JPS6261852B2 - - Google Patents

Info

Publication number
JPS6261852B2
JPS6261852B2 JP56008442A JP844281A JPS6261852B2 JP S6261852 B2 JPS6261852 B2 JP S6261852B2 JP 56008442 A JP56008442 A JP 56008442A JP 844281 A JP844281 A JP 844281A JP S6261852 B2 JPS6261852 B2 JP S6261852B2
Authority
JP
Japan
Prior art keywords
temperature
heating
heat pump
heat
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56008442A
Other languages
Japanese (ja)
Other versions
JPS57122233A (en
Inventor
Joji Kamata
Satoshi Imabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56008442A priority Critical patent/JPS57122233A/en
Publication of JPS57122233A publication Critical patent/JPS57122233A/en
Publication of JPS6261852B2 publication Critical patent/JPS6261852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 近年、エネルギ事情の悪化にともない民生機器
の省エネルギ化が社会的緊急課題として認識され
つつある。他方、社会的な生活水準の向上にとも
ない、一般生活での給湯需要は増大傾向にある。
DETAILED DESCRIPTION OF THE INVENTION In recent years, with the deterioration of the energy situation, energy saving in consumer electronics is becoming recognized as an urgent social issue. On the other hand, as social standards of living improve, the demand for hot water supply in general life is on the rise.

本発明はかかる情勢に立脚し民生機器エネルギ
消費に大なるウエイトを有する給湯装置に関する
省エネルギ化を達成せんとするものである。より
詳細には給湯装置の加熱装置にヒートポンプ加熱
原理を採用し、さらに補助加熱装置と結合した場
合に最少のエネルギ消費を達成する運転制御シー
ケンスに関するものである。
The present invention is based on this situation and aims to achieve energy saving in water heaters, which have a large impact on the energy consumption of consumer appliances. More specifically, the present invention relates to an operation control sequence that achieves the minimum energy consumption when a heat pump heating principle is adopted as a heating device of a water heater and is further combined with an auxiliary heating device.

以下図に従つてさらに詳細な説明を行う。第1
図は従来公知のヒートポンプ式給湯機の一構成例
であり、圧縮器1、自然対流熱交換器2、膨張機
構3、蒸発器4を各々順次に冷媒配管にて結合し
たヒートポンプ加熱部を構成する。自然対流熱交
換器2は断熱材5で囲われた蓄熱タンク6内に挿
入設置され、タンク6の下方より水を加熱し、タ
ンク内の水を均一な温度に保ちながら漸時加熱し
てゆく。7は給水口で市水配管8と減圧逆止弁9
等を介して前記蓄熱タンク6の下部に連結され
る。10は前記蓄熱タンク6の上部に設けた給湯
口で、給湯配管11を介して給湯栓12へ接続さ
れる。
A more detailed explanation will be given below with reference to the figures. 1st
The figure shows an example of the configuration of a conventionally known heat pump type water heater, in which a compressor 1, a natural convection heat exchanger 2, an expansion mechanism 3, and an evaporator 4 are sequentially connected via refrigerant piping to constitute a heat pump heating section. . The natural convection heat exchanger 2 is inserted into a heat storage tank 6 surrounded by a heat insulating material 5, heats water from below the tank 6, and gradually heats the water in the tank while keeping it at a uniform temperature. . 7 is the water supply port, city water pipe 8 and pressure reducing check valve 9
The heat storage tank 6 is connected to the lower part of the heat storage tank 6 via the heat storage tank 6 and the like. Reference numeral 10 denotes a hot water supply port provided at the upper part of the heat storage tank 6, which is connected to a hot water tap 12 via a hot water supply pipe 11.

上記第1図従来例の作用にさらに若干の説明を
加えると熱交換器2は蓄熱タンク6の下方より槽
内を均一に加熱する。したがつてヒートポンプサ
イクルの凝縮温度は蓄熱タンク6の槽内温度、す
なわち給湯温度よりも高温に設定する必要がある
ことは明きらかである。
To further explain the operation of the conventional example shown in FIG. 1 above, the heat exchanger 2 uniformly heats the inside of the heat storage tank 6 from below. Therefore, it is clear that the condensing temperature of the heat pump cycle needs to be set higher than the internal temperature of the heat storage tank 6, that is, the hot water supply temperature.

第2図に本願発明のヒートポンプ給湯装置の一
実施例を示す。図において13は強制循環対向流
式の加熱熱交換器で循環ポンプ21により蓄熱タ
ンク6下方に開設された循環給水口14、水路1
5により水を供給し、加熱した後に蓄熱タンク6
の上方へ接続された管路17より槽内上部へ湯を
貯湯する如く循環水路を構成する。16は前記加
熱熱交換器13の出口部へ配設された温度流量調
整装置で、加熱熱交換器13の出口部湯温が略一
定になる如く循環水路中の循環水量を調整する。
なお、第1図と同じ構成部は同一符号を付してい
る。
FIG. 2 shows an embodiment of the heat pump water heater of the present invention. In the figure, reference numeral 13 denotes a forced circulation counterflow type heating heat exchanger, and a circulation water supply port 14 and a water channel 1 are provided below the heat storage tank 6 by a circulation pump 21.
After water is supplied and heated by 5, it is transferred to a heat storage tank 6.
A circulation waterway is constructed such that hot water is stored in the upper part of the tank from a pipe line 17 connected to the upper part of the tank. Reference numeral 16 denotes a temperature flow rate adjusting device disposed at the outlet of the heating heat exchanger 13, which adjusts the amount of circulating water in the circulation waterway so that the temperature of the hot water at the outlet of the heating heat exchanger 13 remains approximately constant.
Note that the same components as in FIG. 1 are given the same reference numerals.

かように循環水路、加熱熱交換器13、温度流
量調整装置16を配設することによりヒートポン
プサイクルの凝縮温度よりも高温の湯を得ること
が可能となる。すなわち、第3図に示す如く、従
来例と本願発明実施例とにおいて同一の凝縮温度
条件にて比較した場合、従来例では図の蓄熱槽内
温度が沸上限界温度となるのに対し、本願発明実
施例では加熱熱交換器出口水温に示される如く図
示のΔT程高温を得ることが可能である。したが
つて同一の凝縮温度(すなわち室外条件は同一と
して同じ消費電力)で本願発明実施例が高温の湯
が得られることを意味する。
By arranging the circulation waterway, the heating heat exchanger 13, and the temperature flow rate adjustment device 16 in this way, it becomes possible to obtain hot water at a higher temperature than the condensation temperature of the heat pump cycle. That is, as shown in FIG. 3, when comparing the conventional example and the embodiment of the present invention under the same condensing temperature conditions, in the conventional example, the temperature inside the heat storage tank shown in the figure is the boiling limit temperature, whereas in the present invention, the temperature inside the heat storage tank in the figure is the boiling limit temperature. In the embodiment of the invention, as shown in the water temperature at the outlet of the heating heat exchanger, it is possible to obtain a temperature as high as ΔT shown in the figure. This means that the embodiments of the present invention can obtain hot water at the same condensing temperature (that is, the same outdoor conditions and the same power consumption).

第2図において実線矢印(→)はヒートポンプ
加熱時の冷媒ガスの流れ方向を、破線矢印(〓)
は同じく加熱水の流れ方向を白抜矢印()は給
湯時の水の流れ方向を示す。第2図に明きらかな
如く、蓄熱タンク6内にはヒートポンプ加熱時に
おいて上部に湯層が下部に水層となる2層構成と
なり、図中一点鎖線で示す湯水境界層18にて分
離される。この境界層18はヒートポンプ加熱運
転に従つて下方へ、また給湯動作に応じて上方へ
各々移動する。したがつて境界層18が循環給水
口14に達した時点でヒートポンプ加熱運転は終
了する。
In Figure 2, the solid arrow (→) indicates the flow direction of refrigerant gas during heat pump heating, and the dashed arrow (〓)
Similarly, the white arrow () indicates the flow direction of water during hot water supply. As is clear from FIG. 2, the heat storage tank 6 has a two-layer structure when heated by the heat pump, with a hot water layer at the top and a water layer at the bottom, separated by a hot water boundary layer 18 shown by a dashed line in the figure. . This boundary layer 18 moves downward in accordance with the heat pump heating operation and upward in accordance with the hot water supply operation. Therefore, the heat pump heating operation ends when the boundary layer 18 reaches the circulating water supply port 14.

なお、19は補助加熱装置たる深夜電力補助ヒ
ータ、20は安全弁、21はヒートポンプ加熱時
の循環ポンプ、22は室外フアン、28は圧力ス
イツチ、27b及27aは温度サーモである。
In addition, 19 is a late-night power auxiliary heater which is an auxiliary heating device, 20 is a safety valve, 21 is a circulation pump for heat pump heating, 22 is an outdoor fan, 28 is a pressure switch, and 27b and 27a are temperature thermostats.

前記の本願発明になるヒートポンプ給湯装置の
実施例においてさらに詳細な説明を加えると、給
湯装置として実用に供する場合、シヤワー、洗濯
が給湯の中心となる夏季は別としても、風呂給湯
が中心となる冬季に於ては通常の電気温水器ない
しボイラ等の如く85℃の高温蓄熱が必要である。
特に安価な深夜電力時間帯に一日の給湯負荷に見
合う蓄熱量を確保する必要のある深夜電力温水器
においては限られた蓄熱層容量では高温蓄熱が要
求される。さらに若干の説明を加えると、年間を
通じての給湯負荷は季節毎の湯の使用量および給
水水温により変化するが、通常第4図に示す如く
夏季に低く冬季に高いパターンとなる。すなわ
ち、これを蓄熱タンク容量一定の場合、夏季には
低温で蓄熱して保温ロスを減らし、冬季は高温で
蓄熱して給湯能力を確保することが合理的であ
る。
Adding a more detailed explanation to the above-mentioned embodiment of the heat pump water heater according to the present invention, when it is put to practical use as a water heater, bath water supply is the main hot water supply, except in the summer when showering and laundry are the main hot water supply. In winter, it is necessary to store heat at a high temperature of 85°C like a normal electric water heater or boiler.
In particular, in late-night power water heaters that need to secure an amount of heat storage to meet the daily hot water supply load during low-cost late-night power hours, high-temperature heat storage is required with the limited heat storage layer capacity. To explain a little further, the hot water supply load throughout the year changes depending on the amount of hot water used and the temperature of the water supply in each season, but usually has a pattern of being low in the summer and high in the winter, as shown in FIG. In other words, if the heat storage tank capacity is constant, it is reasonable to store heat at a low temperature in the summer to reduce heat retention loss, and to store heat at a high temperature in the winter to ensure hot water supply capacity.

したがつて、深夜電力利用の蓄熱式給湯装置に
おいて沸上温度を可変となし、季毎の給湯負荷に
応じて随時沸上温度を設定することにより保温ロ
ス、残湯の削減による省エネルギ化を達成する事
ができる。
Therefore, by making the boiling temperature variable in a thermal storage water heater that uses late-night electricity and setting the boiling temperature at any time according to the seasonal hot water supply load, it is possible to save energy by reducing heat retention loss and remaining hot water. It can be achieved.

これにより、本願発明のヒートポンプ式給湯装
置においても同様にヒートポンプ装置による沸上
温度を高めることにより年間を通じて高効率なヒ
ートポンプサイクルの寄与率を高めることができ
る訳である。
As a result, in the heat pump water heater of the present invention, the contribution rate of the highly efficient heat pump cycle can be increased throughout the year by increasing the boiling temperature of the heat pump device.

特に夏季を中心としてヒートポンプ加熱のみで
全給湯負荷を満たすことができれば多大な省エネ
ルギ化を達成する事ができる。さらにヒートポン
プ沸上温度を高めることにより年間を通じてのヒ
ートポンプ単独加熱時間を延長し更なる省エネル
ギ化を達成する事が可能である。本願発明実施例
においては第1図〜第3図に示した如く従来方式
に比して高い沸上温度を得ることは既に示した。
If the entire hot water supply load can be met by heat pump heating alone, especially during the summer, significant energy savings can be achieved. Furthermore, by increasing the heat pump boiling temperature, it is possible to extend the heat pump sole heating time throughout the year and achieve further energy savings. It has already been shown that in the embodiment of the present invention, a higher boiling temperature can be obtained than in the conventional system, as shown in FIGS. 1 to 3.

本願発明においてはさらに、深夜電力ヒータ1
9による補助加熱作用に関する省エネルギ化を図
つている。すなわち、ヒートポンプ加熱装置と補
助加熱装置たる深夜電力ヒータ19とのシーケン
ス制御に関する。
In the present invention, the late-night power heater 1
9 to save energy regarding the auxiliary heating effect. That is, it relates to sequence control of the heat pump heating device and the late-night power heater 19, which is an auxiliary heating device.

ヒータ19とヒートポンプ装置とのシーケンス
制御においては、(i)ヒートポンプとヒータを同時
運転、(ii)最初ヒータ運転、続いてヒートポンプ運
転、(iii)最初ヒートポンプ運転、続いてヒータ運転
の3通りのモードが挙げられる。先ず(i)の方式は
第5図に示す如く、ヒートポンプの運転時間(図
示点描部分)が短い、深夜電力開始直後の電力が
過大で夜間電力ピーク的に問題が生ずる。沸上り
時間が比較的短くなり保温効率が低下するなどの
問題があり、したがつて省エネ効果が薄い。(ii)の
方式は年間を通じて低温域でヒータ加熱が行われ
るため省エネルギ効果が薄い。通常のヒートポン
プサイクルでは85℃迄の加熱が困難であるなどの
理由で実効が少い。(iii)の方式は第6図実線に示し
た如く、夜間電力通電直後にヒートポンプ運転を
行い低温から中温(約60℃程度)迄沸上げ、夏季
にはこの温度で給湯負荷を満足することが可能で
あり、この時点で運転終了となるが、冬季にはさ
らにヒータを用いて高温(約85℃)迄沸上げる。
すなわち(iii)の方式を採用することにより、深夜電
力時間開始直後の電力ピークを削減することがで
きる、沸上時間が比較的長く保温効率が良い、ヒ
ートポンプの年間運転時間が最も長く省エネルギ
効果が最大であるなどの多大の効果を奏する。第
6図破線は第1図に示す従来例にヒータを増設し
たと仮定した場合の線図であり、ヒートポンプ沸
上温度が低いために沸上に要する総消費電力の大
きいことがわかる。なお、第6図点描に示すヒー
トポンプ運転時は蓄熱槽内は上層の湯層と下層の
水層に分れるか便宜的に槽内平均温度に換算して
第6図に示した。
In the sequence control of the heater 19 and the heat pump device, there are three modes: (i) simultaneous operation of the heat pump and heater, (ii) first heater operation, then heat pump operation, (iii) first heat pump operation, then heater operation. can be mentioned. First, in method (i), as shown in FIG. 5, the operating time of the heat pump (the dotted area in the figure) is short, and the power generated immediately after the start of late-night power is excessive, causing problems during the night-time power peak. There are problems such as a relatively short boiling time and a decrease in heat retention efficiency, so the energy saving effect is low. Method (ii) has little energy-saving effect because heater heating is performed in a low temperature range throughout the year. Normal heat pump cycles are not very effective because it is difficult to heat up to 85℃. Method (iii), as shown by the solid line in Figure 6, operates the heat pump immediately after power is turned on at night to raise the temperature from low to medium (approximately 60°C), and in the summer, this temperature can satisfy the hot water supply load. It is possible, and the operation will end at this point, but in the winter, a heater will be used to further raise the temperature to a high temperature (approximately 85 degrees Celsius).
In other words, by adopting method (iii), it is possible to reduce power peaks immediately after the start of late-night power hours, the boiling time is relatively long and heat retention efficiency is high, and the annual operation time of the heat pump is the longest, resulting in energy saving effects. It has great effects, such as being the largest. The broken line in FIG. 6 is a diagram assuming that a heater is added to the conventional example shown in FIG. 1, and it can be seen that the total power consumption required for boiling is large because the heat pump boiling temperature is low. Note that when the heat pump is in operation as shown in the dotted lines in Figure 6, the inside of the heat storage tank is divided into an upper hot water layer and a lower water layer.For convenience, the average temperature in the tank is shown in Figure 6.

以上の点に立脚し、本願発明はヒートポンプ運
転とヒータ運転の切換制御に関するものであり第
7図にその詳細を示す。図において1は圧縮器、
22は室外フアンモータ、21は循環ポンプ、2
3は深夜電力電源に接続される漏電ブレーカー、
24は2a 1bのパワーリレー、19は深夜電
力ヒーター、25は必要に応じて温度設定を可変
と成したサーモでヒータ19近傍で湯温を検知す
る。26はヒートポンプ運転を制御する第1サー
モでたとえば外気温度を検知する。27はヒート
ポンプ運転を制御する第2接点、28,29は漏
電ブレーカ23の保安回路に各々並列接続された
圧力検知接点および過焼防止接点、30は凍結防
止サーモで常用100V電源に各々図示の如く接続
される。
Based on the above points, the present invention relates to switching control between heat pump operation and heater operation, the details of which are shown in FIG. In the figure, 1 is a compressor;
22 is an outdoor fan motor, 21 is a circulation pump, 2
3 is an earth leakage breaker connected to the late-night power supply;
24 is a power relay of 2a 1b, 19 is a late-night power heater, and 25 is a thermometer whose temperature setting can be changed as necessary to detect the water temperature near the heater 19. A first thermostat 26 controls the operation of the heat pump and detects, for example, the outside temperature. 27 is a second contact for controlling the operation of the heat pump; 28 and 29 are pressure detection contacts and overfire prevention contacts connected in parallel to the safety circuit of the earth leakage breaker 23; and 30 is an antifreeze thermostat connected to a common 100V power supply as shown in the figure. Connected.

つぎに本発明装置の動作をさらに具体的に説明
すると、深夜電力1φ200Vが通電された時点
で、外気温度がヒートポンプ運転するに充分な程
高ければ第1サーモ26接点は閉となるので第2
接点27の閉動作に応じてリレー24を励磁す
る。これにより圧縮器1、室外フアン22及び
100V回路に接続された循環ポンプ21が各々通
電駆動されヒートポンプ加熱運転が行われる。第
2接点27がヒートポンプ加熱終了を検知して開
動作するとリレー24が復帰しバツク接点が接触
することによりヒータ19に通電される。ヒータ
19と直列に接続された沸上サーモ25がヒート
ポンプ加熱以上の沸上温度に設定されている場合
はヒータ19が通電加熱され所定湯温迄沸上げ
る。28はヒートポンプサイクルの高圧圧力が何
らかの原因で異常に上昇した場合(たとえばポン
プ21の故障による水の循環不良)に200V回路
をしや断して、また29はヒータ19が異常に温
度上昇した場合に200V回路をしや断して装置を
保護する。サーモ30は水回路が凍結を生じそう
になつた場合に閉作動しポンプ21を強制運転さ
せることにより水回路の凍結を防止するべく常用
100V電源に接続される。
Next, to explain the operation of the device of the present invention in more detail, if the outside temperature is high enough to operate the heat pump when the late-night electric power of 1φ200V is applied, the first thermo 26 contact will close, so the second thermo
The relay 24 is excited in response to the closing operation of the contact 27. As a result, the compressor 1, outdoor fan 22 and
The circulation pumps 21 connected to the 100V circuit are each energized and driven to perform heat pump heating operation. When the second contact 27 detects the end of the heat pump heating and operates to open, the relay 24 returns and the back contact contacts to energize the heater 19. When the boiling thermometer 25 connected in series with the heater 19 is set to a boiling temperature higher than the heat pump heating, the heater 19 is heated with electricity to boil the water to a predetermined temperature. 28 cuts off the 200V circuit when the high pressure of the heat pump cycle rises abnormally for some reason (for example, poor water circulation due to a failure of the pump 21), and 29 cuts off the 200V circuit when the temperature of the heater 19 rises abnormally. Protect the equipment by disconnecting the 200V circuit. The thermometer 30 is normally used to prevent the water circuit from freezing by closing when the water circuit is about to freeze and forcing the pump 21 to operate.
Connected to 100V power supply.

本願発明はヒートポンプサイクル加熱からヒー
タ加熱運転に切換える第2の接点27として循環
給水口14ないし水路15近傍に設置する循環水
温検知サーモ27aを採用する。以下さらに詳細
な説明を加える。第2図に明示した如く、本願発
明においては湯の沸上方式として上下に湯水を分
離した一水循環方式となり、蓄熱タンク6内の水
が加熱熱交換器13を通過した時点で湯(たとえ
ば60℃)となる。したがつて湯水境界層18はヒ
ートポンプ運転に従つて徐々に下方へ移動する。
これにより蓄熱タンク6内がほぼ全量湯に置換す
ることによりヒートポンプ加熱は終了する訳であ
るが、この場合のポンプ21吸込水温、すなわち
水路15中の水温の加熱時間中の温度変化を第8
図に示す。図に明きらかな如く蓄熱タンク6中の
境界層18が循環給水口14付近まで下降した時
点で水路15中の循環水温度は急激に上昇する。
すなわちこの温度上昇を水温検知サーモ27aに
て検出することにより、蓄熱タンク6内が均一に
ヒートポンプ加熱温度迄上昇した時点でヒートポ
ンプサイクル加熱装置を停止してヒータ加熱運転
に切換えることにより、ヒートポンプ加熱運転を
効率良く終了することができ、また、ヒータ加熱
運転による必要昇温量が少なくなることで、加熱
効率の悪いヒータ加熱運転が少なくてすみ、全体
として効率の高いヒートポンプ加熱運転の比率が
高まることで、年間を通じた省エネルギ運転を達
成することが可能となり、電気代が節約できると
いつた多大な効果を有するものである。特に加熱
熱交換器13の入口水温が上昇するとヒートポン
プサイクルの特性として高圧々力が上昇し加熱効
率COPが低下するために適切な入口水温以下
(たとえば40℃以下)でヒートポンプ運転を規制
することにより高効率運転を達成することが可能
となる訳で、本願発明は水路15中の急激な温度
変化を直接検知するため、無駄の無い、しかも確
実な切換制御を行うことができる点で画期的なも
のである。なお実施例においては水路15部近傍
に設けたサーモ27aにより熱交換器13入口水
温を検知する如く説明したが、給水口14とほぼ
同高さのタンク6壁面温度を検知する如く設置し
た壁面温度サーモ27bでも同様の機構を奏する
ことは明らかである。
The present invention employs a circulating water temperature detection thermometer 27a installed near the circulating water supply port 14 or the water channel 15 as the second contact point 27 for switching from heat pump cycle heating to heater heating operation. A more detailed explanation will be added below. As clearly shown in FIG. 2, in the present invention, the hot water boiling method is a single water circulation system in which hot water is separated into upper and lower parts, and when the water in the heat storage tank 6 passes through the heating heat exchanger 13, ℃). Therefore, the hot water boundary layer 18 gradually moves downward as the heat pump operates.
As a result, the heat pump heating is completed by replacing almost all of the inside of the heat storage tank 6 with hot water.
As shown in the figure. As is clear from the figure, when the boundary layer 18 in the heat storage tank 6 descends to the vicinity of the circulating water supply port 14, the temperature of the circulating water in the water channel 15 rises rapidly.
That is, by detecting this temperature rise with the water temperature detection thermometer 27a, when the inside of the heat storage tank 6 uniformly rises to the heat pump heating temperature, the heat pump cycle heating device is stopped and the heat pump heating operation is switched to the heater heating operation. In addition, by reducing the required temperature rise due to heater heating operation, there is less need for heater heating operation with poor heating efficiency, and the overall ratio of highly efficient heat pump heating operation increases. This makes it possible to achieve energy-saving operation throughout the year, which has great effects such as saving on electricity costs. In particular, when the inlet water temperature of the heating heat exchanger 13 rises, the high pressure force increases as a characteristic of the heat pump cycle and the heating efficiency COP decreases. Since it is possible to achieve high efficiency operation, the present invention is groundbreaking in that it can directly detect rapid temperature changes in the water channel 15 and perform efficient and reliable switching control. It is something. In the embodiment, the temperature of the water at the inlet of the heat exchanger 13 is detected by the thermometer 27a installed near the water channel 15. It is clear that the thermostat 27b also has a similar mechanism.

なお、温度調整装置16としてはたとえばパラ
フイン系ワツクスペレツトを利用したワツクス型
温度流量調整弁としても良いし、あるいは熱交換
器出口部にサーミスタエレメントを用いてポンプ
21容量を制御する電子制御機構としても同様の
機能を奏することは明らかである。
The temperature adjustment device 16 may be a wax type temperature flow rate adjustment valve using paraffin wax pellets, or an electronic control mechanism that controls the capacity of the pump 21 using a thermistor element at the outlet of the heat exchanger. It is clear that it performs the following functions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートポンプ給湯装置の構成
図、第2図は本願発明に関するヒートポンプ装置
の一実施例構成図、第3図は第1図及び第2図に
示すヒートポンプ加熱原理の説明図、第4図は年
間給湯負荷の説明図、第5図は本願発明によらな
いヒートポンプ装置稼動時の電力量パターン図、
第6図は本願発明のヒートポンプ装置稼動時の電
力パターン図、第7図は本願発明の制御回路の一
実施例回路図、第8図は本願発明における熱交換
器入口水温の時間変化を示す。 1……圧縮器、4……蒸発器、13……加熱々
交換器、3……膨張機構、6……蓄熱槽、19…
…補助加熱装置、16……温度調整機構。
Fig. 1 is a block diagram of a conventional heat pump water heater, Fig. 2 is a block diagram of an embodiment of a heat pump device according to the present invention, and Fig. 3 is an explanatory diagram of the heat pump heating principle shown in Figs. Figure 4 is an explanatory diagram of the annual hot water supply load, Figure 5 is a diagram of the power consumption pattern when operating a heat pump device that is not based on the present invention,
FIG. 6 is a power pattern diagram during operation of the heat pump device of the present invention, FIG. 7 is a circuit diagram of an embodiment of the control circuit of the present invention, and FIG. 8 is a diagram showing temporal changes in the water temperature at the inlet of the heat exchanger in the present invention. 1...Compressor, 4...Evaporator, 13...Heat exchanger, 3...Expansion mechanism, 6...Heat storage tank, 19...
...Auxiliary heating device, 16...Temperature adjustment mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮器、蒸発器、加熱熱交換器、膨張機構を
環状の冷媒配管管路で結合して成るヒートポンプ
サイクル加熱装置と、蓄熱タンク、蓄熱タンク内
の水を加熱する補助加熱装置とよりなる給湯装置
において、前記加熱熱交換器を強制循環式熱交換
器となし、該加熱熱交換器出口湯温を一定とする
温度調整機構を設け、循環ポンプにより蓄熱タン
ク下部より加熱熱交換器へ水を供給し加熱熱交換
器で一定湯温に加熱された後に蓄熱タンクの上方
へ戻すごとく循環水路を構成し、前記加熱熱交換
器入口水温が所定値以上になると前記ヒートポン
プサイクル加熱装置を停止して補助加熱装置に切
換えるサーモ装置を備えたことを特徴とするヒー
トポンプ式給湯装置。
1. Hot water supply consisting of a heat pump cycle heating device that combines a compressor, evaporator, heating heat exchanger, and expansion mechanism through an annular refrigerant piping line, a heat storage tank, and an auxiliary heating device that heats the water in the heat storage tank. In the apparatus, the heating heat exchanger is a forced circulation heat exchanger, a temperature adjustment mechanism is provided to keep the hot water temperature at the outlet of the heating heat exchanger constant, and water is supplied from the bottom of the heat storage tank to the heating heat exchanger by a circulation pump. A circulation waterway is configured such that the water is supplied, heated to a constant temperature in a heating heat exchanger, and then returned to the upper part of the heat storage tank, and when the water temperature at the inlet of the heating heat exchanger reaches a predetermined value or higher, the heat pump cycle heating device is stopped. A heat pump type water heater characterized by being equipped with a thermo device that switches to an auxiliary heating device.
JP56008442A 1981-01-22 1981-01-22 Heat pump type hot water supply device Granted JPS57122233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56008442A JPS57122233A (en) 1981-01-22 1981-01-22 Heat pump type hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56008442A JPS57122233A (en) 1981-01-22 1981-01-22 Heat pump type hot water supply device

Publications (2)

Publication Number Publication Date
JPS57122233A JPS57122233A (en) 1982-07-30
JPS6261852B2 true JPS6261852B2 (en) 1987-12-23

Family

ID=11693235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56008442A Granted JPS57122233A (en) 1981-01-22 1981-01-22 Heat pump type hot water supply device

Country Status (1)

Country Link
JP (1) JPS57122233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215810A (en) * 2008-04-25 2008-09-18 Denso Corp Hot water storage type water heater

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227800Y2 (en) * 1981-01-27 1987-07-16
JPS5974451A (en) * 1982-10-22 1984-04-26 Matsushita Electric Ind Co Ltd Electric water heater
JP5092692B2 (en) * 2007-10-31 2012-12-05 パナソニック株式会社 Heat pump water heater
JP2014169807A (en) * 2013-03-01 2014-09-18 Sanden Corp Hot water supply apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713356U (en) * 1971-03-10 1972-10-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713356U (en) * 1971-03-10 1972-10-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215810A (en) * 2008-04-25 2008-09-18 Denso Corp Hot water storage type water heater
JP4670894B2 (en) * 2008-04-25 2011-04-13 株式会社デンソー Hot water storage water heater

Also Published As

Publication number Publication date
JPS57122233A (en) 1982-07-30

Similar Documents

Publication Publication Date Title
CA1090307A (en) Control for a combination furnace and heat pump system
JP4389378B2 (en) Hot water storage type heat pump water heater
US4382368A (en) Geothermal hot water system
JPS6261852B2 (en)
JP3632306B2 (en) Heat pump bath water supply system
JP3937715B2 (en) Heat pump water heater
CN201047687Y (en) Hot gas bypass back-out concurrent heating defrost constant temperature hot-water system
JP2001221501A (en) Heat pump hot-water supply system
CN105864862A (en) Bathroom heating device, heat exchange system and bathroom heating control method
CN102016439B (en) Heat pump water heater
JP3719155B2 (en) Heat pump water heater
JP2005133973A (en) Heat pump water heater
JPS63213744A (en) Freeze preventing device in hot water supply apparatus
JPS6232378B2 (en)
JPS6260621B2 (en)
JP3633500B2 (en) Heat pump water heater
JPS60250A (en) Heat pump type hot-water supplying machine
JP2002340440A (en) Heat pump hot-water supplier
JPS6129649A (en) Heat-pump hot-water supply device
JP3690156B2 (en) Cold / hot water supply equipment
JPS6232377B2 (en)
JPH0117016Y2 (en)
JP3719162B2 (en) Heat pump water heater
JPH0319467B2 (en)
JPH0132913B2 (en)