JP2001221501A - Heat pump hot-water supply system - Google Patents

Heat pump hot-water supply system

Info

Publication number
JP2001221501A
JP2001221501A JP2000028658A JP2000028658A JP2001221501A JP 2001221501 A JP2001221501 A JP 2001221501A JP 2000028658 A JP2000028658 A JP 2000028658A JP 2000028658 A JP2000028658 A JP 2000028658A JP 2001221501 A JP2001221501 A JP 2001221501A
Authority
JP
Japan
Prior art keywords
hot water
temperature
heat source
heat
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000028658A
Other languages
Japanese (ja)
Other versions
JP3843683B2 (en
Inventor
Takeji Watanabe
竹司 渡辺
Masahiro Ohama
昌宏 尾浜
Yoshitsugu Nishiyama
吉継 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000028658A priority Critical patent/JP3843683B2/en
Publication of JP2001221501A publication Critical patent/JP2001221501A/en
Application granted granted Critical
Publication of JP3843683B2 publication Critical patent/JP3843683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the energy consumption of a heat pump hot-water supply system and to enable the system to quickly supply hot water, and then, to improve the capacity of the system and the service life and reliability of a heat source. SOLUTION: This hot-water supply system is provided with a heat pump circuit 5, a hot water storage tank 6 incorporating the heat source 7 in its upper part, and a water supply hot water heat exchanger 9 provided in the course of a hot water supply circuit 10 equipped with a circulating pump 8 that circulates the water in the lower part of the tank 6 to the upper part of the heat source 7. The system is also provided with a flow rate control means 11 which controls the circulating flow rate of the circuit 10, an intermediate temperature detecting means 12 which detects the temperature of the hot water at the outlet of the heat exchanger 9, and a control means 13 which controls the flow control means 11 so that the temperature detecting signal of the detecting means 12 may become coincident with a set temperature signal A. Therefore, the high-efficiency simultaneous operation of the heat source 7 can be realized and a hot water supply circuit system is reduced in heat radiating loss, improved in capacity, and enabled to promptly supply hot water. Moreover, the service life and reliability of the heat source 7 are improved against scale water and foul water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はヒートポンプによる
給湯システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water supply system using a heat pump.

【0002】[0002]

【従来の技術】従来、この種のヒートポンプは特公昭6
2−22380号公報に示す如きものがある。以下、従
来の技術について図面に基づき説明する。図10は従来
のヒートポンプ給湯システムの構成図である。図10に
おいて、圧縮機1によるヒートポンプ運転時に凝縮器2
で貯湯タンク6の水を加熱し、同じ循環流量の水をさら
に補助加熱器7で追焚きして貯湯する。そして、ヒート
ポンプ運転と補助加熱器7の併用運転時には循環流量を
ヒートポンプ単独運転時より多くして凝縮器2出口の加
熱温水温度を下げて運転する。
2. Description of the Related Art Conventionally, this kind of heat pump has been disclosed in
There is one as shown in Japanese Patent Laid-Open No. 2-2380. Hereinafter, the related art will be described with reference to the drawings. FIG. 10 is a configuration diagram of a conventional heat pump hot water supply system. In FIG. 10, when the heat pump is operated by the compressor 1, the condenser 2
Then, the water in the hot water storage tank 6 is heated, and water with the same circulation flow rate is additionally heated by the auxiliary heater 7 and stored. During the combined operation of the heat pump operation and the auxiliary heater 7, the circulation flow rate is made larger than that of the single operation of the heat pump, and the temperature of the heated hot water at the outlet of the condenser 2 is lowered.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
ヒートポンプシステムでは、ヒートポンプ単独運転時の
加熱温水温度に比べて、ヒートポンプ運転と補助加熱器
7の併用運転時はヒートポンプで加熱する温度が下がる
ため、ヒートポンプを利用して沸き上げる熱量が低減す
る。よって、補助加熱器の効率よりも高効率のヒートポ
ンプを充分活用できないため、運転効率が低下する。そ
して、補助熱源で加熱した湯が貯湯タンクに流入するま
でに配管系から放熱する。さらに、補助加熱器を水循環
回路に具備するため流通損失抵抗が大きくなり、循環ポ
ンプの大型化となる。
However, in the conventional heat pump system, the temperature of heating by the heat pump during the combined operation of the heat pump and the auxiliary heater 7 is lower than the temperature of the heated hot water during the single operation of the heat pump. The amount of heat generated by using a heat pump is reduced. Therefore, since the heat pump having a higher efficiency than the efficiency of the auxiliary heater cannot be sufficiently utilized, the operation efficiency is reduced. Then, heat is radiated from the piping system until the hot water heated by the auxiliary heat source flows into the hot water storage tank. Further, since the auxiliary heater is provided in the water circulation circuit, the flow loss resistance increases, and the size of the circulation pump increases.

【0004】本発明は上記課題を解決するものであり、
ヒートポンプ運転を最大に活かし、かつ配管系からの放
熱損失を低減して省エネルギー化、高能力化、即湯化お
よび流通損失抵抗の低減化をはかることを主目的とする
ものである。
[0004] The present invention is to solve the above problems,
The main object of the present invention is to maximize the use of the heat pump operation and reduce the heat radiation loss from the piping system to achieve energy saving, high capacity, quick hot water, and low flow loss resistance.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するた
め、本発明は、圧縮機、冷媒給湯熱交換器、減圧手段、
大気熱あるいは太陽熱を集熱する蒸発器からなるヒート
ポンプ回路と、上部に熱源を内蔵した貯湯タンクと、貯
湯タンク下部の水を熱源の上部へ循環する循環ポンプを
具備する給湯回路途中に設けた冷媒給湯熱交換器と熱交
換関係を有する水給湯熱交換器と、給湯回路の循環流量
を制御する流量制御手段と、水給湯熱交換器出口の湯温
を検出する中間温度検出手段と、中間温度検出手段の温
度検出信号が設定温度信号Aと一致するように流量制御
手段の制御をおこなう制御手段を備えたヒートポンプ給
湯システムであり、以上の構成により、設定温度をヒー
トポンプ回路による運転で沸き上げ可能な限界温度とし
た場合、ヒートポンプ回路による運転において、貯湯タ
ンク下部の水を水給湯熱交換器出口で設定温度に沸き上
げて貯湯タンクの上部に流入させる。そして、貯湯タン
クの上部に設けた熱源で流入した水をさらに高温まで加
熱する。よって、ヒートポンプ回路で加熱する水循環回
路と別に設けた熱源を用いてヒートポンプ加熱された水
を即加熱するため、熱源と同時運転する場合でも設定温
度に沸き上げることができる。
In order to solve the above problems, the present invention provides a compressor, a refrigerant hot water heat exchanger, a pressure reducing means,
A heat pump circuit comprising an evaporator that collects atmospheric heat or solar heat, a hot water storage tank with a built-in heat source at the top, and a refrigerant installed in the middle of the hot water supply circuit with a circulation pump that circulates water under the hot water tank to the top of the heat source A hot water supply heat exchanger having a heat exchange relationship with the hot water supply heat exchanger, a flow rate control means for controlling a circulation flow rate of the hot water supply circuit, an intermediate temperature detection means for detecting a hot water temperature at an outlet of the hot water supply heat exchanger, and an intermediate temperature A heat pump hot water supply system including a control unit that controls the flow rate control unit so that the temperature detection signal of the detection unit matches the set temperature signal A. With the above configuration, the set temperature can be raised by the operation of the heat pump circuit. When the temperature is set to a critical temperature, in operation by the heat pump circuit, the water at the bottom of the hot water storage tank To flow into the part. And the inflowing water is further heated to a high temperature by a heat source provided at the upper part of the hot water storage tank. Therefore, the water heated by the heat pump is immediately heated by using a heat source provided separately from the water circulation circuit heated by the heat pump circuit, so that the water can be heated to the set temperature even when the water source is operated simultaneously with the heat source.

【0006】そして、高温加熱する熱源を貯湯タンクに
内蔵するため給湯回路系からの放熱損失は少ない。従っ
て、高効率の熱源同時運転と高能力化が実現できる。そ
して、高温湯を短時間で貯湯タンクの上部に貯湯できる
ため即湯化が達成できる。さらに、給湯回路に熱源を装
備しないため、給湯回路の低圧力損失化と簡素化、省ス
ペース化がはかれる。また、熱源を貯湯タンクに内蔵す
るため、熱源の加熱密度を小さくして加熱表面温度を下
げることができる。そのため、スケール水、腐食水に対
する熱源の高寿命高信頼が達成できる。
Since a heat source for high-temperature heating is incorporated in the hot water storage tank, heat loss from the hot water supply circuit system is small. Therefore, high efficiency simultaneous heat source operation and high capacity can be realized. And since hot water can be stored in the upper part of a hot water storage tank in a short time, quick hot water can be achieved. Further, since the hot water supply circuit is not equipped with a heat source, low pressure loss, simplification, and space saving of the hot water supply circuit are achieved. In addition, since the heat source is built in the hot water storage tank, the heating density of the heat source can be reduced to lower the heating surface temperature. Therefore, a long life and high reliability of the heat source for scale water and corrosive water can be achieved.

【0007】[0007]

【発明の実施の形態】前記課題を解決するため、本発明
の請求項1に記載の発明は、圧縮機、冷媒給湯熱交換
器、減圧手段、大気熱あるいは太陽熱を集熱する蒸発器
からなるヒートポンプ回路と、上部に熱源を内蔵した貯
湯タンクと、貯湯タンク下部の水を熱源の上部へ循環す
る循環ポンプを具備する給湯回路途中に設けた冷媒給湯
熱交換器と熱交換関係を有する水給湯熱交換器と、給湯
回路の循環流量を制御する流量制御手段と、水給湯熱交
換器出口の湯温を検出する中間温度検出手段と、中間温
度検出手段の温度検出信号が設定温度信号Aと一致する
ように流量制御手段の制御をおこなう制御手段を備え、
設定温度をヒートポンプ回路による運転で沸き上げ可能
な限界温度とした場合、ヒートポンプ回路による運転に
おいて、貯湯タンク下部の水を水給湯熱交換器出口で設
定温度に沸き上げて貯湯タンクの上部に流入させる。そ
して、貯湯タンクの上部に設けた熱源で流入した水をさ
らに高温まで加熱する。よって、ヒートポンプ回路で加
熱する水循環回路と別に設けた熱源を用いてヒートポン
プ加熱された水を即加熱するため、熱源と同時運転する
場合でも設定温度に沸き上げることができる。そして、
高温加熱する熱源を貯湯タンクに内蔵するため給湯回路
系からの放熱損失は少ない。従って、高効率の熱源同時
運転と高能力化が実現できる。そして、高温湯を短時間
で貯湯タンクの上部に貯湯できるため即湯化が達成でき
る。さらに、給湯回路に熱源を装備しないため、給湯回
路の低圧力損失化と簡素化、省スペース化がはかれる。
また、熱源を貯湯タンクに内蔵するため、熱源の加熱密
度を小さくして加熱表面温度を下げることができる。そ
のため、スケール水、腐食水に対する熱源の高寿命高信
頼が達成できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to solve the above problems, the invention according to claim 1 of the present invention comprises a compressor, a refrigerant hot water supply heat exchanger, a pressure reducing means, and an evaporator for collecting atmospheric heat or solar heat. A water heater having a heat exchange relationship with a refrigerant hot water supply heat exchanger provided in the middle of a hot water supply circuit including a heat pump circuit, a hot water storage tank having a built-in heat source at an upper portion, and a circulation pump for circulating water at a lower portion of the hot water tank to an upper portion of the heat source A heat exchanger, a flow control means for controlling a circulating flow rate of the hot water supply circuit, an intermediate temperature detecting means for detecting a hot water temperature at the outlet of the water / hot water supply heat exchanger, and a temperature detection signal of the intermediate temperature detecting means is a set temperature signal A. Comprising control means for controlling the flow rate control means so as to match,
When the set temperature is set to the limit temperature at which the water can be boiled by the operation of the heat pump circuit, in the operation by the heat pump circuit, the water at the lower part of the hot water storage tank is heated to the set temperature at the outlet of the water / water supply heat exchanger and flows into the upper part of the hot water storage tank. . And the inflowing water is further heated to a high temperature by a heat source provided at the upper part of the hot water storage tank. Therefore, the water heated by the heat pump is immediately heated by using a heat source provided separately from the water circulation circuit heated by the heat pump circuit, so that the water can be heated to the set temperature even when the heat source is operated simultaneously. And
Since the heat source for high-temperature heating is built in the hot water storage tank, heat loss from the hot water supply circuit system is small. Therefore, high efficiency simultaneous heat source operation and high capacity can be realized. And since hot water can be stored in the upper part of a hot water storage tank in a short time, quick hot water can be achieved. Furthermore, since the hot water supply circuit is not equipped with a heat source, low pressure loss, simplification and space saving of the hot water supply circuit can be achieved.
In addition, since the heat source is incorporated in the hot water storage tank, the heating density of the heat source can be reduced to lower the heating surface temperature. Therefore, a long life and high reliability of the heat source for scale water and corrosive water can be achieved.

【0008】また、請求項2に記載の発明は、熱源より
上部水位の貯湯タンク内の水温を検出する湯温検出手段
と、湯温検出手段の温度検出信号が設定温度信号Aより
高温である設定温度信号Bと一致するように熱源の出力
を制御する熱源制御手段を備え、圧縮機を用いたヒート
ポンプ回路による運転と熱源を通電する併用運転におい
て、貯湯タンクの上部に絶えず設定温度の高温湯を貯湯
するとともに貯湯タンク、ヒータの機器の信頼性向上を
実現する。
In the invention according to a second aspect, the hot water temperature detecting means for detecting the water temperature in the hot water storage tank at a level higher than the heat source, and the temperature detecting signal of the hot water temperature detecting means is higher than the set temperature signal A. A heat source control means for controlling the output of the heat source so as to match the set temperature signal B is provided. In the combined operation of energizing the heat source and the operation by the heat pump circuit using the compressor, the high temperature hot water of the set temperature is constantly placed on the upper part of the hot water storage tank. And improve the reliability of hot water storage tank and heater equipment.

【0009】また、請求項3に記載の発明は、運転開始
時にヒートポンプ回路による単独運転をおこない、湯温
検出手段の温度信号が所定温度信号に達することを検出
して熱源の通電をおこなう熱源通電制御手段を備え、機
器の設置後に貯湯タンク内に給水して試運転する場合、
最初にヒートポンプ回路による単独運転をおこない、貯
湯タンク上部に設けた湯温検出手段の温度信号が所定温
度に達することを検出して熱源の通電を可能とする。従
って、試運転時のヒータの空焚き運転を防止して、ヒー
タ断線を解消して機器の信頼性を向上する。
Further, the invention according to a third aspect of the present invention is a heat source energizing operation in which a single operation is performed by a heat pump circuit at the start of operation, and when the temperature signal of the hot water temperature detecting means reaches a predetermined temperature signal, the heat source is energized. With control means, when water is supplied into the hot water storage tank after the installation of the equipment and trial run is performed,
First, an independent operation is performed by the heat pump circuit, and when the temperature signal of the hot water temperature detecting means provided above the hot water storage tank reaches a predetermined temperature, the heat source can be energized. Therefore, it is possible to prevent the heater from being idled during the test operation, eliminate the disconnection of the heater, and improve the reliability of the device.

【0010】また、請求項4に記載の発明は、熱源と略
同水位の貯湯タンク内の水温を検出する水温検出手段
と、運転開始時にヒートポンプ回路による単独運転をお
こない、水温検出手段の温度検出信号が設定温度信号A
と略同温度信号に達した時に熱源を通電する運転制御手
段を備え、ヒートポンプ回路による運転と熱源を通電す
る併用運転において、設定温度Aに加熱された湯が熱源
と略同水位に達した時に熱源の通電をおこない、ヒート
ポンプ運転による加熱量の割合を増大して、システムの
沸き上げ運転効率を一層向上する。
The invention according to claim 4 is a water temperature detecting means for detecting a water temperature in a hot water storage tank at substantially the same water level as a heat source, and an independent operation is performed by a heat pump circuit at the start of the operation. The signal is the set temperature signal A
Operation control means for energizing the heat source when the temperature signal reaches substantially the same as the above, and in the combined operation of energizing the heat source with the operation by the heat pump circuit, when the hot water heated to the set temperature A reaches substantially the same water level as the heat source. By energizing the heat source and increasing the ratio of the amount of heating by the heat pump operation, the boiling operation efficiency of the system is further improved.

【0011】また、請求項5に記載の発明は、水給湯熱
交換器入口の水温を検出する入水温度検出手段と、運転
開始時はヒートポンプ回路による単独運転をおこない、
入水温度検出手段の温度信号が所定温度に達した時にヒ
ートポンプ運転を停止して、熱源を通電する熱源運転制
御手段を備え、ヒートポンプ回路による運転と熱源を通
電する併用運転において、ヒートポンプで沸き上げて貯
湯タンク上部に流した湯が貯湯タンクの下から水給湯熱
交換器に流れ始めると、ヒートポンプ運転を停止し、熱
源を通電して、循環ポンプを運転しながらヒートポンプ
で沸き上げた湯を貯湯タンク内で高温まで加熱する。従
って、ヒートポンプと熱源を最初から同時運転する場合
に比べ、高温湯の環境下で熱源のヒータを通電する時間
を短縮してヒータの高寿命化を達成する。
The invention according to claim 5 is characterized in that an input water temperature detecting means for detecting a water temperature at the inlet of the water / hot water supply heat exchanger, and a single operation by a heat pump circuit at the start of operation.
A heat pump operation is stopped when the temperature signal of the incoming water temperature detection means reaches a predetermined temperature, and a heat source operation control means for energizing the heat source is provided. When the hot water that has flowed to the top of the hot water storage tank starts flowing from the bottom of the hot water storage tank to the hot water supply heat exchanger, the operation of the heat pump is stopped, the heat source is turned on, and the hot water heated by the heat pump while operating the circulation pump is stored in the hot water storage tank. Heat to high temperature within. Therefore, compared to the case where the heat pump and the heat source are simultaneously operated from the beginning, the time for energizing the heater of the heat source in an environment of high-temperature hot water is shortened, and the life of the heater is extended.

【0012】また、請求項6に記載の発明は、貯湯タン
ク内の予め設定された位置の湯温を検出する残湯温度検
出手段と、運転開始時に残湯温度検出手段の信号を検出
して、所定温度信号より高温の時には熱源を運転しない
で、ヒートポンプ回路による単独運転をおこなう運転制
御手段を備え、深夜に沸き上げ運転を開始する場合、貯
湯タンク内の予め設定された位置の湯温を検出する残湯
温度検出手段の信号を検出して、所定温度より低温を示
す信号の時は、ヒートポンプ運転と熱源の運転を併用し
て貯湯する。逆に、所定温度より高温を示す信号の時
は、熱源を運転しないで、ヒートポンプ回路による単独
運転で貯湯する。従って、給湯負荷を満足するとともに
高効率の沸き上げ運転を実現する。
According to a sixth aspect of the present invention, a remaining hot water temperature detecting means for detecting a hot water temperature at a preset position in a hot water storage tank and a signal from the remaining hot water temperature detecting means at the start of operation are detected. When the temperature is higher than the predetermined temperature signal, the heat source is not operated, and operation control means for performing an independent operation by the heat pump circuit is provided.When the boiling operation is started at midnight, the temperature of the hot water at a preset position in the hot water storage tank is adjusted. A signal from the remaining hot water temperature detecting means to be detected is detected, and when the signal indicates a temperature lower than a predetermined temperature, hot water is stored by using both the heat pump operation and the operation of the heat source. Conversely, when the signal indicates a temperature higher than the predetermined temperature, the hot water is stored by the heat pump circuit alone without operating the heat source. Therefore, a high-efficiency boiling operation can be realized while satisfying the hot water supply load.

【0013】また、請求項7に記載の発明は、貯湯タン
ク内の上下の湯温を検出する複数の残湯温度検出手段
と、過去数日から現在の残湯温度検出手段の検出信号を
記憶して熱源の通電時間を設定する熱源時間設定手段
と、深夜電力利用の深夜時間帯通電終了時刻から熱源時
間設定手段の時間を逆算して熱源の通電開始時刻を演算
する熱源通電時刻設定手段と、時刻を計時するクロック
と、運転開始時はヒートポンプ回路による単独運転をお
こない、入水温度検出手段の温度信号が所定温度に達し
た時にヒートポンプ運転を停止して、熱源通電時刻設定
手段およびクロックの信号に基づき熱源を通電する運転
制御手段を備え、深夜に沸き上げ運転を開始する時、貯
湯タンク内の湯温分布を検出して、熱源の通電開始時間
を制御して、給湯負荷に追随しながら、省エネ化を実現
する。
According to a seventh aspect of the present invention, a plurality of remaining hot water temperature detecting means for detecting upper and lower hot water temperatures in a hot water storage tank and a detection signal of the present remaining hot water temperature detecting means from the past several days are stored. Heat source time setting means for setting the energization time of the heat source, and heat source energization time setting means for calculating the energization start time of the heat source by calculating the time of the heat source time setting means from the energization end time of the midnight time zone using the late night power, and A clock that measures the time, when the operation is started, an independent operation is performed by the heat pump circuit, and when the temperature signal of the incoming water temperature detection means reaches a predetermined temperature, the heat pump operation is stopped, and the signals of the heat source energization time setting means and the clock are output. Operation control means for energizing the heat source based on the detection of the hot water temperature distribution in the hot water storage tank when starting the boiling operation at midnight and controlling the energization start time of the heat source to supply hot water load. While to follow, to achieve energy saving.

【0014】また、請求項8に記載の発明は、圧縮機と
冷媒給湯熱交換器のヒートポンプ回路途中に冷媒流路切
換え手段を設けて、圧縮機、蒸発器、減圧手段、冷媒給
湯熱交換器の順に冷媒を流す除霜運転回路と、ヒートポ
ンプ回路の蒸発器入口の冷媒温度を検出する冷媒温度検
出手段と、除霜運転回路に切換える除霜制御手段と、熱
源を強制的に通電する優先通電制御手段と、給湯回路の
循環水量を最大となるように流量制御手段を制御する最
大流量制御手段と、冷媒温度検出手段の検出信号が所定
温度以下に達した時に、除霜制御手段と優先通電制御手
段および最大流量制御手段に送信する運転制御手段を備
え、冬季の沸き上げ運転中において、ヒートポンプ回路
の蒸発器の表面に着霜が生じたことを蒸発器入口の冷媒
温度で検出して、冷媒切換え手段の冷媒流れ方向を除霜
運転回路に切換え、給湯回路の循環水量を最大にして、
熱源を通電する。従って、短時間で除霜するため、ヒー
トポンプ加熱能力および効率が向上する。そして、水給
湯熱交換器を流れる循環水量を最大に流すため、水給湯
熱交換器内の凍結を解消する。また、低温となつた水を
熱源で強制加熱するため、貯湯タンク上部の湯温が短時
間で回復する。
According to the present invention, a refrigerant flow switching means is provided in the heat pump circuit between the compressor and the refrigerant hot water supply heat exchanger, and the compressor, the evaporator, the pressure reducing means, and the refrigerant hot water heat exchanger are provided. , A refrigerant temperature detection means for detecting the refrigerant temperature at the evaporator inlet of the heat pump circuit, a defrost control means for switching to the defrost operation circuit, and a priority energization for forcibly energizing the heat source. Control means, maximum flow rate control means for controlling the flow rate control means to maximize the amount of circulating water in the hot water supply circuit, and priority energization with the defrost control means when the detection signal of the refrigerant temperature detection means reaches a predetermined temperature or less. It comprises an operation control means for transmitting to the control means and the maximum flow rate control means, during the boiling operation in winter, detecting that frost has formed on the surface of the evaporator of the heat pump circuit at the refrigerant temperature at the evaporator inlet, Switching the refrigerant flow direction of the medium switching means defrosting operation circuit, the circulation water of the hot water supply circuit to the maximum,
Turn on the heat source. Therefore, since the defrost is performed in a short time, the heat pump heating capacity and efficiency are improved. Then, in order to maximize the amount of circulating water flowing through the water / water supply heat exchanger, freezing in the water / water supply heat exchanger is eliminated. In addition, since the cold water is forcibly heated by the heat source, the temperature of the hot water above the hot water storage tank recovers in a short time.

【0015】[0015]

【実施例】以下、本発明の実施例について図面を用いて
説明する。なお、従来例および各実施例において、同じ
構成、同じ動作をするものについては同一符号を付し、
一部説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. Note that, in the conventional example and each embodiment, components having the same configuration and the same operation are denoted by the same reference numerals,
Some description is omitted.

【0016】(実施例1)図1は本発明の実施例1のヒ
ートポンプ給湯システムの構成図である。図1におい
て、実線矢印は冷媒回路の冷媒の流れ方向を表し、破線
は給湯回路の水の流れ方向を表す。1は圧縮機、2は冷
媒給湯熱交換器、3は減圧手段、4は大気熱あるいは太
陽熱を集熱する蒸発器であり、ヒートポンプ回路5を形
成する。6は貯湯タンクであり、上部にヒータなどの熱
源7を内蔵する。8は循環ポンプであり、貯湯タンク6
下部の水を熱源7の上部へ循環する。9は水給湯熱交換
器であり、循環ポンプ8を具備する給湯回路10の途中
に設けられて、冷媒給湯熱交換器2と熱交換関係を有す
る。11は流量制御手段であり、給湯回路10の循環流
量を制御する。12は中間温度検出手段であり、水給湯
熱交換器9出口の湯温を検出する。13は制御手段であ
り、中間温度検出手段12の温度検出信号が設定温度信
号Aと一致するように流量制御手段11の制御をおこな
う。そして、設定湯温Aをヒートポンプ回路による運転
で加熱できる最高温度とする。
Embodiment 1 FIG. 1 is a configuration diagram of a heat pump hot water supply system according to Embodiment 1 of the present invention. In FIG. 1, a solid arrow indicates a flow direction of the refrigerant in the refrigerant circuit, and a broken line indicates a flow direction of water in the hot water supply circuit. 1 is a compressor, 2 is a refrigerant hot-water supply heat exchanger, 3 is a decompression means, 4 is an evaporator that collects atmospheric heat or solar heat, and forms a heat pump circuit 5. Reference numeral 6 denotes a hot water storage tank having a built-in heat source 7 such as a heater at an upper portion thereof. Reference numeral 8 denotes a circulation pump,
The lower water is circulated to the upper part of the heat source 7. Reference numeral 9 denotes a water / hot water supply heat exchanger, which is provided in the middle of a hot water supply circuit 10 having a circulation pump 8 and has a heat exchange relationship with the refrigerant / hot water supply heat exchanger 2. Numeral 11 is a flow rate control means for controlling the circulation flow rate of the hot water supply circuit 10. Reference numeral 12 denotes an intermediate temperature detecting means for detecting the temperature of the hot water at the outlet of the water / hot water supply heat exchanger 9. A control unit 13 controls the flow rate control unit 11 so that the temperature detection signal of the intermediate temperature detection unit 12 matches the set temperature signal A. Then, the set hot water temperature A is set to the maximum temperature that can be heated by the operation of the heat pump circuit.

【0017】以上の構成において、その動作、作用につ
いて説明する。最初に圧縮機1を運転するヒートポンプ
回路による単独運転について述べる。圧縮機1から吐出
した高温高圧のガス冷媒が冷媒給湯熱交換器2に流れ、
水給湯熱交換器9に流れてきた貯湯タンク6下部の水を
加熱する。そして、加熱された水が設定湯温Aとなるよ
うに給湯回路10の循環流量を制御して、貯湯タンク6
の熱源7より上部に流れる。一方、冷媒給湯熱交換器2
で凝縮液化した冷媒は減圧手段3で減圧されて蒸発器4
へ流入し、ここで大気熱あるいは太陽熱を吸熱して蒸発
ガス化し、圧縮機1へ戻る。
The operation and operation of the above configuration will be described. First, the single operation by the heat pump circuit that operates the compressor 1 will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the refrigerant hot water heat exchanger 2,
The water at the lower part of the hot water storage tank 6 flowing into the water / hot water supply heat exchanger 9 is heated. Then, the circulation flow rate of the hot water supply circuit 10 is controlled so that the heated water has the set hot water temperature A, and the hot water storage tank 6 is controlled.
Flows above the heat source 7. On the other hand, the refrigerant hot water supply heat exchanger 2
The refrigerant condensed and liquefied in the evaporator 4 is decompressed by the decompression means 3.
, Where it absorbs atmospheric heat or solar heat, evaporates and gasifies, and returns to the compressor 1.

【0018】このサイクルを繰り返しながら、貯湯タン
ク6内の上部から下部へ設定湯温Aの湯を貯湯して、全
量貯湯する。次に圧縮機1を用いたヒートポンプ回路5
による運転と熱源7を通電する併用運転について述べ
る。圧縮機1から吐出した高温高圧のガス冷媒が冷媒給
湯熱交換器2に流れ、貯湯タンク6下部to水給湯熱交
換器9へ流れてきた水を加熱する。そして、加熱された
水が設定湯温Aとなるように給湯回路10の循環流量を
制御して、貯湯タンク6の熱源7より上部に流れる。そ
して、貯湯タンク6の上部に流れた湯を熱源7でさらに
高温まで加熱する。一方、冷媒給湯熱交換器2で凝縮液
化した冷媒は減圧手段3で減圧されて蒸発器4へ流入
し、ここで大気熱あるいは太陽熱を吸熱して蒸発ガス化
し、圧縮機1へ戻る。このサイクルを繰り返しながら、
貯湯タンク内の上部から下部へ高温湯を貯湯して、全量
貯湯する。従って、ヒートポンプで加熱可能な最高温度
まで加熱できるため、高効率貯湯運転が実現できる。そ
して、高温加熱する熱源を貯湯タンクに内蔵するため給
湯回路系からの放熱損失は少ない。さらに、ヒートポン
プで加熱された湯を貯湯タンク上部の熱源でさらに高温
まで追焚きして高能力化と即湯化を実現するため、湯切
れの心配がなくなる。そして、熱源を貯湯タンクに内蔵
するため、ヒータを多少大きくしてヒータのワット密度
を下げてヒータの表面温度を低くするこどできるため、
硬度の高いスケール水によるヒータ表面のスケール付着
防止および酸性水によるヒータ腐蝕防止をはかり、高信
頼高寿命化を実現する。
While repeating this cycle, hot water of the set hot water temperature A is stored from the upper portion to the lower portion in the hot water storage tank 6, and the entire amount is stored. Next, a heat pump circuit 5 using the compressor 1
And the combined operation of energizing the heat source 7 will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows to the refrigerant hot water supply heat exchanger 2, and heats the water flowing to the lower part of the hot water storage tank 6 to the water hot water supply heat exchanger 9. Then, the circulation flow rate of the hot water supply circuit 10 is controlled so that the heated water has the set hot water temperature A, and the heated water flows above the heat source 7 of the hot water storage tank 6. Then, the hot water flowing to the upper portion of the hot water storage tank 6 is further heated to a high temperature by the heat source 7. On the other hand, the refrigerant condensed and liquefied in the refrigerant / hot water supply heat exchanger 2 is decompressed by the decompression means 3 and flows into the evaporator 4 where it absorbs atmospheric heat or solar heat to evaporate and return to the compressor 1. While repeating this cycle,
Hot water is stored from the upper part to the lower part in the hot water storage tank, and the entire amount is stored. Therefore, since the heating can be performed up to the maximum temperature that can be heated by the heat pump, a highly efficient hot water storage operation can be realized. And since the heat source for heating at high temperature is built in the hot water storage tank, heat loss from the hot water supply circuit system is small. Furthermore, since the hot water heated by the heat pump is additionally heated to a higher temperature by the heat source above the hot water storage tank to achieve high performance and quick hot water, there is no fear of running out of hot water. And since the heat source is built into the hot water storage tank, the heater can be made slightly larger to lower the watt density of the heater and lower the surface temperature of the heater.
The scale water with high hardness prevents scale adhesion on the heater surface and the acid water prevents corrosion of the heater, realizing high reliability and long life.

【0019】尚、図2に示す如く、流量制御手段11の
代わりに流量制御型の循環ポンプ14を用いて、中間温
度検出手段12の温度検出信号が設定温度信号Aと一致
するように循環ポンプ14の流量制御をおこなうポンプ
制御手段15を用いても同様の効果がある。
As shown in FIG. 2, a flow control type circulation pump 14 is used in place of the flow control means 11 so that the temperature detection signal of the intermediate temperature detection means 12 matches the set temperature signal A. The same effect can be obtained by using the pump control means 15 for controlling the flow rate at 14.

【0020】(実施例2)図3は本発明の実施例2のヒ
ートポンプ給湯システムの構成図である。図3におい
て、16は湯温検出手段であり、熱源より上部水位の貯
湯タンク内の水温を検出する。17は熱源制御手段であ
り、湯温検出手段16の温度検出信号が設定温度信号A
より高温である設定温度信号Bと一致するように熱源7
を間欠運転あるいは出力を可変して制御する。
Embodiment 2 FIG. 3 is a configuration diagram of a heat pump hot water supply system according to Embodiment 2 of the present invention. In FIG. 3, reference numeral 16 denotes hot water temperature detecting means for detecting the water temperature in the hot water storage tank at an upper water level from a heat source. Reference numeral 17 denotes a heat source control unit, and the temperature detection signal of the hot water temperature detection unit 16 is a set temperature signal A.
The heat source 7 is set so as to match the set temperature signal B which is higher.
Is controlled intermittently or by varying the output.

【0021】以上の構成において、その動作、作用につ
いて説明する。圧縮機1を用いたヒートポンプ回路5に
よる運転と熱源7を通電する併用運転について述べる。
圧縮機1から吐出した高温高圧のガス冷媒が冷媒給湯熱
交換器2に流れ、貯湯タンク6下部から水給湯熱交換器
へ流れてきた水を加熱する。そして、加熱された水が設
定湯温Aとなるように給湯回路10の循環流量を制御し
て、貯湯タンク6の熱源7より上部に流れる。そして、
熱源7を間欠運転あるいは出力を可変して設定温度Bと
なるように加熱しながら貯湯タンク6上部から貯湯す
る。従って、貯湯タンクの上部に絶えず設定温度の高温
湯を貯湯できる。そして、異常な高温湯になることもな
いため、貯湯タンク、ヒータの機器の信頼性向上が実現
する。
The operation and operation of the above configuration will be described. The operation by the heat pump circuit 5 using the compressor 1 and the combined operation of energizing the heat source 7 will be described.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows to the refrigerant hot water supply heat exchanger 2, and heats the water flowing from the lower part of the hot water storage tank 6 to the water hot water supply heat exchanger. Then, the circulation flow rate of the hot water supply circuit 10 is controlled so that the heated water has the set hot water temperature A, and the heated water flows above the heat source 7 of the hot water storage tank 6. And
The hot water is stored from the upper part of the hot water storage tank 6 while the heat source 7 is intermittently operated or the output is varied so as to reach the set temperature B. Therefore, high-temperature hot water at the set temperature can be constantly stored in the upper portion of the hot-water storage tank. And since it does not become abnormal high-temperature hot water, the reliability improvement of the equipment of a hot-water storage tank and a heater is implement | achieved.

【0022】(実施例3)図4は本発明の実施例3のヒ
ートポンプ給湯システムの構成図である。図4におい
て、18は熱源通電制御手段であり、運転開始時にヒー
トポンプ回路による単独運転をおこない、湯温検出手段
16の温度信号が所定温度信号に達することを検出して
熱源の通電をおこなう。
(Embodiment 3) FIG. 4 is a configuration diagram of a heat pump hot water supply system according to Embodiment 3 of the present invention. In FIG. 4, reference numeral 18 denotes a heat source energization control unit which performs an independent operation by a heat pump circuit at the start of operation, and energizes the heat source by detecting that the temperature signal of the hot water temperature detection unit 16 reaches a predetermined temperature signal.

【0023】以上の構成において、その動作、作用につ
いて説明する。機器の設置後に貯湯タンク内に給水して
試運転する時、最初にヒートポンプ回路5による単独運
転をおこない、ヒートポンプで加熱された湯が貯湯タン
ク6上部に流入する。この時、貯湯タンク6内が満水の
場合には、貯湯タンク6上部の水温が上昇する。そし
て、貯湯タンク6の最上部に設けた湯温検出手段16の
温度信号が所定温度に達すると熱源7の通電を可能とす
る。一方、貯湯タンク6内の水位が湯温検出手段16の
設置位置より下部である場合、すなわち満水になってい
ない場合、ヒートポンプで加熱された湯が貯湯タンク6
内の最高水面に落下するため、湯温検出手段16の温度
信号が所定温度に達しない。その場合には熱源7の通電
をしないようにする。従って、試運転時にヒータの空運
転を防止することができるため、ヒータを断線させるこ
とがなくなり、機器の信頼性が向上する。
The operation and operation of the above configuration will be described. When water is supplied into the hot water storage tank and the test operation is performed after installation of the apparatus, first, the heat pump circuit 5 performs an independent operation, and the hot water heated by the heat pump flows into the upper portion of the hot water storage tank 6. At this time, when the inside of the hot water storage tank 6 is full, the water temperature of the upper part of the hot water storage tank 6 rises. When the temperature signal of the hot water temperature detecting means 16 provided at the top of the hot water storage tank 6 reaches a predetermined temperature, the heat source 7 can be energized. On the other hand, when the water level in the hot water storage tank 6 is lower than the installation position of the hot water temperature detecting means 16, that is, when the water is not full, the hot water heated by the heat pump
The temperature signal of the hot water temperature detecting means 16 does not reach the predetermined temperature because the water signal falls to the highest water level in the inside. In this case, the heat source 7 is not energized. Therefore, the idle operation of the heater can be prevented during the test operation, so that the heater is not disconnected, and the reliability of the device is improved.

【0024】(実施例4)図5は本発明の実施例4のヒ
ートポンプ給湯システムの構成図である。図5におい
て、19は水温検出手段であり、熱源7と略同水位の貯
湯タンク6内の水温を検出する。20は運転制御手段で
あり、運転開始時にヒートポンプ回路5による単独運転
をおこない、水温検出手段19の温度検出信号が設定温
度信号Aと略同温度信号に達した時に熱源7を通電す
る。
(Embodiment 4) FIG. 5 is a configuration diagram of a heat pump hot water supply system according to Embodiment 4 of the present invention. In FIG. 5, reference numeral 19 denotes a water temperature detecting means for detecting the water temperature in the hot water storage tank 6 at substantially the same water level as the heat source 7. Reference numeral 20 denotes an operation control unit, which performs an independent operation by the heat pump circuit 5 at the start of the operation, and energizes the heat source 7 when the temperature detection signal of the water temperature detection unit 19 reaches the same temperature signal as the set temperature signal A.

【0025】以上の構成において、その動作、作用につ
いて説明する。ヒートポンプ回路による運転開始後、設
定温度Aに加熱された湯が貯湯タンク6の上に貯湯され
る。そして、運転時間経過とともに湯面は下に下がり、
熱源7と略同水位に達した時に水温検出手段19で検出
して熱源7の通電をおこなう。そして、熱源7より上の
貯湯タンク内の設定温度Aの湯を追焚き加熱して高温に
沸き上げる。従って、熱源で加熱する湯は常にヒートポ
ンプ回路で設定温度Aに加熱された湯となるため、ヒー
トポンプ運転による加熱量の割合が増大して、システム
の沸き上げ運転効率が著しく向上する。
The operation and operation of the above configuration will be described. After the operation by the heat pump circuit is started, the hot water heated to the set temperature A is stored on the hot water storage tank 6. And, with the elapse of operation time, the surface of the water drops down,
When the water level reaches substantially the same as the heat source 7, the water temperature is detected by the water temperature detecting means 19 and the heat source 7 is energized. Then, the hot water of the set temperature A in the hot water storage tank above the heat source 7 is additionally heated and heated to a high temperature. Therefore, the hot water to be heated by the heat source is always hot water heated to the set temperature A by the heat pump circuit, so that the ratio of the amount of heating by the heat pump operation increases, and the boiling operation efficiency of the system is remarkably improved.

【0026】(実施例5)図6は本発明の実施例5のヒ
ートポンプ給湯システムの構成図である。図6におい
て、21は入水温度検出手段であり、水給湯熱交換器入
口の水温を検出する。22は熱源運転制御手段であり、
運転開始時はヒートポンプ回路による単独運転をおこな
い、入水温度検出手段21の温度信号が所定温度に達し
た時にヒートポンプ運転を停止して、熱源を通電する。
所定温度とはヒートポンプ回路の高圧あるいは圧縮機吐
出温度の上昇限界でヒートポンプ運転できる給水温度の
限界温度を表わす。
(Embodiment 5) FIG. 6 is a configuration diagram of a heat pump hot water supply system according to Embodiment 5 of the present invention. In FIG. 6, reference numeral 21 denotes an incoming water temperature detecting means for detecting the water temperature at the inlet of the water / hot water supply heat exchanger. 22 is a heat source operation control means,
At the start of the operation, the heat pump circuit performs an independent operation. When the temperature signal of the incoming water temperature detecting means 21 reaches a predetermined temperature, the heat pump operation is stopped and the heat source is energized.
The predetermined temperature indicates a limit temperature of a feed water temperature at which the heat pump can be operated at a high pressure of the heat pump circuit or a rising limit of the discharge temperature of the compressor.

【0027】以上の構成において、その動作、作用につ
いて説明する。ヒートポンプ回路5による運転と熱源7
を通電する併用運転において、運転開始時はヒートポン
プ回路による単独運転をおこない、設定温度Aの湯を貯
湯タンク6の上から貯湯する。そして、ヒートポンプで
沸き上げた湯が貯湯タンクの下から水給湯熱交換器9に
流れ始めると、ヒートポンプ運転を停止して、熱源7を
通電する。そして、循環ポンプ8を用いて貯湯タンク6
の下から上へヒートポンプで沸き上げた湯を循環しなが
ら熱源7で貯湯タンク6内で高温に加熱する。従って、
ヒートポンプと熱源を最初から同時運転する場合に、熱
源が最初から運転終了まで追焚きした高温湯の環境下で
通電するためヒータ表面温度が高温となる時間が長いた
め、酸性水、スケール水に対して腐蝕あるいはスケール
付着の発生量が多いのに対して、ヒートポンプ単独運転
時は中間温度の環境下で熱源は非通電であるため、高温
湯の環境下で通電する時間が短時間となるため、ヒータ
の高寿命化が達成する。
The operation and operation of the above configuration will be described. Operation by heat pump circuit 5 and heat source 7
In the combined operation of energizing, the operation is started independently by the heat pump circuit, and the hot water of the set temperature A is stored from above the hot water storage tank 6. Then, when the hot water boiled by the heat pump starts flowing from below the hot water storage tank to the hot water supply heat exchanger 9, the heat pump operation is stopped and the heat source 7 is energized. Then, the hot water storage tank 6 is
The hot water is heated to a high temperature in the hot water storage tank 6 by the heat source 7 while circulating the hot water boiled by the heat pump from below to above. Therefore,
When simultaneously operating the heat pump and heat source from the beginning, the heat source is energized in the environment of high-temperature hot water refired from the beginning to the end of operation, so the surface temperature of the heater becomes high for a long time. While the amount of corrosion or scale adhesion is large, the heat source is not energized under the intermediate temperature environment when operating the heat pump alone, so the time to energize under the environment of high temperature hot water is short, A longer life of the heater is achieved.

【0028】(実施例6)図7は本発明の実施例6のヒ
ートポンプ給湯システムの構成図である。図7におい
て、23は残湯温度検出手段であり、貯湯タンク6内の
予め設定された位置の湯温を検出する。例えば、ヒート
ポンプ運転と熱源運転を併用した時の沸き上げ湯温を9
0℃とした場合に、給水温度15℃、貯湯タンク300
Lに対して90℃の湯が200L使用される家庭あるい
は季節において、給湯負荷は(90−15)×200/
860=17.4kWである。この負荷をヒートポンプ運
転で65℃に沸き上げる場合には、17.4×860/
(65−15)=300Lを沸き上げれば給湯負荷に対
応する。よって、貯湯タンクの上部から100Lの貯湯
量位置に残湯温度検出手段を設ける。24は運転制御手
段であり、運転開始時に残湯温度検出手段23の信号を
検出して、所定温度信号より高温の時には熱源7を運転
しないで、ヒートポンプ回路5による単独運転をおこな
う。
(Embodiment 6) FIG. 7 is a configuration diagram of a heat pump hot water supply system according to Embodiment 6 of the present invention. In FIG. 7, reference numeral 23 denotes remaining hot water temperature detection means for detecting the hot water temperature at a preset position in the hot water storage tank 6. For example, the boiling water temperature when the heat pump operation and the heat source operation are used together is 9
When the temperature is 0 ° C., the feed water temperature is 15 ° C. and the hot water storage tank 300
In homes or seasons when 200 L of 90 ° C. hot water is used for L, the hot water supply load is (90−15) × 200 /
860 = 17.4 kW. When this load is heated to 65 ° C. by the heat pump operation, 17.4 × 860 /
Boiling (65-15) = 300 L corresponds to the hot water supply load. Therefore, the remaining hot water temperature detecting means is provided at a position of the hot water storage amount of 100 L from the top of the hot water storage tank. An operation control means 24 detects a signal from the remaining hot water temperature detecting means 23 at the start of the operation, and when the temperature is higher than a predetermined temperature signal, does not operate the heat source 7 but performs an independent operation by the heat pump circuit 5.

【0029】以上の構成において、その動作、作用につ
いて説明する。前日にヒートポンプ運転と熱源運転を併
用して沸き上げた90℃の湯を貯湯タンク6から出湯し
て利用する。そして、当日の深夜に沸き上げ運転を開始
する場合、貯湯タンク内の残湯温度検出手段23の信号
を検出して、所定温度より低温を示す信号の時は、ヒー
トポンプ運転と熱源7の運転を併用して設定温度B(例
えば、90℃)となるように流量制御手段11および熱
源制御手段17の制御をおこない、設定温度Bの湯を貯
湯タンク6に貯湯する。逆に、所定温度より高温を示す
信号の時は、熱源7を運転しないで、ヒートポンプ回路
による単独運転をおこない、設定温度Bより低温の設定
温度A(例えば、65℃)となるように流量制御手段1
1の制御をおこない、設定温度Aの湯を貯湯タンク6に
貯湯する。従って、給湯負荷を満足するとともに高効率
の沸き上げ運転を実現する。
The operation and operation of the above configuration will be described. The hot water of 90 ° C. which was boiled using the heat pump operation and the heat source operation on the previous day is discharged from the hot water storage tank 6 and used. Then, when the boiling operation is started at midnight of the day, the signal of the remaining hot water temperature detecting means 23 in the hot water storage tank is detected, and when the signal indicates a temperature lower than the predetermined temperature, the heat pump operation and the operation of the heat source 7 are performed. The flow rate control means 11 and the heat source control means 17 are controlled so as to be at the set temperature B (for example, 90 ° C.) in combination, and the hot water at the set temperature B is stored in the hot water storage tank 6. Conversely, when the signal indicates a temperature higher than the predetermined temperature, the heat source 7 is not operated and the heat pump circuit is operated alone to control the flow rate so that the temperature becomes lower than the set temperature B (for example, 65 ° C.). Means 1
1 is performed to store hot water at the set temperature A in the hot water storage tank 6. Therefore, a high-efficiency boiling operation can be realized while satisfying the hot water supply load.

【0030】(実施例7)図8は本発明の実施例7のヒ
ートポンプ給湯システムの構成図である。図8におい
て、25は残湯温度検出手段であり、貯湯タンク内の上
下の複数の湯温を検出する。26は熱源時間設定手段で
あり、過去数日から現在の残湯温度検出手段25の検出
信号を記憶して、熱源7の通電時間を設定する。27は
熱源通電時刻設定手段であり、深夜電力利用の深夜時間
帯通電終了時刻(朝7時あるいは8時)から熱源時間設
定手段26の時間を逆算して熱源7の通電開始時刻を演
算する。28はクロック、29は運転制御手段であり、
運転開始時はヒートポンプ回路による単独運転をおこな
い、入水温度検出手段21の温度信号が所定温度に達し
た時にヒートポンプ運転を停止して、熱源通電時刻設定
手段27とクロック28の信号に基づき熱源7を通電す
る。
(Embodiment 7) FIG. 8 is a configuration diagram of a heat pump hot water supply system according to Embodiment 7 of the present invention. In FIG. 8, reference numeral 25 denotes remaining hot water temperature detecting means for detecting a plurality of upper and lower hot water temperatures in a hot water storage tank. Reference numeral 26 denotes a heat source time setting unit which stores the detection signal of the remaining hot water temperature detection unit 25 from the past several days and sets the energization time of the heat source 7. Reference numeral 27 denotes a heat source energization time setting unit that calculates the energization start time of the heat source 7 by calculating the time of the heat source time setting unit 26 from the midnight time zone energization end time (7:00 or 8:00 in the morning) using the midnight power. 28 is a clock, 29 is operation control means,
At the start of the operation, the heat pump circuit performs an independent operation. When the temperature signal of the incoming water temperature detection means 21 reaches a predetermined temperature, the heat pump operation is stopped, and the heat source 7 is turned on based on the heat source energization time setting means 27 and the clock 28 signal. Turn on electricity.

【0031】以上の構成において、その動作、作用につ
いて説明する。深夜に沸き上げ運転を開始する時、貯湯
タンク6内の複数の残湯温度検出手段25の信号を検出
する。そして、所定温度より高温を示す信号の検出位置
が前日より下の位置の場合に、熱源7の通電時間を前日
よりも少なく設定する。すなわち、熱源7の通電開始時
刻を遅らせて、貯湯タンク6からの放熱量を低減する。
そして、貯湯熱量を少なくして無駄なエネルギー消費を
抑制する。逆に、残湯温度検出手段25の信号から所定
温度より高温を示す検出位置が前日より上の位置の場合
には、熱源7の通電時間を前日よりも多く設定する。す
なわち、熱源7の通開始時刻を早めて、給湯負荷に追随
する。従って、給湯負荷に追随しながら、省エネ化を実
現する。
The operation and operation of the above configuration will be described. When the boiling operation is started at midnight, signals from a plurality of remaining hot water temperature detecting means 25 in the hot water storage tank 6 are detected. Then, when the detection position of the signal indicating the temperature higher than the predetermined temperature is a position lower than the previous day, the energizing time of the heat source 7 is set shorter than the previous day. That is, the amount of heat released from hot water storage tank 6 is reduced by delaying the start time of energization of heat source 7.
Then, the amount of heat stored in the hot water is reduced to suppress unnecessary energy consumption. Conversely, when the detection position indicating a higher temperature than the predetermined temperature from the signal of the remaining hot water temperature detection means 25 is a position higher than the previous day, the energization time of the heat source 7 is set longer than the previous day. That is, the passage start time of the heat source 7 is advanced to follow the hot water supply load. Therefore, energy saving is realized while following the hot water supply load.

【0032】(実施例8)図9は本発明の実施例8のヒ
ートポンプ給湯システムの構成図である。図9におい
て、30は冷媒流路切換え手段であり、圧縮機1と冷媒
給湯熱交換器2のヒートポンプ回路途中に設けて、圧縮
機1、蒸発器4、減圧手段3、冷媒給湯熱交換器2の順
に冷媒を流す除霜運転回路31を構成する。32は冷媒
温度検出手段であり、ヒートポンプ回路の蒸発器4入口
の冷媒温度を検出する。33は除霜制御手段であり、冷
媒流路切換え手段30に送信して除霜運転回路31に切
換える。34は優先通電制御手段であり、熱源7を強制
的に通電する。35は最大流量制御手段であり、給湯回
路10の循環水量を最大となるように流量制御手段11
を制御する。36は運転制御手段であり、冷媒温度検出
手段32の検出信号が所定温度以下に達した時に、除霜
制御手段33と優先通電制御手段34および最大流量制
御手段35に送信する。
(Eighth Embodiment) FIG. 9 is a configuration diagram of a heat pump hot water supply system according to an eighth embodiment of the present invention. In FIG. 9, reference numeral 30 denotes a refrigerant flow switching means, which is provided in the heat pump circuit between the compressor 1 and the refrigerant hot water heat exchanger 2, and is provided with a compressor 1, an evaporator 4, a pressure reducing means 3, a refrigerant hot water heat exchanger 2 The defrosting operation circuit 31 for flowing the refrigerant in this order is constructed. Reference numeral 32 denotes a refrigerant temperature detecting means for detecting the refrigerant temperature at the inlet of the evaporator 4 of the heat pump circuit. 33 is a defrost control means, which transmits to the refrigerant flow switching means 30 and switches to the defrost operation circuit 31. Reference numeral 34 denotes priority energization control means for forcibly energizing the heat source 7. Reference numeral 35 denotes a maximum flow rate control means, which controls the flow rate control means 11 so as to maximize the amount of circulating water in the hot water supply circuit 10.
Control. Reference numeral 36 denotes an operation control unit, which transmits to the defrost control unit 33, the priority energization control unit 34, and the maximum flow control unit 35 when the detection signal of the refrigerant temperature detection unit 32 reaches a predetermined temperature or lower.

【0033】以上の構成において、その動作、作用につ
いて説明する。冬季の沸き上げ運転中において、ヒート
ポンプ回路の蒸発器4の表面に着霜が生じて、蒸発温度
が低下したことを蒸発器4入口の冷媒温度検出手段で検
出して、冷媒流路切換え手段30の冷媒流れ方向を除霜
運転回路31に切換え、給湯回路10の循環水量を最大
にするとともに、熱源7を通電する。そして、圧縮機1
から吐出する冷媒の凝縮熱で蒸発器4の表面の霜を除霜
し、冷媒給湯熱交換器2に冷媒が流れる。ここで、水給
湯熱交換器9を流れる水から集熱して圧縮機1に吸入す
る。一方、水給湯熱交換器9から流出した水は温度を下
げて貯湯タンク6の上部に流れ熱源7で加熱される。従
って、短時間で除霜するため、ヒートポンプ加熱能力お
よび効率が向上する。そして、水給湯熱交換器を流れる
循環水量を最大に流すため、水給湯熱交換器内の凍結を
解消する。また、低温となつた水を熱源で強制加熱する
ため、貯湯タンク上部の湯温が短時間で回復する。
The operation and operation of the above configuration will be described. During the boiling operation in winter, the frost formation on the surface of the evaporator 4 of the heat pump circuit and the decrease in the evaporation temperature are detected by the refrigerant temperature detecting means at the inlet of the evaporator 4 and the refrigerant flow switching means 30 Is switched to the defrosting operation circuit 31 to maximize the amount of circulating water in the hot water supply circuit 10 and energize the heat source 7. And the compressor 1
The frost on the surface of the evaporator 4 is defrosted by the heat of condensation of the refrigerant discharged from the refrigerant, and the refrigerant flows into the refrigerant hot water supply heat exchanger 2. Here, heat is collected from the water flowing through the water / hot water supply heat exchanger 9 and is sucked into the compressor 1. On the other hand, the water flowing out of the water / hot water supply heat exchanger 9 is lowered in temperature and flows to the upper part of the hot water storage tank 6 to be heated by the heat source 7. Therefore, since the defrost is performed in a short time, the heat pump heating capacity and efficiency are improved. Then, in order to maximize the amount of circulating water flowing through the water / water supply heat exchanger, freezing in the water / water supply heat exchanger is eliminated. In addition, since the cold water is forcibly heated by the heat source, the temperature of the hot water above the hot water storage tank recovers in a short time.

【0034】[0034]

【発明の効果】以上の説明からも明らかのように、請求
項1記載の発明によれば、圧縮機、冷媒給湯熱交換器、
減圧手段、大気熱あるいは太陽熱を集熱する蒸発器から
なるヒートポンプ回路と、上部に熱源を内蔵した貯湯タ
ンクと、貯湯タンク下部の水を熱源の上部へ循環する循
環ポンプを具備する給湯回路途中に設けた冷媒給湯熱交
換器と熱交換関係を有する水給湯熱交換器と、給湯回路
の循環流量を制御する流量制御手段と、水給湯熱交換器
出口の湯温を検出する中間温度検出手段と、中間温度検
出手段の温度検出信号が設定温度信号Aと一致するよう
に流量制御手段の制御をおこなう制御手段を備え、高効
率の熱源同時運転と給湯回路系からの放熱損失低減およ
び高能力化と即湯化を実現する。そして、給湯回路の低
圧力損失化と簡素化、省スペース化がはかれる。また、
スケール水、腐食水に対する熱源の高寿命高信頼化を達
成する。
As is apparent from the above description, according to the first aspect of the present invention, the compressor, the refrigerant hot water heat exchanger,
In the middle of a hot water supply circuit comprising a decompression means, a heat pump circuit composed of an evaporator for collecting atmospheric heat or solar heat, a hot water storage tank with a built-in heat source at the top, and a circulation pump for circulating water under the hot water tank to the top of the heat source. A hot water supply heat exchanger having a heat exchange relationship with the provided refrigerant hot water supply heat exchanger, a flow rate control means for controlling a circulation flow rate of the hot water supply circuit, and an intermediate temperature detection means for detecting a hot water temperature at the outlet of the hot water supply heat exchanger. And control means for controlling the flow rate control means so that the temperature detection signal of the intermediate temperature detection means coincides with the set temperature signal A, thereby simultaneously operating the heat sources with high efficiency, reducing the heat radiation loss from the hot water supply circuit system, and increasing the capacity. And realizing hot water. Further, low pressure loss, simplification, and space saving of the hot water supply circuit are achieved. Also,
Achieve long life and high reliability of heat source for scale water and corrosive water.

【0035】また、請求項2に記載の発明によれば、熱
源より上部水位の貯湯タンク内の水温を検出する湯温検
出手段と、湯温検出手段の温度検出信号が設定温度信号
Aより高温である設定温度信号Bと一致するように熱源
の出力を制御する熱源制御手段を備え、圧縮機を用いた
ヒートポンプ回路による運転と熱源を通電する併用運転
において、貯湯タンクの上部に絶えず設定温度の高温湯
を貯湯するとともに貯湯タンク、ヒータの機器の信頼性
向上を実現する。
According to the second aspect of the present invention, the hot water temperature detecting means for detecting the water temperature in the hot water storage tank at a level higher than the heat source, and the temperature detection signal of the hot water temperature detecting means is higher than the set temperature signal A. A heat source control means for controlling the output of the heat source so as to coincide with the set temperature signal B, and in the combined operation of energizing the heat source and the operation by the heat pump circuit using the compressor, the set temperature is constantly set above the hot water storage tank. It will store hot water and improve the reliability of hot water storage tank and heater equipment.

【0036】また、請求項3に記載の発明によれば、運
転開始時にヒートポンプ回路による単独運転をおこな
い、湯温検出手段の温度信号が所定温度信号に達するこ
とを検出して熱源の通電をおこなう熱源通電制御手段を
備え、機器の設置後に試運転する場合のヒータの空焚き
運転を防止して、ヒータ断線を解消して機器の信頼性を
向上する。
According to the third aspect of the present invention, when the operation is started, the heat pump circuit is operated independently, and when the temperature signal of the hot water temperature detecting means reaches a predetermined temperature signal, the heat source is energized. A heat source energization control unit is provided to prevent the heater from being idle when a test operation is performed after installation of the equipment, to eliminate heater disconnection, and to improve the reliability of the equipment.

【0037】また、請求項4に記載の発明によれば、熱
源と略同水位の貯湯タンク内の水温を検出する水温検出
手段と、運転開始時にヒートポンプ回路による単独運転
をおこない、水温検出手段の温度検出信号が設定温度信
号Aと略同温度信号に達した時に熱源を通電する運転制
御手段を備え、ヒートポンプ回路による運転と熱源を通
電する併用運転において、ヒートポンプ運転による加熱
量の割合を増大して、システムの沸き上げ運転効率を著
しく向上する。
According to the fourth aspect of the present invention, the water temperature detecting means for detecting the water temperature in the hot water storage tank at substantially the same water level as the heat source, and the single operation by the heat pump circuit at the start of operation, the water temperature detecting means Operation control means for energizing the heat source when the temperature detection signal reaches substantially the same temperature signal as the set temperature signal A is provided. In the combined operation of energizing the heat source and the operation by the heat pump circuit, the rate of heating by the heat pump operation is increased. Thus, the boiling operation efficiency of the system is significantly improved.

【0038】また、請求項5に記載の発明によれば、水
給湯熱交換器入口の水温を検出する入水温度検出手段
と、運転開始時はヒートポンプ回路による単独運転をお
こない、入水温度検出手段の温度信号が所定温度に達し
た時にヒートポンプ運転を停止して、熱源を通電する熱
源運転制御手段を備え、高温湯の環境下で熱源のヒータ
を通電する時間を短縮してヒータの高寿命化を達成す
る。
According to the fifth aspect of the present invention, the input water temperature detecting means for detecting the water temperature at the inlet of the hot water supply heat exchanger, and when the operation is started, the heat pump circuit is operated independently to perform the independent operation. The heat pump operation is stopped when the temperature signal reaches a predetermined temperature, and the heat source operation control means for energizing the heat source is provided.The time for energizing the heater of the heat source in a high-temperature hot water environment is shortened to extend the life of the heater. To achieve.

【0039】また、請求項6に記載の発明によれば、貯
湯タンク内の予め設定された位置の湯温を検出する残湯
温度検出手段と、運転開始時に残湯温度検出手段の信号
を検出して、所定温度信号より高温の時には熱源を運転
しないで、ヒートポンプ回路による単独運転をおこなう
運転制御手段を備え、深夜に沸き上げ運転を開始する場
合、貯湯タンク内の予め設定された位置の湯温を検出す
る残湯温度検出手段の信号を検出して、給湯負荷を満足
するとともに高効率の沸き上げ運転を実現する。
According to the sixth aspect of the present invention, the remaining hot water temperature detecting means for detecting the hot water temperature at a preset position in the hot water storage tank and the signal of the remaining hot water temperature detecting means at the start of operation are detected. When the temperature is higher than the predetermined temperature signal, the heat source is not operated, and operation control means for performing an independent operation by the heat pump circuit is provided. When the boiling operation is started at midnight, the hot water at a preset position in the hot water storage tank is provided. A signal from a remaining hot water temperature detecting means for detecting a temperature is detected to satisfy a hot water supply load and realize a highly efficient boiling operation.

【0040】また、請求項7に記載の発明は、貯湯タン
ク内の上下の湯温を検出する複数の残湯温度検出手段
と、過去数日から現在の残湯温度検出手段の検出信号を
記憶して熱源の通電時間を設定する熱源時間設定手段
と、深夜電力利用の深夜時間帯通電終了時刻から熱源時
間設定手段の時間を逆算して熱源の通電開始時刻を演算
する熱源通電時刻設定手段と、時刻を計時するクロック
と、運転開始時はヒートポンプ回路による単独運転をお
こない、入水温度検出手段の温度信号が所定温度に達し
た時にヒートポンプ運転を停止して、熱源通電時刻設定
手段およびクロックの信号に基づき熱源を通電する運転
制御手段を備え、深夜に沸き上げ運転を開始する時、貯
湯タンク内の湯温分布を検出して、熱源の通電開始時間
を制御して、給湯負荷に追随しながら、省エネ化を実現
する。
Further, the invention according to claim 7 stores a plurality of remaining hot water temperature detecting means for detecting upper and lower hot water temperatures in a hot water storage tank and a detection signal of the present remaining hot water temperature detecting means from the past several days. Heat source time setting means for setting the energization time of the heat source, and heat source energization time setting means for calculating the energization start time of the heat source by calculating the time of the heat source time setting means from the energization end time of the midnight time zone using the late night power, and A clock that measures the time, when the operation is started, an independent operation is performed by the heat pump circuit, and when the temperature signal of the incoming water temperature detection means reaches a predetermined temperature, the heat pump operation is stopped, and the signals of the heat source energization time setting means and the clock are output. Operation control means for energizing the heat source based on the detection of the hot water temperature distribution in the hot water storage tank when starting the boiling operation at midnight and controlling the energization start time of the heat source to supply hot water load. While to follow, to achieve energy saving.

【0041】また、請求項8に記載の発明は、圧縮機と
冷媒給湯熱交換器のヒートポンプ回路途中に冷媒流路切
換え手段を設けて、圧縮機、蒸発器、減圧手段、冷媒給
湯熱交換器の順に冷媒を流す除霜運転回路と、ヒートポ
ンプ回路の蒸発器入口の冷媒温度を検出する冷媒温度検
出手段と、除霜運転回路に切換える除霜制御手段と、熱
源を強制的に通電する優先通電制御手段と、給湯回路の
循環水量を最大となるように流量制御手段を制御する最
大流量制御手段と、冷媒温度検出手段の検出信号が所定
温度以下に達した時に、除霜制御手段と優先通電制御手
段および最大流量制御手段に送信する運転制御手段を備
え、冬季の沸き上げ運転時において、短時間で除霜して
ヒートポンプ加熱能力および運転効率を向上するととも
に水給湯熱交換器内の凍結を解消する。
In the invention according to claim 8, a refrigerant flow switching means is provided in the heat pump circuit between the compressor and the refrigerant hot water supply heat exchanger, and the compressor, the evaporator, the pressure reducing means, and the refrigerant hot water heat exchanger are provided. , A refrigerant temperature detection means for detecting the refrigerant temperature at the evaporator inlet of the heat pump circuit, a defrost control means for switching to the defrost operation circuit, and a priority energization for forcibly energizing the heat source. Control means, maximum flow rate control means for controlling the flow rate control means to maximize the amount of circulating water in the hot water supply circuit, and priority energization with the defrost control means when the detection signal of the refrigerant temperature detection means reaches a predetermined temperature or less. An operation control means for transmitting to the control means and the maximum flow rate control means, in a boiling operation in winter, defrosting in a short time to improve a heat pump heating capacity and an operation efficiency, and a water / hot water supply heat exchanger. To eliminate the freeze.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1のヒートポンプ給湯システム
の構成図
FIG. 1 is a configuration diagram of a heat pump hot water supply system according to a first embodiment of the present invention.

【図2】本発明の実施例1の他のヒートポンプ給湯シス
テムの構成図
FIG. 2 is a configuration diagram of another heat pump hot water supply system according to the first embodiment of the present invention.

【図3】本発明の実施例2のヒートポンプ給湯システム
の構成図
FIG. 3 is a configuration diagram of a heat pump hot water supply system according to a second embodiment of the present invention.

【図4】本発明の実施例3のヒートポンプ給湯システム
の構成図
FIG. 4 is a configuration diagram of a heat pump hot water supply system according to a third embodiment of the present invention.

【図5】本発明の実施例4のヒートポンプ給湯システム
の構成図
FIG. 5 is a configuration diagram of a heat pump hot water supply system according to a fourth embodiment of the present invention.

【図6】本発明の実施例5のヒートポンプ給湯システム
の構成図
FIG. 6 is a configuration diagram of a heat pump hot water supply system according to a fifth embodiment of the present invention.

【図7】本発明の実施例6のヒートポンプ給湯システム
の構成図
FIG. 7 is a configuration diagram of a heat pump hot water supply system according to a sixth embodiment of the present invention.

【図8】本発明の実施例7のヒートポンプ給湯システム
の構成図
FIG. 8 is a configuration diagram of a heat pump hot water supply system according to a seventh embodiment of the present invention.

【図9】本発明の実施例8のヒートポンプ給湯システム
の構成図
FIG. 9 is a configuration diagram of a heat pump hot water supply system according to an eighth embodiment of the present invention.

【図10】従来のヒートポンプ給湯システムの構成図FIG. 10 is a configuration diagram of a conventional heat pump hot water supply system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 冷媒給湯熱交換器 3 減圧手段 4 蒸発器 5 ヒートポンプ回路 6 貯湯タンク 7 熱源 8 循環ポンプ 9 水給湯熱交換器 10 給湯回路 11 流量制御手段 12 中間温度検出手段 13 制御手段 14 循環ポンプ 15 ポンプ制御手段 16 湯温検出手段 17 熱源制御手段 18 熱源通電制御手段 19 水温検出手段 20、24、29、36 運転制御手段 21 入水温度検出手段 22 熱源運転制御手段 23、25 残湯温度検出手段 26 熱源時間設定手段 27 熱源通電時刻設定手段 28 クロック 30 冷媒流路切換え手段 31 除霜運転回路 32 冷媒温度検出手段 33 除霜制御手段 34 優先通電制御手段 35 最大流量制御手段 DESCRIPTION OF SYMBOLS 1 Compressor 2 Refrigerant hot water heat exchanger 3 Decompression means 4 Evaporator 5 Heat pump circuit 6 Hot water storage tank 7 Heat source 8 Circulation pump 9 Water hot water heat exchanger 10 Hot water supply circuit 11 Flow control means 12 Intermediate temperature detection means 13 Control means 14 Circulation pump 15 Pump control means 16 Hot water temperature detection means 17 Heat source control means 18 Heat source conduction control means 19 Water temperature detection means 20, 24, 29, 36 Operation control means 21 Incoming water temperature detection means 22 Heat source operation control means 23, 25 Remaining hot water temperature detection means 26 heat source time setting means 27 heat source energizing time setting means 28 clock 30 refrigerant flow switching means 31 defrost operation circuit 32 refrigerant temperature detecting means 33 defrost control means 34 priority energization control means 35 maximum flow rate control means

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、冷媒給湯熱交換器、減圧手段、大
気熱あるいは太陽熱を集熱する蒸発器からなるヒートポ
ンプ回路と、上部に熱源を内蔵した貯湯タンクと、前記
貯湯タンク下部の水を前記熱源の上部へ循環する循環ポ
ンプを具備する給湯回路途中に設けた前記冷媒給湯熱交
換器と熱交換関係を有する水給湯熱交換器と、給湯回路
の循環流量を制御する流量制御手段と、水給湯熱交換器
出口の湯温を検出する中間温度検出手段と、前記中間温
度検出手段の温度検出信号が設定温度信号Aと一致する
ように前記流量制御手段の制御をおこなう制御手段を備
えたヒートポンプ給湯システム。
1. A heat pump circuit comprising a compressor, a refrigerant hot water supply heat exchanger, a decompression means, an evaporator for collecting atmospheric heat or solar heat, a hot water storage tank having a built-in heat source at an upper part, and a water at a lower part of the hot water storage tank. A water hot water supply heat exchanger having a heat exchange relationship with the refrigerant hot water supply heat exchanger provided in the middle of the hot water supply circuit having a circulation pump circulating to the upper part of the heat source, and a flow control means for controlling a circulation flow rate of the hot water supply circuit, Intermediate temperature detecting means for detecting the temperature of the hot water at the outlet of the water / hot water supply heat exchanger; and control means for controlling the flow rate controlling means such that the temperature detection signal of the intermediate temperature detecting means matches the set temperature signal A. Heat pump hot water supply system.
【請求項2】熱源より上部水位の貯湯タンク内の水温を
検出する湯温検出手段と、前記湯温検出手段の温度検出
信号が設定温度信号Aより高温である設定温度信号Bと
一致するように前記熱源の出力を制御する熱源制御手段
を備えた請求項1記載のヒートポンプ給湯システム。
2. A hot water temperature detecting means for detecting a water temperature in a hot water storage tank at an upper water level from a heat source, and a temperature detection signal of the hot water temperature detecting means coincides with a set temperature signal B higher than a set temperature signal A. 2. A heat pump hot water supply system according to claim 1, further comprising a heat source control means for controlling an output of said heat source.
【請求項3】運転開始時にヒートポンプ回路による単独
運転をおこない、前記湯温検出手段の温度信号が所定温
度信号に達することを検出して熱源の通電をおこなう熱
源通電制御手段を備えた請求項1または2記載のヒート
ポンプ給湯システム。
3. A heat source energization control means for performing independent operation by a heat pump circuit at the start of operation, and energizing the heat source by detecting that the temperature signal of the hot water temperature detection means reaches a predetermined temperature signal. Or the heat pump hot water supply system according to 2.
【請求項4】熱源と略同水位の貯湯タンク内の水温を検
出する水温検出手段と、運転開始時にヒートポンプ回路
による単独運転をおこない、前記水温検出手段の温度検
出信号が設定温度信号Aと略同温度信号に達した時に熱
源を通電する運転制御手段を備えた請求項1または2記
載のヒートポンプ給湯システム。
4. A water temperature detecting means for detecting a water temperature in a hot water storage tank having substantially the same water level as a heat source, and an independent operation by a heat pump circuit at the start of operation, wherein a temperature detection signal of said water temperature detecting means is substantially equal to a set temperature signal A. 3. The heat pump hot water supply system according to claim 1, further comprising an operation control unit that energizes the heat source when the temperature signal is reached.
【請求項5】水給湯熱交換器入口の水温を検出する入水
温度検出手段と、運転開始時はヒートポンプ回路による
単独運転をおこない、前記入水温度検出手段の温度信号
が所定温度に達した時にヒートポンプ運転を停止して熱
源を通電する熱源運転制御手段を備えた請求項1または
2記載のヒートポンプ給湯システム。
5. An inflow water temperature detecting means for detecting the water temperature at the inlet of the water / hot water supply heat exchanger, and an independent operation by a heat pump circuit at the start of operation, and when the temperature signal of the inflow water temperature detection means reaches a predetermined temperature. The heat pump hot water supply system according to claim 1 or 2, further comprising a heat source operation control unit that stops the operation of the heat pump and energizes the heat source.
【請求項6】貯湯タンク内の予め設定された位置の湯温
を検出する残湯温度検出手段と、運転開始時に前記残湯
温度検出手段の信号を検出して、所定温度信号より高温
の時には熱源を運転しないで、ヒートポンプ回路による
単独運転をおこなう運転制御手段を備えた請求項1記載
のヒートポンプ給湯システム。
6. A remaining hot water temperature detecting means for detecting a hot water temperature at a preset position in a hot water storage tank, and detecting a signal of said remaining hot water temperature detecting means at the start of operation, and when the temperature is higher than a predetermined temperature signal. The heat pump hot water supply system according to claim 1, further comprising operation control means for performing an independent operation by the heat pump circuit without operating the heat source.
【請求項7】貯湯タンク内の上下の湯温を検出する複数
の残湯温度検出手段と、過去数日から現在の前記残湯温
度検出手段の検出信号を記憶して熱源の通電時間を設定
する熱源時間設定手段と、深夜電力利用の深夜時間帯通
電終了時刻から前記熱源時間設定手段の時間を逆算して
熱源の通電開始時刻を演算する熱源通電時刻設定手段
と、時刻を計時するクロックと、運転開始時はヒートポ
ンプ回路による単独運転をおこない、前記入水温度検出
手段の温度信号が所定温度に達した時にヒートポンプ運
転を停止して、前記熱源通電時刻設定手段および前記ク
ロックの信号に基づき熱源を通電する運転制御手段を備
えた請求項1または2または5記載のヒートポンプ給湯
システム。
7. A plurality of remaining hot-water temperature detecting means for detecting upper and lower hot-water temperatures in a hot-water storage tank, and a current detection signal of the remaining hot-water temperature detecting means from the past several days are stored to set an energizing time of a heat source. Heat source time setting means, a heat source energization time setting means for calculating the energization start time of the heat source by calculating the energization start time of the heat source by calculating the time of the heat source time setting means from the energization end time of the midnight time zone of the midnight power use, and a clock for measuring the time. At the start of operation, a single operation is performed by the heat pump circuit, the heat pump operation is stopped when the temperature signal of the incoming water temperature detection means reaches a predetermined temperature, and the heat source is turned on based on the heat source energization time setting means and the clock signal. The heat pump hot water supply system according to claim 1, further comprising an operation control unit for supplying electricity.
【請求項8】圧縮機と冷媒給湯熱交換器のヒートポンプ
回路途中に冷媒流路切換え手段を設けて、圧縮機、蒸発
器、減圧手段、冷媒給湯熱交換器の順に冷媒を流す除霜
運転回路と、ヒートポンプ回路の蒸発器入口の冷媒温度
を検出する冷媒温度検出手段と、前記除霜運転回路に切
換える除霜制御手段と、熱源を強制的に通電する優先通
電制御手段と、給湯回路の循環水量を最大となるように
流量制御手段を制御する最大流量制御手段と、前記冷媒
温度検出手段の検出信号が所定温度以下に達した時に、
前記除霜制御手段と前記優先通電制御手段および前記最
大流量制御手段に送信する運転制御手段を備えた請求項
1または2記載のヒートポンプ給湯システム。
8. A defrosting operation circuit in which a refrigerant flow switching means is provided in the middle of a heat pump circuit between a compressor and a refrigerant hot water heat exchanger, and a refrigerant flows in the order of a compressor, an evaporator, a pressure reducing means, and a refrigerant hot water heat exchanger. Refrigerant temperature detection means for detecting the refrigerant temperature at the evaporator inlet of the heat pump circuit, defrost control means for switching to the defrost operation circuit, priority energization control means for forcibly energizing the heat source, and circulation of the hot water supply circuit Maximum flow rate control means for controlling the flow rate control means to maximize the amount of water, when the detection signal of the refrigerant temperature detection means reaches a predetermined temperature or less,
3. The heat pump hot water supply system according to claim 1, further comprising an operation control unit that transmits the defrost control unit, the priority energization control unit, and the maximum flow rate control unit. 4.
JP2000028658A 2000-02-07 2000-02-07 Heat pump hot water supply system Expired - Fee Related JP3843683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000028658A JP3843683B2 (en) 2000-02-07 2000-02-07 Heat pump hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000028658A JP3843683B2 (en) 2000-02-07 2000-02-07 Heat pump hot water supply system

Publications (2)

Publication Number Publication Date
JP2001221501A true JP2001221501A (en) 2001-08-17
JP3843683B2 JP3843683B2 (en) 2006-11-08

Family

ID=18554029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000028658A Expired - Fee Related JP3843683B2 (en) 2000-02-07 2000-02-07 Heat pump hot water supply system

Country Status (1)

Country Link
JP (1) JP3843683B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529977B1 (en) * 2001-09-04 2005-11-22 산요덴키가부시키가이샤 Heat pump type hot water supply apparatus
JP2007057148A (en) * 2005-08-24 2007-03-08 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2007298226A (en) * 2006-04-28 2007-11-15 Itomic Kankyou System Co Ltd Heat pump type water heater and its hot water supply method
WO2008123187A1 (en) * 2007-03-27 2008-10-16 Daikin Industries, Ltd. Heat pump type hot water supply apparatus and heating hot water supply apparatus
JP2008267792A (en) * 2007-03-27 2008-11-06 Daikin Ind Ltd Heat pump type hot water supply apparatus
US7458418B2 (en) 2003-01-13 2008-12-02 Carrier Corporation Storage tank for hot water systems
WO2009096508A1 (en) * 2008-02-01 2009-08-06 Daikin Industries, Ltd. Hot-water storage type heating and hot-water supply device
WO2009096512A1 (en) * 2008-02-01 2009-08-06 Daikin Industries, Ltd. Hot-water storage type hot-water supply device and hot-water storage type heating and hot-water supply device
KR101225979B1 (en) 2010-11-02 2013-01-24 엘지전자 주식회사 Heat pump type speed heating apparatus and Control process of the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529977B1 (en) * 2001-09-04 2005-11-22 산요덴키가부시키가이샤 Heat pump type hot water supply apparatus
US7458418B2 (en) 2003-01-13 2008-12-02 Carrier Corporation Storage tank for hot water systems
JP2007057148A (en) * 2005-08-24 2007-03-08 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2007298226A (en) * 2006-04-28 2007-11-15 Itomic Kankyou System Co Ltd Heat pump type water heater and its hot water supply method
WO2008123187A1 (en) * 2007-03-27 2008-10-16 Daikin Industries, Ltd. Heat pump type hot water supply apparatus and heating hot water supply apparatus
JP2008267792A (en) * 2007-03-27 2008-11-06 Daikin Ind Ltd Heat pump type hot water supply apparatus
WO2009096508A1 (en) * 2008-02-01 2009-08-06 Daikin Industries, Ltd. Hot-water storage type heating and hot-water supply device
WO2009096512A1 (en) * 2008-02-01 2009-08-06 Daikin Industries, Ltd. Hot-water storage type hot-water supply device and hot-water storage type heating and hot-water supply device
JP2009276050A (en) * 2008-02-01 2009-11-26 Daikin Ind Ltd Hot-water storage water heater and hot-water storage heating water heater
JP4539777B2 (en) * 2008-02-01 2010-09-08 ダイキン工業株式会社 Hot water storage water heater and hot water heater
US8978744B2 (en) 2008-02-01 2015-03-17 Daikin Industries, Ltd. Hot-water storage type hot-water supply device and hot-water storage type heating and hot-water supply device
KR101225979B1 (en) 2010-11-02 2013-01-24 엘지전자 주식회사 Heat pump type speed heating apparatus and Control process of the same

Also Published As

Publication number Publication date
JP3843683B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
US8245948B2 (en) Co-generation and control method of the same
JP3856024B2 (en) Heat pump bath water supply system
JPS6470670A (en) Heat pump device simultaneously conducting hot-water snow removal
JP3663828B2 (en) Heat pump bath water supply system
JP2001221501A (en) Heat pump hot-water supply system
JP4389378B2 (en) Hot water storage type heat pump water heater
JP3855695B2 (en) Heat pump water heater
JP3758334B2 (en) Heat pump solar water heating system
JP3632306B2 (en) Heat pump bath water supply system
JP3840914B2 (en) Heat pump bath water supply system
JP2004139914A (en) Fuel cell power generation/water heating system
JP3800721B2 (en) Heat pump type water heater
KR101124638B1 (en) Chilled water storage system for heating and cooling directly by using solar energy
JP3050114B2 (en) Control method of ice storage type chiller
JP2002310532A (en) Heat pump hot water feeding apparatus
JP3692813B2 (en) Heat pump water heater
JPS6261852B2 (en)
JP7507378B2 (en) Heat pump hot water supply system
JP2005077051A (en) Heat pump type water heater
JP2906508B2 (en) Heat pump water heater
JP2005083659A (en) Water heater
JP2000199645A (en) Heat pump water heater
JP2011117643A (en) Storage type water heater
JP2705492B2 (en) Water storage, hot water storage type hot water supply device
JPS6343664B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees