1 8 · · を介して 電動バルブ V 1〜V 8等の直流駆動電動機器に供給されるようになっている。 ま た、 太陽電池 4 1の直流出力もドライバ一 D 2 1、 D 2 2 · · を介して直流駆動 電動機器 3 0、 3 3に供給されるようになっている。  Further, the DC output of the DC transformer 42 is supplied to DC drive electric devices such as electric valves V 1 to V 8 via drivers D 11 to D 18. Further, the DC output of the solar cell 41 is also supplied to the DC-driven electric devices 30 and 33 via the drivers D 21, D 22 ···.
また、 各ドライバー D l ' '、 D l l ' ' 、 D 2 1 ' 'は制御線 46を介して 運転 Z停止制御手段 44に接続されており、 該運転 Z停止制御手段 44は各ドラ ィバー D 1 · · , Ό 1 1 · · , Ό 2 1 · · を介して各電動駆動機器を運転 Ζ停止 できるようになつている。 また、 太陽電池 4 1の出力電圧は電圧検出器 4 5によ り検出され、 その検出出力は運転 Ζ停止制御手段 44に入力されるようになって いる。  Further, each driver D l '', D ll '', D 21 '' is connected to the operation Z stop control means 44 via a control line 46, and the operation Z stop control means 44 is connected to each driver D Each electric drive device can be operated and stopped via 1 · · ·, Ό 1 1 · ·, Ό 2 1 · ·. The output voltage of the solar cell 41 is detected by a voltage detector 45, and the detected output is input to the operation / stop control means 44.
上記のように太陽電池 4 1の出力をバッテリーを介さず直流変圧手段 42に入 力し、 該直流変圧手段 42の出力をドライバー D 1 1〜D 1 8、 · ·を介してバル ブ V 1〜V 8等の直流駆動電動機器に供給すると共に、 該直流変圧手段 42の出 力を直流 Z交流変換手段 43に入力し、 その交流出力をドライバー D 1〜D 6 · を介して原水供給ポンプ 1 1、 濃縮原水排出ポンプ 1 6、 蒸留水ポンプ 2 5、 濃 縮原水循環ポンプ 1 7、 熱媒循環ポンプ 2 6、 送風ファン 3— 2等の交流駆動電 動機器に供給するので、 淡水化装置の電源設備にバッテリー、 チャージコント口 ーラ等が必要なくなる。  As described above, the output of the solar cell 41 is input to the DC transformer 42 without passing through the battery, and the output of the DC transformer 42 is connected to the valve V 1 via the drivers D 11 to D 18. To V8, etc., and the output of the DC transformer 42 is input to the DC / AC converter 43, and the AC output is supplied to the raw water supply pump via the drivers D1 to D6. 1 1, Concentrated raw water discharge pump 16, Distilled water pump 25, Concentrated raw water circulation pump 17, Heat medium circulation pump 26, Blower fan 3-2, etc. Eliminates the need for batteries and charge controllers in the power supply equipment of the equipment.
なお、 上記例では熱媒循環ポンプ 2 6はドライバ一 D 5を介し直流 Z交流変換 手段 43からの交流出力で駆動するようになっているが、 直流変圧手段 42から の直流出力で駆動される小型の直流ポンプとしてもよい。 なお、 他の電動機器も 適宜直流又は交流駆動としてもよい。 In the above example, the heat medium circulating pump 26 is driven by the AC output from the DC / AC converter 43 via the driver D5, but is driven by the DC transformer 42. It may be a small DC pump driven by the DC output. It should be noted that other electric devices may be appropriately driven by DC or AC.
また、 電動バルブ V 1〜V 8には、 太陽電池 4 1の発電量が低下して電圧が低 下した場合、 機械的に閉止する電動バルブを用いるので、 太陽が陰った場合に太 陽電池 4 1の発電量も低下するが、 該電動バルブ V 1〜V 8は機械的に閉となる ため、 蒸発装置 2の蒸発空間や凝縮空間及び凝縮器 3— 1の凝縮空間の真空が破 壊されることがない。  The electric valves V1 to V8 use electric valves that are mechanically closed when the amount of power generated by the solar cell 41 decreases and the voltage drops. 4 Although the power generation amount of 1 also decreases, the electric valves V1 to V8 are mechanically closed, so that the vacuum in the evaporation space and the condensing space of the evaporator 2 and the condensing space of the condenser 3-1 are broken. Never be.
また、 運転/停止制御手段 4 4は電圧検出器 4 5の出力を監視し、 太陽電池 4 1の発電量が所定量以下に低下したことを検出した場合、真空装置 6を蒸留水(淡 水) ポンプ 2 5及び濃縮原水排出ポンプ 1 6に優先して停止させるようになって いる。 また、 真空装置 6の停止後、 太陽電池 4 1の発電量が更に低下した場合は、 蒸留水ポンプ 2 5を濃縮原水排出ポンプ 1 6を優先して停止する。  In addition, the operation / stop control means 44 monitors the output of the voltage detector 45 and, when detecting that the amount of power generated by the solar cell 41 has dropped below a predetermined amount, switches the vacuum device 6 to distilled water (fresh water). ) The pump 25 and the concentrated raw water discharge pump 16 are stopped in priority. In addition, after the vacuum device 6 is stopped, if the power generation of the solar cell 41 further decreases, the distilled water pump 25 is stopped with priority given to the concentrated raw water discharge pump 16.
上記のように、 真空装置 6を蒸留水ポンプ 2 5及び濃縮原水排出ポンプ 1 6に 優先して停止させることにより、 太陽電池 4 1の発電量が低下し、 全ての電動機 器を駆動するだけの発電量がなくなった場合に、 最も実害の少ない真空装置 6を 優先的に停止し、 それでも太陽電池 4 1の発電量が足りない場合、 淡水汚染の危 険度の低い蒸留水ポンプ 2 5を淡水汚染の危険度の高い濃縮原水排出ポンプ 1 6 に優先して停止することにより、 淡水の汚染を防止することができる。  As described above, by stopping the vacuum device 6 prior to the distilled water pump 25 and the concentrated raw water discharge pump 16, the amount of power generated by the solar cell 41 decreases and only the electric motors are driven. When the power generation is lost, the vacuum device 6 with the least harm is preferentially stopped, and if the power generation of the solar cell 41 is still insufficient, the distilled water pump 25 with low risk of freshwater pollution is switched to freshwater. By shutting down the concentrated raw water discharge pump 16 which has a high risk of contamination, it is possible to prevent freshwater contamination.
太陽電池 4 1の発電量を検出する手段としては、 太陽電池 4 1の出力電圧を検 出する電圧検出器 4 5の他に、 日射計 4 8又は小型の太陽電池 4 7を設け、 その 出力を運転 Z停止制御手段 4 4に出力するようにしてもよい。 運転/停止制御手 段 4 4はこの日射計 4 8又は小型の太陽電池 4 7の出力を監視し、 太陽電池 4 1 の発電量が低下したことを知ることができる。  As means for detecting the amount of power generated by the solar cell 41, in addition to a voltage detector 45 for detecting the output voltage of the solar cell 41, a pyranometer 48 or a small solar cell 47 is provided and its output is provided. May be output to the operation Z stop control means 44. The operation / stop control means 44 monitors the output of the pyranometer 48 or the small solar cell 47, and can know that the power generation of the solar cell 41 has decreased.
また運転 Z停止制御手段 4 4は、 太陽電池 4 1の発電量が低下した場合、 その 低下量に応じて、 上記優先順位及びその他所定の順位に従って各電動機器を停止 するが、 運転 Z停止制御手段 4 4自身は全ての主電動機器が停止してから、 その 機能を停止するように構成されている。 これにより全ての電動機器が停止し、 運 転 Z停止制御の必要がなくなつた時に停止することになり、 淡水化装置の安全な 運転 Z停止制御が可能となる。 運転 Z停止制御手段 4 4には、 熱媒温度検出器 3 1と原水流量検出器 3 2が接 続され、 熱媒温度検出器 3 1で検出された太陽熱集熱器 1の出口の熱媒温度と原 水流量検出器 3 2で検出された原水流量が入力されるようになつている。 When the amount of power generated by the solar cell 41 decreases, the operation Z stop control means 44 stops each electric device in accordance with the priority and other predetermined orders according to the amount of decrease. Means 44 itself is configured to stop its function after all main electric devices have stopped. As a result, all the electric equipment stops and the operation stops when the operation Z stop control is no longer necessary, and the safe operation Z stop control of the desalination device becomes possible. Operation Z stop control means 4 4 is connected to heat medium temperature detector 3 1 and raw water flow rate detector 3 2, and heat medium at the outlet of solar heat collector 1 detected by heat medium temperature detector 3 1. The temperature and raw water flow rate detected by the raw water flow rate detector 32 are input.
運転 Z停止制御手段 4 4は熱媒温度検出器 3 1の出力から太陽熱集熱器 1の出 口の熱媒温度を監視し、 該熱媒温度が所定の温度或いは所定の温度以下になるよ うにドライバー D 1 8を介して原水流量制御電動弁 V8 の開度を制御し、 原水 W の流入量を制御する。 このように、 太陽熱集熱器 1の出口の熱媒温度が所定の温 度或いは所定の温度以下になるように原水 Wの流入量を制御することにより、 太 陽熱集熱器 1の熱媒温度及び原水 Wの温度が高温になり太陽熱集熱器 1の集熱効 率が低下することを防ぐことができる。 また、 日射量に対して原水 wの流入量が 多過ぎて、 原水 wの温度及び熱媒温度が低温になり、 装置の淡水化の能力が低下 することも防止できる。  The operation Z stop control means 4 4 monitors the temperature of the heat medium at the outlet of the solar heat collector 1 from the output of the heat medium temperature detector 31 and determines that the heat medium temperature becomes a predetermined temperature or lower than a predetermined temperature. The opening degree of the raw water flow control motor-operated valve V8 is controlled via the driver D18 to control the inflow of raw water W. As described above, by controlling the inflow of the raw water W so that the temperature of the heat medium at the outlet of the solar heat collector 1 is equal to or lower than the predetermined temperature, the heat medium of the solar heat collector 1 is controlled. It is possible to prevent the temperature and the temperature of the raw water W from increasing to a high temperature, thereby reducing the heat collection efficiency of the solar heat collector 1. Also, it is possible to prevent the inflow of the raw water w from the amount of insolation being too large, so that the temperature of the raw water w and the temperature of the heating medium become low, and the desalination ability of the device is reduced.
運転/停止制御手段 4 4は原水流量検出器 3 2の出力から、 原水 Wの流入を監 視し、 太陽熱集熱器 1の熱媒温度が所定の温度以上である場合、 該原水流量検出 器 3 2で検出する原水 Wの流入量が所定の最低流量を常に確保するようにドライ バー D 1 8を介して原水流量制御電動弁 V8 の開度を制御する。 このように熱媒 温度が所定の温度以上である場合、 原水 Wの流入量を所定の最低流量を常に確保 することにより原水 Wの過濃縮を防止することができる。  The operation / stop control means 4 4 monitors the inflow of the raw water W from the output of the raw water flow detector 32, and when the heat medium temperature of the solar heat collector 1 is higher than a predetermined temperature, the raw water flow detector 3 The opening of the raw water flow control motor-operated valve V8 is controlled via the driver D18 so that the inflow amount of the raw water W detected in step 2 always keeps a predetermined minimum flow rate. As described above, when the heat medium temperature is equal to or higher than the predetermined temperature, overconcentration of the raw water W can be prevented by always securing the inflow of the raw water W to a predetermined minimum flow rate.
原水流量制御電動弁 V8 の開度を所定の開度にしたにも関わらず、 原水流量検 出器 3 2によって検出した原水 Wの流量が所定値以下である場合、 原水 Wの減断 水と判断し、 淡水化装置の運転を停止する。 具体的には、 運転 Z停止制御手段 4 4は制御線 4 6に停止信号を送り、 原水流量制御電動弁 V8を閉にする。  If the flow rate of the raw water W detected by the raw water flow detector 32 is equal to or less than the predetermined value, even though the opening of the raw water flow control motor-operated valve V8 is set to the predetermined opening, the raw water W is cut off. Judge and stop the operation of the desalination plant. Specifically, the operation Z stop control means 44 sends a stop signal to the control line 46 to close the raw water flow control electric valve V8.
また、 運転制御手段 4 4は淡水化装置の運転前、 濃縮原水貯留量検出器 3 4の 出力を監視し、 凝縮器 3— 1の下部タンク 3— 1 aの濃縮原水 Wの貯留量が所定 量以下の場合、 予め原水供給ポンプ 1 1及び原水流量制御電動弁 V8 により原水 Before the desalination unit is operated, the operation control means 4 4 monitors the output of the concentrated raw water storage amount detector 34 and determines the storage amount of the concentrated raw water W in the lower tank 3-1 a of the condenser 3-1. If the amount is less than the amount, the raw water is supplied by the raw water supply pump 11 and the raw water flow control electric valve V8 in advance.
Wを蒸発装置 2の脱気室 2 — 1及び各蒸発器に供給すると共に、 濃縮原水排出ポ ンプ 1 6及び濃縮原水流量制御電動弁 V 6により蒸発装置 2の濃縮水タンク 5内 の濃縮原水 Wを凝縮器 3— 1の下部タンク 3 _ 1 aに供給する。 これにより、 淡 水化装置の運転が開始した時に、 凝縮器の冷却水が不足し凝縮器の凝縮能力が低 下した状態で運転するということはなくなる。 W is supplied to the degassing chamber 2-1 of the evaporator 2 and each evaporator, and the concentrated raw water in the concentrated water tank 5 of the evaporator 2 is supplied by the concentrated raw water discharge pump 16 and the concentrated raw water flow control valve V 6. W is supplied to the lower tank 3_1a of the condenser 3-1. As a result, when the desalination unit starts operating, the cooling water of the condenser runs short and the condensation capacity of the condenser decreases. Driving in a lowered position will no longer occur.
また、 運転制御手段 4 4は濃縮原水貯留量検出器 3 4の出力から凝縮器 3— 1 の下部タンク 3— 1 a内の濃縮原水 Wが所定量に回復した場合、 原水供給ポンプ 1 1及び原水流量制御電動弁 V8 による原水 Wの蒸発装置 2への供給を停止する と共に、 濃縮原水排出ポンプ 1 6及び濃縮原水流量制御電動弁 V 6による濃縮原 水 Wの凝縮器 3— 1の下部タンク 3— 1 aへの供給を停止する。  In addition, the operation control means 4 4 supplies the raw water supply pump 11 and the raw water supply pump 11 when the concentrated raw water W in the lower tank 3-1 a of the condenser 3-1 returns to a predetermined amount from the output of the concentrated raw water storage amount detector 34. The supply of the raw water W to the evaporator 2 is stopped by the raw water flow control electric valve V8, and the concentrated raw water W is condensed by the concentrated raw water discharge pump 16 and the concentrated raw water flow control valve V6. The lower tank of the condenser 3-1 3-1 Stop supplying to a.
このように、 凝縮器 3— 1の下部タンク 3 - 1 aの濃縮原水が所定量に回復し た場合、 原水の蒸発装置 2への供給を停止すると共に、 濃縮原水 Wの凝縮器 3— 1の下部タンク 3— 1 aへの供給を停止するので、 必要以上に原水が淡水化装置 に供給されることなく、 太陽熱集熱器 1からの熱媒による原水加熱の温度上昇が 遅くなつたり、 原水温度低下による水蒸気の発生率、 即ち淡水化率の低下を防止 できる。  As described above, when the concentrated raw water in the lower tank 3-1a of the condenser 3-1 recovers to a predetermined amount, the supply of the raw water to the evaporator 2 is stopped, and the concentrated raw water W is condensed in the condenser 3-1. Since the supply to the lower tank 3-1 a is stopped, the raw water is not supplied to the desalination unit more than necessary, and the temperature rise of the raw water heating by the heat medium from the solar heat collector 1 becomes slow. It is possible to prevent a decrease in the rate of generation of water vapor, that is, a rate of desalination due to a decrease in the temperature of raw water.
発明の利用可能性 Applicability of the invention
本発明は、 上記の如きものであり、 淡水化装置を当該装置独自の電源を用いて 適正に行うことがで、 砂漠など他の電源施設が無いようなところでも効率良く淡 水を製造することができる。  The present invention is as described above. A desalination apparatus can be appropriately performed using a power source unique to the apparatus, and can efficiently produce fresh water even in a place where there is no other power supply facility such as a desert. Can be.

Claims

請求の範囲 The scope of the claims
1 . 淡水化装置であって、  1. A desalination plant,
太陽熱集熱器と、  Solar collectors,
原水を太陽熱集熱器からの熱で加熱することにより当該原水から水蒸気を発生 させる蒸発装置と、  An evaporator that generates steam from the raw water by heating the raw water with heat from the solar collector;
前記蒸発装置内で加熱された原水から発生した水蒸気を当該蒸発装置から受け 入れ凝縮させて蒸留水とするための凝縮器と、  A condenser for receiving water vapor generated from raw water heated in the evaporator from the evaporator and condensing it into distilled water;
前記蒸発装置内の蒸発空間及び凝縮器内の凝縮空間を大気圧以下に減圧する真 空装置と、  A vacuum device for reducing the evaporation space in the evaporator and the condensation space in the condenser to below atmospheric pressure;
当該淡水化装置における前記真空装置などの電動機器を駆動するための電力を 供給する太陽電池等の電源を備える電力供給回路と、  A power supply circuit including a power supply such as a solar cell that supplies power for driving an electric device such as the vacuum device in the desalination apparatus;
電源の発電量が所定量以下に低下したときに、 前記電動機器への電力供給を、 優先順位をつけて、 停止する制御装置と  A control device that prioritizes and stops the power supply to the electric device when the power generation amount of the power supply falls below a predetermined amount;
を有することを特徴とする淡水化装置。  A desalination apparatus comprising:
2 . 請求項 1に記載の淡水化装置において、 2. The desalination apparatus according to claim 1,
前記電動機器として、 凝縮器で作られた蒸留水を排出するための淡水排出ボン プと、 前記濃縮原水を排出するための濃縮原水排出ポンプとを有し、  The electric equipment includes a freshwater discharge pump for discharging distilled water produced by a condenser, and a concentrated raw water discharge pump for discharging the concentrated raw water,
前記制御装置が、 電源の発電量を検出する発電量検出装置を有し、  The control device has a power generation amount detection device that detects a power generation amount of a power supply,
前記制御装置は、 前記発電量検出装置が前記電源の発電量が所定量以下に低下 したことを検出した場合、 前記真空装置を、 前記淡水排出ポンプ及び濃縮原水排 水ポンプよりも先に停止させるようにしたことを特徴とする淡水化装置。  The control device, when the power generation amount detection device detects that the power generation amount of the power supply has decreased to a predetermined amount or less, stops the vacuum device before the fresh water discharge pump and the concentrated raw water discharge pump. A desalination apparatus characterized in that:
3 . 請求項 2に記載の淡水化装置において、  3. The desalination apparatus according to claim 2,
前記発電量検出装置が、 前記真空装置への電力供給停止の後に、 前記発電量が 更に低下することを検出した場合、 前記淡水排出ポンプへの電力供給を、 濃縮原 水排出ポンプよりも先に停止させるようにしたことを特徴とする淡水化装置。 When the power generation amount detection device detects that the power generation amount further decreases after the power supply to the vacuum device is stopped, the power supply to the freshwater discharge pump is performed earlier than the concentrated raw water discharge pump. A desalination apparatus characterized by being stopped.
4 . 請求項 3に記載の淡水化装置において、 4. The desalination apparatus according to claim 3,
前記制御装置は、 前記発電量検出装置が前記電源の発電量が所定量以下に低下 したことを検出した場合であって全ての電動機器が機能停止した後に、 その機能 を停止するように構成されるとともに、 前記電源の発電量が所定量以上に回復し たことが検出された場合には、 前記電動機器の機能復帰の前に、 その機能が復帰 されるようになされていることを特徴とする淡水化装置。 The control device is configured to stop the function after the power generation amount detection device detects that the power generation amount of the power supply has decreased to a predetermined amount or less and all the electric devices have stopped functioning. And the power generation amount of the power source recovers to a predetermined amount or more. The desalination apparatus is characterized in that, when it is detected, the function of the electric device is restored before the function of the electric device is restored.
5 . 請求項 1乃至 4のいずれかに記載の淡水化装置において、  5. The desalination apparatus according to any one of claims 1 to 4,
前記電源が太陽電池であり、 前記発電量検出装置は、 日射量を検出する日射計 又は、 前記太陽電池とは別途設けた小型太陽電池であることを特徴とする淡水化  The power supply is a solar cell, The power generation amount detection device is a pyranometer for detecting the amount of solar radiation, or a desalination characterized by a small solar cell provided separately from the solar cell
6 . 請求項 1乃至 5のいずれかに記載の淡水化装置において、 6. The desalination apparatus according to any one of claims 1 to 5,
当該淡水化装置が、 前記電動機器として、 原水の供給 ·排出管路ゃ淡水の排出 管路等で用いられる電動開閉バルブを有しており、 該電動開閉バルブは電力供給 停止が行われると、 機械的に閉止する電動バルブであることを特徴とする淡水化  The desalination apparatus has, as the electric device, an electric opening / closing valve used in a raw water supply / discharge line / a fresh water discharge line or the like. Desalination characterized by being a mechanically closed electric valve
7 . 請求項 6に記載の淡水化装置において、 7. The desalination apparatus according to claim 6,
前記蒸発装置が、 複数の蒸発器を具備し、 該蒸発器が多重効用関係に接続され てなることを特徴とする淡水化装置。  The desalination apparatus, wherein the evaporator includes a plurality of evaporators, and the evaporators are connected in a multiple effect relationship.
8 . 太陽熱集熱器と、  8. Solar collectors,
蒸発装置と、  An evaporator,
該蒸発装置へ原水を供給する原水供給装置と、  A raw water supply device for supplying raw water to the evaporator,
該蒸発装置と前記太陽熱集熱器との間で熱媒を循環し、 太陽熱集熱器で加熱さ れた熱媒を蒸発装置内の原水の熱源とするための熱媒循環回路と、  A heat medium circulating circuit for circulating a heat medium between the evaporator and the solar heat collector, and using the heat medium heated by the solar heat collector as a heat source of raw water in the evaporator;
前記蒸発装置内で発生した水蒸気を当該蒸発装置から受け入れ凝縮させて蒸留 水とするための凝縮器と、  A condenser for receiving water vapor generated in the evaporator from the evaporator and condensing it into distilled water;
前記太陽熱集熱器から蒸発器へ入る熱媒の温度を検出する熱媒温度検出器と、 前記原水供給装置から供給される原水の流量を制御する原水流量制御器と、 前記原水流量制御器により蒸発装置へ供給する原水流量を制御して前記蒸発装 置へ供給される熱媒の温度が所定の温度或いは所定温度以下になるように制御す る制御装置を設けたことを特徴とする淡水化装置。  A heating medium temperature detector that detects a temperature of a heating medium that enters the evaporator from the solar heat collector, a raw water flow controller that controls a flow rate of raw water supplied from the raw water supply device, and a raw water flow controller. A desalination system comprising a control device for controlling the flow rate of raw water supplied to the evaporator so as to control the temperature of the heat medium supplied to the evaporator to a predetermined temperature or lower than a predetermined temperature. apparatus.
9 . 請求項 8に記載の淡水化装置において、  9. The desalination apparatus according to claim 8,
前記制御装置は、 前記蒸発装置へ供給される熱媒温度が所定の温度以上である 場合、 同蒸発装置へ供給される原水流量が所定の最低流量を常に確保するように 原水流量制御器を制御することを特徴とする淡水化装置。 When the temperature of the heating medium supplied to the evaporator is equal to or higher than a predetermined temperature, the control device always ensures that a flow rate of the raw water supplied to the evaporator has a predetermined minimum flow rate. A desalination apparatus characterized by controlling a raw water flow controller.
1 0 . 請求項 9に記載の淡水化装置において、  10. The desalination apparatus according to claim 9,
前記原水流量制御器は、 電動弁を有し、  The raw water flow controller has an electric valve,
前記制御装置は、 原水流量検出器を備え、 該検出器が、 前記電動弁が所定の開 度になったにもかかわらず、 前記蒸発装置へ供給される原水流量が所定値以下で あることを検出した場合、 原水減断水と判断し、 淡水化装置の運転を停止するこ とを特徴とする淡水化装置。  The control device includes a raw water flow rate detector, and the detector determines that a raw water flow rate supplied to the evaporator is equal to or less than a predetermined value even though the electric valve is at a predetermined opening. A desalination plant characterized by determining that raw water is cut off when detected, and stopping the operation of the desalination plant.
1 1 . 太陽熱集熱器と、  1 1. Solar collector and
原水を太陽熱集熱器からの熱で加熱することにより当該原水から水蒸気を発生 させる蒸発装置と、  An evaporator that generates steam from the raw water by heating the raw water with heat from the solar collector;
該蒸発装置へ原水を供給する原水供給装置と、  A raw water supply device for supplying raw water to the evaporator,
前記蒸発装置内で発生した水蒸気を当該蒸発装置から受け入れ凝縮させて蒸留 水とするための凝縮器と、  A condenser for receiving water vapor generated in the evaporator from the evaporator and condensing it into distilled water;
原水供給装置から供給されて前記蒸発装置内を通され加熱されて水蒸気を発生 して濃縮された原水を貯留する濃縮原水貯留槽と、  A concentrated raw water storage tank that stores raw water that is supplied from a raw water supply device, passes through the evaporator, is heated, generates steam, and stores concentrated raw water;
該濃縮原水貯留槽内の濃縮原水貯留量を検出する濃縮原水貯留量検出器と、 を有し、 前記凝縮器が、 該濃縮原水貯留槽の濃縮原水を当該凝縮器の冷却水と して使用するようになされており、  A concentrated raw water storage amount detector for detecting the concentrated raw water storage amount in the concentrated raw water storage tank, wherein the condenser uses the concentrated raw water in the concentrated raw water storage tank as cooling water for the condenser. It is made to
当該淡水化装置の運転前、 前記濃縮原水貯留量検出器により検出される濃縮原 水貯留量が所定量以下の場合、 予め前記原水供給装置により原水を前記蒸発器に 供給すると共に、 前記蒸発装置を通された原水を前記濃縮原水貯留槽に供給する ことにより前記貯留量が前記所定量になるようにする制御装置を設けたことを特 徵とする淡水化装置。  Before the operation of the desalination device, when the concentrated raw water storage amount detected by the concentrated raw water storage amount detector is equal to or less than a predetermined amount, raw water is supplied to the evaporator in advance by the raw water supply device, and the evaporating device is A desalination apparatus, comprising: a control device for supplying the raw water passed through to the concentrated raw water storage tank so that the storage amount becomes the predetermined amount.
1 2 . 請求項 1 1に記載の淡水化装置において、  1 2. The desalination apparatus according to claim 11,
前記凝縮器に前記濃縮原水貯留槽を設けると共に、 前記蒸発器から濃縮原水を 該濃縮原水貯留槽に供給する濃縮原水排出ポンプを設け、 前記濃縮原水貯留量検 出器により検出される濃縮原水貯留量が所定量以下の場合、 前記制御装置は該濃 縮原水排出ポンプを作動するようにしたことを特徴とする淡水化装置。  The concentrated raw water storage tank is provided in the condenser, and a concentrated raw water discharge pump that supplies concentrated raw water from the evaporator to the concentrated raw water storage tank is provided, and the concentrated raw water storage detected by the concentrated raw water storage amount detector is provided. The desalination apparatus, wherein when the amount is equal to or less than a predetermined amount, the control device operates the concentrated raw water discharge pump.
1 3 . 太陽熱集熱器と、 原水を太陽熱集熱器からの熱で加熱することにより当該 原水から水蒸気を発生させる蒸発装置と、 前記蒸発装置内で加熱された原水から 発生した水蒸気を当該蒸発装置から受け入れ凝縮させて蒸留水とするための凝縮 器と、 前記蒸発装置内の蒸発空間及び凝縮器内の凝縮空間を大気圧以下に減圧す る真空装置と、 当該淡水化装置における前記真空装置などの電動機器を駆動する ための電力を供給する太陽電池等の電源を備える電力供給回路とを有する淡水化 装置の制御方法であって、 1 3. The solar heat collector and the raw water are heated by the heat from the solar heat collector. An evaporator for generating water vapor from the raw water, a condenser for receiving the water vapor generated from the raw water heated in the evaporator from the evaporator and condensing it into distilled water; an evaporating space in the evaporator; A vacuum device for reducing the condensing space in the condenser to an atmospheric pressure or less, and a power supply circuit including a power supply such as a solar cell for supplying electric power for driving an electric device such as the vacuum device in the desalination device. A method for controlling a desalination apparatus, comprising:
電源の発電量が所定量以下に低下したときに、 前記電動機器を、 優先順位をつ けて停止することを特徴とする淡水化装置の制御方法。  A method of controlling a desalination apparatus, wherein when the amount of power generated by a power supply decreases to a predetermined amount or less, the electric devices are stopped in a priority order.
1 4 . 請求項 1 3に記載の淡水化装置の制御方法において、  14. The method for controlling a desalination apparatus according to claim 13,
淡水化装置が前記電動機器として、 凝縮器で作られた蒸留水を排出するための 淡水排出ポンプと、 前記濃縮原水を排出するための濃縮原水排出ポンプとを有し ており、 当該制御方法が、  The desalination apparatus has, as the electric equipment, a freshwater discharge pump for discharging distilled water produced by a condenser, and a concentrated raw water discharge pump for discharging the concentrated raw water. ,
前記電源の発電量が所定量以下に低下したことを検出する工程と、  A step of detecting that the power generation amount of the power supply has dropped below a predetermined amount,
前記真空装置への電力供給を、 前記淡水排出ポンプ及び濃縮原水排水ポンプよ りも先に停止させる工程と  Stopping the power supply to the vacuum device before the freshwater discharge pump and the concentrated raw water drainage pump;
を有することを特徴とする淡水化装置の制御方法。  A method for controlling a desalination apparatus, comprising:
1 5 . 請求項 1 4に記載の淡水化装置の制御方法において、  15. In the method for controlling a desalination apparatus according to claim 14,
前記真空装置への電力供給停止の後に、 前記発電量が更に低下することを検知 した場合、 前記淡水排出ポンプへの電力供給を、 濃縮原水排出ポンプよりも先に 停止させるようにしたことを特徵とする淡水化装置の制御方法。  After the power supply to the vacuum device is stopped, when it is detected that the power generation amount further decreases, the power supply to the freshwater discharge pump is stopped before the concentrated raw water discharge pump. A method for controlling a desalination apparatus.
1 6 . 請求項 1 5に記載の淡水化装置の制御方法において、  16. The method for controlling a desalination plant according to claim 15,
前記電源の発電量が所定量以下に低下したことを検出した場合であつて全ての 電動機器が機能停止した後に、 前記制御装置の機能を停止するようにするととも に、 前記電源の発電量が所定量以上に回復したことが検出された場合には、 前記 電動機器の機能復帰の前に、 当該制御装置の機能を復帰するようにしたことを特 徴とする淡水化装置の制御方法。  When it is detected that the power generation amount of the power supply has decreased to a predetermined amount or less, the function of the control device is stopped after all the electric devices have stopped functioning, and the power generation amount of the power supply is A method for controlling a desalination device, characterized in that when it is detected that the electric device has recovered to a predetermined amount or more, the function of the control device is restored before the function of the electric device is restored.
PCT/JP2001/002784 2000-03-31 2001-03-30 Water desalting apparatus WO2001072639A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001244680A AU2001244680A1 (en) 2000-03-31 2001-03-30 Water desalting apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000-96839 2000-03-31
JP2000096837A JP4140677B2 (en) 2000-03-31 2000-03-31 Desalination equipment
JP2000-96840 2000-03-31
JP2000096840A JP4112772B2 (en) 2000-03-31 2000-03-31 Desalination equipment
JP2000096839A JP4112771B2 (en) 2000-03-31 2000-03-31 Desalination equipment
JP2000-96837 2000-03-31

Publications (1)

Publication Number Publication Date
WO2001072639A1 true WO2001072639A1 (en) 2001-10-04

Family

ID=27342913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002784 WO2001072639A1 (en) 2000-03-31 2001-03-30 Water desalting apparatus

Country Status (2)

Country Link
AU (1) AU2001244680A1 (en)
WO (1) WO2001072639A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071305A (en) * 2013-01-14 2013-05-01 上海理工大学 Vacuum tube type solar solution regenerator
CN105540706A (en) * 2015-08-07 2016-05-04 朱虹斐 Precise distillation water purifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939301A (en) * 1982-08-26 1984-03-03 Oriental Metal Seizo Kk System for controlling supply amount of liquid to be concentrated in multistage concentrating apparatus
JPH02102777A (en) * 1988-10-12 1990-04-16 Mitsubishi Electric Corp Seawater desalination device
JPH0557273A (en) * 1991-07-02 1993-03-09 Taiyo Kagaku:Kk Waste liquid concentrator
JPH09223809A (en) * 1996-02-16 1997-08-26 Ebara Corp Environment control equipment
JP2000325945A (en) * 1999-05-19 2000-11-28 Ebara Corp Device for desalting salt water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939301A (en) * 1982-08-26 1984-03-03 Oriental Metal Seizo Kk System for controlling supply amount of liquid to be concentrated in multistage concentrating apparatus
JPH02102777A (en) * 1988-10-12 1990-04-16 Mitsubishi Electric Corp Seawater desalination device
JPH0557273A (en) * 1991-07-02 1993-03-09 Taiyo Kagaku:Kk Waste liquid concentrator
JPH09223809A (en) * 1996-02-16 1997-08-26 Ebara Corp Environment control equipment
JP2000325945A (en) * 1999-05-19 2000-11-28 Ebara Corp Device for desalting salt water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071305A (en) * 2013-01-14 2013-05-01 上海理工大学 Vacuum tube type solar solution regenerator
CN105540706A (en) * 2015-08-07 2016-05-04 朱虹斐 Precise distillation water purifier

Also Published As

Publication number Publication date
AU2001244680A1 (en) 2001-10-08

Similar Documents

Publication Publication Date Title
JP5788235B2 (en) Steam generator
SE540118C2 (en) Method and apparatus for reducing or eliminating the lowering of the supply air temperature during the defrosting of an evaporator by an air treatment unit
JP2005259494A (en) Fuel cell cogeneration system
JP4139597B2 (en) Desalination equipment
JP3215489B2 (en) Fuel cell waste heat utilization system and control method thereof
WO2001072639A1 (en) Water desalting apparatus
JP4140677B2 (en) Desalination equipment
CN110878974A (en) Heat source tower system control method
JP4926298B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
KR101078070B1 (en) Hot and cool water, heating and cooling heat-pump system
JP3712036B2 (en) Salt water desalination equipment
CN114105240A (en) Solar energy distillation sea water desalination
JP4112772B2 (en) Desalination equipment
JP4112771B2 (en) Desalination equipment
JP5891443B2 (en) Fuel cell system and operation method thereof
JP2019158173A (en) Heat pump type steam generation system
JPH07317649A (en) Solar power generating device and power generating method
JP3223231B2 (en) Seawater desalination equipment
JP3574611B2 (en) Exhaust heat recovery system
JP5743489B2 (en) Water treatment system
JP2019158176A (en) Heat pump type steam generation system
WO2011004790A1 (en) Liquid evaporation-type cooling device
JP3700256B2 (en) Heat pump bath purification system
JP2000325946A (en) Device for desalting salt water
JPH0567356B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase