JP2000199645A - Heat pump water heater - Google Patents

Heat pump water heater

Info

Publication number
JP2000199645A
JP2000199645A JP2000028685A JP2000028685A JP2000199645A JP 2000199645 A JP2000199645 A JP 2000199645A JP 2000028685 A JP2000028685 A JP 2000028685A JP 2000028685 A JP2000028685 A JP 2000028685A JP 2000199645 A JP2000199645 A JP 2000199645A
Authority
JP
Japan
Prior art keywords
hot water
temperature
heater
refrigerant
temperature detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000028685A
Other languages
Japanese (ja)
Other versions
JP3365387B2 (en
Inventor
Takeji Watanabe
竹司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP27500094A external-priority patent/JP3055406B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000028685A priority Critical patent/JP3365387B2/en
Publication of JP2000199645A publication Critical patent/JP2000199645A/en
Application granted granted Critical
Publication of JP3365387B2 publication Critical patent/JP3365387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize and uniformalize the hot water temperature of a storage hot water during reheating operation by a heat pump water heater. SOLUTION: This water heater comprises a hot water supply circuit consisting of a compressor 1, a refrigerant circuit having a refrigerant to water heat-exchanger 2, a hot water storage tank 5, a circulation pump 6; a hot water supply circuit from a heater 7, a first temperature detector 8; a second temperature detector 9; a hot water amount detector 10; a number of revolutions control means 11 to control the number of revolutions of the circulation pump 6 by means of a signal from the first temperature detector 8 while the heater 7 is not energized and a signal from the second temperature detector 9 while the heater 7 is energized; an operation memory device 12 to store whether the heater 7 is not electrically connected or electrically connected right before; and an operation controller 13. When it is detected by the hot water amount detector 10 that temperature is below a given value, the compressor 1 and the circulation pump 6 are operated. When it is stored by the operation memory device 12 that the heater is not electrically energized, the heater 7 is brought into non-electrical connection and when electrical connection is stored, electrical connection to the heater 7 is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はヒートポンプ利用給湯機
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water heater using a heat pump.

【0002】[0002]

【従来の技術】従来、ヒートポンプ利用給湯機は特公昭
62−22380号公報に示す如きものがある。図8に
おいて、圧縮機1、冷媒対水熱交換器よりなる凝縮器
2、減圧装置3、蒸発器4を順次環状に接続するととも
に、凝縮器2と補助加熱器10の間に温水温度検知器1
3を設け、凝縮器2の出口水温がヒートポンプ運転と補
助加熱器10の併用運転時には、ヒートポンプ単独運転
時に対して低温となるように、循環水量を制御してヒー
トポンプ運転のみで給湯保証できない場合の加熱能力保
証およびヒートポンプの成績係数低下を防止するように
なっている。なお、図8において、7は貯湯槽、9は循
環ポンプである。
2. Description of the Related Art Conventionally, there is a water heater using a heat pump as disclosed in Japanese Patent Publication No. 62-22380. In FIG. 8, a compressor 1, a condenser 2 comprising a refrigerant-to-water heat exchanger, a pressure reducing device 3, and an evaporator 4 are sequentially connected in a ring shape, and a hot water temperature detector is provided between the condenser 2 and the auxiliary heater 10. 1
3 is provided, when the outlet water temperature of the condenser 2 is used in combination with the heat pump operation and the auxiliary heater 10, the circulating water amount is controlled so that the temperature of the circulating water is lower than that in the single operation of the heat pump. It guarantees the heating capacity and prevents the coefficient of performance of the heat pump from decreasing. In FIG. 8, 7 is a hot water storage tank, and 9 is a circulation pump.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ヒート
ポンプは大気熱を利用して加熱するため、外気温度によ
って加熱能力が変動する。すなわち、凝縮器2の出口温
度を一定にするため当然ながら循環水量は変動する。よ
って、温水温度検知器13で凝縮器2の出口温度を一定
に制御しても、ヒートポンプと補助加熱器10の併用運
転時に補助加熱器10の出口湯温は変動するため、安定
した湯温で貯湯槽7に貯湯できない。
However, since the heat pump heats using atmospheric heat, the heating capacity varies depending on the outside air temperature. That is, the amount of circulating water naturally fluctuates in order to keep the outlet temperature of the condenser 2 constant. Therefore, even if the outlet temperature of the condenser 2 is controlled to be constant by the hot water temperature detector 13, the outlet water temperature of the auxiliary heater 10 fluctuates when the heat pump and the auxiliary heater 10 are operated in combination. Hot water cannot be stored in hot water storage tank 7.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するため、圧縮機、冷媒対水熱交換器、減圧装置、蒸発
器を順次接続した冷媒循環回路と、下部から給水されて
上部から出湯される貯湯槽、前記貯湯槽下部と接続され
る循環ポンプ、前記冷媒対水熱交換器、前記貯湯槽上部
と接続される加熱器を順次接続した給湯回路と、前記給
湯回路の前記冷媒対水熱交換器出口の湯温を検知する第
1の温度検知器と、前記給湯回路の前記加熱器出口の湯
温を検知する第2の温度検知器と、前記貯湯槽内の湯温
を検知する湯量検知器と、前記加熱器が非通電時は前記
第1の温度検知器の信号で前記循環ポンプの回転数を制
御し、前記加熱器に通電時は前記第2の温度検知器の信
号で前記循環ポンプの回転数を制御する回転数制御手段
と、直前に前記加熱器が非通電か通電であったかを記憶
する運転記憶装置と、前記湯量検知器が所定温度以下を
検知すると前記圧縮機と前記循環ポンプを運転するとと
もに前記運転記憶装置が非通電を記憶している時は前記
加熱器を非通電とし、通電を記憶している時は前記加熱
器に通電する運転制御器とを備えた構成とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a refrigerant circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected. A hot water tank for discharging hot water, a circulation pump connected to the lower part of the hot water tank, the refrigerant-water heat exchanger, a hot water supply circuit sequentially connected to a heater connected to the upper part of the hot water tank, and the refrigerant pair of the hot water supply circuit A first temperature detector for detecting the temperature of the hot water at the outlet of the water heat exchanger; a second temperature detector for detecting the temperature of the hot water at the outlet of the heater in the hot water supply circuit; and detecting the temperature of the hot water in the hot water storage tank The amount of hot water to be detected and the number of rotations of the circulating pump controlled by the signal of the first temperature detector when the heater is not energized, and the signal of the second temperature detector when the heater is energized. Rotation speed control means for controlling the rotation speed of the circulation pump at An operation storage device for storing whether the compressor is non-energized or energized, and when the hot water detector detects a predetermined temperature or less, the compressor and the circulating pump are operated and the operation storage device stores non-energized. At the time, the heater is de-energized, and when the energization is stored, an operation controller for energizing the heater is provided.

【0005】また、追焚き運転時に無駄な沸き上げを低
減して省エネルギー化をはかるため、圧縮機、冷媒対水
熱交換器、減圧装置、蒸発器を順次接続した冷媒循環回
路と、貯湯槽、循環ポンプ、前記冷媒対水熱交換器、加
熱器を順次接続した給湯回路と、前記給湯回路の前記冷
媒対水熱交換器出口の湯温を検知する第1の温度検知器
と、前記給湯回路の前記加熱器出口の湯温を検知する第
2の温度検知器と、前記貯湯槽内の湯温を検知する湯量
検知器と、前記加熱器が非通電時は前記第1の温度検知
器の信号で前記循環ポンプの回転数を制御し、前記加熱
器に通電時は前記第2の温度検知器の信号で前記循環ポ
ンプの回転数を制御する回転数制御手段と、前記蒸発器
入口の冷媒温度を検知する蒸発温度検知器と、前記湯量
検知器が所定温度を検知すると時間計測を開始するタイ
マーと、前記蒸発温度検知器の信号で前記タイマーの時
間設定を行うタイマー設定手段と、前記湯量検知器が所
定温度以下を検知すると前記圧縮機、前記循環ポンプ、
前記加熱器に通電をして運転開始するとともに前記タイ
マーの設定時間終了の信号を受けて前記圧縮機、前記循
環ポンプ、前記加熱器の運転を停止する運転制御器とを
備え、前記蒸発器入口の温度が低くなるにしたがって前
記タイマーの設定時間を長く設定した構成とする。
In order to save energy by reducing wasteful boiling during reheating operation, a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected; A hot water supply circuit in which a circulation pump, the refrigerant-to-water heat exchanger, and a heater are sequentially connected; a first temperature detector for detecting a hot water temperature at an outlet of the refrigerant-to-water heat exchanger of the hot water supply circuit; and the hot water supply circuit A second temperature detector for detecting a hot water temperature at the outlet of the heater, a hot water amount detector for detecting a hot water temperature in the hot water storage tank, and a first temperature detector when the heater is not energized. A rotation speed control means for controlling the rotation speed of the circulation pump with a signal, and controlling the rotation speed of the circulation pump with a signal from the second temperature detector when the heater is energized; and a refrigerant at the evaporator inlet. An evaporating temperature detector for detecting a temperature, and the A timer for starting the Upon detection time measurement, the evaporation temperature detector and timer setting means for performing the time setting of the timer signal, the hot water detector the compressor and detects the predetermined temperature or less, the circulation pump,
The compressor, the circulating pump, and an operation controller for stopping the operation of the heater upon receiving a signal indicating that the set time of the timer has ended, by energizing the heater, and operating the evaporator inlet. The setting time of the timer is set to be longer as the temperature of the timer becomes lower.

【0006】また、前記冷媒対水熱交換器に流入する水
温が高い場合に給湯負荷を満たすとともに省エネルギー
化をはかるため、圧縮機、冷媒対水熱交換器、減圧装
置、蒸発器を順次接続した冷媒循環回路と、貯湯槽、循
環ポンプ、前記冷媒対水熱交換器、前記貯湯槽上部と接
続される加熱器を順次接続した給湯回路と、前記給湯回
路の前記冷媒対水熱交換器出口の湯温を検知する第1の
温度検知器と、前記給湯回路の前記加熱器出口の湯温を
検知する第2の温度検知器と、前記貯湯槽内の湯温を検
知する湯量検知器と、前記加熱器が非通電時は前記第1
の温度検知器の信号で前記循環ポンプの回転数を制御
し、前記加熱器に通電時は前記第2の温度検知器の信号
で前記循環ポンプの回転数を制御する回転数制御手段
と、前記給湯回路の前記冷媒対水熱交換器入口の水温を
検知する第3の温度検知器と、前記湯量検知器の信号と
前記第3の温度検知器の信号から、前記貯湯槽内の湯温
と前記冷媒対水熱交換器入口の水温の温度差が設定値よ
りも大きい場合には前記圧縮機および前記循環ポンプを
運転開始して前記加熱器を非通電とし、前記温度差が設
定値以下の場合には前記循環ポンプを運転開始するとと
もに前記加熱器に通電する運転制御器とを備えた構成と
する。
In order to satisfy the hot water supply load and save energy when the water temperature flowing into the refrigerant-to-water heat exchanger is high, a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected. A refrigerant circulation circuit, a hot water tank, a circulation pump, the refrigerant-to-water heat exchanger, a hot water supply circuit in which heaters connected to the upper part of the hot water tank are sequentially connected, and a refrigerant-to-water heat exchanger outlet of the hot water supply circuit. A first temperature detector for detecting hot water temperature, a second temperature detector for detecting hot water temperature at the outlet of the heater in the hot water supply circuit, and a hot water amount detector for detecting hot water temperature in the hot water storage tank; When the heater is not energized, the first
Rotation speed control means for controlling the rotation speed of the circulation pump with a signal from the temperature detector, and controlling the rotation speed of the circulation pump with a signal from the second temperature detector when the heater is energized; A third temperature detector for detecting a water temperature at the inlet of the refrigerant / water heat exchanger of the hot water supply circuit, and a temperature of the hot water in the hot water storage tank from a signal of the hot water amount detector and a signal of the third temperature detector When the temperature difference between the coolant and the water at the inlet of the water heat exchanger is larger than a set value, the compressor and the circulation pump are started to operate and the heater is de-energized, and the temperature difference is equal to or less than a set value. In this case, an operation controller for starting operation of the circulation pump and energizing the heater is provided.

【0007】また、運転開始時の湯温の立ち上げ向上を
はかるため、圧縮機、冷媒対水熱交換器、減圧装置、蒸
発器を順次接続した冷媒循環回路と、貯湯槽、循環ポン
プ、前記冷媒対水熱交換器、加熱器を順次接続した給湯
回路と、前記給湯回路の前記冷媒対水熱交換器出口の湯
温を検知する第1の温度検知器と、前記給湯回路の前記
加熱器出口の湯温を検知する第2の温度検知器と、前記
加熱器が非通電時は前記第1の温度検知器の信号で前記
循環ポンプの回転数を制御し、前記加熱器に通電時は前
記第2の温度検知器の信号で前記循環ポンプの回転数を
制御する回転数制御手段と、運転開始時に前記加熱器の
通電、その後遅延して前記加熱器を非通電とする制御を
行う運転制御器とを備えた構成とする。
Further, in order to improve the rise of hot water temperature at the start of operation, a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, a hot water tank, a circulation pump, A hot water supply circuit in which a refrigerant-to-water heat exchanger and a heater are sequentially connected; a first temperature detector for detecting a hot water temperature at an outlet of the refrigerant-to-water heat exchanger of the hot water supply circuit; and a heater for the hot water supply circuit A second temperature detector for detecting the temperature of the hot water at the outlet, and when the heater is not energized, controls the rotation speed of the circulating pump with a signal from the first temperature detector. Rotation speed control means for controlling the rotation speed of the circulating pump with the signal of the second temperature detector, and operation for controlling the energization of the heater at the start of operation, and then delaying the energization of the heater after a delay. And a controller.

【0008】また、運転開始時の圧縮機の異常圧力上昇
を防止して耐久性向上をはかるため、圧縮機、冷媒対水
熱交換器、減圧装置、蒸発器を順次接続した冷媒循環回
路と、貯湯槽、循環ポンプ、前記冷媒対水熱交換器を順
次接続した給湯回路と、前記給湯回路の前記冷媒対水熱
交換器出口の湯温を検知し湯温設定温度である第1信号
および第1信号よりも低温の湯温設定温度である第2信
号を発生する温度検知器と、前記温度検知器の第1信号
である湯温設定になるように前記循環ポンプの回転数を
制御する回転数制御手段と、運転開始時には前記温度検
知器の第2信号である湯温設定になるように前記循環ポ
ンプの回転数制御を行い、その後、前記温度検知器の第
1信号である湯温設定になるように前記循環ポンプの回
転数制御を行う運転制御器とを備えた構成とする。
[0008] Further, in order to prevent the abnormal pressure rise of the compressor at the start of operation and improve the durability, a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected; A hot water supply circuit in which a hot water storage tank, a circulation pump, and the refrigerant-to-water heat exchanger are sequentially connected; a first signal indicating a hot water temperature set temperature by detecting a hot water temperature at an outlet of the refrigerant-to-water heat exchanger of the hot water supply circuit; A temperature detector that generates a second signal that is a set temperature of the hot water temperature lower than one signal, and a rotation that controls the number of rotations of the circulation pump so as to set the hot water temperature that is the first signal of the temperature detector. Means for controlling the number of revolutions of the circulating pump so as to set a hot water temperature which is a second signal of the temperature detector at the start of operation, and thereafter, a hot water temperature setting which is a first signal of the temperature detector For controlling the rotation speed of the circulation pump so that A configuration in which a control unit.

【0009】また、給湯負荷に対応した沸き上げ熱量で
機器の省エネルギー化をはかるため、圧縮機、冷媒対水
熱交換器、減圧装置、蒸発器を順次接続した冷媒循環回
路と、貯湯槽、循環ポンプ、前記冷媒対水熱交換器、加
熱器を順次接続した給湯回路と、前記給湯回路の前記冷
媒対水熱交換器出口の湯温を検知する第1の温度検知器
と、前記給湯回路の前記加熱器出口の湯温を検知する第
2の温度検知器と、前記加熱器が非通電時は前記第1の
温度検知器の信号で前記循環ポンプの回転数を制御し、
前記加熱器に通電時は前記第2の温度検知器の信号で前
記循環ポンプの回転数を制御する回転数制御手段と、前
記蒸発器入口の冷媒温度を検知する蒸発温度検知器と、
前記蒸発温度検知器の信号が所定温度よりも低温になる
と前記加熱器に通電する運転制御器とを備えた構成とす
る。
[0009] In order to save energy in the equipment by the amount of boiling heat corresponding to the hot water supply load, a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected; A hot water supply circuit in which a pump, the refrigerant-to-water heat exchanger, and a heater are sequentially connected; a first temperature detector for detecting a hot water temperature at an outlet of the refrigerant-to-water heat exchanger of the hot water supply circuit; A second temperature detector for detecting the temperature of the hot water at the outlet of the heater, and when the heater is not energized, controls the rotation speed of the circulation pump with a signal from the first temperature detector,
When the heater is energized, a rotation speed control unit that controls the rotation speed of the circulation pump with a signal from the second temperature detector, and an evaporation temperature detector that detects a refrigerant temperature at the evaporator inlet,
An operation controller is configured to supply an electric current to the heater when the signal of the evaporation temperature detector becomes lower than a predetermined temperature.

【0010】また、冬季における機器の省エネルギー化
をはかるため、圧縮機、冷媒対水熱交換器、減圧装置、
蒸発器を順次接続した冷媒循環回路と、貯湯槽、循環ポ
ンプ、前記冷媒対水熱交換器、加熱器を順次接続した給
湯回路と、前記給湯回路の前記冷媒対水熱交換器出口の
湯温を検知する第1の温度検知器と、前記給湯回路の前
記加熱器出口の湯温を検知する第2の温度検知器と、前
記加熱器が非通電時は前記第1の温度検知器の信号で前
記循環ポンプの回転数を制御し、前記加熱器に通電時は
前記第2の温度検知器の信号で前記循環ポンプの回転数
を制御する回転数制御手段と、前記蒸発器入口の冷媒温
度を検知する蒸発温度検知器と、前記圧縮機の吸入管と
前記冷媒循環回路の前記冷媒対水熱交換器の出口管を接
続するバイパス管に設けて冷媒を減圧させるとともにバ
イパス管側に流れる冷媒の流量を設定する流量調節手段
および開閉弁を有し、前記蒸発温度検知器の信号が所定
温度よりも高温の時は前記加熱器を非通電とするととも
に前記開閉弁を開とし、前記蒸発温度検知器の信号が所
定温度よりも低温の時は前記加熱器に通電するとともに
前記開閉弁を閉じる運転制御器とを備えた構成とする。
[0010] Further, in order to save energy of the equipment in winter, a compressor, a refrigerant-water heat exchanger, a pressure reducing device,
A refrigerant circuit in which evaporators are sequentially connected, a hot water tank, a circulation pump, the refrigerant-to-water heat exchanger, a hot-water supply circuit in which heaters are sequentially connected, and a hot water temperature of the refrigerant-to-water heat exchanger outlet of the hot-water supply circuit. A first temperature detector for detecting the temperature of the hot water, a second temperature detector for detecting the temperature of the hot water at the outlet of the heater of the hot water supply circuit, and a signal of the first temperature detector when the heater is not energized. A rotation speed control means for controlling the rotation speed of the circulation pump, and controlling the rotation speed of the circulation pump with a signal from the second temperature detector when the heater is energized; and a refrigerant temperature at the inlet of the evaporator. And a refrigerant flowing to the bypass pipe side while being provided in a bypass pipe connecting the suction pipe of the compressor and the outlet pipe of the refrigerant-to-water heat exchanger of the refrigerant circulation circuit to reduce the pressure of the refrigerant. Flow control means for setting the flow rate of the When the signal of the evaporation temperature detector is higher than a predetermined temperature, the heater is de-energized and the on-off valve is opened, and when the signal of the evaporation temperature detector is lower than the predetermined temperature, An operation controller for energizing the heater and closing the on-off valve is provided.

【0011】[0011]

【作用】(1)上記第1の構成によれば、前記加熱器が
非通電時は前記冷媒対水熱交換器の出口温度が所定温度
となるように前記回転数制御手段が前記第1温度検知器
の第1信号で前記循環ポンプの回転数を制御し、前記貯
湯槽の上部に貯湯する。そして、前記圧縮機と前記加熱
器が併用されて運転された場合には、前記加熱器の出口
温度が所定温度となるように前記回転数制御手段が前記
第2の温度検知器の信号で前記循環ポンプの回転数を制
御し、前記貯湯槽の上部に貯湯する。ここで、前記貯湯
槽から出湯されると、貯湯槽の下部から給水されて残湯
が上部にあがる。そして、給水された水が前記湯量検知
器の位置に達し所定温度以下を検知すると、前記湯量検
知器は前記運転制御器に信号を送り、直前の加熱器が非
通電か通電であったかを記憶する運転記憶装置からの信
号を受けて前記圧縮機単独運転あるいは前記圧縮機と前
記加熱器の併用運転かを判断し、前記圧縮機と前記循環
ポンプを運転するとともに前記加熱器を通電あるいは非
通電制御して追焚き運転を開始する。その際、前記回転
数制御手段は前記加熱器が非通電で前記圧縮機単独運転
の場合には、前記第1の温度検知器の湯温設定温度にな
るように前記循環ポンプの回転数制御を行い、前記貯湯
槽の下部から送られてきた水を加熱して貯湯槽の上部に
流入させる。また、前記加熱器が通電されて前記圧縮機
との併用運転の場合には、前記第2の温度検知器の湯温
設定温度になるように前記循環ポンプの回転数制御を行
い、前記貯湯槽の下部から送られてきた水を加熱して貯
湯槽の上部に流入させる。よって、追焚き運転時の沸き
上げ湯温は残湯と同温で貯湯されるため、貯湯槽内の湯
温は均一となり、出湯された時に安定した湯温がえられ
るようになる。
(1) According to the first configuration, when the heater is not energized, the rotation speed control means controls the first temperature so that the outlet temperature of the refrigerant-water heat exchanger becomes a predetermined temperature. The number of revolutions of the circulation pump is controlled by a first signal of a detector, and the hot water is stored in an upper portion of the hot water storage tank. Then, when the compressor and the heater are operated in combination, the rotation speed control means uses the signal of the second temperature detector so that the outlet temperature of the heater becomes a predetermined temperature. The number of rotations of the circulation pump is controlled to store hot water in the upper part of the hot water storage tank. Here, when hot water is discharged from the hot water storage tank, water is supplied from the lower part of the hot water storage tank, and the remaining hot water rises to the upper part. When the supplied water reaches the position of the hot water detector and detects a predetermined temperature or less, the hot water detector sends a signal to the operation controller to store whether the heater immediately before was non-energized or energized. In response to a signal from an operation storage device, it is determined whether the compressor is operated alone or the compressor and the heater are operated in combination, and the compressor and the circulation pump are operated and the heater is energized or deenergized. And start the reheating operation. At this time, the rotation speed control means controls the rotation speed of the circulation pump so that the temperature of the hot water is set to the first temperature detector when the heater is not energized and the compressor is operated alone. Then, the water sent from the lower part of the hot water tank is heated and flows into the upper part of the hot water tank. Further, when the heater is energized and is operated in combination with the compressor, the number of rotations of the circulating pump is controlled so that the hot water temperature of the second temperature detector is set, and the hot water storage tank is controlled. The water sent from the lower part of the tank is heated and flows into the upper part of the hot water storage tank. Therefore, the temperature of the hot water during the additional heating operation is stored at the same temperature as the remaining hot water, so that the temperature of the hot water in the hot water storage tank becomes uniform, and a stable hot water temperature can be obtained when the hot water is discharged.

【0012】(2)上記第2の構成によると、前記貯湯
槽から出湯されて、貯湯槽の下部から給水された水が前
記湯量検知器に達し所定温度以下を検知すると、前記運
転制御器は追焚き運転の信号を送る。その際、前記蒸発
温度検知器の信号を受け、蒸発温度が低い場合には、前
記タイマー設定手段は前記タイマーの設定時間を長くし
て追焚き運転する。逆に、蒸発温度が高い場合には、前
記タイマーの設定時間を短くする。よって、冬季などは
給湯負荷が大きいにもかかわらず、蒸発温度が低いため
単位時間当たりの加熱能力が小さい。そのため、追焚運
転時間を長くし、追焚湯量が多くして湯切れを防止す
る。また、中間季から夏季などは給湯負荷が少ないにも
かかわらず、蒸発温度が高いため加熱能力が大きい場合
には、追焚き運転時間を短くし、追焚き湯量を少なくし
て、無駄な沸き上げを低減して省エネルギー化をはか
る。
(2) According to the second configuration, when the water discharged from the hot water tank and supplied from the lower part of the hot water tank reaches the hot water detector and detects a temperature equal to or lower than a predetermined temperature, the operation controller determines Send a signal for reheating operation. At this time, when the signal from the evaporating temperature detector is received and the evaporating temperature is low, the timer setting means extends the set time of the timer to perform the additional heating operation. Conversely, when the evaporation temperature is high, the set time of the timer is shortened. Therefore, in winter and the like, the heating capacity per unit time is small because the evaporation temperature is low even though the hot water supply load is large. For this reason, the reheating operation time is lengthened, and the amount of reheating water is increased to prevent running out of hot water. If the heating capacity is high due to the high evaporation temperature despite the low hot water supply load during the middle to summer seasons, the additional heating time is shortened and the additional hot water volume is reduced, resulting in unnecessary boiling. And reduce energy consumption.

【0013】(3)上記第3の構成によると、機器を数
日間使用しなかった場合は放熱と湯水混合による熱移動
で前記貯湯槽内全体が中温水となり、中温水が冷媒対水
熱交換器に流入すると、圧縮機の高圧が異常上昇するた
めヒートポンプ圧縮機による沸き上げができないため、
給湯負荷を満たすことができない。そのため、ヒータな
どの他熱源による沸き上げとなるが、この場合には省エ
ネ化がはかれない。また、通常の沸き上げにおいても、
沸き上げ終了直前には貯湯槽内で湯水が混合する湯水混
合層の中温水が前記冷媒対水熱交換器に流入すると、圧
縮機の高圧が異常上昇して、ヒートポンプ圧縮機による
沸き上げができない。従って、貯湯槽内の湯温状態を簡
単に判定して、省エネ化と給湯負荷を満たすため、運転
開始時に前記湯量検知器の位置の湯温と前記第3の温度
検知器の検知する水温を検知して、温度差が設定値より
も大きい場合は、前記圧縮機による単独運転をおこな
い、前記第1の温度検知器の第1の信号で前記循環ポン
プの回転数制御を行い、沸き上げ運転をする。そして、
運転中に前記冷媒対水熱交換器出口の湯温が設定値より
も上昇すると、貯湯槽内の混合層の高温湯が前記冷媒対
水熱交換器に流入したと判定し、前記運転制御器は前記
圧縮機を停止する。よって、加熱器単独運転することも
なく効率の高い運転となり、省エネルギー化がはかれ
る。一方、運転開始時に前記湯量検知器の位置の湯温と
前記第3の温度検知器の検知する水温の差が設定値以下
の場合は、前記貯湯槽内全体が中低温水と判定し、前記
運転制御器は前記圧縮機を停止し、前記加熱器単体で沸
き上げ運転を行い、前記第2の温度検知器の検知した湯
温と湯温設定温度が一致するように前記循環ポンプの回
転数制御を行い、沸き上げ運転をする。よって、給湯と
して利用できる湯温で前記貯湯槽下部まで沸き上げ可能
となる。従って、長期未使用において、緊急に湯が必要
となっても、充分に給湯負荷および湯温を満足すること
ができる。さらに、前記圧縮機の高圧側の異常圧力上
昇、温度の異常上昇といった課題もなくなる。
(3) According to the third configuration, when the equipment has not been used for several days, the entire inside of the hot water tank becomes medium-temperature water by heat transfer by heat radiation and mixing of hot and cold water, and the medium-temperature water exchanges heat between the refrigerant and water. When it flows into the compressor, the high pressure of the compressor rises abnormally, so it cannot be heated by the heat pump compressor.
The hot water supply load cannot be satisfied. For this reason, heating is performed by another heat source such as a heater, but in this case, energy saving is not achieved. Also, in normal boiling,
Immediately before the end of boiling, when the medium-temperature water of the hot-water mixed layer in which the hot water is mixed in the hot water tank flows into the refrigerant-to-water heat exchanger, the high pressure of the compressor abnormally rises and the heat pump cannot be heated by the heat pump compressor. . Therefore, in order to easily determine the temperature of the hot water in the hot water tank and save energy and satisfy the hot water supply load, at the start of operation, the hot water temperature at the position of the hot water detector and the water temperature detected by the third temperature detector are determined. When the temperature difference is detected and is larger than the set value, the compressor is operated independently, the rotation speed of the circulation pump is controlled by the first signal of the first temperature detector, and the boiling operation is performed. do. And
If the temperature of the hot water at the outlet of the refrigerant / water heat exchanger rises above a set value during operation, it is determined that high-temperature hot water in the mixed layer in the hot water tank has flowed into the refrigerant / water heat exchanger, and the operation controller Stops the compressor. Therefore, the operation becomes highly efficient without performing the heater alone operation, and energy saving is achieved. On the other hand, when the difference between the hot water temperature at the position of the hot water detector and the water temperature detected by the third temperature detector at the start of operation is equal to or less than a set value, the entire inside of the hot water storage tank is determined to be medium-low temperature water, The operation controller stops the compressor, performs a boiling operation on the heater alone, and rotates the circulation pump so that the hot water temperature detected by the second temperature detector matches the hot water set temperature. Control and perform boiling operation. Therefore, it becomes possible to boil to the lower part of the hot water storage tank at a hot water temperature that can be used as hot water supply. Therefore, even if the hot water is urgently needed in the long-term unused state, the hot water supply load and the hot water temperature can be sufficiently satisfied. Further, there are no problems such as abnormal pressure rise on the high pressure side of the compressor and abnormal temperature rise.

【0014】(4)上記第4の構成によると、運転制御
器は運転開始時に前記加熱器に通電し、前記第2の温度
検知器の検知する湯温と湯温設定温度が一致するように
前記循環ポンプの回転数制御を行い、沸き上げ運転す
る。そして、その後遅延して前記加熱器を非通電にし
て、前記第1の温度検知器の検知する湯温と湯温設定温
度が一致するように前記循環ポンプの回転数制御を行
う。したがって、前記運転制御器は運転開始時に前記加
熱器に通電するため、所定湯温に早く達する。
(4) According to the fourth configuration, the operation controller supplies electricity to the heater at the start of operation so that the hot water temperature detected by the second temperature detector matches the hot water set temperature. The number of revolutions of the circulating pump is controlled, and a boiling operation is performed. Then, after a delay, the heater is de-energized, and the rotation speed of the circulation pump is controlled so that the hot water temperature detected by the first temperature detector matches the hot water set temperature. Therefore, the operation controller supplies electricity to the heater at the start of operation, so that the predetermined hot water temperature is quickly reached.

【0015】(5)上記第5の構成によると、前記運転
制御器は運転開始時に給湯回路の冷媒対水熱交換器出口
の湯温を検知する温度検知器の湯温設定温度である第2
信号と一致するように前記循環ポンプの回転数制御を行
い、その後、前記温度検知器の検知する湯温が湯温設定
温度である第1信号と一致するように前記循環ポンプの
回転数制御を行う。従って、立ち上げ時により低い湯温
設定で立ち上げるため、運転開始時に前記圧縮機の圧力
および吐出温度が異常上昇することもなくなり、耐久性
が向上する。
(5) According to the fifth configuration, the operation controller is the second temperature which is the hot water set temperature of the temperature detector which detects the temperature of the refrigerant in the hot water supply circuit at the outlet of the water heat exchanger at the start of operation.
The rotation speed control of the circulation pump is performed so as to match the signal, and thereafter, the rotation speed control of the circulation pump is controlled so that the hot water temperature detected by the temperature detector matches the first signal which is the hot water set temperature. Do. Therefore, since the temperature is raised at a lower hot water temperature setting at the time of startup, the pressure and discharge temperature of the compressor are not abnormally increased at the start of operation, and the durability is improved.

【0016】(6)上記第6の構成によると、前記蒸発
温度検知器の信号で前記加熱器の通電を選択し、検知し
た蒸発温度が所定温度よりも高い場合はヒートポンプの
加熱能力が大きいため前記加熱器を非通電にして運転す
る。一方、検知した蒸発温度が所定温度よりも低い場合
には前記蒸発温度検知器の信号を受けて前記加熱器を通
電して運転する。そして、前記加熱器が非通電の場合に
は、前記回転数制御手段が第1の温度検知器の信号を受
けて前記冷媒対水熱交換器出口の湯温と設定温度が一致
するように前記循環ポンプの回転数制御を行い、前記貯
湯槽の上部から湯をたくわえていく。また、前記加熱器
が通電されて前記圧縮機との併用運転時には、前記回転
数制御手段が第2の温度検知器の信号を受けて前記加熱
器出口の湯温と設定温度が一致するように前記循環ポン
プの回転数を制御し、非通電時より高温の湯を前記貯湯
槽上部からたくわえていく。よって、給湯負荷が少ない
中間季から夏季には効率のよいヒートポンプで運転でき
る。一方、冬季の給湯負荷が大きい場合には、前記圧縮
機と前記加熱器の併用運転をするため貯湯熱量が多くな
り、負荷を満足させることができる。また、いづれの運
転時にも熱源出口で温度制御しているため安定した温度
の湯が前記貯湯槽にたくわえられる。
(6) According to the sixth configuration, the energization of the heater is selected by the signal of the evaporating temperature detector. If the detected evaporating temperature is higher than a predetermined temperature, the heating capability of the heat pump is large. The heater is operated without current. On the other hand, when the detected evaporation temperature is lower than the predetermined temperature, the heater is energized and operated in response to the signal from the evaporation temperature detector. When the heater is de-energized, the rotation speed control means receives a signal from the first temperature detector so that the hot water temperature at the outlet of the refrigerant-to-water heat exchanger matches the set temperature. The number of revolutions of the circulation pump is controlled, and hot water is stored from above the hot water storage tank. In addition, when the heater is energized and the compressor is operated in combination with the compressor, the rotation speed control means receives a signal from the second temperature detector so that the hot water temperature at the heater outlet matches the set temperature. The number of rotations of the circulating pump is controlled to store hot water at a higher temperature than when no power is supplied from the upper part of the hot water storage tank. Therefore, it is possible to operate with an efficient heat pump from the middle season when the hot water supply load is small to the summer season. On the other hand, when the hot water supply load in winter is large, the amount of stored hot water increases because the compressor and the heater are operated in combination, and the load can be satisfied. Further, since the temperature is controlled at the heat source outlet during any operation, hot water having a stable temperature is stored in the hot water storage tank.

【0017】(7)上記第7の構成によると、蒸発器入
口の温度を検知する前記蒸発温度検知器の信号で前記加
熱器の通電を選択し、検知した蒸発温度が所定温度より
も高い場合は前記加熱器を非通電にし、低い場合には前
記加熱器を通電する。その際に、前記加熱器を通電して
前記圧縮機と併用運転した場合、加熱能力が大きいため
前記冷媒対水熱交換器を流れる流量が多くなり、前記圧
縮機の吐出圧力および吐出温度が前記加熱器の非通電時
に比べ低下する。そのため、前記冷媒対水熱交換器に流
入する冷媒温度は低くなるため、水との熱交換効率が低
下する。しかし、本構成では、前記運転制御器が前記加
熱器の通電時に前記開閉弁を閉にする。そのため、前記
冷媒対水熱交換器から前記圧縮機へのバイパスの液冷媒
が流れなくなり、前記圧縮機の吐出温度は上昇し、前記
冷媒対水熱交換器で効率よく高温まで水を加熱すること
ができる。
(7) According to the seventh configuration, the energization of the heater is selected by a signal from the evaporating temperature detector for detecting the temperature at the evaporator inlet, and the detected evaporating temperature is higher than a predetermined temperature. Turns off the heater, and if low, turns on the heater. At that time, when the heater is energized and operated in combination with the compressor, the flow rate of the refrigerant to water heat exchanger increases because the heating capacity is large, and the discharge pressure and discharge temperature of the compressor are reduced. It is lower than when the heater is not energized. Therefore, the temperature of the refrigerant flowing into the refrigerant-to-water heat exchanger becomes low, so that the efficiency of heat exchange with water decreases. However, in this configuration, the operation controller closes the on-off valve when the heater is energized. Therefore, the liquid refrigerant in the bypass from the refrigerant-to-water heat exchanger to the compressor stops flowing, the discharge temperature of the compressor rises, and the water is efficiently heated to a high temperature by the refrigerant-to-water heat exchanger. Can be.

【0018】[0018]

【実施例】以下本発明の第1の実施例を図1を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG.

【0019】図1において、1は圧縮機、2は冷媒循環
回路における凝縮器を構成する冷媒対水熱交換器、3は
減圧装置、4は蒸発器であり、前記圧縮機1、前記冷媒
対水熱交換器2、前記減圧装置3、前記蒸発器4は順次
接続され、冷媒循環回路を構成する。5は貯湯槽であ
り、下部から給水して上部から出湯する。6は循環ポン
プであり、前記貯湯槽5の下部と接続されている。7は
電気ヒータを備えた加熱器であり、前記貯湯槽5の上部
と接続されて、前記貯湯槽5、前記循環ポンプ6、前記
冷媒対水熱交換器2、前記加熱器7は順次接続され給湯
回路を構成する。8は第1の温度検知器であり、前記給
湯回路に設けられ、前記冷媒対水熱交換器2出口の湯温
を検知して、検知した湯温およびここの湯温設定温度と
なる第1信号を送信する。9は第2の温度検知器であ
り、前記給湯回路に設けられ、前記加熱器7出口の湯温
を検知して、検知した湯温およびここの湯温設定温度を
送信する。10は湯量検知器であり、前記貯湯槽5内の
湯温を検知する。11は回転数制御手段であり、前記加
熱器7が非通電時は前記第1の温度検知器8の検知する
湯温と湯温設定温度が一致するように前記循環ポンプ6
の回転数を制御し、通電時は前記第2の温度検知器9の
検知する湯温と湯温設定温度が一致するように前記循環
ポンプ6の回転数を制御する。12は運転記憶装置であ
り、直前に前記加熱器7が非通電あるいは通電されて運
転されたかを記憶する。13は運転制御器であり、前記
湯量検知器10からの信号を受けて前記圧縮機1と前記
循環ポンプ6を運転するとともに前記運転記憶装置12
からの信号を受けて前記加熱器7を通電あるいは非通電
する。
In FIG. 1, 1 is a compressor, 2 is a refrigerant-water heat exchanger constituting a condenser in a refrigerant circuit, 3 is a decompression device, and 4 is an evaporator. The water heat exchanger 2, the pressure reducing device 3, and the evaporator 4 are sequentially connected to form a refrigerant circuit. Reference numeral 5 denotes a hot water storage tank, which supplies water from a lower part and discharges water from an upper part. Reference numeral 6 denotes a circulation pump, which is connected to the lower part of the hot water storage tank 5. Reference numeral 7 denotes a heater provided with an electric heater, which is connected to an upper portion of the hot water storage tank 5, and the hot water storage tank 5, the circulation pump 6, the refrigerant-to-water heat exchanger 2, and the heater 7 are sequentially connected. Construct a hot water supply circuit. Reference numeral 8 denotes a first temperature detector, which is provided in the hot water supply circuit, detects the temperature of the hot water at the outlet of the refrigerant-to-water heat exchanger 2, and sets the detected hot water temperature and the first set temperature of the hot water here. Send a signal. Reference numeral 9 denotes a second temperature detector, which is provided in the hot water supply circuit, detects the hot water temperature at the outlet of the heater 7, and transmits the detected hot water temperature and the set hot water temperature. Reference numeral 10 denotes a hot water level detector which detects the temperature of hot water in the hot water storage tank 5. Reference numeral 11 denotes a rotation speed control means. When the heater 7 is not energized, the circulation pump 6 is controlled so that the hot water temperature detected by the first temperature detector 8 matches the hot water set temperature.
Of the circulating pump 6 is controlled so that the hot water temperature detected by the second temperature detector 9 matches the hot water set temperature during energization. Reference numeral 12 denotes an operation storage device, which stores whether or not the heater 7 was operated immediately before or after the heater 7 was de-energized. An operation controller 13 operates the compressor 1 and the circulating pump 6 in response to a signal from the hot water detector 10 and operates the operation storage device 12.
, The heater 7 is energized or de-energized.

【0020】上記構成において、最初に前記加熱器7が
非通電時の場合について述べる。前記圧縮機1から吐出
された高温のガス冷媒は前記冷媒対水熱交換器2に流入
し、ここで凝縮作用で水を加熱する。そして、凝縮液化
した冷媒は前記減圧装置3で減圧され、前記蒸発器4に
流入する。そして、大気熱を吸熱して蒸発ガス化し、前
記圧縮機1にもどる。一方、前記貯湯槽5の下部から流
出した水は前記循環ポンプ6を介して前記冷媒対水熱交
換器2に流入し、冷媒の凝縮熱で加熱され、前記貯湯槽
5の上部からたくわえられる。ここで、前記冷媒対水熱
交換器2の出口温度を前記第1の温度検知器8が検知し
て信号を前記回転数制御手段10に送り、出口湯温が設
定温度になるように前記循環ポンプ6の回転数制御を行
う。つぎに、前記圧縮機1と前記加熱器7通電の併用運
転について述べる。この場合には、前記冷媒対水熱交換
器2で加熱された水をさらに前記加熱器7で高温に加熱
する。そして、前記加熱器7の出口温度が設定温度にな
るように前記第2の温度検知器9の信号を受けて前記回
転数制御手段10は前記循環ポンプ6の回転数制御を行
い、前記貯湯槽5の上部からたくわえられる。
In the above configuration, the case where the heater 7 is not energized first will be described. The high-temperature gas refrigerant discharged from the compressor 1 flows into the refrigerant-to-water heat exchanger 2, where it heats water by a condensing action. Then, the condensed and liquefied refrigerant is depressurized by the decompression device 3 and flows into the evaporator 4. Then, it absorbs atmospheric heat to evaporate and return to the compressor 1. On the other hand, the water flowing out from the lower part of the hot water storage tank 5 flows into the refrigerant-to-water heat exchanger 2 via the circulation pump 6, is heated by the heat of condensation of the refrigerant, and is stored from the upper part of the hot water storage tank 5. Here, the first temperature detector 8 detects the outlet temperature of the refrigerant-to-water heat exchanger 2 and sends a signal to the rotation speed control means 10 so that the circulation temperature is adjusted so that the outlet hot water temperature becomes the set temperature. The rotation speed of the pump 6 is controlled. Next, the combined operation of the compressor 1 and the heater 7 will be described. In this case, the water heated by the refrigerant / water heat exchanger 2 is further heated to a high temperature by the heater 7. Then, upon receiving a signal from the second temperature detector 9 so that the outlet temperature of the heater 7 becomes the set temperature, the rotation speed control means 10 controls the rotation speed of the circulation pump 6, and the hot water storage tank Stored from the top of 5.

【0021】そして、前記貯湯槽5から出湯されると、
前記貯湯槽1の下部から低温水が給水されて湯層は上部
にあがる。そして、給水された水が前記湯量検知器10
の位置まで達すると、それを前記湯量検知器10が検出
して前記運転制御器13に信号を送る。そこで、前記運
転制御器13は前記運転記憶装置12の信号を受け、直
前に前記加熱器7が非通電か通電であったかを判定し、
追焚き運転を開始する。最初に、追焚き運転直前に前記
加熱器7が非通電で運転がおこなわれた場合について述
べる。この場合には、前記圧縮機1および前記循環ポン
プ6を通電して前記第1の温度検知器8の検知した湯温
が設定温度となるように前記循環ポンプ6の回転数制御
を行い、前記貯湯槽5の下部から送られて水を前記冷媒
対水熱交換器2を介して加熱して、前記貯湯槽5の上部
に流入させる。一方、追焚き運転直前に前記加熱器7に
通電して運転された場合には、前記圧縮機1、前記循環
ポンプ6、前記加熱器7に通電して追焚き運転を開始
し、前記貯湯槽5の下部から送られて水を前記冷媒対水
熱交換器2で加熱した後、前記加熱器7でさらに高温加
熱する。その際、前記第2の温度検知器9の検知湯温と
設定温度が一致するように前記循環ポンプ6の回転数制
御を行い、高温加熱した湯を前記貯湯槽5の上部に流入
させる。従って、追焚き運転時の沸き上げ湯温は残湯と
同温で貯湯されるため、貯湯槽5内の湯温は均一とな
り、出湯された時に安定した湯温が得られるようにな
る。
When the hot water is discharged from the hot water storage tank 5,
Low-temperature water is supplied from the lower part of the hot water storage tank 1, and the hot water layer rises to the upper part. The supplied water is supplied to the hot water detector 10.
Is reached, the hot water detector 10 detects it and sends a signal to the operation controller 13. Therefore, the operation controller 13 receives the signal of the operation storage device 12, and determines whether the heater 7 was de-energized or energized immediately before,
Start the reheating operation. First, a case in which the heater 7 is operated without power supply immediately before the reheating operation will be described. In this case, the compressor 1 and the circulation pump 6 are energized to control the rotation speed of the circulation pump 6 so that the hot water temperature detected by the first temperature detector 8 becomes the set temperature. The water sent from the lower part of the hot water storage tank 5 is heated through the refrigerant / water heat exchanger 2 and flows into the upper part of the hot water storage tank 5. On the other hand, when the heater 7 is energized and operated immediately before the reheating operation, the compressor 1, the circulation pump 6, and the heater 7 are energized to start the reheating operation, and the hot water storage tank is started. After the water sent from the lower part of 5 is heated by the refrigerant-to-water heat exchanger 2, the water is further heated at a high temperature by the heater 7. At this time, the rotation speed of the circulation pump 6 is controlled so that the detected hot water temperature of the second temperature detector 9 matches the set temperature, and hot water heated at a high temperature flows into the upper part of the hot water storage tank 5. Therefore, the temperature of the hot water in the additional heating operation is stored at the same temperature as the remaining hot water, so that the temperature of the hot water in the hot water storage tank 5 becomes uniform, and a stable hot water temperature can be obtained when the hot water is discharged.

【0022】つぎに、第2の実施例について説明する。
図2において、第1の実施例と同じ構成、作用するもの
については同符号を示し、説明を省略する。14は蒸発
温度検知器であり、前記蒸発器4入口の冷媒温度を検知
する。15はタイマーであり、前記湯量検知器10から
の信号を受けて時間計測を開始する。16はタイマー設
定手段であり、前記蒸発温度検知器14からの信号を受
けて前記タイマー15の設定時間を設定し、前記蒸発温
度検知器14からの信号が所定温度よりも低温の信号を
表わす場合には、前記タイマー15の設定時間を長く、
逆に、高温の信号を表わす場合には、短く設定する。1
7は運転制御器であり、前記湯量検知器10からの信号
を受けて前記圧縮機1、前記循環ポンプ6、前記加熱器
7を運転開始するとともに前記タイマー15の設定時間
終了の信号を受けて前記圧縮機1、前記循環ポンプ6、
前記加熱器7の運転を停止する。
Next, a second embodiment will be described.
In FIG. 2, components having the same configuration and operation as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Reference numeral 14 denotes an evaporating temperature detector which detects the refrigerant temperature at the inlet of the evaporator 4. Reference numeral 15 denotes a timer, which starts measuring time in response to a signal from the hot water level detector 10. Reference numeral 16 denotes timer setting means for setting a set time of the timer 15 in response to a signal from the evaporating temperature detector 14, and when the signal from the evaporating temperature detector 14 represents a signal lower than a predetermined temperature. To increase the setting time of the timer 15,
Conversely, when representing a high-temperature signal, it is set short. 1
Reference numeral 7 denotes an operation controller which starts the operation of the compressor 1, the circulating pump 6, and the heater 7 in response to a signal from the hot water detector 10, and receives a signal indicating that the set time of the timer 15 has ended. The compressor 1, the circulation pump 6,
The operation of the heater 7 is stopped.

【0023】上記構成において、前記貯湯槽5から出湯
されて給水された水が前記湯量検知器10の位置に達す
ると、前記運転制御器17は前記圧縮機1、前記循環ポ
ンプ6あるいは前記加熱器7を通電し、追焚き運転を開
始する。そして、前記湯量検知器10からの信号で前記
タイマー15が時間計測を開始する。その際、前記蒸発
温度検知器14の信号を受け、蒸発温度が所定温度より
も低い場合には、前記タイマー設定手段16は前記タイ
マー15の時間設定を長く、逆に、蒸発温度が高い場合
には、前記タイマー15の時間設定を短くし、所定時間
に達するまで追焚き運転を継続する。従って、残湯が少
なくなった場合、冬季など給水温度が低く給湯負荷が大
きいにもかかわらず、蒸発温度が低いために追焚き能力
が小さい。そのため、追焚運転時間を長くし、追焚湯量
を多くしてお湯切れを防止することができる。一方、中
間季から夏季など給湯負荷が少ないにもかかわらず、蒸
発温度が高いため加熱能力が大きい場合には、追焚運転
時間を短くし、追焚湯量を少なくして、無駄な追焚き運
転をなくして省エネルギー化をはかることができる。
In the above configuration, when the water supplied from the hot water storage tank 5 and supplied reaches the position of the hot water detector 10, the operation controller 17 controls the compressor 1, the circulation pump 6, or the heater. 7 is energized, and the reheating operation is started. Then, the timer 15 starts measuring time by a signal from the hot water detector 10. At this time, when the signal from the evaporating temperature detector 14 is received and the evaporating temperature is lower than a predetermined temperature, the timer setting means 16 lengthens the time setting of the timer 15 and conversely, when the evaporating temperature is high. Reduces the time setting of the timer 15 and continues the reheating operation until a predetermined time is reached. Therefore, when the remaining hot water decreases, the reheating capacity is low because the evaporation temperature is low even though the water supply temperature is low and the hot water supply load is large in winter. For this reason, it is possible to prolong the reheating operation time and increase the amount of reheating water to prevent running out of hot water. On the other hand, if the heating capacity is large due to the high evaporation temperature despite the low hot water supply load during the middle and summer seasons, the reheating operation time is shortened, the amount of reheating water is reduced, and unnecessary reheating operation is performed. And energy can be saved.

【0024】つぎに、第3の実施例について説明する。
図3において、第1、第2の実施例と同じ構成、作用す
るものについては同符号を示し、説明を省略する。18
は第3の温度検知器であり、前記給湯回路に設けられ、
前記冷媒対水熱交換器2入口の水温を検知して、所定温
度に達すると送信する。19は運転制御器であり、前記
湯量検知器10の信号と前記第3の温度検知器18の信
号を受けて前記貯湯槽5湯温と前記冷媒対水熱交換器2
入口水温の温度差が設定値よりも大きい場合には前記圧
縮機1および前記循環ポンプ6を運転開始して、両信号
から温度差が設定値以下の場合には前記循環ポンプ6お
よび前記加熱器7を運転する。
Next, a third embodiment will be described.
In FIG. 3, components having the same configurations and operations as those of the first and second embodiments are denoted by the same reference numerals, and description thereof is omitted. 18
Is a third temperature detector, which is provided in the hot water supply circuit,
The water temperature at the inlet of the refrigerant-to-water heat exchanger 2 is detected and transmitted when the temperature reaches a predetermined temperature. Reference numeral 19 denotes an operation controller which receives a signal from the hot water detector 10 and a signal from the third temperature detector 18 and receives the temperature of the hot water in the hot water storage tank 5 and the refrigerant-to-water heat exchanger 2.
When the temperature difference of the inlet water temperature is larger than the set value, the operation of the compressor 1 and the circulation pump 6 is started, and when the temperature difference is smaller than the set value from both signals, the circulation pump 6 and the heater Drive 7

【0025】上記構成において、前記運転制御器19は
運転開始時に前記湯量検知器10と前記第3の温度検知
器18の信号を受け、前記貯湯槽5湯温と前記冷媒対水
熱交換器2入口水温の温度差から前記圧縮機1、前記循
環ポンプ6および前記加熱器7の制御を行う。最初に前
記湯量検知器10と前記第3の温度検知器18の信号を
受けて温度差が設定値よりも大きい場合について述べ
る。この場合には、前記圧縮機1による単独運転をおこ
ない、前記第1の温度検知器8の信号で前記循環ポンプ
6の回転数制御を行い、沸き上げ運転する。よって、加
熱器7を運転することもないため、効率の高い運転とな
り、省エネルギー化がはかれる。つぎに、前記湯量検知
器10と前記第3の温度検知器18の信号を受けて温度
差が設定値以下の場合について述べる。この場合には、
前記圧縮機1の運転で沸き上げることができない中低温
水が前記貯湯槽5内全体にたくわえられていると判定
し、前記運転制御器19は運転開始時に前記圧縮機1を
停止し、前記加熱器7の単体で沸き上げ運転を行い、前
記第2の温度検知器9の信号で検知湯温が設定温度とな
るように前記循環ポンプ6の回転数制御を行う。よっ
て、給湯として利用できる湯温まで温度上昇させて前記
貯湯槽5にたくわえることができることになる。従っ
て、長期未使用において、緊急に湯が必要となっても、
充分に給湯負荷および湯温を満足することができる。さ
らに、前記圧縮機1の高圧、温度上昇といった課題もな
くなる。
In the above configuration, the operation controller 19 receives signals from the hot water level detector 10 and the third temperature detector 18 at the start of operation, and receives the temperature of the hot water in the hot water tank 5 and the temperature of the refrigerant / water heat exchanger 2. The compressor 1, the circulating pump 6, and the heater 7 are controlled from the temperature difference of the inlet water temperature. First, a case where the temperature difference is larger than a set value upon receiving signals from the hot water detector 10 and the third temperature detector 18 will be described. In this case, the compressor 1 is operated independently, and the number of revolutions of the circulation pump 6 is controlled by the signal of the first temperature detector 8 to perform the boiling operation. Therefore, since the heater 7 is not operated, the operation is performed with high efficiency, and energy is saved. Next, a case where the temperature difference is equal to or less than a set value upon receiving signals from the hot water detector 10 and the third temperature detector 18 will be described. In this case,
It is determined that the low-temperature water that cannot be boiled by the operation of the compressor 1 is stored in the entire hot water storage tank 5, and the operation controller 19 stops the compressor 1 at the start of the operation, and stops the heating. The heating operation is performed by the unit 7 alone, and the rotation speed of the circulation pump 6 is controlled so that the detected hot water temperature becomes the set temperature by the signal of the second temperature detector 9. Therefore, the temperature can be raised to the temperature of hot water that can be used as hot water supply and stored in the hot water storage tank 5. Therefore, even if hot water is needed urgently for a long time,
The hot water supply load and the hot water temperature can be sufficiently satisfied. Further, the problems of high pressure and temperature rise of the compressor 1 are eliminated.

【0026】つぎに、第4の実施例について説明する。
図4において、第1、第2、第3の実施例と同じ構成、
作用するものについては同符号を示し、説明を省略す
る。20は運転制御器であり、運転開始時に前記加熱器
7の通電、その後遅延して前記加熱器7の非通電に制御
を行う。
Next, a fourth embodiment will be described.
In FIG. 4, the same configuration as the first, second, and third embodiments,
The same reference numerals are used for those that operate, and the description is omitted. Reference numeral 20 denotes an operation controller, which controls the energization of the heater 7 at the start of operation, and then controls the non-energization of the heater 7 after a delay.

【0027】上記構成において、前記運転制御器20は
運転開始時に前記加熱器7を通電し、前記第2の温度検
知器9の信号で検知湯温が設定温度となるように前記循
環ポンプ6の回転数制御を行う。そして、その後遅延し
て前記加熱器7を非通電にして、前記第1の温度検知器
8の信号で検知湯温が設定温度となるように前記循環ポ
ンプ6の回転数制御を行う。したがって、運転開始時は
前記加熱器7を通電するため、所定湯温に速く達する。
In the above configuration, the operation controller 20 energizes the heater 7 at the start of operation, and controls the circulation pump 6 so that the temperature of the hot water detected by the signal of the second temperature detector 9 becomes the set temperature. Performs rotation speed control. Then, after a delay, the heater 7 is de-energized, and the rotation speed control of the circulation pump 6 is performed so that the detected hot water temperature becomes the set temperature by the signal of the first temperature detector 8. Therefore, at the start of the operation, the heater 7 is energized, so that the temperature of the hot water reaches the predetermined temperature quickly.

【0028】つぎに、第5の実施例について説明する。
図5において、第1、第2、第3、第4の実施例と同じ
構成、作用するものについては同符号を示し、説明を省
略する。21は温度検知器であり、前記給湯回路に設け
られ、前記冷媒対水熱交換器2出口の湯温を検知し、湯
温設定温度である第1信号および前記第1信号より低温
の第2信号を発生する。22は回転数制御手段であり、
前記温度検知器21の検知する湯温と湯温設定温度の第
1信号が一致するように前記循環ポンプ6の回転数を制
御する。23は運転制御器であり、運転開始時に前記温
度検知器21の検知する湯温と湯温設定温度の第2信号
が一致するように前記循環ポンプ6の回転数を制御す
る。
Next, a fifth embodiment will be described.
In FIG. 5, the same components as those of the first, second, third, and fourth embodiments are denoted by the same reference numerals, and description thereof is omitted. Reference numeral 21 denotes a temperature detector, which is provided in the hot water supply circuit, detects the temperature of the hot water at the outlet of the refrigerant-to-water heat exchanger 2, and outputs a first signal as a hot water temperature setting temperature and a second signal lower than the first signal. Generate a signal. 22 is a rotation speed control means,
The rotation speed of the circulation pump 6 is controlled such that the hot water temperature detected by the temperature detector 21 matches the first signal of the hot water set temperature. An operation controller 23 controls the rotation speed of the circulation pump 6 such that the temperature of the hot water detected by the temperature detector 21 and the second signal of the hot water set temperature coincide with each other at the start of operation.

【0029】上記構成において、前記運転制御器23は
運転開始時に前記温度検知器21の検知する湯温と湯温
設定温度の第2信号が一致するように前記循環ポンプ6
の回転数制御を行い、その後、前記温度検知器21の検
知する湯温と湯温設定温度の第1信号が一致するように
切り換えて前記回転数制御手段22が前記循環ポンプ6
の回転数制御を行う。従って、立ち上げ時に沸き上げ湯
温を低くめにしているため、前記圧縮機1の圧力および
吐出温度が異常上昇することもなくなり、耐久性が向上
する。
In the above configuration, the operation controller 23 controls the circulation pump 6 so that the hot water temperature detected by the temperature detector 21 and the second signal of the hot water set temperature coincide with each other at the start of operation.
Is controlled so that the hot water temperature detected by the temperature detector 21 matches the first signal of the hot water set temperature, and the rotation speed control means 22
Is performed. Accordingly, since the temperature of the boiling water is set low at the time of startup, the pressure and the discharge temperature of the compressor 1 do not rise abnormally, and the durability is improved.

【0030】つぎに、第6の実施例について説明する。
図6において、第1、第2、第3、第4、第5の実施例
と同じ構成、作用するものについては同符号を示し、説
明を省略する。24は運転制御器であり、前記蒸発温度
検知器14の信号が所定温度よりも低温を検出した場合
に前記加熱器7に通電する。
Next, a sixth embodiment will be described.
In FIG. 6, components having the same configurations and operations as those of the first, second, third, fourth, and fifth embodiments are denoted by the same reference numerals, and description thereof is omitted. An operation controller 24 energizes the heater 7 when a signal from the evaporation temperature detector 14 detects a temperature lower than a predetermined temperature.

【0031】上記構成において、前記蒸発温度検知器1
4の信号で前記加熱器7の通電を選択し、蒸発温度が高
い場合はヒートポンプの加熱能力が大きいため前記加熱
器7を非通電にし、低い場合には前記加熱器7を通電す
る。そして、前記加熱器7が非通電の場合には、前記回
転数制御手段11が前記冷媒対水熱交換器2出口の第1
の温度検知器8の検知した湯温と設定温度が一致するよ
うに前記循環ポンプ6の回転数制御を行い、前記貯湯槽
5の上部から湯をたくわえていく。また、前記加熱器7
が通電されて前記圧縮機1との併用運転時には、前記回
転数制御手段11が前記加熱器7出口の前記第2の温度
検知器9の検知した湯温と設定温度が一致するように前
記循環ポンプ6の回転数を制御し、非通電時より高温の
湯を前記貯湯槽5の上部からたくわえていく。よって給
湯負荷が少ない中間季から夏季には効率のよいヒートポ
ンプで運転できる。一方、冬季の給湯負荷が大きい場合
には、前記圧縮機1と前記加熱器7の併用運転をするた
め高温が得られ、貯湯熱量が多くなり、負荷を満足させ
ることができる。そして、いづれの運転時にも熱源出口
で温度制御しているため安定した温度の湯が前記貯湯槽
にたくわえられる。
In the above configuration, the evaporating temperature detector 1
The energization of the heater 7 is selected by the signal of 4, and when the evaporating temperature is high, the heating capacity of the heat pump is large, so that the heater 7 is de-energized, and when the evaporation temperature is low, the heater 7 is energized. When the heater 7 is not energized, the rotation speed control unit 11 controls the rotation speed of the refrigerant to water heat exchanger 2 at the first position.
The rotation speed of the circulation pump 6 is controlled so that the temperature of the hot water detected by the temperature detector 8 matches the set temperature, and hot water is stored from above the hot water storage tank 5. In addition, the heater 7
Is energized and the compressor 1 is operated in combination with the compressor 1 so that the rotation speed control means 11 performs the circulation so that the hot water temperature detected by the second temperature detector 9 at the outlet of the heater 7 matches the set temperature. The number of rotations of the pump 6 is controlled, and hot water that is hotter than when no power is supplied is stored from above the hot water storage tank 5. Therefore, the operation can be performed with an efficient heat pump from the middle season to the summer season when the hot water supply load is small. On the other hand, when the load of hot water supply in winter is large, a high temperature is obtained because the compressor 1 and the heater 7 are operated in combination, so that the amount of stored hot water increases and the load can be satisfied. In any operation, since the temperature is controlled at the heat source outlet, hot water having a stable temperature is stored in the hot water storage tank.

【0032】つぎに、第7の実施例について説明する。
図7において、第1、第2、第3、第4、第5、第6の
実施例と同じ構成、作用するものについては同符号を示
し、説明を省略する。25は開閉弁であり、前記圧縮機
1の吸入管と前記冷媒対水熱交換器2の出口管を接続す
るバイパス管26に冷媒を減圧する流量調節手段27と
ともに設けられている。28は運転制御器であり、前記
蒸発温度検知器14の信号を受けて前記加熱器7を通電
し、前記開閉弁25を閉じる制御を行う。
Next, a seventh embodiment will be described.
In FIG. 7, the same components as those of the first, second, third, fourth, fifth, and sixth embodiments are denoted by the same reference numerals, and description thereof is omitted. Reference numeral 25 denotes an on-off valve, which is provided on a bypass pipe 26 connecting the suction pipe of the compressor 1 and the outlet pipe of the refrigerant-to-water heat exchanger 2 together with a flow rate adjusting means 27 for reducing the pressure of the refrigerant. Reference numeral 28 denotes an operation controller, which controls the heater 7 in response to a signal from the evaporating temperature detector 14 to close the on-off valve 25.

【0033】上記構成において、前記蒸発温度検知器1
4の信号で前記加熱器7の通電を選択し、蒸発温度が高
い場合は前記加熱器7を非通電にし、低い場合には前記
加熱器7を通電する。その際に、前記加熱器7を通電し
て前記圧縮機1と併用運転した場合、加熱能力が大きい
ため前記冷媒対水熱交換器2を流れる流量が多くなり、
前記圧縮機1の吐出圧力および吐出温度が前記加熱器7
の非通電時に比べ低下する。そのため、前記冷媒対水熱
交換器2に流入する冷媒温度は低くなるため、効率が低
下する。しかし、本実施例では、前記運転制御器28が
前記加熱器7の通電時に前記開閉弁25を閉にする。そ
のため、前記冷媒対水熱交換器2から前記圧縮機1への
バイパスの液冷媒が流れなくなり、前記圧縮機1の吐出
温度は上昇し、前記冷媒対水熱交換器2で効率よく高温
まで水を加熱することができる。
In the above configuration, the evaporating temperature detector 1
The energization of the heater 7 is selected by the signal of 4, and when the evaporation temperature is high, the heater 7 is de-energized, and when the evaporation temperature is low, the heater 7 is energized. At this time, when the heater 7 is energized and the compressor 1 is operated in combination, the flow rate of the refrigerant-water heat exchanger 2 increases because the heating capacity is large,
The discharge pressure and discharge temperature of the compressor 1
Is lower than when no current is supplied. Therefore, the temperature of the refrigerant flowing into the refrigerant-to-water heat exchanger 2 becomes low, and the efficiency is lowered. However, in this embodiment, the operation controller 28 closes the on-off valve 25 when the heater 7 is energized. Therefore, the liquid refrigerant in the bypass from the refrigerant-to-water heat exchanger 2 to the compressor 1 stops flowing, the discharge temperature of the compressor 1 rises, and the refrigerant-to-water heat exchanger 2 efficiently supplies water to a high temperature. Can be heated.

【0034】[0034]

【発明の効果】以上説明したように本発明のヒートポン
プ給湯機は、圧縮機、冷媒対水熱交換器、減圧装置、蒸
発器を順次接続した冷媒循環回路と、下部から給水され
て上部から出湯される貯湯槽、前記貯湯槽下部と接続さ
れる循環ポンプ、前記冷媒対水熱交換器、前記貯湯槽上
部と接続される加熱器を順次接続した給湯回路と、前記
給湯回路の前記冷媒対水熱交換器出口の湯温を検知する
第1の温度検知器と、前記給湯回路の前記加熱器出口の
湯温を検知する第2の温度検知器と、前記貯湯槽内の湯
温を検知する湯量検知器と、前記加熱器が非通電時は前
記第1の温度検知器の信号で前記循環ポンプの回転数を
制御し、前記加熱器に通電時は前記第2の温度検知器の
信号で前記循環ポンプの回転数を制御する回転数制御手
段と、直前に前記加熱器が非通電か通電であったかを記
憶する運転記憶装置と、前記湯量検知器が所定温度以下
を検知すると前記圧縮機と前記循環ポンプを運転すると
ともに前記運転記憶装置が非通電を記憶している時は前
記加熱器を非通電とし、通電を記憶している時は前記加
熱器に通電する運転制御器とを備え、前記貯湯槽から出
湯されて給水された水が前記湯量検知器に達すると、そ
れを前記運転制御器に信号が送られ、直前の運転を記憶
する運転記憶装置の信号で前記圧縮機単独運転あるいは
前記圧縮機と前記加熱器の併用運転かを判断し、追焚き
運転を開始する。その際に、前記回転数制御手段は前記
加熱器が非通電で前記圧縮機単独運転の場合には前記第
1の温度検知器の信号で前記循環ポンプの回転数制御を
行い、前記加熱器が通電されて前記圧縮機との併用運転
の場合には、前記第2の温度検知器の信号で前記循環ポ
ンプの回転数制御を行う。よって、追焚き運転時の沸き
上げ湯温は残湯と同温となるため、出湯された時に安定
した湯温が得られるようになる。
As described above, the heat pump water heater according to the present invention has a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, and water is supplied from a lower portion and discharged from an upper portion. A hot water storage tank, a circulation pump connected to the lower part of the hot water storage tank, a refrigerant / water heat exchanger, a hot water supply circuit sequentially connected to a heater connected to the upper part of the hot water storage tank, and the refrigerant / water of the hot water supply circuit. A first temperature detector for detecting a hot water temperature at a heat exchanger outlet, a second temperature detector for detecting a hot water temperature at the heater outlet of the hot water supply circuit, and detecting a hot water temperature in the hot water storage tank When the heater is not energized, the number of rotations of the circulation pump is controlled by the signal of the first temperature detector when the heater is not energized, and when the heater is energized, the signal is supplied by the signal of the second temperature detector. Rotation speed control means for controlling the rotation speed of the circulation pump; An operation storage device that stores whether the heater is non-energized or energized, and the operation storage device stores the non-energization while operating the compressor and the circulation pump when the hot water detector detects a predetermined temperature or less. When the power is on, the heater is de-energized, and when the energization is stored, an operation controller for energizing the heater is provided, so that the water supplied from the hot water storage tank and supplied reaches the hot water level detector. Then, a signal is sent to the operation controller, and it is determined whether the compressor is operated alone or the compressor and the heater are operated in combination with a signal of an operation storage device that stores the immediately preceding operation, and a reheating operation is performed. To start. At this time, the rotation speed control means controls the rotation speed of the circulation pump with a signal of the first temperature detector when the heater is not energized and the compressor operates alone, and the heating device In the case of energization and simultaneous operation with the compressor, the rotation speed of the circulation pump is controlled by the signal of the second temperature detector. Therefore, the temperature of the hot water during the additional heating operation is the same as the temperature of the remaining hot water, so that a stable hot water temperature can be obtained when the hot water is discharged.

【0035】また、圧縮機、冷媒対水熱交換器、減圧装
置、蒸発器を順次接続した冷媒循環回路と、貯湯槽、循
環ポンプ、前記冷媒対水熱交換器、加熱器を順次接続し
た給湯回路と、前記給湯回路の前記冷媒対水熱交換器出
口の湯温を検知する第1の温度検知器と、前記給湯回路
の前記加熱器出口の湯温を検知する第2の温度検知器
と、前記貯湯槽内の湯温を検知する湯量検知器と、前記
加熱器が非通電時は前記第1の温度検知器の信号で前記
循環ポンプの回転数を制御し、前記加熱器に通電時は前
記第2の温度検知器の信号で前記循環ポンプの回転数を
制御する回転数制御手段と、前記蒸発器入口の冷媒温度
を検知する蒸発温度検知器と、前記湯量検知器が所定温
度を検知すると時間計測を開始するタイマーと、前記蒸
発温度検知器の信号で前記タイマーの時間設定を行うタ
イマー設定手段と、前記湯量検知器が所定温度以下を検
知すると前記圧縮機、前記循環ポンプ、前記加熱器に通
電をして運転開始するとともに前記タイマーの設定時間
終了の信号を受けて前記圧縮機、前記循環ポンプ、前記
加熱器の運転を停止する運転制御器とを備え、前記蒸発
器入口の温度が低くなるにしたがって前記タイマーの設
定時間を長く設定して、前記貯湯槽から出湯されて、給
水された水が前記湯量検知器に達すると、前記運転制御
器は追焚き運転の信号を送る。その際、前記蒸発温度検
知器の信号を受け、蒸発温度が低い場合には、前記タイ
マー設定手段は前記タイマーの設定時間を長くして追焚
き運転する。逆に、蒸発温度が高い場合には、前記タイ
マーの設定時間を短くして追焚き運転する。よって、冬
季など蒸発温度が低い場合には、追焚運転時間が長くな
り追焚湯量が多くなり、中間季から夏季など蒸発温度が
高い場合には、追焚き運転時間を短くし、追焚湯量を少
なくするため、省エネルギー化をはかることができる。
Also, a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, and a hot water supply in which a hot water storage tank, a circulation pump, the refrigerant-to-water heat exchanger, and a heater are sequentially connected. A first temperature detector for detecting a temperature of the hot water at the outlet of the refrigerant / water heat exchanger of the hot water supply circuit; and a second temperature detector for detecting the temperature of the hot water at the outlet of the heater of the hot water supply circuit. A hot water level detector for detecting the temperature of hot water in the hot water storage tank, and when the heater is not energized, controls the number of revolutions of the circulating pump with a signal from the first temperature detector. Means for controlling the number of revolutions of the circulating pump by a signal of the second temperature detector, an evaporating temperature detector for detecting a refrigerant temperature at the evaporator inlet, and the hot water quantity detector for detecting a predetermined temperature. A timer that starts measuring time when detected, and a signal from the evaporation temperature detector. Timer setting means for setting the time of the timer, and when the hot water detector detects a predetermined temperature or less, the compressor, the circulating pump, and the heater are energized to start the operation and to terminate the set time of the timer. The compressor, the circulating pump, an operation controller for stopping the operation of the heater in response to a signal, the set time of the timer is set longer as the temperature of the evaporator inlet becomes lower, When the hot water is discharged from the hot water storage tank and the supplied water reaches the hot water level detector, the operation controller sends a signal of a reheating operation. At this time, when the signal from the evaporating temperature detector is received and the evaporating temperature is low, the timer setting means extends the set time of the timer to perform the additional heating operation. Conversely, when the evaporation temperature is high, the reheating operation is performed by shortening the set time of the timer. Therefore, when the evaporating temperature is low, such as in winter, the reheating operation time becomes longer and the amount of reheating water increases, and when the evaporating temperature is high, such as in the middle to summer, the reheating time is shortened, and the amount of reheating water is reduced. In order to reduce energy consumption, energy can be saved.

【0036】また、圧縮機、冷媒対水熱交換器、減圧装
置、蒸発器を順次接続した冷媒循環回路と、貯湯槽、循
環ポンプ、前記冷媒対水熱交換器、前記貯湯槽上部と接
続される加熱器を順次接続した給湯回路と、前記給湯回
路の前記冷媒対水熱交換器出口の湯温を検知する第1の
温度検知器と、前記給湯回路の前記加熱器出口の湯温を
検知する第2の温度検知器と、前記貯湯槽内の湯温を検
知する湯量検知器と、前記加熱器が非通電時は前記第1
の温度検知器の信号で前記循環ポンプの回転数を制御
し、前記加熱器に通電時は前記第2の温度検知器の信号
で前記循環ポンプの回転数を制御する回転数制御手段
と、前記給湯回路の前記冷媒対水熱交換器入口の水温を
検知する第3の温度検知器と、前記湯量検知器の信号と
前記第3の温度検知器の信号から、前記貯湯槽内の湯温
と前記冷媒対水熱交換器入口の水温の温度差が設定値よ
りも大きい場合には前記圧縮機および前記循環ポンプを
運転開始して前記加熱器を非通電とし、前記温度差が設
定値以下の場合には前記循環ポンプを運転開始するとと
もに前記加熱器に通電する運転制御器とを備え、運転開
始時に前記湯量検知器と前記第3の温度検知器の信号か
ら前記貯湯槽湯温と前記冷媒対水熱交換器入口水温の温
度差が設定値より大きい場合は、前記圧縮機による単独
運転をおこない、前記第1の温度検知器の信号で前記循
環ポンプの回転数制御を行い、沸き上げ運転する。よっ
て、加熱器単独運転することもなく効率の高い運転とな
り、省エネルギー化がはかれる。一方、前記湯量検知器
と前記第3の温度検知器の信号から前記貯湯槽湯温と前
記冷媒対水熱交換器入口水温の温度差が設定値以下の場
合は、前記貯湯槽内全体が中低温水と判定し、前記運転
制御器は前記圧縮機を停止し、前記加熱器単体で沸き上
げ運転を行い、前記第2の温度検知器の信号で前記循環
ポンプの回転数制御を行う。よって、給湯に利用できる
温度の湯に前記貯湯槽下部まで全体を沸き上げ可能とな
る。従って、長期未使用において、緊急に湯が必要とな
っても、充分に給湯負荷および湯温を満足することがで
きる。さらに、前記圧縮機の高圧、温度上昇といった課
題もなくなる。
A refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, a hot water tank, a circulation pump, the refrigerant-water heat exchanger, and an upper portion of the hot water tank are connected. A hot water supply circuit having heaters sequentially connected thereto, a first temperature detector for detecting a hot water temperature at the outlet of the refrigerant / water heat exchanger of the hot water supply circuit, and a hot water temperature at the outlet of the heater in the hot water supply circuit. A second temperature detector for detecting the temperature of the hot water in the hot water storage tank; and a first temperature detector for detecting the temperature of the hot water in the hot water storage tank.
Rotation speed control means for controlling the rotation speed of the circulation pump with a signal from the temperature detector, and controlling the rotation speed of the circulation pump with a signal from the second temperature detector when the heater is energized; A third temperature detector for detecting a water temperature at the inlet of the refrigerant-water heat exchanger of the hot water supply circuit; and a temperature of the hot water in the hot water storage tank based on a signal of the hot water amount detector and a signal of the third temperature detector. When the temperature difference between the coolant and the water at the inlet of the water heat exchanger is larger than a set value, the compressor and the circulation pump are started to operate and the heater is de-energized, and the temperature difference is equal to or less than a set value. An operation controller for starting operation of the circulation pump and energizing the heater, wherein the hot water tank temperature and the refrigerant are obtained from signals of the hot water detector and the third temperature detector at the start of operation. Temperature difference between inlet water temperature and water heat exchanger is larger than set value If performed alone operation by the compressor performs rotational speed control of the circulation pump in the signal of the first temperature detector, for heating operation. Therefore, the operation becomes highly efficient without performing the heater alone operation, and energy saving is achieved. On the other hand, if the temperature difference between the hot water tank hot water temperature and the coolant-to-water heat exchanger inlet water temperature is less than or equal to the set value based on the signals from the hot water quantity detector and the third temperature detector, the entire inside of the hot water tank is medium. When it is determined that the temperature is low-temperature water, the operation controller stops the compressor, performs the boiling operation with the heater alone, and controls the rotation speed of the circulation pump based on the signal of the second temperature detector. Therefore, it is possible to boil the entire hot water to a lower temperature in the hot water storage tank at a temperature usable for hot water supply. Therefore, even if the hot water is urgently needed in the long-term unused state, the hot water supply load and the hot water temperature can be sufficiently satisfied. Further, there are no problems such as high pressure and temperature rise of the compressor.

【0037】また、圧縮機、冷媒対水熱交換器、減圧装
置、蒸発器を順次接続した冷媒循環回路と、貯湯槽、循
環ポンプ、前記冷媒対水熱交換器、加熱器を順次接続し
た給湯回路と、前記給湯回路の前記冷媒対水熱交換器出
口の湯温を検知する第1の温度検知器と、前記給湯回路
の前記加熱器出口の湯温を検知する第2の温度検知器
と、前記加熱器が非通電時は前記第1の温度検知器の信
号で前記循環ポンプの回転数を制御し、前記加熱器に通
電時は前記第2の温度検知器の信号で前記循環ポンプの
回転数を制御する回転数制御手段と、運転開始時に前記
加熱器の通電、その後遅延して前記加熱器を非通電とす
る制御を行う運転制御器とを備え、前記運転制御器は運
転開始時に前記加熱器を通電し、前記第2の温度検知器
の信号で前記循環ポンプの回転数制御を行う。そして、
その後遅延して前記加熱器を非通電にして、前記第1の
温度検知器の信号で前記循環ポンプの回転数制御を行
う。したがって、運転開始時は前記加熱器を通電するた
め、所定湯温に速く達する。
Further, a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, and a hot water supply in which a hot water storage tank, a circulation pump, the refrigerant-to-water heat exchanger, and a heater are sequentially connected. A first temperature detector for detecting a temperature of the hot water at the outlet of the refrigerant / water heat exchanger of the hot water supply circuit; and a second temperature detector for detecting the temperature of the hot water at the outlet of the heater of the hot water supply circuit. When the heater is not energized, the rotation speed of the circulating pump is controlled by the signal of the first temperature detector, and when the heater is energized, the rotation of the circulation pump is controlled by the signal of the second temperature detector. A rotation speed control means for controlling the rotation speed, an energization of the heater at the start of operation, an operation controller for performing a control to de-energize the heater with a delay after that, the operation controller at the start of operation The heater is energized, and the signal from the second temperature detector is used to turn on the circulation port. Perform the rotational speed control of flops. And
Then, after a delay, the heater is de-energized, and the rotation speed of the circulation pump is controlled by the signal of the first temperature detector. Therefore, when the operation is started, the heater is energized, so that the temperature of the hot water is quickly reached.

【0038】また、圧縮機、冷媒対水熱交換器、減圧装
置、蒸発器を順次接続した冷媒循環回路と、貯湯槽、循
環ポンプ、前記冷媒対水熱交換器を順次接続した給湯回
路と、前記給湯回路の前記冷媒対水熱交換器出口の湯温
を検知し湯温設定温度である第1信号および第1信号よ
りも低温の湯温設定温度である第2信号を発生する温度
検知器と、前記温度検知器の第1信号である湯温設定に
なるように前記循環ポンプの回転数を制御する回転数制
御手段と、運転開始時には前記温度検知器の第2信号で
ある湯温設定になるように前記循環ポンプの回転数制御
を行い、その後、前記温度検知器の第1信号である湯温
設定になるように前記循環ポンプの回転数制御を行う運
転制御器とを備え、前記運転制御器は運転開始時に前記
温度検知器の第2信号で前記循環ポンプの回転数制御を
行い、その後、前記温度検知器の第1信号に切り換えて
前記循環ポンプの回転数制御を行う。従って、立ち上げ
時に前記圧縮機の圧力および吐出温度が異常上昇するこ
ともなくなり、耐久性が向上する。
A refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected; a hot-water supply tank in which a hot-water tank, a circulation pump, and the refrigerant-water heat exchanger are sequentially connected; A temperature detector for detecting a hot water temperature at the outlet of the refrigerant / water heat exchanger of the hot water supply circuit and generating a first signal which is a hot water set temperature and a second signal which is a hot water set temperature lower than the first signal. Rotation speed control means for controlling the rotation speed of the circulating pump so as to achieve a hot water temperature setting which is a first signal of the temperature detector; and a hot water temperature setting which is a second signal of the temperature detector at the start of operation. And an operation controller for controlling the rotation speed of the circulation pump so that the temperature of the hot water is set as the first signal of the temperature detector. The operation controller operates the second temperature detector at the start of operation. Wherein performs rotational speed control of the circulation pump, then the rotation speed control of the circulation pump is switched to the first signal of the temperature detector at issue. Therefore, the pressure and the discharge temperature of the compressor are not abnormally increased at the time of startup, and the durability is improved.

【0039】また、圧縮機、冷媒対水熱交換器、減圧装
置、蒸発器を順次接続した冷媒循環回路と、貯湯槽、循
環ポンプ、前記冷媒対水熱交換器、加熱器を順次接続し
た給湯回路と、前記給湯回路の前記冷媒対水熱交換器出
口の湯温を検知する第1の温度検知器と、前記給湯回路
の前記加熱器出口の湯温を検知する第2の温度検知器
と、前記加熱器が非通電時は前記第1の温度検知器の信
号で前記循環ポンプの回転数を制御し、前記加熱器に通
電時は前記第2の温度検知器の信号で前記循環ポンプの
回転数を制御する回転数制御手段と、前記蒸発器入口の
冷媒温度を検知する蒸発温度検知器と、前記蒸発温度検
知器の信号が所定温度よりも低温になると前記加熱器に
通電する運転制御器とを備え、前記蒸発温度検知器の信
号で前記加熱器の通電を選択し、蒸発温度が高い場合は
ヒートポンプの加熱能力が大きいため前記加熱器を非通
電にし、低い場合には前記加熱器を通電する。そして、
前記加熱器が非通電の場合には、前記運転制御器が前記
冷媒対水熱交換器の下流に設けた第1の温度検知器の信
号で前記循環ポンプの回転数制御を行い、前記貯湯槽の
上部から湯をたくわえていく。また、前記加熱器が通電
されて前記圧縮機との併用運転時には、前記運転制御器
が前記加熱器の下流に設けた第2の温度検知器の信号で
前記循環ポンプの回転数を制御し、非通電時より高温の
湯を前記貯湯槽上部からたくわえていく。よって給湯負
荷が少ない中間季から夏季には効率のよいヒートポンプ
で運転できる。一方、冬季の給湯負荷が大きい場合に
は、前記圧縮機と前記加熱器の併用運転をするため貯湯
熱量が多くなり、負荷を満足させることができる。そし
て、いづれの運転時にも熱源出口で温度制御しているた
め安定した温度の湯が前記貯湯槽にたくわえられる。
Further, a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, and a hot water supply tank, a circulation pump, a hot water supply in which the refrigerant-to-water heat exchanger, and a heater are sequentially connected. A first temperature detector for detecting a temperature of the hot water at the outlet of the refrigerant / water heat exchanger of the hot water supply circuit; and a second temperature detector for detecting the temperature of the hot water at the outlet of the heater of the hot water supply circuit. When the heater is not energized, the rotation speed of the circulating pump is controlled by the signal of the first temperature detector, and when the heater is energized, the rotation of the circulation pump is controlled by the signal of the second temperature detector. Rotation speed control means for controlling a rotation speed, an evaporation temperature detector for detecting a refrigerant temperature at the evaporator inlet, and operation control for energizing the heater when a signal from the evaporation temperature detector becomes lower than a predetermined temperature. A heater, and a signal from the evaporating temperature detector to communicate with the heater. Select, if the evaporation temperature is high the heater is large heating capacity of the heat pump is de-energized, when low energizes the heater. And
When the heater is not energized, the operation controller controls the rotation speed of the circulating pump with a signal from a first temperature detector provided downstream of the refrigerant-to-water heat exchanger. Add hot water from the top of the pan. When the heater is energized and the compressor is operated in combination with the compressor, the operation controller controls the rotation speed of the circulation pump with a signal of a second temperature detector provided downstream of the heater, Hot water that is hotter than when no power is supplied is stored from above the hot water storage tank. Therefore, the operation can be performed with an efficient heat pump from the middle season to the summer season when the hot water supply load is small. On the other hand, when the hot water supply load in winter is large, the amount of stored hot water increases because the compressor and the heater are operated in combination, and the load can be satisfied. In any operation, since the temperature is controlled at the heat source outlet, hot water having a stable temperature is stored in the hot water storage tank.

【0040】また、圧縮機、冷媒対水熱交換器、減圧装
置、蒸発器を順次接続した冷媒循環回路と、貯湯槽、循
環ポンプ、前記冷媒対水熱交換器、加熱器を順次接続し
た給湯回路と、前記給湯回路の前記冷媒対水熱交換器出
口の湯温を検知する第1の温度検知器と、前記給湯回路
の前記加熱器出口の湯温を検知する第2の温度検知器
と、前記加熱器が非通電時は前記第1の温度検知器の信
号で前記循環ポンプの回転数を制御し、前記加熱器に通
電時は前記第2の温度検知器の信号で前記循環ポンプの
回転数を制御する回転数制御手段と、前記蒸発器入口の
冷媒温度を検知する蒸発温度検知器と、前記圧縮機の吸
入管と前記冷媒循環回路の前記冷媒対水熱交換器の出口
管を接続するバイパス管に設けて冷媒を減圧させるとと
もにバイパス管側に流れる冷媒の流量を設定する流量調
節手段および開閉弁を有し、前記蒸発温度検知器の信号
が所定温度よりも高温の時は前記加熱器を非通電とする
とともに前記開閉弁を開とし、前記蒸発温度検知器の信
号が所定温度よりも低温の時は前記加熱器に通電すると
ともに前記開閉弁を閉じる運転制御器とを備え、前記蒸
発温度検知器の信号で前記加熱器の通電を選択し、蒸発
温度が高い場合は前記加熱器を非通電にし、低い場合に
は前記加熱器を通電する。その際に、前記加熱器を通電
して前記圧縮機と併用運転した場合、加熱能力が大きい
ため前記冷媒対水熱交換器を流れる流量が多くなり、前
記圧縮機の吐出圧力および吐出温度が前記加熱器の非通
電時に比べ低下する。そのため、前記冷媒対水熱交換器
に流入する冷媒温度は低くなるため、効率が低下する。
しかし、本発明では、前記運転制御器が前記加熱器に通
電し、前記開閉弁を閉にする。そのため、前記冷媒対水
熱交換器から前記圧縮機へのバイパスの液冷媒が流れな
くなり、前記圧縮機の吐出温度は上昇し、前記冷媒対水
熱交換器で効率よく高温まで水を加熱することができ
る。
Further, a refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, and a hot water supply in which a storage tank, a circulation pump, the refrigerant-to-water heat exchanger, and a heater are sequentially connected. A first temperature detector for detecting a temperature of the hot water at the outlet of the refrigerant / water heat exchanger of the hot water supply circuit; and a second temperature detector for detecting the temperature of the hot water at the outlet of the heater of the hot water supply circuit. When the heater is not energized, the rotation speed of the circulating pump is controlled by the signal of the first temperature detector, and when the heater is energized, the rotation of the circulation pump is controlled by the signal of the second temperature detector. Rotation speed control means for controlling the rotation speed, an evaporation temperature detector for detecting the refrigerant temperature at the inlet of the evaporator, a suction pipe of the compressor and an outlet pipe of the refrigerant-to-water heat exchanger of the refrigerant circulation circuit. Connected to the bypass pipe to reduce the pressure of the refrigerant and to the bypass pipe side Having a flow rate adjusting means for setting the flow rate of the refrigerant and an on-off valve, and when the signal of the evaporation temperature detector is higher than a predetermined temperature, de-energize the heater and open the on-off valve, When the signal of the evaporating temperature detector is lower than a predetermined temperature, an operation controller for energizing the heater and closing the on-off valve is provided, and the energizing of the heater is selected by the signal of the evaporating temperature detector. When the evaporation temperature is high, the heater is de-energized, and when the evaporation temperature is low, the heater is energized. At that time, when the heater is energized and operated in combination with the compressor, the flow rate of the refrigerant to water heat exchanger increases because the heating capacity is large, and the discharge pressure and discharge temperature of the compressor are reduced. It is lower than when the heater is not energized. Therefore, the temperature of the refrigerant flowing into the refrigerant-to-water heat exchanger becomes low, and the efficiency is reduced.
However, in the present invention, the operation controller energizes the heater and closes the on-off valve. Therefore, the liquid refrigerant in the bypass from the refrigerant-to-water heat exchanger to the compressor stops flowing, the discharge temperature of the compressor rises, and the water is efficiently heated to a high temperature by the refrigerant-to-water heat exchanger. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1におけるヒートポンプ給湯機
の構成図
FIG. 1 is a configuration diagram of a heat pump water heater in Embodiment 1 of the present invention.

【図2】本発明の実施例2におけるヒートポンプ給湯機
の構成図
FIG. 2 is a configuration diagram of a heat pump water heater in Embodiment 2 of the present invention.

【図3】本発明の実施例3におけるヒートポンプ給湯機
の構成図
FIG. 3 is a configuration diagram of a heat pump water heater according to a third embodiment of the present invention.

【図4】本発明の実施例4におけるヒートポンプ給湯機
の構成図
FIG. 4 is a configuration diagram of a heat pump water heater according to a fourth embodiment of the present invention.

【図5】本発明の実施例5におけるヒートポンプ給湯機
の構成図
FIG. 5 is a configuration diagram of a heat pump water heater according to a fifth embodiment of the present invention.

【図6】本発明の実施例6におけるヒートポンプ給湯機
の構成図
FIG. 6 is a configuration diagram of a heat pump water heater according to a sixth embodiment of the present invention.

【図7】本発明の実施例7におけるヒートポンプ給湯機
の構成図
FIG. 7 is a configuration diagram of a heat pump water heater according to a seventh embodiment of the present invention.

【図8】従来のヒートポンプ給湯機の構成図FIG. 8 is a configuration diagram of a conventional heat pump water heater.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 冷媒対水熱交換器 3 減圧装置 4 蒸発器 5 貯湯槽 6 循環ポンプ 7 加熱器 8 第1の温度検知器 9 第2の温度検知器 10 湯量検知器 11 回転数制御手段 12 運転記憶装置 13 運転制御器 14 蒸発温度検知器 15 タイマー 16 タイマー設定手段 17 運転制御器 18 第3の温度検知器 19 運転制御器 20 運転制御器 21 温度検知器 22 回転数制御手段 23 運転制御器 24 運転制御器 25 開閉弁 26 バイパス管 27 流量調節手段 28 運転制御器 DESCRIPTION OF SYMBOLS 1 Compressor 2 Refrigerant-water heat exchanger 3 Decompression device 4 Evaporator 5 Hot water tank 6 Circulation pump 7 Heater 8 1st temperature detector 9 2nd temperature detector 10 Hot water amount detector 11 Revolution number control means 12 Operation Storage device 13 Operation controller 14 Evaporation temperature detector 15 Timer 16 Timer setting means 17 Operation controller 18 Third temperature detector 19 Operation controller 20 Operation controller 21 Temperature detector 22 Revolution control means 23 Operation controller 24 Operation controller 25 On-off valve 26 Bypass pipe 27 Flow rate adjusting means 28 Operation controller

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、冷媒対水熱交換器、減圧装置、蒸
発器を順次接続した冷媒循環回路と、下部から給水され
て上部から出湯される貯湯槽、前記貯湯槽下部と接続さ
れる循環ポンプ、前記冷媒対水熱交換器、前記貯湯槽上
部と接続される加熱器を順次接続した給湯回路と、前記
給湯回路の前記冷媒対水熱交換器出口の湯温を検知する
第1の温度検知器と、前記給湯回路の前記加熱器出口の
湯温を検知する第2の温度検知器と、前記貯湯槽内の湯
温を検知する湯量検知器と、前記加熱器が非通電時は前
記第1の温度検知器の信号で前記循環ポンプの回転数を
制御し、前記加熱器に通電時は前記第2の温度検知器の
信号で前記循環ポンプの回転数を制御する回転数制御手
段と、直前に前記加熱器が非通電か通電であったかを記
憶する運転記憶装置と、前記湯量検知器が所定温度以下
を検知すると前記圧縮機と前記循環ポンプを運転すると
ともに前記運転記憶装置が非通電を記憶している時は前
記加熱器を非通電とし、通電を記憶している時は前記加
熱器に通電する運転制御器とを備えたヒートポンプ給湯
機。
1. A refrigerant circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, a hot water tank supplied with water from a lower part and a hot water discharged from an upper part, and connected to a lower part of the hot water tank. A hot water supply circuit in which a circulation pump, the refrigerant / water heat exchanger, and a heater connected to the upper part of the hot water storage tank are sequentially connected, and a first temperature detecting a hot water temperature at an outlet of the refrigerant / water heat exchanger of the hot water supply circuit. A temperature detector, a second temperature detector for detecting the temperature of the hot water at the outlet of the heater of the hot water supply circuit, a hot water detector for detecting the temperature of the hot water in the hot water storage tank, and when the heater is not energized, Rotation speed control means for controlling the rotation speed of the circulation pump by a signal of the first temperature detector, and controlling the rotation speed of the circulation pump by a signal of the second temperature detector when the heater is energized; And an operation storage device for storing whether the heater was de-energized or energized immediately before. When the hot water detector detects a predetermined temperature or less, the compressor and the circulating pump are operated and the heater is de-energized when the operation storage device stores the non-energization, and the energization is stored. A heat pump water heater comprising an operation controller for energizing the heater when the heater is turned on.
【請求項2】圧縮機、冷媒対水熱交換器、減圧装置、蒸
発器を順次接続した冷媒循環回路と、貯湯槽、循環ポン
プ、前記冷媒対水熱交換器、加熱器を順次接続した給湯
回路と、前記給湯回路の前記冷媒対水熱交換器出口の湯
温を検知する第1の温度検知器と、前記給湯回路の前記
加熱器出口の湯温を検知する第2の温度検知器と、前記
貯湯槽内の湯温を検知する湯量検知器と、前記加熱器が
非通電時は前記第1の温度検知器の信号で前記循環ポン
プの回転数を制御し、前記加熱器に通電時は前記第2の
温度検知器の信号で前記循環ポンプの回転数を制御する
回転数制御手段と、前記蒸発器入口の冷媒温度を検知す
る蒸発温度検知器と、前記湯量検知器が所定温度を検知
すると時間計測を開始するタイマーと、前記蒸発温度検
知器の信号で前記タイマーの時間設定を行うタイマー設
定手段と、前記湯量検知器が所定温度以下を検知すると
前記圧縮機、前記循環ポンプ、前記加熱器に通電をして
運転開始するとともに前記タイマーの設定時間終了の信
号を受けて前記圧縮機、前記循環ポンプ、前記加熱器の
運転を停止する運転制御器とを備え、前記蒸発器入口の
温度が低くなるにしたがって前記タイマーの設定時間を
長く設定したヒートポンプ給湯機。
2. A refrigerant circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, and a hot water supply in which a storage tank, a circulation pump, the refrigerant-to-water heat exchanger, and a heater are sequentially connected. A first temperature detector for detecting a temperature of the hot water at the outlet of the refrigerant / water heat exchanger of the hot water supply circuit; and a second temperature detector for detecting the temperature of the hot water at the outlet of the heater of the hot water supply circuit. A hot water level detector for detecting the temperature of hot water in the hot water storage tank, and when the heater is not energized, controls the number of revolutions of the circulating pump with a signal from the first temperature detector. Means for controlling the number of revolutions of the circulating pump by a signal of the second temperature detector, an evaporating temperature detector for detecting a refrigerant temperature at the evaporator inlet, and the hot water quantity detector for detecting a predetermined temperature. A timer that starts measuring time when detected, and a signal from the evaporation temperature detector Timer setting means for setting the time of the immer, and when the hot water detector detects a predetermined temperature or less, the compressor, the circulating pump, and the heater are energized to start the operation and a signal for ending the set time of the timer. A heat pump water heater, comprising: an operation controller for stopping the operation of the compressor, the circulation pump, and the heater in response to the operation, and setting the timer to a longer time as the temperature at the evaporator inlet decreases.
【請求項3】圧縮機、冷媒対水熱交換器、減圧装置、蒸
発器を順次接続した冷媒循環回路と、貯湯槽、循環ポン
プ、前記冷媒対水熱交換器、前記貯湯槽上部と接続され
る加熱器を順次接続した給湯回路と、前記給湯回路の前
記冷媒対水熱交換器出口の湯温を検知する第1の温度検
知器と、前記給湯回路の前記加熱器出口の湯温を検知す
る第2の温度検知器と、前記貯湯槽内の湯温を検知する
湯量検知器と、前記加熱器が非通電時は前記第1の温度
検知器の信号で前記循環ポンプの回転数を制御し、前記
加熱器に通電時は前記第2の温度検知器の信号で前記循
環ポンプの回転数を制御する回転数制御手段と、前記給
湯回路の前記冷媒対水熱交換器入口の水温を検知する第
3の温度検知器と、前記湯量検知器の信号と前記第3の
温度検知器の信号から、前記貯湯槽内の湯温と前記冷媒
対水熱交換器入口の水温の温度差が設定値よりも大きい
場合には前記圧縮機および前記循環ポンプを運転開始し
て前記加熱器を非通電とし、前記温度差が設定値以下の
場合には前記循環ポンプを運転開始するとともに前記加
熱器に通電する運転制御器とを備えたヒートポンプ給湯
機。
3. A refrigerant circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, a hot water tank, a circulation pump, the refrigerant-water heat exchanger, and an upper portion of the hot water tank. A hot water supply circuit having heaters sequentially connected thereto, a first temperature detector for detecting a hot water temperature at the outlet of the refrigerant / water heat exchanger of the hot water supply circuit, and a hot water temperature at the outlet of the heater in the hot water supply circuit. A second temperature detector, a hot water amount detector for detecting the temperature of the hot water in the hot water storage tank, and a rotation speed of the circulation pump controlled by a signal of the first temperature detector when the heater is not energized. When the heater is energized, rotation speed control means for controlling the rotation speed of the circulating pump with a signal from the second temperature detector, and detecting the water temperature at the inlet of the refrigerant-water heat exchanger of the hot water supply circuit. A third temperature detector, a signal of the hot water level detector, and a signal of the third temperature detector When the temperature difference between the hot water temperature in the hot water storage tank and the water temperature at the inlet of the refrigerant / water heat exchanger is larger than a set value, the compressor and the circulation pump are started to operate and the heater is de-energized. When the temperature difference is equal to or less than a set value, the heat pump water heater includes an operation controller that starts operation of the circulation pump and energizes the heater.
【請求項4】圧縮機、冷媒対水熱交換器、減圧装置、蒸
発器を順次接続した冷媒循環回路と、貯湯槽、循環ポン
プ、前記冷媒対水熱交換器、加熱器を順次接続した給湯
回路と、前記給湯回路の前記冷媒対水熱交換器出口の湯
温を検知する第1の温度検知器と、前記給湯回路の前記
加熱器出口の湯温を検知する第2の温度検知器と、前記
加熱器が非通電時は前記第1の温度検知器の信号で前記
循環ポンプの回転数を制御し、前記加熱器に通電時は前
記第2の温度検知器の信号で前記循環ポンプの回転数を
制御する回転数制御手段と、運転開始時に前記加熱器の
通電、その後遅延して前記加熱器を非通電とする制御を
行う運転制御器とを備えたヒートポンプ給湯機。
4. A refrigerant circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, and a hot water supply in which a storage tank, a circulation pump, the refrigerant-to-water heat exchanger, and a heater are sequentially connected. A first temperature detector for detecting a temperature of the hot water at the outlet of the refrigerant / water heat exchanger of the hot water supply circuit; and a second temperature detector for detecting the temperature of the hot water at the outlet of the heater of the hot water supply circuit. When the heater is not energized, the rotation speed of the circulating pump is controlled by the signal of the first temperature detector, and when the heater is energized, the rotation of the circulation pump is controlled by the signal of the second temperature detector. A heat pump water heater comprising: rotation speed control means for controlling the rotation speed; and an operation controller for controlling the energization of the heater at the start of operation, and then the control of turning off the heater after a delay.
【請求項5】圧縮機、冷媒対水熱交換器、減圧装置、蒸
発器を順次接続した冷媒循環回路と、貯湯槽、循環ポン
プ、前記冷媒対水熱交換器を順次接続した給湯回路と、
前記給湯回路の前記冷媒対水熱交換器出口の湯温を検知
し湯温設定温度である第1信号および第1信号よりも低
温の湯温設定温度である第2信号を発生する温度検知器
と、前記温度検知器の第1信号である湯温設定になるよ
うに前記循環ポンプの回転数を制御する回転数制御手段
と、運転開始時には前記温度検知器の第2信号である湯
温設定になるように前記循環ポンプの回転数制御を行
い、その後、前記温度検知器の第1信号である湯温設定
になるように前記循環ポンプの回転数制御を行う運転制
御器とを備えたヒートポンプ給湯機。
5. A refrigerant circuit in which a compressor, a refrigerant-to-water heat exchanger, a decompression device, and an evaporator are sequentially connected; a hot water tank, a circulation pump, and a hot-water supply circuit in which the refrigerant-to-water heat exchanger is sequentially connected;
A temperature detector for detecting a hot water temperature at the outlet of the refrigerant / water heat exchanger of the hot water supply circuit and generating a first signal which is a hot water set temperature and a second signal which is a hot water set temperature lower than the first signal. Rotation speed control means for controlling the rotation speed of the circulating pump so as to achieve a hot water temperature setting which is a first signal of the temperature detector; and a hot water temperature setting which is a second signal of the temperature detector at the start of operation. An operation controller for controlling the rotation speed of the circulating pump so as to obtain the hot water temperature setting which is the first signal of the temperature detector. Water heater.
【請求項6】圧縮機、冷媒対水熱交換器、減圧装置、蒸
発器を順次接続した冷媒循環回路と、貯湯槽、循環ポン
プ、前記冷媒対水熱交換器、加熱器を順次接続した給湯
回路と、前記給湯回路の前記冷媒対水熱交換器出口の湯
温を検知する第1の温度検知器と、前記給湯回路の前記
加熱器出口の湯温を検知する第2の温度検知器と、前記
加熱器が非通電時は前記第1の温度検知器の信号で前記
循環ポンプの回転数を制御し、前記加熱器に通電時は前
記第2の温度検知器の信号で前記循環ポンプの回転数を
制御する回転数制御手段と、前記蒸発器入口の冷媒温度
を検知する蒸発温度検知器と、前記蒸発温度検知器の信
号が所定温度よりも低温になると前記加熱器に通電する
運転制御器とを備えたヒートポンプ給湯機。
6. A refrigerant circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, and a hot water supply in which a hot water storage tank, a circulation pump, the refrigerant-to-water heat exchanger, and a heater are sequentially connected. A first temperature detector for detecting a temperature of the hot water at the outlet of the refrigerant / water heat exchanger of the hot water supply circuit; and a second temperature detector for detecting the temperature of the hot water at the outlet of the heater of the hot water supply circuit. When the heater is not energized, the rotation speed of the circulating pump is controlled by the signal of the first temperature detector, and when the heater is energized, the rotation of the circulation pump is controlled by the signal of the second temperature detector. Rotation speed control means for controlling a rotation speed, an evaporation temperature detector for detecting a refrigerant temperature at the evaporator inlet, and operation control for energizing the heater when a signal from the evaporation temperature detector becomes lower than a predetermined temperature. Heat pump water heater equipped with a water heater.
【請求項7】圧縮機、冷媒対水熱交換器、減圧装置、蒸
発器を順次接続した冷媒循環回路と、貯湯槽、循環ポン
プ、前記冷媒対水熱交換器、加熱器を順次接続した給湯
回路と、前記給湯回路の前記冷媒対水熱交換器出口の湯
温を検知する第1の温度検知器と、前記給湯回路の前記
加熱器出口の湯温を検知する第2の温度検知器と、前記
加熱器が非通電時は前記第1の温度検知器の信号で前記
循環ポンプの回転数を制御し、前記加熱器に通電時は前
記第2の温度検知器の信号で前記循環ポンプの回転数を
制御する回転数制御手段と、前記蒸発器入口の冷媒温度
を検知する蒸発温度検知器と、前記圧縮機の吸入管と前
記冷媒循環回路の前記冷媒対水熱交換器の出口管を接続
するバイパス管に設けて冷媒を減圧させるとともにバイ
パス管側に流れる冷媒の流量を設定する流量調節手段お
よび開閉弁を有し、前記蒸発温度検知器の信号が所定温
度よりも高温の時は前記加熱器を非通電とするとともに
前記開閉弁を開とし、前記蒸発温度検知器の信号が所定
温度よりも低温の時は前記加熱器に通電するとともに前
記開閉弁を閉じる運転制御器とを備えたヒートポンプ給
湯機。
7. A refrigerant circuit in which a compressor, a refrigerant-to-water heat exchanger, a pressure reducing device, and an evaporator are sequentially connected, and a hot water supply in which a hot water storage tank, a circulation pump, the refrigerant-to-water heat exchanger, and a heater are sequentially connected. A first temperature detector for detecting a temperature of the hot water at the outlet of the refrigerant / water heat exchanger of the hot water supply circuit; and a second temperature detector for detecting the temperature of the hot water at the outlet of the heater of the hot water supply circuit. When the heater is not energized, the rotation speed of the circulating pump is controlled by the signal of the first temperature detector, and when the heater is energized, the rotation of the circulation pump is controlled by the signal of the second temperature detector. Rotation speed control means for controlling the rotation speed, an evaporation temperature detector for detecting the refrigerant temperature at the inlet of the evaporator, a suction pipe of the compressor and an outlet pipe of the refrigerant-to-water heat exchanger of the refrigerant circulation circuit. Provided in the bypass pipe to be connected, depressurizes the refrigerant and flows to the bypass pipe side A flow control means for setting the flow rate of the medium and an on-off valve, wherein when the signal of the evaporation temperature detector is higher than a predetermined temperature, the heater is de-energized and the on-off valve is opened, A heat pump water heater comprising: an operation controller that energizes the heater and closes the on-off valve when a signal from the temperature detector is lower than a predetermined temperature.
JP2000028685A 1994-11-09 2000-02-07 Heat pump water heater Expired - Fee Related JP3365387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000028685A JP3365387B2 (en) 1994-11-09 2000-02-07 Heat pump water heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27500094A JP3055406B2 (en) 1994-11-09 1994-11-09 Heat pump water heater
JP2000028685A JP3365387B2 (en) 1994-11-09 2000-02-07 Heat pump water heater

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27500094A Division JP3055406B2 (en) 1994-11-09 1994-11-09 Heat pump water heater

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002004120A Division JP3632660B2 (en) 2002-01-11 2002-01-11 Heat pump water heater
JP2002004119A Division JP2002250560A (en) 2002-01-11 2002-01-11 Heat pump hot water feeder

Publications (2)

Publication Number Publication Date
JP2000199645A true JP2000199645A (en) 2000-07-18
JP3365387B2 JP3365387B2 (en) 2003-01-08

Family

ID=26551275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000028685A Expired - Fee Related JP3365387B2 (en) 1994-11-09 2000-02-07 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3365387B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122367A1 (en) * 2005-05-19 2006-11-23 Quantum Energy Technologies Pty Limited Heat pump system and method for heating a fluid
WO2023276627A1 (en) * 2021-06-29 2023-01-05 株式会社デンソー Evaporation pressure regulating valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122367A1 (en) * 2005-05-19 2006-11-23 Quantum Energy Technologies Pty Limited Heat pump system and method for heating a fluid
WO2023276627A1 (en) * 2021-06-29 2023-01-05 株式会社デンソー Evaporation pressure regulating valve

Also Published As

Publication number Publication date
JP3365387B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP2003279133A (en) Heat pump water heater
JP4389378B2 (en) Hot water storage type heat pump water heater
JP3855695B2 (en) Heat pump water heater
JP3632645B2 (en) Heat pump water heater
JP2002162108A (en) Hot water supply device
JP2005147451A (en) Heat pump water heater
JP3937715B2 (en) Heat pump water heater
JP2001221501A (en) Heat pump hot-water supply system
JP2007333340A (en) Heat pump type hot water supply apparatus
JP2005315480A (en) Heat pump type water heater
JP3800721B2 (en) Heat pump type water heater
JP2000199645A (en) Heat pump water heater
JP2002115908A (en) Hot water supply apparatus
JPH08296895A (en) Heat pump hot-water supply apparatus
JP2002340400A (en) Heat pump hot water supply apparatus
JP3050114B2 (en) Control method of ice storage type chiller
JP2001208434A (en) Heat pump hot water supplier
JP3840456B2 (en) Heat pump water heater
JPH08136083A (en) Heat pump hot water feeder
JP2982615B2 (en) Heat pump water heater
JP3692813B2 (en) Heat pump water heater
JP3632660B2 (en) Heat pump water heater
JP2002310532A (en) Heat pump hot water feeding apparatus
JP3914830B2 (en) Heat pump water heater
JP2004012057A (en) Heat pump type water heater

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees