JP3700256B2 - Heat pump bath purification system - Google Patents

Heat pump bath purification system Download PDF

Info

Publication number
JP3700256B2
JP3700256B2 JP16405496A JP16405496A JP3700256B2 JP 3700256 B2 JP3700256 B2 JP 3700256B2 JP 16405496 A JP16405496 A JP 16405496A JP 16405496 A JP16405496 A JP 16405496A JP 3700256 B2 JP3700256 B2 JP 3700256B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
water
hot water
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16405496A
Other languages
Japanese (ja)
Other versions
JPH109667A (en
Inventor
竹司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP16405496A priority Critical patent/JP3700256B2/en
Publication of JPH109667A publication Critical patent/JPH109667A/en
Application granted granted Critical
Publication of JP3700256B2 publication Critical patent/JP3700256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はヒートポンプによる風呂浄化システムに関するものである。
【0002】
【従来の技術】
従来、この種の風呂浄化システムは特開平7−214053号公報に示すものがある。以下、その構成について図13を参照しながら説明する。図13に示すように、浄化殺菌筒61は、殺菌作用を有する紫外線ランプ62と、光励起触媒63と、セラミックボール64とを備えている。光励起触媒63は紫外線の照射により殺菌および脱臭作用を有する。セラミックボール64は、光励起触媒63の周囲に設けられ、微生物を繁殖させて有機物の分解をする。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のような構成では、紫外線ランプ62の耐久時間が短いため、ランプ交換が必要となる。また、交換寿命時間を長くするには、1日の照射時間を少なくする必要がある。しかし、その場合には殺菌効果が低下する恐れがある。
【0004】
本発明は上記課題を解決するもので、紫外線ランプを使わずに高温殺菌をおこなうとともに機器の耐久性向上をはかり、かつ入浴時に高温湯が浴槽へ入水することを防止し、快適性向上をはかることを目的とするものである。
【0005】
【課題を解決するための手段】
本発明は上記目的を達成するため、浴槽と、浴槽水を循環する循環ポンプと、熱源を有する加熱用熱交換器と、温調熱交換器と、夫々前記した浴槽、循環ポンプ、加熱用熱交換器、温調熱交換器の4要素を有する風呂循環回路に設けた濾過手段と、圧縮機と、凝縮器と、減圧装置と、前記温調熱交換器と熱交換関係を有する水冷蒸発器と、前記加熱用熱交換器の出口流体温度を検出する温度検知手段と、前記温度検知手段の信号に基づき前記循環ポンプの流量を制御する制御手段と、前記水冷蒸発器と並列に設けた空気熱源蒸発器と、加熱用熱交換器の出口に設けられ、第1信号と第1信号より低温の第2信号を発生する温度検知手段と、風呂保温運転手段と、前記風呂保温運転手段の信号を受けて、冷媒の蒸発作用を前記空気熱源蒸発器へ切替えるとともに前記温度検知手段の第2信号で循環ポンプの流量を制御する運転制御手段を備えたものである。
【0006】
従って、浴槽の水は熱源によって加熱用熱交換器で加熱されるのであるが、その際に出口温度は浴槽水の雑菌が死ぬ予め設定された温度となるように、制御手段によって循環ポンプの流量制御が行われる。そして加熱用熱交換器から流出した高温の湯は温調熱交換器に流入する。
【0007】
ここで圧縮機の低圧低温側の吸入冷媒ガスが流れる水冷蒸発器に熱を奪われて、温度を下げて濾過手段に流入し、浴槽にもどり、入浴時に高温湯が浴槽へ入水することなく浄化殺菌した入浴水を浴槽に注入でき、所期の目的を達成するものである。
【0008】
また、本発明は前記する目的を達成するために、浴槽と、循環ポンプと、加熱用熱交換器と、温調熱交換器の4要素を有する風呂循環回路と、圧縮機と、前記加熱用熱交換器と熱交換関係を有する凝縮器と、減圧装置と、前記温調熱交換器と熱交換関係を有する水冷蒸発器と、前記水冷蒸発器と並列に設けた空気熱源蒸発器と、前記凝縮器と並列に設けた給湯熱交換器と、前記給湯熱交換器と熱交換をおこなう水熱交換器と、貯湯槽と、前記貯湯槽の下部から前記水熱交換器ならびに前記貯湯槽の上部に水を循環する給湯循環ポンプと、浴槽水の水を交換するための水交換運転手段と、前記水交換運転手段の信号を受けて、冷媒の凝縮作用を前記凝縮器から前記給湯熱交換器に切替えるとともに冷媒の蒸発作用を前記水冷蒸発器へ切替える切替え制御手段とを備えたものである。
【0009】
従って、浴槽の水を取り替える場合には、先ず水交換運転手段に信号が入力され、その信号は切替え制御手段に送られる。そして、冷媒の凝縮作用を凝縮器から給湯熱交換器に切替え、また冷媒の蒸発作用を前記水冷蒸発器へ切替える制御が行われる。
【0010】
そして、浴槽の残湯は循環ポンプによって、加熱用熱交換器を通り、温調熱交換器に流入する。その際に、残湯は水冷蒸発器を流れる低温の液冷媒に吸熱され、温度低下し、浴槽に返る。
【0011】
一方、水冷蒸発器でガス化した冷媒は圧縮機に吸入され、ここで圧縮されて高温高圧ガスとなり、給湯熱交換器に流入する。そして貯湯槽の下方から送られてきた低温の水を水熱交換器で加熱し、貯湯槽の上部に貯湯する。よって、浴槽の残湯エネルギーは貯湯運転時の圧縮機の吸熱源として利用できる。従って、浴槽の入れ替え時に浴槽残湯エネルギーを有効に活用することができる。
【0012】
【発明の実施の形態】
本発明は、請求項1記載のように、浴槽、循環ポンプ、加熱用熱交換器ならびに温調熱交換器とで構成する風呂循環回路に濾過手段を設け、圧縮機と、凝縮器と、減圧装置と、前記加熱用熱交換器の出口流体温度を検出する温度検知手段と、前記温度検知手段の信号に基づき前記循環ポンプの流量を制御する制御手段と、水冷蒸発器と並列に設けた空気熱源蒸発器と、前記加熱用熱交換器の出口に設けられ、第1信号と第1信号より低温の第2信号を発生する温度検知手段と、風呂保温運転手段と、前記風呂保温運転手段の信号を受けて、冷媒の蒸発作用を前記空気熱源蒸発器へ切替えるとともに前記温度検知手段の第2信号で前記循環ポンプの流量を制御する運転制御手段を備えるヒートポンプ風呂浄化システムとすることにより、浴槽の水は熱源によって加熱用熱交換器で加熱される。その際に、出口温度は浴槽水の雑菌が死ぬ予め設定された温度となるように、制御手段によって循環ポンプの流量制御がおこなわれる。そして、加熱用熱交換器から流出した高温の湯は温調熱交換器に流入する。ここで、圧縮機の低圧低温側の吸入冷媒ガスが流れる水冷蒸発器に熱を奪われて、温度を下げて濾過手段に流入し、浴槽にもどるため、入浴時に高温湯が浴槽に入水することがない。
【0013】
また、浄化殺菌運転時から予約外で緊急に入浴する場合には、先ず風呂保温運転手段に入力され、その信号を受けて、運転制御手段は冷媒の蒸発作用を水冷蒸発器から空気熱源蒸発器へ切替える。そして、加熱用熱交換器の出口温度を第1信号の高温殺菌温度から低温の第2信号となるように循環ポンプの流量制御をおこなう。よって、温調熱交換器での湯温低下はなくなり、また加熱温度は低くなるため、圧縮機での加熱能力は増加するとともに高効率運転となり、風呂保温運転時の省エネルギー化をはかることができる。
【0014】
また本発明は請求項に記載のように、浴槽と、循環ポンプと、加熱用熱交換器と、温調熱交換器の4要素を有する風呂循環回路と、圧縮機と、前記加熱用熱交換器と熱交換関係を有する凝縮器と、減圧装置と、前記温調熱交換器と熱交換関係を有する水冷蒸発器と、前記水冷蒸発器と並列に設けた空気熱源蒸発器と、前記凝縮器と並列に設けた給湯熱交換器と、前記給湯熱交換器と熱交換をおこなう水熱交換器と、貯湯槽と、前記貯湯槽の下部から前記水熱交換器ならびに前記貯湯槽の上部に水を循環する給湯循環ポンプと、浴槽水の水を交換するための水交換運転手段と、前記水交換運転手段の信号を受けて、冷媒の凝縮作用を前記凝縮器から前記給湯熱交換器に切替えるとともに冷媒の蒸発作用を前記水冷蒸発器へ切替える切替え制御手段とを備えたものである。
【0015】
この構成によると、浴槽の水を取り替える場合には、先ず水交換運転手段に信号が入力され、その信号は切替え制御手段に送られる。そして、冷媒の凝縮作用を凝縮器から給湯熱交換器に切り替え、また冷媒の蒸発作用を前記水冷蒸発器へ切替える制御がおこなわれ、浴槽の残湯は循環ポンプによって、加熱用熱交換器を通り、温調熱交換器に流入する。その際に、残湯は水冷蒸発器を流れる低温の液冷媒に吸熱され、温度低下し、浴槽に返る。一方、水冷蒸発器でガス化した冷媒は圧縮機に吸入され、ここで圧縮されて高温高圧ガスとなり、給湯熱交換器に流入する。そして、貯湯槽の下部から送られてきた低温の水を水熱交換器で加熱し、貯湯槽の上部に貯湯する。よって、浴槽の残湯エネルギーは貯湯運転時の圧縮機の吸熱源として利用できる。従って、浴槽水の入れ替え時に浴槽残湯エネルギーを有効活用することができる。
【0016】
また本発明は請求項記載のように、温調熱交換器出口の流体温度を検出する温度検知手段と、前記温度検知手段の信号を受けて冷媒の蒸発作用を前記水冷蒸発器から前記空気熱源蒸発器に切り替える切替え制御手段とを備えるようにできる。そしてかかる場合は、浴槽の残湯は水冷蒸発器で吸熱され、温度低下する。この運転が継続されると風呂循環回路系の残湯温度はしだいに温度低下し、凍結温度に達する。その際に、温度検知手段は温調熱交換器出口の流体温度を検出し、その信号を切替え制御手段に発信する。そして、切替え制御手段は冷媒の蒸発作用を水冷蒸発器から空気熱源蒸発器へ切り替える。そして、冷媒は大気熱を吸熱して貯湯運転を継続する。よって、浴槽残湯エネルギーを活用する場合において、風呂循環回路系の循環ポンプおよび配管などが凍結することもなく、機器の信頼性は向上する。
【0017】
また本発明は請求項記載のように、水冷蒸発器の上口冷媒温度を検出する冷媒温度検知手段と、外気温度検知手段と、前記冷媒温度検知手段の信号と前記外気温度検知手段の信号を比較した結果に基づき、冷媒の蒸発作用を前記水冷蒸発器か前記空気熱源蒸発器かを選択して切替える切替え制御手段を備える構成とすることができる。
【0018】
そしてこの構成によると残湯を吸熱源とした貯湯運転中に、切替え制御手段は冷媒温度検知手段の信号と外気温度検知手段の信号を受けて比較する。そして、残湯を圧縮機の吸熱源として利用した方が高効率の場合には、継続して冷媒の蒸発作用を水冷蒸発器でおこなう。逆に、外気の空気を吸熱源として利用した方が高効率の場合には、冷媒の蒸発作用を空気熱源蒸発器でおこなうように切り替える。よって、貯湯運転時に効率のよい熱源を選択して運転するため、高効率化をはかることができる。
【0019】
また本発明は請求項記載のように、空気熱源蒸発器の入口冷媒温度を検出する冷媒温度検知手段と、前記冷媒温度検知手段の信号を受けて冷媒の蒸発作用を前記空気熱源蒸発器から水冷蒸発器に切り替える切替え制御手段を備える構成とすることができる。
【0020】
この場合においては、冬季厳寒時の貯湯運転において、空気熱源蒸発器で冷媒の蒸発作用をおこなう場合に、着霜が生じていることを冷媒温度検知手段が検知し、その信号を切替え制御手段に送る。そして、切替え制御手段は冷媒の蒸発作用を空気熱源蒸発器から水冷蒸発器へ切り替え、浴槽の残湯を吸熱源として貯湯運転を継続する。よって、圧縮機は外気温度より高温の浴槽の残湯を吸熱源として貯湯運転を継続することができるため、冬季着霜条件下での貯湯運転時の高効率化をはかることができる。
【0021】
また、本発明は請求項記載のように、水熱交換器の出口流体温度を検出する温度検知手段と、前記温度検知手段の信号に基づき、前記給湯循環ポンプの流量を可変するポンプ制御手段と、運転開始時は冷媒の凝縮作用を前記凝縮器でおこない、その後、所定時間経過後あるいは前記圧縮機の出口冷媒温度が所定温度に達した後に、冷媒の凝縮作用を前記給湯熱交換器へ切替える運転制御手段を備える構成とすることができる。
【0022】
この構成にして実施した場合には、運転制御手段は運転開始時においては、冷媒の凝縮作用を凝縮器でおこなう制御をする。そして、運転立ち上げ開始とともに圧縮機の出口冷媒温度は上昇しはじめる。そのため、凝縮器で加熱される水は所定温度より低い状態で流出し、その後、圧縮機の出口冷媒温度が上昇して安定すると加熱される水温も所定湯温が得られるようになり、運転制御手段は運転開始から所定時間経過後、あるいは圧縮機の出口冷媒温度を検知して、冷媒の凝縮作用を凝縮器から給湯熱交換器へ切替える制御をおこなう。よって、貯湯運転時において、運転立ち上がり時に低温水が貯湯槽上部に流入するのを防止することができるため、貯湯槽内の残湯温度を下げることはない。
【0023】
また、本発明は請求項記載のように、水熱交換器の出口流体温度を検出する温度検知手段と、前記温度検知手段の信号に基づき、前記給湯循環ポンプの流量を可変するポンプ制御手段と、運転開始時は冷媒の凝縮作用を前記凝縮器でおこない、その後、所定時間経過後あるいは前記圧縮機の出口冷媒温度が所定温度に達した後に、冷媒の凝縮作用を前記給湯熱交換器へ切替える運転制御手段を備える構成とすることができる。
【0024】
そしてこの構成を備える実施をした場合には、入浴が終わる深夜時間帯において、運転の最初は第1の温度検知手段の信号に基づき、水熱交換器の出口流体温度が所定温度になるように、ポンプ制御手段は給湯循環ポンプの流量を可変する。そして、水熱交換器から流出する所定温度の湯が貯湯槽上部から貯湯されていく。この運転がくり返されて貯湯槽内の湯面はしだいに下がり、貯湯槽全体に高温湯が貯湯される。そして、高温湯が水熱交換器の入口に達すると、第2の温度検知手段が検出し、その信号に基づき切替え制御手段は冷媒の凝縮作用を給湯熱交換器から凝縮器へ切り替え、風呂の保温運転をおこなう。よって、深夜時間帯に貯湯運転と風呂保温運転をおこなう場合のシステム効率の向上をはかることができる。
【0025】
(実施例1)
以下、本発明の実施例1について図1を参照しながら説明する。図1において、1は浴槽、2は直流モータによる循環ポンプ、3は熱源4を有する加熱用熱交換器、5は温調熱交換器、6は濾過手段であり、浴槽1、循環ポンプ2、加熱用熱交換器3、温調熱交換器5からなる風呂循環回路に設けられている。7は圧縮機、8は凝縮器、9は減圧装置、10は水冷蒸発器であり、温調熱交換器5と熱交換関係を有する。11は温度検知手段であり、加熱用熱交換器3の出口流体温度を検出する。12は制御手段であり、温度検知手段11の信号に基づき循環ポンプ2の流量を制御する。
【0026】
つぎに、上記構成において動作を説明する。浴槽1の水は熱源4によって加熱用熱交換器3で加熱される。その際に、出口温度を温度検知手段11は検出し、その信号を制御手段12に送る。制御手段12は浴槽1の水の雑菌が死ぬ予め設定された温度となるように循環ポンプ2の流量制御をおこなう。つぎに、加熱用熱交換器3から流出した高温の湯は温調熱交換器5に流入する。ここで、水冷蒸発器10を流れる圧縮機7の低圧低温側の吸入冷媒ガスに熱を奪われて、温度を下げて濾過手段6に流入し、濾過された水が浴槽1にもどる。従って、紫外線ランプを具備することもなく殺菌浄化できる。また、浴槽水は高温で殺菌された後、適温に冷却されて、濾過され、浴槽にもどるため、高温にともなう浴槽の材質劣化はない。そして、入浴時に高温湯が浴槽にもどることもないため、快適な入浴ができる。尚、濾過手段6は浴槽1、循環ポンプ2、加熱用熱交換器3、温調熱交換器5からなる風呂循環回路のいずれに設けても同様の効果がある。
【0027】
(実施例2)
つぎに、本発明の実施例2について図2を参照しながら説明する。図2において、第1の実施例と同じ構成、動作するものについては、同一符号とし、説明を省略する。13は凝縮器であり、加熱用熱交換器3と熱交換関係を有する。
【0028】
つぎに、上記構成において動作を説明する。圧縮機7の高温高圧冷媒ガスは凝縮器13に流入し、凝縮熱を出して加熱用熱交換器3の水を加熱する。そして、凝縮液化した冷媒は減圧装置9で減圧されて水冷蒸発器10に流入し、ここで温調熱交換器5を流れる水から吸熱して蒸発ガス化し、圧縮機7にもどる。一方、加熱用熱交換器3で加熱された水は温調熱交換器5に流入し、冷却されて濾過手段6を通り、浴槽1にもどる。従って、圧縮機7の高温高圧冷媒ガスの凝縮熱を加熱用熱交換器3の熱源とするため、省エネルギーとなる。
【0029】
(実施例3)
つぎに、本発明の実施例3について図3を参照しながら説明する。図3において、実施例1、2と同じ構成、動作するものについては、同一符号とし、説明を省略する。14は殺菌タンクであり、上部は加熱用熱交換器3と下部は温調熱交換器5と接続されている。また、内部での流速を小さくするため、タンク径は大きくなっている。
【0030】
つぎに、上記構成において動作を説明する。加熱用熱交換器3から流出した高温湯は殺菌タンク14に流入し、殺菌タンク14内を低速で流れる。そのため、高温湯内の雑菌は長時間、高温環境下に置かれることになり、殺菌効果が向上する。
【0031】
(実施例4)
つぎに、本発明の実施例4について図4を参照しながら説明する。図4において、実施例1、2、3と同じ構成、動作するものについては、同一符号とし、説明を省略する。15は温度検知手段であり、濾過手段6の入口流体温度を検出する。16は制御手段であり、温度検知手段15の信号に基づき循環ポンプ2の流量を制御する。
【0032】
つぎに、上記構成において動作を説明する。濾過手段6に流入する流体温度を温度検知手段15が検出し、その信号が予め設定された設定温度になるように制御手段16は循環ポンプ2の流量を制御する。その際、濾過手段6に流入する流体温度は温調熱交換器5で冷却されて低温となっているため、濾過材の表面に堆積する水のぬめりの進行は遅い。よって、濾過性能は持続される。
【0033】
(実施例5)
つぎに、本発明の実施例5について図5を参照しながら説明する。図5において、実施例1、2、3、4と同じ構成、動作するものについては、同一符号とし、説明を省略する。17は空気熱源蒸発器であり、水冷蒸発器10と並列に設けられている。18は温度検知手段であり、加熱用熱交換器3の出口に設けられ、第1信号と第1信号より低温の第2信号を発生する。19は風呂保温運転手段、20は運転制御手段であり、風呂保温運転手段19の信号を受けて、冷媒の蒸発作用を空気熱源蒸発器17へ切替えるとともに温度検知手段18の第2信号で循環ポンプ2の流量を制御する。
【0034】
つぎに、上記構成において動作を説明する。浄化殺菌運転時から予約外で緊急に入浴する場合には、先ず風呂保温運転手段19に入力され、その信号を受けて、運転制御手段20は冷媒の蒸発作用を水冷蒸発器10から空気熱源蒸発器17へ切替える。そして、加熱用熱交換器3の出口温度を第1信号の高温殺菌温度から低温の第2信号となるように循環ポンプ2の流量制御をおこなう。よって、温調熱交換器5における湯温低下はなくなり、また加熱温度は低くなるため、圧縮機7の加熱能力増加とともに高効率運転となる。よって、風呂保温運転時の急速保温と省エネルギー化をはかることができる。
【0035】
(実施例6)
つぎに、本発明の実施例6について図6を参照しながら説明する。図6において、実施例1ないし5と同じ構成、動作するものについては、同一符号とし、説明を省略する。21は給湯熱交換器であり、凝縮器13と並列に設けられている。22は水熱交換器であり、給湯熱交換器21と熱交換関係を有する。23は貯湯槽、24は給湯循環ポンプであり、貯湯槽23の下部から水熱交換器22ならびに貯湯槽23の上部に水を循環する。25は温度検知手段であり、加熱用熱交換器3へ流入する流体温度を検出する。26は切替え制御手段であり、温度検知手段25の信号で冷媒の凝縮作用を凝縮器13か給湯熱交換器21のいずれかに切替える制御をおこなう。
【0036】
つぎに、上記構成において動作を説明する。浴槽1から流出する湯温を温度検知手段25が検出し、その信号を切替え制御手段26に送る。切替え制御手段26は温度検知手段25の信号が所定温度の信号に達すると、圧縮機7から流出した高温高圧の冷媒ガスが給湯熱交換器21へ流れるように切り替える。そして、圧縮機7の凝縮熱は水熱交換器22で貯湯槽1の下部から流れてきた低温水を加熱するのに利用され、加熱された湯は貯湯槽1の上部に貯湯される。また、浴槽1の湯温が所定温度以下に下がると、温度検知手段25は切替え制御手段26に信号を送り、圧縮機7から流出する高温高圧の冷媒ガスが凝縮器13へ流れるように切り替える。そして、浴槽1から送られてきた水を加熱用熱交換器3で加熱する。よって、浴槽の保温運転と貯湯槽への貯湯運転を効率的におこなうことができる。
【0037】
(実施例7)
つぎに、本発明の実施例7について図7を参照しながら説明する。図7において、実施例1ないし6と同じ構成、動作するものについては、同一符号とし、説明を省略する。27は水交換運転手段であり、浴槽1の水を取り替える際におこなう。28は切替え制御手段であり、水交換運転手段27の信号を受けて、冷媒の凝縮作用を凝縮器13から給湯熱交換器21に切替えるとともに冷媒の蒸発作用を水冷蒸発器10へ切替える。
【0038】
つぎに、上記構成において動作を説明する。浴槽1の水を取り替える場合には、先ず水交換運転手段27に信号が入力され、その信号は切替え制御手段28へ送られる。そして、冷媒の凝縮作用を凝縮器13から給湯熱交換器21へ切り替えるとともに冷媒の蒸発作用を水冷蒸発器10へ切替える制御がおこなわれる。そして、浴槽1の残湯は循環ポンプ2によって、加熱用熱交換器3を通り、温調熱交換器5に流入し、ここで、残湯は水冷蒸発器10を流れる低温の液冷媒に吸熱され、温度低下し、浴槽1に返る。一方、水冷蒸発器10で浴槽残湯熱を吸熱し、蒸発ガス化した冷媒は圧縮機7に吸入され、ここで圧縮されて高温高圧ガスとなり、給湯熱交換器21に流入する。そして、貯湯槽1の下部から送られてきた低温の水を水熱交換器22を介して加熱し、加熱された湯が貯湯槽1の上部に貯湯される。よって、浴槽の残湯エネルギーは貯湯運転時の圧縮機の吸熱源として利用できる。従って、浴槽水の入れ替え時に浴槽残湯エネルギーを有効活用することができる。
【0039】
(実施例8)
つぎに、本発明の実施例8について図8を参照しながら説明する。図8において、実施例1ないし8と同じ構成、動作するものについては、同一符号とし、説明を省略する。29は温度検知手段であり、温調熱交換器5の出口流体温度を検出する。30は切替え制御手段であり、温度検知手段29の信号を受けて冷媒の蒸発作用を水冷蒸発器10から空気熱源蒸発器17へ切り替える。
【0040】
つぎに、上記構成において動作を説明する。浴槽1の残湯は水冷蒸発器10で冷媒に吸熱され、温度低下する。この運転が継続されると風呂循環回路系の残湯温度はしだいに低下し、いずれ凍結温度に近づく。その際に、温度検知手段29は温調熱交換器5の出口の流体温度を検出し、その信号を切替え制御手段30に発信する。そして、切替え制御手段30は冷媒の蒸発作用を水冷蒸発器10から空気熱源蒸発器17へ切り替える。そして、冷媒は大気熱を吸熱して貯湯運転を継続する。よって、浴槽残湯エネルギーを活用する場合において、風呂循環回路系の循環ポンプ2および配管系などが凍結することもないため、機器の信頼性は向上する。
【0041】
(実施例9)
つぎに、本発明の実施例9について図9を参照しながら説明する。図9において、実施例1ないし8と同じ構成、動作するものについては、同一符号とし、説明を省略する。31は冷媒温度検知手段であり、水冷蒸発器10の入口に設けられ、冷媒温度を検出する。32は外気温度検知手段であり、外気温度を検出する。33は切替え制御手段であり、冷媒温度検知手段31の信号と外気温度検知手段32の信号を比較して、冷媒の蒸発作用を水冷蒸発器10か空気熱源蒸発器17かを選択して切替える。
【0042】
つぎに、上記構成において動作を説明する。残湯を吸熱源とした貯湯運転中において、切替え制御手段33は冷媒温度検知手段31の信号と外気温度検知手段32の信号を受けて比較する。残湯を圧縮機1の吸熱源として利用した方が高効率の場合には、例えば、現在の外気温度において大気熱を空気熱源蒸発器17で吸熱した場合の冷媒の蒸発温度を予測し(外気温度と蒸発温度の関係は事前に把握できている)、現在の残湯を吸熱源とした場合の冷媒温度検知手段31の信号から冷媒の蒸発温度を判断し、残湯を吸熱源とした場合の方が蒸発温度が高いとなった場合には、継続して冷媒の蒸発作用を水冷蒸発器10でおこなう。逆に、大気熱を吸熱源として利用した方が高効率の場合には、冷媒の蒸発作用を空気熱源蒸発器17でおこなうように切り替える。よって、貯湯運転時に効率のよい熱源を選択して運転するため、高効率化をはかることができる。
【0043】
(実施例10)
つぎに、本発明の実施例10について図10を参照しながら説明する。図10において、実施例1ないし9と同じ構成、動作するものについては、同一符号とし、説明を省略する。34は冷媒温度検知手段であり、空気熱源蒸発器17の入口に設けられ、冷媒温度を検出する。35は切替え制御手段であり、冷媒温度検知手段34の信号を受けて冷媒の蒸発作用を空気熱源蒸発器17から水冷蒸発器10へ切り替える制御をおこなう。
【0044】
つぎに、上記構成において動作を説明する。冬季厳寒時の貯湯運転において、空気熱源蒸発器17で冷媒の蒸発作用をおこなう場合に、着霜が生じる。それを冷媒温度検知手段34が検知し、その信号を切替え制御手段35に送る。そして、切替え制御手段35は冷媒の蒸発作用を空気熱源蒸発器17から水冷蒸発器10へ切り替える。よって、圧縮機7は外気温度より高温の浴槽1の残湯を吸熱源として貯湯運転を継続することができるため、冬季着霜条件下での貯湯運転時の高効率化をはかることができる。
【0045】
(実施例11)
つぎに、本発明の実施例11について図11を参照しながら説明する。図11において、実施例1ないし10と同じ構成、動作するものについては、同一符号とし、説明を省略する。36は給湯循環ポンプであり、DC電源などを用いて流量を可変することができる。37は温度検知手段であり、水熱交換器22の出口の流体温度を検出する。38はポンプ制御手段であり、温度検知手段37の信号に基づき、水熱交換器22の出口流体温度が所定温度となるように給湯循環ポンプ36の流量を可変する。39はクロックであり、運転開始から時間を計測する。40は冷媒温度検知手段であり、圧縮機7の出口冷媒温度を検出する。41は運転制御手段であり、運転開始時は冷媒の凝縮作用を凝縮器13でおこない、その後、クロック39の信号あるいは冷媒温度検知手段40の信号に基づき、冷媒の凝縮作用を給湯熱交換器21へ切替える制御をおこなう。
【0046】
つぎに、上記構成において動作を説明する。運転制御手段41は運転開始時においては、冷媒の凝縮作用を凝縮器13でおこなう制御をする。そして、運転立ち上げ開始とともに圧縮機7の出口の冷媒温度は上昇しはじめる。そのため、凝縮器13で加熱される水は所定温度より低い状態で流出し、その後、圧縮機7の出口の冷媒温度が上昇して安定すると加熱される水温も所定湯温が得られるようになる。そのため、運転制御手段41は運転開始から所定時間経過後をクロック39の信号に基づき、あるいは圧縮機7の出口の冷媒温度を検出する冷媒温度検知手段40の信号に基づき、冷媒の凝縮作用を凝縮器13から給湯熱交換器21へ切替える制御をおこなう。そして、水熱交換器22の出口の湯温が所定温度となるように、ポンプ制御手段38は給湯循環ポンプ36の流量を可変する。よって、貯湯運転時において、運転立ち上がり時に低温水が貯湯槽上部に流入するのを防止することができるため、貯湯槽内の残湯温度を下げることはない。
【0047】
(実施例12)
つぎに、本発明の実施例12について図12を参照しながら説明する。図12において、実施例1ないし11と同じ構成、動作するものについては、同一符号とし、説明を省略する。42は第1の温度検知手段であり、水熱交換器22の出口流体温度を検出する。43は第2の温度検知手段であり、水熱交換器22の入口流体温度を検出する。44はポンプ制御手段であり、第1の温度検知手段42の信号に基づき、給湯循環ポンプ36の流量を可変する。45は切替え制御手段であり、第2の温度検知手段43の信号に基づき、冷媒の凝縮作用を給湯熱交換器21から凝縮器13へ切り替える。
【0048】
つぎに、上記構成において動作を説明する。入浴が終わる深夜時間帯において、運転の最初は第1の温度検知手段42の信号に基づき、水熱交換器22の出口流体温度が所定温度になるように、ポンプ制御手段44は給湯循環ポンプ36の流量を可変する。そして、水熱交換器22から流出する所定温度の湯が貯湯槽23の上部から貯湯されていく。この運転がくり返されて貯湯槽23内の湯面はしだいに下がり、貯湯槽23全体に高温湯が貯湯される。そして、高温湯が水熱交換器22の入口に達すると、第2の温度検知手段43が検出し、その信号に基づき切替え制御手段45は冷媒の凝縮作用を給湯熱交換器21から凝縮器13へ切り替え、風呂の保温運転をおこなう。よって、深夜時間帯に先ず貯湯運転をおこない、朝方に風呂保温運転をおこなうため、深夜の浴槽からの放熱は少なくなるとともに朝の入浴ができる。よって、貯湯運転と風呂保温運転をおこなう場合のシステム効率の向上をはかることができる。尚、本発明の実施例では第2の温度検知手段43を水熱交換器22の出口に設けているが、貯湯槽23の所定貯湯量となる表面に設けても、同様の効果がある。この場合には、貯湯槽23に必要な湯量だけ貯湯運転し、風呂保温運転に切り替わる。
【0049】
【発明の効果】
以上の説明から明らかなように本発明のヒートポンプ風呂浄化システムによれば、次の効果を奏する。浴槽の水は制御手段によって、加熱用熱交換器で雑菌が死ぬ温度になるように、温度検知手段の信号に基づき循環ポンプの流量制御をおこなう。そして、加熱用熱交換器から流出する高温の湯は温調熱交換器に流入し、ここで、水冷蒸発器を流れる圧縮機の低温吸入冷媒ガスに熱を奪われて、温度を下げ、濾過手段で濾過されて、浴槽にもどる。従って、紫外線ランプを具備することもなく殺菌浄化できる。また、浴槽水は高温で殺菌された後、適温に冷却されて、濾過され、浴槽にもどるため、高温にともなう浴槽の材質劣化はない。そして、入浴時に高温湯が浴槽にもどることもないため、快適な入浴ができる。
【0050】
また、浄化殺菌運転時から予約外で緊急に入浴する場合には、先ず風呂保温運転手段に入力され、その信号を受けて、運転制御手段は冷媒の蒸発作用を水冷蒸発器から空気熱源蒸発器へ切替え、そして、加熱用熱交換器の出口温度を第1信号の高温殺菌温度から低温の第2信号となるように循環ポンプの流量制御をおこなう場合、温調熱交換器での湯温低下はなくなり、また加熱温度は低くなるため、圧縮機での加熱能力は増加するとともに高効率運転となる。よって、風呂保温運転時の省エネルギー化をはかることができる。
【0051】
また、浴槽の水を取り替える場合には、先ず水交換運転手段に信号が入力され、その信号は切替え制御手段に送られ、冷媒の凝縮作用を凝縮器から給湯熱交換器に切り替え、また冷媒の蒸発作用を前記水冷蒸発器へ切替える制御がおこなわれる。そして、浴槽の残湯は循環ポンプによって、加熱用熱交換器を通り、温調熱交換器に流入する。その際に、残湯は水冷蒸発器を流れる低温の液冷媒に吸熱され、温度低下し、浴槽に返る。一方、水冷蒸発器でガス化した冷媒は圧縮機に吸入され、ここで圧縮されて高温高圧ガスとなり、給湯熱交換器に流入する。そして、貯湯槽の下部から送られてきた低温の水を水熱交換器で加熱し、貯湯槽の上部に貯湯する場合、浴槽の残湯エネルギーは貯湯運転時の圧縮機の吸熱源として利用できる。従って、浴槽水の入れ替え時に浴槽残湯エネルギーを有効活用することができる。
【0052】
また、浴槽の残湯は水冷蒸発器で吸熱されるため、温度低下する。この運転が継続されると凍結温度に近づく。その際に、温度検知手段は温調熱交換器出口の流体温度を検出し、その信号を切替え制御手段に発信する。そして、切替え制御手段は冷媒の蒸発作用を水冷蒸発器から空気熱源蒸発器に切り替える場合、浴槽残湯エネルギーを活用する場合において、機器の信頼性が向上する。
【0053】
また、残湯を吸熱源とした貯湯運転中に、切替え制御手段は冷媒温度検知手段の信号と外気温度検知手段の信号を受けて比較する。そして、残湯を圧縮機の吸熱源として利用した方が高効率の場合には、継続して冷媒の蒸発作用を水冷蒸発器でおこなう。逆に、外気の空気を吸熱源として利用した方が高効率の場合には、冷媒の蒸発作用を空気熱源蒸発器でおこなうように切り替える場合、貯湯運転時の高効率化をはかることができる。
【0054】
また、冬季厳寒時の貯湯運転において、空気熱源蒸発器で冷媒の蒸発作用をおこなう場合に、着霜が生じ、それを冷媒温度検知手段が検知し、その信号を切替え制御手段に送る。そして、切替え制御手段は冷媒の蒸発作用を空気熱源蒸発器から水冷蒸発器へ切り替える場合、圧縮機は外気温度より高温の浴槽の残湯を吸熱源として貯湯運転を継続することができるため、冬季着霜条件下での貯湯運転時の高効率化をはかることができる。
【0055】
また、運転制御手段は運転開始時においては、冷媒の凝縮作用を凝縮器でおこない、運転開始から所定時間経過後、あるいは圧縮機の出口冷媒温度を検知して、冷媒の凝縮作用を凝縮器から給湯熱交換器へ切替える制御をおこなう場合、貯湯運転時において、運転立ち上がり時に低温水が貯湯槽上部に流入するのを防止することができるため、貯湯槽内の残湯温度を下げることはない。
【0056】
また、入浴が終わった後の深夜時間帯において、運転の最初は第1の温度検知手段の信号に基づき、水熱交換器の出口流体温度が所定温度になるように、ポンプ制御手段は給湯循環ポンプの流量を可変し、水熱交換器から流出する所定温度の湯が貯湯槽上部からしだいに貯湯され、貯湯槽全体に高温湯が貯湯され、高温湯が水熱交換器の入口に達すると、第2の温度検知手段が検出し、その信号に基づき切替え制御手段は冷媒の凝縮作用を給湯熱交換器から凝縮器へ切り替え、風呂の保温運転をおこなう場合、深夜時間帯に先ず貯湯運転をおこない、朝方に風呂保温運転をおこなうため、深夜の浴槽からの放熱は少なくなるとともに朝の入浴ができる。従って、深夜時間帯に貯湯運転と風呂保温運転をおこなう場合のシステム効率は向上する。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるヒートポンプ風呂浄化システムの構成図
【図2】 同実施例2におけるヒートポンプ風呂浄化システムの構成図
【図3】 同実施例3におけるヒートポンプ風呂浄化システムの構成図
【図4】 同実施例4におけるヒートポンプ風呂浄化システムの構成図
【図5】 同実施例5におけるヒートポンプ風呂浄化システムの構成図
【図6】 同実施例6におけるヒートポンプ風呂浄化システムの構成図
【図7】 同実施例7におけるヒートポンプ風呂浄化システムの構成図
【図8】 同実施例8におけるヒートポンプ風呂浄化システムの構成図
【図9】 同実施例9におけるヒートポンプ風呂浄化システムの構成図
【図10】 同実施例10におけるヒートポンプ風呂浄化システムの構成図
【図11】 同実施例11におけるヒートポンプ風呂浄化システムの構成図
【図12】 同実施例12におけるヒートポンプ風呂浄化システムの構成図
【図13】 従来例の風呂浄化システムの構成図
【符号の説明】
1 浴槽
2 循環ポンプ
3 加熱用熱交換器
4 熱源
5 温調熱交換器
6 濾過手段
7 圧縮機
8 凝縮器
9 減圧装置
10 水冷蒸発器
11、15、18、25、29、37 温度検知手段
12、16 制御手段
13 凝縮器
14 殺菌タンク
17 空気熱源蒸発器
19 風呂保温運転手段
20 運転制御手段
21 給湯熱交換器
22 水熱交換器
23 貯湯槽
24 給湯循環ポンプ
26、28、30、33、35、45 切替え制御手段
27 水交換運転手段
31、34、40 冷媒温度検知手段
32 外気温度検知手段
36 給湯循環ポンプ
38、44 ポンプ制御手段
39 クロック
41 運転制御手段
42 第1の温度検知手段
43 第2の温度検知手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bath purification system using a heat pump.
[0002]
[Prior art]
Conventionally, this type of bath purification system is disclosed in JP-A-7-214053. The configuration will be described below with reference to FIG. As shown in FIG. 13, the purification sterilization cylinder 61 includes an ultraviolet lamp 62 having a sterilizing action, a photoexcitation catalyst 63, and a ceramic ball 64. The photoexcitation catalyst 63 has a sterilization and deodorizing action by irradiation with ultraviolet rays. The ceramic ball 64 is provided around the photoexcitation catalyst 63 and propagates microorganisms to decompose organic matter.
[0003]
[Problems to be solved by the invention]
However, in the configuration as described above, since the durability time of the ultraviolet lamp 62 is short, it is necessary to replace the lamp. Further, in order to increase the replacement life time, it is necessary to reduce the irradiation time per day. However, in that case, there is a possibility that the sterilizing effect is lowered.
[0004]
The present invention solves the above-mentioned problems, and performs high-temperature sterilization without using an ultraviolet lamp, improves the durability of the equipment, prevents hot water from entering the bathtub at the time of bathing, and improves comfort. It is for the purpose.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a bathtub, a circulation pump for circulating the bathtub water, a heat exchanger for heating having a heat source, a temperature control heat exchanger, and the above-described bathtub, circulation pump, and heating heat, respectively. Filtration means, compressor, condenser, decompressor, and water-cooled evaporator having a heat exchange relationship with the temperature control heat exchanger, provided in a bath circulation circuit having four elements of an exchanger and a temperature control heat exchanger Temperature detecting means for detecting the outlet fluid temperature of the heating heat exchanger, and control means for controlling the flow rate of the circulation pump based on a signal from the temperature detecting means An air heat source evaporator provided in parallel with the water-cooled evaporator, a temperature detection means provided at the outlet of the heat exchanger for heating, and generating a first signal and a second signal lower in temperature than the first signal, and bath insulation An operation control means for receiving a signal from the operation means and the bath heat insulation operation means, switching the refrigerant evaporating action to the air heat source evaporator, and controlling the flow rate of the circulation pump by the second signal of the temperature detection means. It is equipped with.
[0006]
Therefore, the water in the bathtub is heated by the heat exchanger by the heat source, and the flow rate of the circulation pump is controlled by the control means so that the outlet temperature becomes a preset temperature at which the germs of the bathtub water die. Control is performed. And the hot water which flowed out from the heat exchanger for heating flows into a temperature control heat exchanger.
[0007]
Here, heat is taken away by the water-cooled evaporator through which the refrigerant gas sucked on the low-pressure and low-temperature side of the compressor flows, lowers the temperature, flows into the filtering means, returns to the bathtub, and the hot water is purified without entering the bathtub at the time of bathing Sterilized bathing water can be poured into the bathtub to achieve the intended purpose.
[0008]
Moreover, in order to achieve the above-described object, the present invention provides a bath circulation circuit having four elements of a bathtub, a circulation pump, a heating heat exchanger, and a temperature control heat exchanger, a compressor, and the heating A condenser having a heat exchange relationship with a heat exchanger, a decompression device, a water-cooled evaporator having a heat exchange relationship with the temperature control heat exchanger, an air heat source evaporator provided in parallel with the water-cooled evaporator, A hot water heat exchanger provided in parallel with the condenser, a water heat exchanger that performs heat exchange with the hot water heat exchanger, a hot water storage tank, and an upper portion of the water heat exchanger and the hot water tank from the lower part of the hot water storage tank A hot water supply circulation pump for circulating water, water exchange operation means for exchanging the water of the bath water, and a signal of the water exchange operation means to receive the condensing action of the refrigerant from the condenser to the hot water supply heat exchanger And switching the refrigerant evaporation action to the water-cooled evaporator. It is obtained by a example control unit.
[0009]
Therefore, when replacing the water in the bathtub, first, a signal is input to the water exchange operation means, and the signal is sent to the switching control means. And the control which switches the condensation action of a refrigerant | coolant from a condenser to a hot water supply heat exchanger, and switches the evaporation action of a refrigerant | coolant to the said water-cooled evaporator is performed.
[0010]
And the hot water of a bathtub passes with the heat exchanger for a heating with a circulation pump, and flows in into a temperature control heat exchanger. At that time, the remaining hot water is absorbed by the low-temperature liquid refrigerant flowing through the water-cooled evaporator, the temperature drops, and returns to the bathtub.
[0011]
On the other hand, the refrigerant gasified by the water-cooled evaporator is sucked into the compressor, where it is compressed to become high-temperature and high-pressure gas and flows into the hot water supply heat exchanger. And the low temperature water sent from the lower part of a hot water tank is heated with a water heat exchanger, and hot water is stored in the upper part of a hot water tank. Therefore, the remaining hot water energy of the bathtub can be used as a heat absorption source of the compressor during hot water storage operation. Therefore, it is possible to effectively utilize the remaining bath water energy when replacing the bathtub.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a bath circulation circuit comprising a bathtub, a circulation pump, a heat exchanger for heating, and a temperature control heat exchanger as described in claim 1, provided with a filtering means, a compressor, a condenser, An apparatus, temperature detecting means for detecting an outlet fluid temperature of the heating heat exchanger, and control means for controlling the flow rate of the circulation pump based on a signal from the temperature detecting means; An air heat source evaporator provided in parallel with the water-cooled evaporator; temperature detection means for generating a first signal and a second signal lower in temperature than the first signal; An operation control means is provided for receiving a signal from the operation means and the bath heat insulation operation means, switching the refrigerant evaporating action to the air heat source evaporator, and controlling the flow rate of the circulation pump by the second signal of the temperature detection means. By setting it as a heat pump bath purification system, the water of a bathtub is heated with the heat exchanger for a heating with a heat source. At that time, the flow rate control of the circulation pump is performed by the control means so that the outlet temperature becomes a preset temperature at which the germs of the bath water die. And the hot water which flowed out from the heat exchanger for heating flows into a temperature control heat exchanger. Here, heat is taken away by the water-cooled evaporator through which the suction refrigerant gas on the low-pressure and low-temperature side of the compressor flows, and the temperature is lowered to flow into the filtering means and return to the bathtub, so that hot water enters the bathtub when taking a bath. There is no.
[0013]
Also, When urgently taking a bath outside the reservation from the time of the purification sterilization operation, first, it is input to the bath heat insulation operation means, and upon receiving the signal, the operation control means switches the evaporation action of the refrigerant from the water-cooled evaporator to the air heat source evaporator. . Then, the flow rate of the circulation pump is controlled so that the outlet temperature of the heat exchanger for heating changes from the high temperature sterilization temperature of the first signal to the low temperature of the second signal. Therefore, there is no decrease in the hot water temperature in the temperature control heat exchanger, and the heating temperature is lowered, so that the heating capacity in the compressor is increased and the operation is highly efficient, and energy saving can be achieved during the bath warming operation. .
[0014]
The invention also claims 2 As described in the above, the heat exchange relationship between the bath, the circulation pump, the heating heat exchanger, the bath circulation circuit having four elements of the temperature control heat exchanger, the compressor, and the heating heat exchanger. A condenser, a decompression device, a water-cooled evaporator having a heat exchange relationship with the temperature control heat exchanger, an air heat source evaporator provided in parallel with the water-cooled evaporator, and a hot water supply provided in parallel with the condenser A heat exchanger, a water heat exchanger that exchanges heat with the hot water supply heat exchanger, a hot water storage tank, and a hot water supply circulation pump that circulates water from the lower part of the hot water storage tank to the upper part of the water heat exchanger and the hot water storage tank And a water exchange operation means for exchanging the water of the bath water and a signal from the water exchange operation means, and the refrigerant condensing action is switched from the condenser to the hot water supply heat exchanger and the refrigerant evaporating action is performed. Switching control means for switching to the water-cooled evaporator. That.
[0015]
According to this configuration, when replacing the water in the bathtub, a signal is first input to the water exchange operation means, and the signal is sent to the switching control means. Then, the refrigerant condensing action is switched from the condenser to the hot water supply heat exchanger, and the refrigerant evaporating action is switched to the water-cooled evaporator, and the remaining hot water in the bathtub passes through the heating heat exchanger by a circulation pump. , Flows into the temperature control heat exchanger. At that time, the remaining hot water is absorbed by the low-temperature liquid refrigerant flowing through the water-cooled evaporator, the temperature drops, and returns to the bathtub. On the other hand, the refrigerant gasified by the water-cooled evaporator is sucked into the compressor, where it is compressed to become high-temperature and high-pressure gas and flows into the hot water supply heat exchanger. And the low temperature water sent from the lower part of a hot water tank is heated with a water heat exchanger, and hot water is stored in the upper part of a hot water tank. Therefore, the remaining hot water energy of the bathtub can be used as a heat absorption source of the compressor during hot water storage operation. Therefore, it is possible to effectively utilize the remaining bath water energy when replacing the bath water.
[0016]
The invention also claims 3 As described, the temperature detection means for detecting the fluid temperature at the outlet of the temperature control heat exchanger, and the switching control for switching the evaporation action of the refrigerant from the water-cooled evaporator to the air heat source evaporator in response to a signal from the temperature detection means Means. In such a case, the remaining hot water in the bathtub is absorbed by the water-cooled evaporator and the temperature drops. If this operation is continued, the remaining hot water temperature in the bath circulation circuit system gradually decreases and reaches the freezing temperature. At that time, the temperature detection means detects the fluid temperature at the outlet of the temperature control heat exchanger, and sends the signal to the switching control means. The switching control means switches the refrigerant evaporating action from the water-cooled evaporator to the air heat source evaporator. Then, the refrigerant absorbs atmospheric heat and continues the hot water storage operation. Therefore, when utilizing the bathtub remaining hot water energy, the circulation pump and piping of the bath circulation circuit system are not frozen, and the reliability of the equipment is improved.
[0017]
The invention also claims 4 As described, based on the result of comparing the refrigerant temperature detection means for detecting the refrigerant temperature of the upper mouth of the water-cooled evaporator, the outside air temperature detection means, the signal of the refrigerant temperature detection means and the signal of the outside air temperature detection means, It is possible to adopt a configuration comprising switching control means for selecting and switching the evaporating action of the refrigerant between the water-cooled evaporator and the air heat source evaporator.
[0018]
According to this configuration, during the hot water storage operation using the remaining hot water as the heat absorption source, the switching control means receives and compares the signal of the refrigerant temperature detection means and the signal of the outside air temperature detection means. And when it is more efficient to use the remaining hot water as a heat absorption source of the compressor, the refrigerant is continuously evaporated by the water-cooled evaporator. On the contrary, when it is more efficient to use outside air as the heat absorption source, the refrigerant is switched so that the evaporation of the refrigerant is performed by the air heat source evaporator. Therefore, since efficient heat source is selected and operated at the time of hot water storage operation, high efficiency can be achieved.
[0019]
The invention also claims 5 As described, the refrigerant temperature detection means for detecting the inlet refrigerant temperature of the air heat source evaporator, and the switching control for switching the evaporation action of the refrigerant from the air heat source evaporator to the water-cooled evaporator in response to a signal from the refrigerant temperature detection means It can be set as the structure provided with a means.
[0020]
In this case, in the hot water storage operation in the cold winter season, when the refrigerant evaporates with the air heat source evaporator, the refrigerant temperature detecting means detects that frost is formed, and the signal is sent to the switching control means. send. Then, the switching control means switches the refrigerant evaporating action from the air heat source evaporator to the water-cooled evaporator, and continues the hot water storage operation using the remaining hot water in the bathtub as the heat absorption source. Therefore, since the compressor can continue the hot water storage operation using the remaining hot water in the bathtub higher than the outside air temperature as the heat absorption source, it is possible to achieve high efficiency during the hot water storage operation under winter frosting conditions.
[0021]
The invention also claims 6 As described, the temperature detection means for detecting the outlet fluid temperature of the water heat exchanger, the pump control means for varying the flow rate of the hot water circulation pump based on the signal of the temperature detection means, and the refrigerant at the start of operation. A configuration including operation control means for performing a condensing action in the condenser and then switching the refrigerant condensing action to the hot water heat exchanger after a predetermined time has elapsed or the outlet refrigerant temperature of the compressor has reached a predetermined temperature; can do.
[0022]
When implemented with this configuration, the operation control means controls the refrigerant to be condensed by the condenser at the start of operation. And the refrigerant | coolant exit refrigerant | coolant temperature begins to rise with a start-up of a driving | operation. Therefore, the water heated by the condenser flows out in a state lower than the predetermined temperature, and after that, when the outlet refrigerant temperature of the compressor rises and stabilizes, the heated water temperature can also obtain the predetermined hot water temperature, and the operation control The means performs control to switch the refrigerant condensing action from the condenser to the hot water supply heat exchanger after a predetermined time has elapsed from the start of operation or by detecting the refrigerant temperature at the outlet of the compressor. Therefore, at the time of hot water storage operation, low temperature water can be prevented from flowing into the upper part of the hot water storage tank at the start of operation, so that the remaining hot water temperature in the hot water storage tank is not lowered.
[0023]
The invention also claims 7 As described, the temperature detection means for detecting the outlet fluid temperature of the water heat exchanger, the pump control means for varying the flow rate of the hot water circulation pump based on the signal of the temperature detection means, and the refrigerant at the start of operation. A configuration including operation control means for performing a condensing action in the condenser and then switching the refrigerant condensing action to the hot water heat exchanger after a predetermined time has elapsed or the outlet refrigerant temperature of the compressor has reached a predetermined temperature; can do.
[0024]
And in the case of carrying out with this configuration, in the late-night time zone when bathing ends, the first operation is based on the signal of the first temperature detection means so that the outlet fluid temperature of the water heat exchanger becomes a predetermined temperature. The pump control means varies the flow rate of the hot water supply circulation pump. And the hot water of the predetermined temperature which flows out from a water heat exchanger is stored from the hot water storage tank upper part. This operation is repeated, and the hot water level in the hot water tank gradually decreases, and hot water is stored in the entire hot water tank. Then, when the hot water reaches the inlet of the water heat exchanger, the second temperature detecting means detects, and based on the signal, the switching control means switches the refrigerant condensing action from the hot water heat exchanger to the condenser, Keep warm. Therefore, it is possible to improve the system efficiency when the hot water storage operation and the bath heat insulation operation are performed during the midnight hours.
[0025]
(Example 1)
Hereinafter, Example 1 of the present invention will be described with reference to FIG. In FIG. 1, 1 is a bathtub, 2 is a circulation pump by a DC motor, 3 is a heat exchanger for heating having a heat source 4, 5 is a temperature control heat exchanger, 6 is a filtering means, and the bathtub 1, the circulation pump 2, It is provided in a bath circulation circuit comprising a heat exchanger 3 for heating and a temperature control heat exchanger 5. 7 is a compressor, 8 is a condenser, 9 is a decompression device, 10 is a water-cooled evaporator, and has a heat exchange relationship with the temperature control heat exchanger 5. Reference numeral 11 denotes temperature detection means for detecting the outlet fluid temperature of the heat exchanger 3 for heating. A control unit 12 controls the flow rate of the circulation pump 2 based on a signal from the temperature detection unit 11.
[0026]
Next, the operation in the above configuration will be described. The water in the bathtub 1 is heated by the heat source 3 by the heat source 4. At that time, the temperature detection means 11 detects the outlet temperature and sends the signal to the control means 12. The control means 12 controls the flow rate of the circulation pump 2 so as to reach a preset temperature at which miscellaneous bacteria in the bathtub 1 die. Next, the hot water flowing out from the heating heat exchanger 3 flows into the temperature control heat exchanger 5. Here, the intake refrigerant gas on the low-pressure and low-temperature side of the compressor 7 flowing through the water-cooled evaporator 10 is deprived of heat, flows down into the filtering means 6 at a reduced temperature, and the filtered water returns to the bathtub 1. Therefore, it can be sterilized and purified without an ultraviolet lamp. In addition, since the bath water is sterilized at a high temperature, cooled to an appropriate temperature, filtered, and returned to the bathtub, there is no deterioration of the bathtub material due to the high temperature. And since hot water does not return to the bathtub at the time of bathing, comfortable bathing can be performed. In addition, even if the filtering means 6 is provided in any of the bath circulation circuit which consists of the bathtub 1, the circulation pump 2, the heat exchanger 3 for heating, and the temperature control heat exchanger 5, it has the same effect.
[0027]
(Example 2)
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 2, the same configuration and operation as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. A condenser 13 has a heat exchange relationship with the heat exchanger 3 for heating.
[0028]
Next, the operation in the above configuration will be described. The high-temperature and high-pressure refrigerant gas of the compressor 7 flows into the condenser 13 and generates condensation heat to heat the water in the heat exchanger 3 for heating. Then, the condensed and liquefied refrigerant is decompressed by the decompression device 9 and flows into the water-cooled evaporator 10, where it absorbs heat from the water flowing through the temperature control heat exchanger 5 to evaporate and returns to the compressor 7. On the other hand, the water heated by the heating heat exchanger 3 flows into the temperature control heat exchanger 5, is cooled, passes through the filtering means 6, and returns to the bathtub 1. Accordingly, the heat of condensation of the high-temperature and high-pressure refrigerant gas of the compressor 7 is used as the heat source of the heat exchanger 3 for heating, thus saving energy.
[0029]
(Example 3)
Next, Embodiment 3 of the present invention will be described with reference to FIG. In FIG. 3, the same configuration and operation as those of the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted. 14 is a sterilization tank, the upper part is connected to the heat exchanger 3 for heating, and the lower part is connected to the temperature control heat exchanger 5. Further, the tank diameter is increased in order to reduce the internal flow rate.
[0030]
Next, the operation in the above configuration will be described. The hot water flowing out from the heat exchanger 3 for heating flows into the sterilization tank 14 and flows through the sterilization tank 14 at a low speed. Therefore, various germs in the hot water are left in a high temperature environment for a long time, and the sterilizing effect is improved.
[0031]
(Example 4)
Next, a fourth embodiment of the present invention will be described with reference to FIG. In FIG. 4, the same configuration and operation as those of the first, second, and third embodiments are denoted by the same reference numerals, and the description thereof is omitted. Reference numeral 15 denotes a temperature detecting means for detecting the inlet fluid temperature of the filtering means 6. Reference numeral 16 denotes a control means for controlling the flow rate of the circulation pump 2 based on a signal from the temperature detection means 15.
[0032]
Next, the operation in the above configuration will be described. The temperature detecting means 15 detects the temperature of the fluid flowing into the filtering means 6 and the control means 16 controls the flow rate of the circulation pump 2 so that the signal becomes a preset temperature. At that time, since the temperature of the fluid flowing into the filtering means 6 is cooled by the temperature control heat exchanger 5 and becomes a low temperature, the progress of slimming of water accumulated on the surface of the filter medium is slow. Therefore, the filtration performance is maintained.
[0033]
(Example 5)
Next, a fifth embodiment of the present invention will be described with reference to FIG. In FIG. 5, the same configuration and operation as those of the first, second, third, and fourth embodiments are denoted by the same reference numerals, and the description thereof is omitted. Reference numeral 17 denotes an air heat source evaporator, which is provided in parallel with the water-cooled evaporator 10. Reference numeral 18 denotes a temperature detecting means, which is provided at the outlet of the heating heat exchanger 3 and generates a first signal and a second signal having a temperature lower than that of the first signal. 19 is a bath heat insulation operation means, and 20 is an operation control means. Upon receiving a signal from the bath heat insulation operation means 19, the refrigerant evaporating action is switched to the air heat source evaporator 17, and a circulation pump is supplied by the second signal from the temperature detection means 18. The flow rate of 2 is controlled.
[0034]
Next, the operation in the above configuration will be described. In the case of urgent bathing outside of the reservation from the time of the purification sterilization operation, first, the signal is input to the bath heat retention operation means 19 and the operation control means 20 receives the signal and the operation control means 20 evaporates the refrigerant from the water-cooled evaporator 10 to the air heat source evaporation. Switch to device 17. Then, the flow rate of the circulation pump 2 is controlled so that the outlet temperature of the heat exchanger 3 for heating changes from the high temperature sterilization temperature of the first signal to the low temperature of the second signal. Therefore, the hot water temperature drop in the temperature control heat exchanger 5 is eliminated, and the heating temperature is lowered, so that the high-efficiency operation is performed as the heating capacity of the compressor 7 is increased. Therefore, rapid thermal insulation and energy saving can be achieved during the bath thermal insulation operation.
[0035]
(Example 6)
Next, Embodiment 6 of the present invention will be described with reference to FIG. In FIG. 6, the same configuration and operation as those of the first to fifth embodiments are denoted by the same reference numerals and description thereof is omitted. Reference numeral 21 denotes a hot water supply heat exchanger, which is provided in parallel with the condenser 13. A water heat exchanger 22 has a heat exchange relationship with the hot water supply heat exchanger 21. Reference numeral 23 denotes a hot water storage tank, and 24 denotes a hot water supply circulation pump, which circulates water from the lower part of the hot water storage tank 23 to the water heat exchanger 22 and the upper part of the hot water storage tank 23. Reference numeral 25 denotes a temperature detecting means for detecting the temperature of the fluid flowing into the heat exchanger 3 for heating. Reference numeral 26 denotes a switching control means, which controls to switch the refrigerant condensing action to either the condenser 13 or the hot water supply heat exchanger 21 by a signal from the temperature detecting means 25.
[0036]
Next, the operation in the above configuration will be described. The temperature detection means 25 detects the hot water temperature flowing out of the bathtub 1 and sends the signal to the switching control means 26. When the signal from the temperature detection means 25 reaches a signal at a predetermined temperature, the switching control means 26 switches so that the high-temperature and high-pressure refrigerant gas that has flowed out of the compressor 7 flows to the hot water supply heat exchanger 21. Then, the condensation heat of the compressor 7 is used to heat the low-temperature water flowing from the lower part of the hot water tank 1 by the water heat exchanger 22, and the heated hot water is stored in the upper part of the hot water tank 1. When the temperature of the hot water in the bathtub 1 falls below a predetermined temperature, the temperature detection means 25 sends a signal to the switching control means 26 and switches so that the high-temperature and high-pressure refrigerant gas flowing out from the compressor 7 flows to the condenser 13. And the water sent from the bathtub 1 is heated with the heat exchanger 3 for a heating. Therefore, the heat insulation operation of the bathtub and the hot water storage operation to the hot water tank can be efficiently performed.
[0037]
(Example 7)
Next, a seventh embodiment of the present invention will be described with reference to FIG. In FIG. 7, the same configuration and operation as those of the first to sixth embodiments are denoted by the same reference numerals, and the description thereof is omitted. 27 is a water exchange operation means, which is performed when the water in the bathtub 1 is replaced. 28 is a switching control means that receives the signal from the water exchange operating means 27 and switches the refrigerant condensing action from the condenser 13 to the hot water supply heat exchanger 21 and also switches the refrigerant evaporating action to the water-cooled evaporator 10.
[0038]
Next, the operation in the above configuration will be described. When replacing the water in the bathtub 1, first, a signal is input to the water exchange operation means 27, and the signal is sent to the switching control means 28. Then, control for switching the refrigerant condensing action from the condenser 13 to the hot water supply heat exchanger 21 and switching the refrigerant evaporating action to the water-cooled evaporator 10 is performed. Then, the remaining hot water in the bathtub 1 passes through the heating heat exchanger 3 and flows into the temperature control heat exchanger 5 by the circulation pump 2, where the remaining hot water absorbs heat into the low-temperature liquid refrigerant flowing in the water-cooled evaporator 10. The temperature drops and returns to the bathtub 1. On the other hand, the water-cooled evaporator 10 absorbs the residual hot water from the bath and the evaporated gas is sucked into the compressor 7 where it is compressed into high-temperature and high-pressure gas and flows into the hot water supply heat exchanger 21. And the low temperature water sent from the lower part of the hot water tank 1 is heated via the hydrothermal exchanger 22, and the heated hot water is stored in the upper part of the hot water tank 1. Therefore, the remaining hot water energy of the bathtub can be used as a heat absorption source of the compressor during hot water storage operation. Therefore, it is possible to effectively utilize the remaining bath water energy when replacing the bath water.
[0039]
(Example 8)
Next, an eighth embodiment of the present invention will be described with reference to FIG. In FIG. 8, the same configuration and operation as those of the first to eighth embodiments are denoted by the same reference numerals, and the description thereof is omitted. 29 is a temperature detection means, and detects the outlet fluid temperature of the temperature control heat exchanger 5. A switching control unit 30 receives the signal from the temperature detecting unit 29 and switches the evaporating action of the refrigerant from the water-cooled evaporator 10 to the air heat source evaporator 17.
[0040]
Next, the operation in the above configuration will be described. The remaining hot water in the bathtub 1 is absorbed by the refrigerant in the water-cooled evaporator 10 and the temperature drops. When this operation is continued, the remaining hot water temperature in the bath circulation circuit system gradually decreases and eventually approaches the freezing temperature. At that time, the temperature detection means 29 detects the fluid temperature at the outlet of the temperature control heat exchanger 5 and sends the signal to the switching control means 30. The switching control means 30 switches the refrigerant evaporating action from the water-cooled evaporator 10 to the air heat source evaporator 17. Then, the refrigerant absorbs atmospheric heat and continues the hot water storage operation. Therefore, when utilizing the remaining bath water energy, the circulation pump 2 and the piping system of the bath circulation circuit system are not frozen, so that the reliability of the device is improved.
[0041]
Example 9
Next, a ninth embodiment of the present invention will be described with reference to FIG. In FIG. 9, the same configuration and operation as those of the first to eighth embodiments are denoted by the same reference numerals, and description thereof is omitted. 31 is a refrigerant temperature detection means, which is provided at the inlet of the water-cooled evaporator 10 and detects the refrigerant temperature. Reference numeral 32 denotes outside air temperature detecting means for detecting the outside air temperature. Reference numeral 33 denotes switching control means, which compares the signal of the refrigerant temperature detection means 31 with the signal of the outside air temperature detection means 32 and selects and switches the evaporation action of the refrigerant between the water-cooled evaporator 10 and the air heat source evaporator 17.
[0042]
Next, the operation in the above configuration will be described. During the hot water storage operation using the remaining hot water as the heat absorption source, the switching control means 33 receives and compares the signal from the refrigerant temperature detection means 31 and the signal from the outside air temperature detection means 32. In the case where it is more efficient to use the remaining hot water as the heat absorption source of the compressor 1, for example, the evaporation temperature of the refrigerant when the atmospheric heat is absorbed by the air heat source evaporator 17 at the current outside air temperature is predicted (outside air The relationship between the temperature and the evaporation temperature is known in advance), when the evaporation temperature of the refrigerant is determined from the signal of the refrigerant temperature detection means 31 when the current remaining hot water is used as the heat absorption source, and the remaining hot water is used as the heat absorption source In the case where the evaporation temperature is higher, the refrigerant is continuously evaporated by the water-cooled evaporator 10. On the contrary, when it is more efficient to use the atmospheric heat as the heat absorption source, the refrigerant is switched so that the evaporation of the refrigerant is performed by the air heat source evaporator 17. Therefore, since efficient heat source is selected and operated at the time of hot water storage operation, high efficiency can be achieved.
[0043]
(Example 10)
Next, a tenth embodiment of the present invention will be described with reference to FIG. In FIG. 10, the same configuration and operation as those of the first to ninth embodiments are denoted by the same reference numerals, and the description thereof is omitted. Reference numeral 34 denotes refrigerant temperature detection means, which is provided at the inlet of the air heat source evaporator 17 and detects the refrigerant temperature. Reference numeral 35 denotes switching control means, which controls to switch the refrigerant evaporating action from the air heat source evaporator 17 to the water-cooled evaporator 10 in response to a signal from the refrigerant temperature detecting means 34.
[0044]
Next, the operation in the above configuration will be described. In hot water storage operation in the cold season in winter, frost formation occurs when the air heat source evaporator 17 evaporates the refrigerant. The refrigerant temperature detecting means 34 detects this and sends a signal to the switching control means 35. The switching control means 35 switches the refrigerant evaporating action from the air heat source evaporator 17 to the water-cooled evaporator 10. Therefore, since the compressor 7 can continue the hot water storage operation using the remaining hot water in the bathtub 1 higher than the outside air temperature as the heat absorption source, it is possible to increase the efficiency during the hot water storage operation under the winter frosting condition.
[0045]
(Example 11)
Next, Example 11 of the present invention will be described with reference to FIG. In FIG. 11, the same configuration and operation as those of the first to tenth embodiments are denoted by the same reference numerals, and the description thereof is omitted. A hot water supply circulation pump 36 can change the flow rate using a DC power source or the like. Reference numeral 37 denotes temperature detection means for detecting the fluid temperature at the outlet of the water heat exchanger 22. Reference numeral 38 denotes pump control means, which varies the flow rate of the hot water supply circulation pump 36 based on a signal from the temperature detection means 37 so that the outlet fluid temperature of the water heat exchanger 22 becomes a predetermined temperature. Reference numeral 39 denotes a clock, which measures time from the start of operation. Reference numeral 40 denotes refrigerant temperature detecting means for detecting the outlet refrigerant temperature of the compressor 7. Reference numeral 41 denotes an operation control means. At the start of operation, the condenser 13 performs the refrigerant condensing action, and then the refrigerant condensing action is based on the clock 39 signal or the refrigerant temperature detecting means 40 signal. Control to switch to.
[0046]
Next, the operation in the above configuration will be described. The operation control means 41 controls the condenser 13 to condense the refrigerant at the start of operation. And the refrigerant | coolant temperature of the exit of the compressor 7 begins to rise with a start-up of a driving | operation. Therefore, the water heated by the condenser 13 flows out in a state lower than the predetermined temperature, and then, when the refrigerant temperature at the outlet of the compressor 7 rises and stabilizes, the heated water temperature also obtains the predetermined hot water temperature. . Therefore, the operation control means 41 condenses the refrigerant condensing action based on the signal of the clock 39 after the elapse of a predetermined time from the start of the operation or based on the signal of the refrigerant temperature detection means 40 for detecting the refrigerant temperature at the outlet of the compressor 7. Control to switch from the water heater 13 to the hot water supply heat exchanger 21 is performed. The pump control means 38 varies the flow rate of the hot water supply circulation pump 36 so that the hot water temperature at the outlet of the water heat exchanger 22 becomes a predetermined temperature. Therefore, at the time of hot water storage operation, low temperature water can be prevented from flowing into the upper part of the hot water storage tank at the start of operation, so that the remaining hot water temperature in the hot water storage tank is not lowered.
[0047]
(Example 12)
Next, a twelfth embodiment of the present invention will be described with reference to FIG. In FIG. 12, the same configuration and operation as those of the first to eleventh embodiments are denoted by the same reference numerals, and the description thereof is omitted. Reference numeral 42 denotes first temperature detecting means for detecting the outlet fluid temperature of the water heat exchanger 22. 43 is a second temperature detecting means for detecting the inlet fluid temperature of the water heat exchanger 22. Reference numeral 44 denotes pump control means, which varies the flow rate of the hot water supply circulation pump 36 based on the signal from the first temperature detection means 42. 45 is a switching control means for switching the refrigerant condensing action from the hot water supply heat exchanger 21 to the condenser 13 based on the signal from the second temperature detecting means 43.
[0048]
Next, the operation in the above configuration will be described. In the late-night time when bathing ends, the pump control unit 44 starts the operation based on a signal from the first temperature detection unit 42 so that the outlet fluid temperature of the water heat exchanger 22 becomes a predetermined temperature. Varying the flow rate of Then, hot water at a predetermined temperature flowing out from the water heat exchanger 22 is stored from the upper part of the hot water storage tank 23. By repeating this operation, the hot water level in the hot water tank 23 gradually decreases, and hot water is stored in the entire hot water tank 23. Then, when the hot water reaches the inlet of the water heat exchanger 22, the second temperature detecting means 43 detects it, and based on the signal, the switching control means 45 causes the refrigerant condensing action from the hot water heat exchanger 21 to the condenser 13. Switch to, and keep the bath warm. Therefore, the hot water storage operation is performed first in the midnight hours, and the bath heat insulation operation is performed in the morning, so that heat radiation from the tub in the midnight is reduced and morning bathing is possible. Therefore, it is possible to improve system efficiency when performing hot water storage operation and bath heat insulation operation. In the embodiment of the present invention, the second temperature detecting means 43 is provided at the outlet of the water heat exchanger 22, but the same effect can be obtained by providing the second temperature detecting means 43 on the surface of the hot water storage tank 23 that has a predetermined amount of hot water. In this case, the hot water storage operation is performed for the amount of hot water required for the hot water storage tank 23, and the operation is switched to the bath heat insulation operation.
[0049]
【The invention's effect】
As is apparent from the above description, the heat pump bath purification system of the present invention has the following effects. The flow rate of the circulation pump is controlled by the control means based on the signal from the temperature detection means so that the water in the bathtub reaches a temperature at which various germs die in the heat exchanger for heating. Then, the hot water flowing out from the heat exchanger for heating flows into the temperature control heat exchanger, where the heat is taken away by the low-temperature suction refrigerant gas of the compressor flowing through the water-cooled evaporator, and the temperature is lowered and filtered. Filter by means and return to the bathtub. Therefore, it can be sterilized and purified without an ultraviolet lamp. In addition, since the bath water is sterilized at a high temperature, cooled to an appropriate temperature, filtered, and returned to the bathtub, there is no deterioration of the bathtub material due to the high temperature. And since hot water does not return to the bathtub at the time of bathing, comfortable bathing can be performed.
[0050]
Also, when bathing urgently outside the reservation from the purification sterilization operation, first input to the bath heat insulation operation means, receiving the signal, the operation control means from the water-cooled evaporator to the air heat source evaporator When the flow rate of the circulation pump is controlled so that the outlet temperature of the heat exchanger for heating changes from the high temperature sterilization temperature of the first signal to the low temperature of the second signal, the hot water temperature in the temperature control heat exchanger decreases. In addition, since the heating temperature is lowered, the heating capacity in the compressor is increased and the operation becomes highly efficient. Therefore, energy saving at the time of the bath heat insulation operation can be achieved.
[0051]
When the water in the bathtub is replaced, a signal is first input to the water exchange operation means, and the signal is sent to the switching control means to switch the refrigerant condensing action from the condenser to the hot water supply heat exchanger. Control to switch the evaporation action to the water-cooled evaporator is performed. And the hot water of a bathtub passes with the heat exchanger for a heating with a circulation pump, and flows in into a temperature control heat exchanger. At that time, the remaining hot water is absorbed by the low-temperature liquid refrigerant flowing through the water-cooled evaporator, the temperature drops, and returns to the bathtub. On the other hand, the refrigerant gasified by the water-cooled evaporator is sucked into the compressor, where it is compressed to become high-temperature and high-pressure gas and flows into the hot water supply heat exchanger. And when the low-temperature water sent from the lower part of the hot water tank is heated with a water heat exchanger and stored in the upper part of the hot water tank, the remaining hot water energy in the bathtub can be used as a heat sink for the compressor during hot water storage operation. . Therefore, it is possible to effectively utilize the remaining bath water energy when replacing the bath water.
[0052]
Moreover, since the remaining hot water in the bathtub is absorbed by the water-cooled evaporator, the temperature decreases. When this operation is continued, the freezing temperature is approached. At that time, the temperature detection means detects the fluid temperature at the outlet of the temperature control heat exchanger, and sends the signal to the switching control means. And the switching control means improves the reliability of the equipment when switching the evaporation of the refrigerant from the water-cooled evaporator to the air heat source evaporator, or when utilizing the residual hot water energy of the bathtub.
[0053]
Further, during the hot water storage operation using the remaining hot water as the heat absorption source, the switching control means receives and compares the signal of the refrigerant temperature detection means and the signal of the outside air temperature detection means. And when it is more efficient to use the remaining hot water as a heat absorption source of the compressor, the refrigerant is continuously evaporated by the water-cooled evaporator. On the other hand, when it is more efficient to use outside air as the heat absorption source, when switching the refrigerant evaporation operation to be performed by the air heat source evaporator, it is possible to increase the efficiency during hot water storage operation.
[0054]
Further, in the hot water storage operation during winter cold weather, when the refrigerant evaporates with the air heat source evaporator, frost formation occurs, which is detected by the refrigerant temperature detection means, and the signal is sent to the switching control means. When the switching control means switches the refrigerant evaporating action from the air heat source evaporator to the water-cooled evaporator, the compressor can continue the hot water storage operation using the remaining hot water in the bathtub higher than the outside air temperature as the heat absorption source. High efficiency during hot water storage operation under frosting conditions can be achieved.
[0055]
Further, the operation control means performs the refrigerant condensing action at the start of the operation with the condenser, and detects the refrigerant outlet refrigerant temperature after a predetermined time has elapsed from the start of the operation, or detects the refrigerant condensing action from the condenser. When performing control to switch to a hot water supply heat exchanger, it is possible to prevent low temperature water from flowing into the upper part of the hot water storage tank at the start of operation during the hot water storage operation, so that the remaining hot water temperature in the hot water storage tank is not lowered.
[0056]
In addition, in the late-night time zone after the bathing is completed, the pump control means circulates the hot water supply so that the outlet fluid temperature of the water heat exchanger becomes a predetermined temperature based on the signal of the first temperature detection means at the beginning of operation. When the flow rate of the pump is changed, hot water of a predetermined temperature flowing out from the water heat exchanger is gradually stored from the upper part of the hot water tank, hot water is stored in the entire hot water tank, and the hot water reaches the inlet of the water heat exchanger. When the second temperature detection means detects and the switching control means switches the refrigerant condensing action from the hot water supply heat exchanger to the condenser based on the signal, and performs the heat insulation operation of the bath, the hot water storage operation is first performed at midnight. Since the bath is kept warm in the morning, the heat from the bathtub at midnight is reduced and bathing in the morning is possible. Therefore, the system efficiency is improved when the hot water storage operation and the bath heat insulation operation are performed during the midnight hours.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a heat pump bath purification system in Embodiment 1 of the present invention.
FIG. 2 is a configuration diagram of a heat pump bath purification system according to the second embodiment.
FIG. 3 is a configuration diagram of a heat pump bath purification system according to the third embodiment.
FIG. 4 is a configuration diagram of a heat pump bath purification system according to the fourth embodiment.
FIG. 5 is a configuration diagram of a heat pump bath purification system according to the fifth embodiment.
FIG. 6 is a configuration diagram of a heat pump bath purification system according to the sixth embodiment.
7 is a configuration diagram of a heat pump bath purification system in Example 7. FIG.
FIG. 8 is a configuration diagram of a heat pump bath purification system according to the eighth embodiment.
FIG. 9 is a configuration diagram of a heat pump bath purification system according to the ninth embodiment.
10 is a configuration diagram of a heat pump bath purification system in Example 10. FIG.
FIG. 11 is a configuration diagram of a heat pump bath purification system in Example 11
12 is a configuration diagram of a heat pump bath purification system in Example 12. FIG.
FIG. 13 is a block diagram of a conventional bath purification system.
[Explanation of symbols]
1 Bathtub
2 Circulation pump
3 Heat exchanger for heating
4 heat sources
5 Temperature control heat exchanger
6 Filtration means
7 Compressor
8 Condenser
9 Pressure reducing device
10 Water-cooled evaporator
11, 15, 18, 25, 29, 37 Temperature detection means
12, 16 Control means
13 Condenser
14 Sterilization tank
17 Air heat source evaporator
19 Bath thermal insulation operation means
20 Operation control means
21 Hot water heat exchanger
22 Water heat exchanger
23 Hot water tank
24 Hot water circulation pump
26, 28, 30, 33, 35, 45 Switching control means
27 Water exchange operation means
31, 34, 40 Refrigerant temperature detection means
32 Outside temperature detection means
36 Hot water circulation pump
38, 44 Pump control means
39 clock
41 Operation control means
42 1st temperature detection means
43 Second temperature detection means

Claims (7)

浴槽と、浴槽水を循環する循環ポンプと、熱源を有する加熱用熱交換器と、温調熱交換器と、夫々前記した浴槽、循環ポンプ、加熱用熱交換器、温調熱交換器を有する風呂循環回路に設けた濾過手段と、圧縮機と、凝縮器と、減圧装置と、前記温調熱交換器と熱交換関係を有する水冷蒸発器と、前記加熱用熱交換器の出口流体温度を検出する温度検知手段と、前記温度検知手段の信号に基づき前記循環ポンプの流量を制御する制御手段と、前記水冷蒸発器と並列に設けた空気熱源蒸発器と、加熱用熱交換器の出口に設けられ、第1信号と第1信号より低温の第2信号を発生する温度検知手段と、風呂保温運転手段と、前記風呂保温運転手段の信号を受けて、冷媒の蒸発作用を前記空気熱源蒸発器へ切替えるとともに前記温度検知手段の第2信号で循環ポンプの流量を制御する運転制御手段を有するヒートポンプ風呂浄化システム。It has a bathtub, a circulation pump that circulates the bathtub water, a heat exchanger for heating having a heat source, a temperature control heat exchanger, and a bathtub, a circulation pump, a heat exchanger for heating, and a temperature control heat exchanger , respectively. Filter means provided in the bath circulation circuit, a compressor, a condenser, a decompression device, a water-cooled evaporator having a heat exchange relationship with the temperature control heat exchanger, and an outlet fluid temperature of the heating heat exchanger. Temperature detecting means for detecting, control means for controlling the flow rate of the circulation pump based on the signal of the temperature detecting means, an air heat source evaporator provided in parallel with the water-cooled evaporator, and an outlet of the heat exchanger for heating Temperature detection means for generating a first signal and a second signal lower in temperature than the first signal, a bath heat insulation operation means, and a signal from the bath heat insulation operation means, and the refrigerant evaporating action is caused by the air heat source evaporation. And the second signal of the temperature detecting means In the heat pump bath purification system having a driving control means for controlling the flow rate of the circulation pump. 浴槽と、循環ポンプと、加熱用熱交換器と、温調熱交換器の4要素を有する風呂循環回路と、圧縮機と、前記加熱用熱交換器と熱交換関係を有する凝縮器と、減圧装置と、前記温調熱交換器と熱交換関係を有する水冷蒸発器と、前記水冷蒸発器と並列に設けた空気熱源蒸発器と、前記凝縮器と並列に設けた給湯熱交換器と、前記給湯熱交換器と熱交換をおこなう水熱交換器と、貯湯槽と、前記貯湯槽の下部から前記水熱交換器および前記貯湯槽の上部に水を循環する給湯循環ポンプと、浴槽水の水を交換するための水交換運転手段と、前記水交換運転手段の信号を受けて、冷媒の凝縮作用を前記凝縮器から前記給湯熱交換器に切替えるとともに冷媒の蒸発作用を前記水冷蒸発器へ切替える切替え制御手段を備えたヒートポンプ風呂浄化システム。  Bath tub, circulation pump, heating heat exchanger, bath circulation circuit having four elements of temperature control heat exchanger, compressor, condenser having heat exchange relationship with heating heat exchanger, decompression A water-cooled evaporator having a heat exchange relationship with the apparatus, the temperature control heat exchanger, an air heat source evaporator provided in parallel with the water-cooled evaporator, a hot water supply heat exchanger provided in parallel with the condenser, A water heat exchanger that exchanges heat with the hot water heat exchanger, a hot water storage tank, a hot water supply circulation pump that circulates water from the lower part of the hot water tank to the upper part of the water heat exchanger and the hot water tank, and the water of the bath water In response to a signal from the water exchange operation means for exchanging the water and the water exchange operation means, the refrigerant condensing action is switched from the condenser to the hot water supply heat exchanger and the refrigerant evaporating action is switched to the water-cooled evaporator. Heat pump bath purification system with switching control means . 温調熱交換器の出口の流体温度を検出する温度検知手段と、前記温度検知手段の信号を受けて冷媒の蒸発作用を水冷蒸発器から空気熱源蒸発器に切替える切替え制御手段を有する請求項記載のヒートポンプ風呂浄化システム。A temperature detecting means for detecting the fluid temperature at the outlet of the temperature adjustment heat exchanger, according to claim 2 having a switching control means switching the evaporation action of refrigerant in response to a signal of said temperature sensing means to air-source evaporator from the water-cooled evaporator The heat pump bath purification system described. 水冷蒸発器の入口冷媒温度を検出する冷媒温度検知手段と、外気温度検知手段と、前記冷媒温度検知手段の信号と前記外気温度検知手段の信号を比較した結果に基づき、冷媒の蒸発作用を前記水冷蒸発器か前記空気熱源蒸発器かを選択して切替える切替え制御手段を有する請求項記載のヒートポンプ風呂浄化システム。Based on the result of comparing the refrigerant temperature detecting means for detecting the refrigerant temperature at the inlet of the water-cooled evaporator, the outside air temperature detecting means, the signal of the refrigerant temperature detecting means and the signal of the outside air temperature detecting means, the evaporating action of the refrigerant is The heat pump bath purification system according to claim 2 , further comprising switching control means for selecting and switching between the water-cooled evaporator and the air heat source evaporator. 空気熱源蒸発器の入口冷媒温度を検出する冷媒温度検知手段と、前記冷媒温度検知手段の信号を受けて冷媒の蒸発作用を前記空気熱源蒸発器から水冷蒸発器に切替える切替え制御手段を有する請求項記載のヒートポンプ風呂浄化システム。A refrigerant temperature detecting means for detecting an inlet refrigerant temperature of the air heat source evaporator, and a switching control means for receiving a signal from the refrigerant temperature detecting means and switching the evaporation action of the refrigerant from the air heat source evaporator to the water-cooled evaporator. 2. The heat pump bath purification system according to 2. 水熱交換器の出口流体温度を検出する温度検知手段と、前記温度検知手段の信号に基づき、給湯循環ポンプの流量を可変するポンプ制御手段と、運転開始時は冷媒の凝縮作用を凝縮器でおこない、その後、所定時間経過後あるいは圧縮機の出口冷媒温度が所定温度に達した後に、冷媒の凝縮作用を給湯熱交換器へ切替える運転制御手段を有する請求項記載のヒートポンプ風呂浄化システム。A temperature detecting means for detecting the outlet fluid temperature of the water heat exchanger, a pump control means for changing the flow rate of the hot water circulation pump based on the signal of the temperature detecting means, and a condenser for condensing refrigerant at the start of operation. 3. A heat pump bath purification system according to claim 2, further comprising operation control means for switching the refrigerant condensing action to a hot water supply heat exchanger after a predetermined time has elapsed or after the outlet refrigerant temperature of the compressor has reached a predetermined temperature. 水熱交換器の出口流体温度を検出する第1の温度検知手段と、前記水熱交換器の入口流体温度を検出する第2の温度検知手段と、前記第1の温度検知手段の信号に基づき、給湯循環ポンプの流量を可変するポンプ制御手段と、前記第2の温度検知手段の信号に基づき、冷媒の凝縮作用を給湯熱交換器から凝縮器へ切替える切替え制御手段を有する請求項記載のヒートポンプ風呂浄化システム。Based on the first temperature detecting means for detecting the outlet fluid temperature of the water heat exchanger, the second temperature detecting means for detecting the inlet fluid temperature of the water heat exchanger, and the signal of the first temperature detecting means. and pump control means for varying the flow rate of the hot water circulating pump, based on a signal of the second temperature detecting means, according to claim 2, further comprising a switching control means switching the condensing action of the refrigerant from the hot water supply heat exchanger to the condenser Heat pump bath purification system.
JP16405496A 1996-06-25 1996-06-25 Heat pump bath purification system Expired - Fee Related JP3700256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16405496A JP3700256B2 (en) 1996-06-25 1996-06-25 Heat pump bath purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16405496A JP3700256B2 (en) 1996-06-25 1996-06-25 Heat pump bath purification system

Publications (2)

Publication Number Publication Date
JPH109667A JPH109667A (en) 1998-01-16
JP3700256B2 true JP3700256B2 (en) 2005-09-28

Family

ID=15785921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16405496A Expired - Fee Related JP3700256B2 (en) 1996-06-25 1996-06-25 Heat pump bath purification system

Country Status (1)

Country Link
JP (1) JP3700256B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006045143A1 (en) * 2004-10-26 2006-05-04 Quantum Energy Technologies Pty Limited Control system for heat pump water heaters
JP5025220B2 (en) * 2006-10-12 2012-09-12 中国電力株式会社 Hot water circulation hot water supply system
JP5809857B2 (en) * 2011-06-24 2015-11-11 株式会社ガスター Auxiliary heating device

Also Published As

Publication number Publication date
JPH109667A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
KR100720165B1 (en) Heating System comprised of Refrigerating Cycle
EP1762799B1 (en) Air conditioner
US20080104978A1 (en) Circulation-Type Apparatus for Generating Drinking Water
CN200991638Y (en) Energy-saving type super-filtering film purified-water hot-cold waterbowl
CN101586857B (en) Heat pump type air conditioning system
JP3700256B2 (en) Heat pump bath purification system
JP2004116891A (en) Heat pump type hot water supply machine
JP3855695B2 (en) Heat pump water heater
JP2000213011A (en) Water purifier with dehumidifying function
JP3632306B2 (en) Heat pump bath water supply system
JP2001221501A (en) Heat pump hot-water supply system
JP4593698B2 (en) Water intake equipment
CN206410360U (en) A kind of air-conditioning water manufacturing system
CN106766369A (en) A kind of air-conditioning water manufacturing system
JP3632357B2 (en) Heat pump bath water supply system
KR100419342B1 (en) The utilization waste water of membrane filt water purifing system
JP3088613U (en) A cool / hot air heater that combines a water purifier and a humidifier
JP2001116357A (en) Heat pump type hot water supply device
KR101063983B1 (en) Rapid Cooling Drinking Machine
KR20020073311A (en) Cold and hot air conditioner with a water purifier and a humidifier
KR20000000006A (en) Offering system and device of drinking water and drinking tea in water purifier
JP5743489B2 (en) Water treatment system
JPH11118246A (en) Heat pump type hot water supply system for bath
JPH0783532A (en) Water treatment apparatus with cooling function
JP3588948B2 (en) Heat pump type bath hot water supply system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees