JPH02102777A - Seawater desalination device - Google Patents

Seawater desalination device

Info

Publication number
JPH02102777A
JPH02102777A JP63254771A JP25477188A JPH02102777A JP H02102777 A JPH02102777 A JP H02102777A JP 63254771 A JP63254771 A JP 63254771A JP 25477188 A JP25477188 A JP 25477188A JP H02102777 A JPH02102777 A JP H02102777A
Authority
JP
Japan
Prior art keywords
seawater
tank
fresh water
water
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63254771A
Other languages
Japanese (ja)
Inventor
Norihiko Inuzuka
犬塚 敬彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63254771A priority Critical patent/JPH02102777A/en
Publication of JPH02102777A publication Critical patent/JPH02102777A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To reduce the desalination cost by providing a solar battery on the transparent base plate of a seawater tank, and furnishing a tank for storing fresh water communicating with the space in the seawater tank. CONSTITUTION:The device is set on the beach or on the sea. Solenoid valves 34 and 36 driven by the solar battery 26 as a power source are opened, a sole noid valve 35 is closed, a seawater pump 24 is driven by the battery 26 as a power source, and surface seawater is charged into the seawater tank 21. The seawater 22 is irradiated with the heat ray transmitted through the battery 26, and heated to 40-50 deg.C. The inside of the tank 21 is depressurized, and the seawater 22 is heated by solar energy to generate steam 29. The generated steam is cooled by a heat exchanger 30 adjacent to the tank 21, and condensed into fresh water. By this method, the running cost can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は太陽エネルギーを利用した海水淡水化装置に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a seawater desalination device that utilizes solar energy.

【従来の技術〕[Conventional technology]

第3図は、例えば工業材料第29巻第1号45頁に示さ
れた海洋混度差利用の海水淡水化装置の構成図であり、
図において(1)は海水タンク、(2)は海水タンク(
1)へ注入された海水、(3)は温海水注入管、(4)
は海水タンク(1)の空気抜き、(5)は海水タンク(
1)と連設された真水タンク、(6)は海水(2)の水
蒸気が凝縮してできた真水、(7)は水蒸気、(8)は
水蒸気(7)を凝縮させるための熱交換器、(9)は深
海の冷海水を汲み上げるための深井戸ポンプ、(10)
は冷海水注入管、(11)は冷海水排水管である。海水
タンク(1)と真水タンク(5)とは互いに連通ずる空
間部(12a)、 (12b)を有している。
FIG. 3 is a configuration diagram of a seawater desalination device that utilizes ocean mixing difference, as shown in, for example, Kogyo Materials Vol. 29, No. 1, page 45.
In the figure, (1) is a seawater tank, and (2) is a seawater tank (
1) Seawater injected into (3) warm seawater injection pipe, (4)
is the air vent of the seawater tank (1), and (5) is the seawater tank (
A fresh water tank connected to 1), (6) is fresh water created by condensing water vapor from seawater (2), (7) is water vapor, and (8) is a heat exchanger for condensing water vapor (7). , (9) is a deep well pump for pumping cold water from the deep sea, (10)
(11) is a cold seawater injection pipe, and (11) is a cold seawater discharge pipe. The seawater tank (1) and the freshwater tank (5) have spaces (12a) and (12b) that communicate with each other.

次に、上記構成の動作について説明する。まず、海水タ
ンク(1)内に海中の表層部からポンプ(図示せず)に
よって例えば約27°Cの温海水を汲み上げ温海水注入
管(3)から温海水を海水タンク(1)内に注入する。
Next, the operation of the above configuration will be explained. First, warm seawater of, for example, approximately 27°C is pumped up from the surface layer of the sea into the seawater tank (1) using a pump (not shown), and the warm seawater is injected into the seawater tank (1) from the warm seawater injection pipe (3). do.

海水タンク(1)内に海水(2)が注入されると海水タ
ンク(1)内の空気の一部は空気抜き(4)を通って外
に排出される。海水タック(1)内を真空ポンプ(図示
せず)によって約0.03気圧まで減圧すると海水タン
ク中の海水(2)は盛んに蒸発して水蒸気(7)を発生
する。、海水タンク(1)の空間部(12a)で発生し
た水ス気(7)は隣室の真水タンク(5)の空間部(+
2b)内にも移動する。真水タンク(5)の字間部(+
2b)には熱交換器(8)が取り付けられており、深井
戸ポンプ(9)によって約200メトルの深海から冷海
水が汲み上げられ冷l毎水注入管(10)、熱交換器(
8)、冷海水排水管(11)の順に冷、fj水は流され
る。前記の引用文献では、海の表層部の海水の温度と深
海の冷海水の温度との温度差は約27°Cあるので、熱
交換器(8)によって真空タンク(5)の空間部(12
b)の水澤気(7)は結露して滴り落ち真水タンク(5
)に貯水される。
When seawater (2) is injected into the seawater tank (1), part of the air in the seawater tank (1) is discharged outside through the air vent (4). When the pressure inside the seawater tuck (1) is reduced to about 0.03 atmosphere by a vacuum pump (not shown), the seawater (2) in the seawater tank actively evaporates to generate water vapor (7). The water vapor (7) generated in the space (12a) of the seawater tank (1) is transferred to the space (+) of the fresh water tank (5) in the next room.
2b) Also move within. Between the letters of the fresh water tank (5) (+
2b) is equipped with a heat exchanger (8), and a deep well pump (9) pumps cold seawater from the deep sea of about 200 meters.
8), cold seawater drain pipe (11) and cold fj water are drained in this order. In the above cited document, since the temperature difference between the temperature of seawater in the surface layer of the sea and the temperature of cold seawater in the deep sea is about 27°C, the space (12
b) Mizusawa air (7) condenses and drips into the fresh water tank (5
).

[発明が解決しようとする課題] 従来の海水淡水化装置は以上のように構成されているの
で、海水タンク(1)の空間部(12a)を超高度の真
空にしないと海水が蒸発せず、また水シA気(7)を冷
却凝縮させるだめの冷却水として深if+7水を用いて
いるので、高性能の深井戸ポンプ(9)が必要であり、
さらに温l海水の温度が比較的低温であるために発生す
る水蒸気(7)の圧力が低いので真水製造効率が低く、
真空設備およびポンプ設備の費用が非常に高くなるため
に海水淡水化のコストが非常に高くなるという問題点か
あつ tこ 。
[Problems to be Solved by the Invention] Since the conventional seawater desalination apparatus is configured as described above, the seawater will not evaporate unless the space (12a) of the seawater tank (1) is made into an ultra-high vacuum. Also, since deep IF+7 water is used as the cooling water for cooling and condensing the water tank A air (7), a high-performance deep well pump (9) is required.
Furthermore, since the temperature of warm seawater is relatively low, the pressure of the steam (7) generated is low, so the efficiency of fresh water production is low.
The problem is that the cost of seawater desalination is very high because the cost of vacuum equipment and pump equipment is very high.

この発明は、上記のような問題点を解決するためになさ
れたもので、低コストで高効率の海水淡水化装置を得る
ことを目的とする。
This invention was made in order to solve the above-mentioned problems, and aims to obtain a low-cost and highly efficient seawater desalination apparatus.

[課題を解決するための手段] この発明に係る海水淡水化装置は、海水を貯留する海水
タンクと、この海水タンクの透明基板上に形成され熱線
を透過する太陽電池と、前記海水タンク内の空間域と連
通し真水を貯留する真水タンクと、この真水タンクに設
けられ、前記太陽電池を電力源として駆動する海水ポン
プにより内部に海水が供給され真水タンク内の水蒸気を
凝縮する熱交換器と、前記海水タンク内の空間域と前記
真水タンク内の空間域とを前記太陽電池を電力源として
駆動し減圧する真空ポンプとを備えたものである。
[Means for Solving the Problems] A seawater desalination apparatus according to the present invention includes a seawater tank for storing seawater, a solar cell formed on a transparent substrate of the seawater tank and transmitting heat rays, and a solar cell inside the seawater tank. a fresh water tank that communicates with a spatial area and stores fresh water; and a heat exchanger that is provided in the fresh water tank and that is supplied with seawater by a seawater pump driven by the solar cell as a power source and that condenses water vapor in the fresh water tank. , a vacuum pump that drives and depressurizes a spatial area within the seawater tank and a spatial area within the fresh water tank using the solar cell as a power source.

[作 用] この発明においては、太陽エネルギーによって1毎水タ
ンク中の海水が加熱され、高温海水/なると共に、海水
タンク中の空間域を減圧状悪にしてlN水中の水分を蒸
発させ高い蒸気圧を得ると共に、熱交換器用の冷却水と
して海中の表層、海水を用い、表″P!i海水の温度と
高温の水蒸気の温度との温度差で水鼠気が結露され真水
が得られる。
[Function] In this invention, the seawater in the water tank is heated every day by solar energy, becoming high-temperature seawater, and at the same time, the space in the seawater tank is depressurized to evaporate the water in the lN water and create high steam. In addition to obtaining the pressure, the surface layer of the sea, seawater, is used as cooling water for the heat exchanger, and fresh water is obtained by condensing water vapor due to the temperature difference between the temperature of seawater and the temperature of high-temperature steam.

[実施例] 以下、この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す海水淡水化装置ユの
構成図であり、図において(21)は海水タンク、(2
2)は渇水タンクに貯えられた1@水、(23)は海水
タンク(21)へ、海水(22)を注入するための、海
水注入管、(24)は海水ポンプ、(25)は海水タン
ク(21)中の15塩水をtJj出するための、3塩水
排出管、(26)は海水タンク(21)の明根部を形)
戊し熱線を透過する薄膜太陽電池、(27)はl海水タ
ンク(21)の空間域、(28)は高水タンク(21)
中の空気圧を減圧するための真空ポンプ、(29)は海
水タンク(21)中に生じた1; 水蒸気、(30)は熱交換器、(31)は熱交換器(3
0)、、’冷却用のiN水を供給するための冷却用海水
注入管、(32)は熱交ti器(30)に海水を供給す
るための海水ポンプ、(33)は海水タンク(21)中
の水蒸気(29)が冷却され凝縮結露して生成した真水
、(34)、 (35)。
FIG. 1 is a block diagram of a seawater desalination equipment unit showing an embodiment of the present invention. In the figure, (21) is a seawater tank, (21) is a seawater tank,
2) is the water stored in the drought tank, (23) is the seawater injection pipe for injecting seawater (22) into the seawater tank (21), (24) is the seawater pump, and (25) is the seawater. 3 salt water discharge pipes for discharging the 15 salt water in the tank (21), (26) is shaped like the light root of the sea water tank (21))
Thin film solar cell that transmits heat rays, (27) is the spatial area of the l seawater tank (21), (28) is the high water tank (21)
Vacuum pump (29) to reduce the air pressure inside the seawater tank (21); Water vapor (30) is the heat exchanger; (31) is the heat exchanger (3)
0),,' Cooling seawater injection pipe for supplying iN water for cooling, (32) a seawater pump for supplying seawater to the heat exchanger (30), (33) a seawater tank (21) ) is cooled and condensed to produce fresh water (34), (35).

(36)は図示されていない制御回路によって開閉動作
を行うTi磁弁である。
(36) is a Ti magnetic valve that is opened and closed by a control circuit (not shown).

第2図は第1図の側面図であり、(37)は熱交換a 
(30)に供給された海水を排出するための海水排出管
、(38)は生成した真水(33)を貯える真水タンク
である。
Figure 2 is a side view of Figure 1, and (37) is a heat exchanger a.
(30) is a seawater discharge pipe for discharging the supplied seawater, and (38) is a freshwater tank for storing the generated freshwater (33).

第1図において、(21)は例えばF RP 52の海
水タンクであり海水タンク(21)の屋根の全部または
一部が太陽電池(26)で形成されている。太陽電池(
26)はガラスなどの透明基板上に第一の電極である透
明電極、pin接合を合するa −Si半導体層および
第二の電極である透明電極をそれぞれ積層形戎したもの
で、0.4uts〜07μ−の可視光域の光にス1して
は大きな吸収係数を有しているが、赤外線および遠赤外
線はほとんど透過する特性を有しており、海水タンク(
21)の屋根部に傾斜して取り付けられている。
In FIG. 1, (21) is, for example, a seawater tank of F RP 52, and the roof of the seawater tank (21) is entirely or partially formed by a solar cell (26). Solar cells (
26) is a device in which a transparent electrode as a first electrode, an a-Si semiconductor layer that joins a pin junction, and a transparent electrode as a second electrode are laminated on a transparent substrate such as glass, and the thickness is 0.4 uts. Although it has a relatively large absorption coefficient for light in the visible light range of ~0.7 μ-, it has the property of transmitting almost all infrared and far infrared rays, so it cannot be used in seawater tanks (
21) is installed at an angle on the roof.

この発明における海水淡水化装置は通常海岸もしくは海
上に設置されており、太陽電池(26)を電力源として
駆動する電磁弁(34)、 (36)が開、電磁弁(3
5)が閑の状態で、海水ポンプ(24)を太陽電池(2
6)を電力源として駆動させることにより、約25℃の
表層海水が海水タンク(21)中に取り込まれる。海水
タンク(21)中に取り込まれる海水(22)の1は、
図示されていない木立検出器等によって制御されるよう
になっている。
The seawater desalination apparatus in this invention is usually installed on the coast or on the sea, and the solenoid valves (34) and (36), which are driven by a solar cell (26) as a power source, are opened and the solenoid valve (3) is opened.
5) is idle, connect the seawater pump (24) to the solar battery (2).
6) as a power source, surface seawater at about 25° C. is taken into the seawater tank (21). 1 of the seawater (22) taken into the seawater tank (21) is
It is controlled by a tree grove detector, etc. (not shown).

次に、電磁弁(34)、 (35)が閑、電磁弁(36
)が開の状態で太陽電池(26)を電力源として真空ポ
ンプ(28)を動作させ海水タンク(21)の空間域(
27)内を約0.1気圧まで減圧したのち電磁弁(36
)を閉じ、真空ポンプ(28)を停止する。
Next, the solenoid valves (34) and (35) are idle, and the solenoid valve (36)
) is open, the vacuum pump (28) is operated using the solar cell (26) as a power source to open the spatial area (
After reducing the pressure inside 27) to approximately 0.1 atm, open the solenoid valve (36
) and stop the vacuum pump (28).

一方、海水タンク(21)の屋根部に取り付けられた太
陽電池−一”? (26)を透過した熱線は海水(22
)に照射され海水(22)のl温度は、10°C〜50
°Cに上昇する。1fσ水タンク(21)内は減圧状態
に保たれているので、太陽エネルギーによって海水(2
2)の温度が上がると水蒸気(29)を生じる。海水タ
ンク(21)内の水蒸気(29)は太陽エネルギーによ
って更に加温され50″C〜60°Cに達する。海水タ
ンク(21)で発生した水蒸気は海水タンク(21)と
隣接して設置されたガラスライニング製の熱交換器(3
0)で冷却され凝縮結露して真水(33)となる。
On the other hand, the heat rays transmitted through the solar cell (26) attached to the roof of the seawater tank (21) are absorbed by the seawater (22
), the temperature of the seawater (22) is between 10°C and 50°C.
rises to °C. Since the inside of the 1fσ water tank (21) is maintained at a reduced pressure, the seawater (2
When the temperature of 2) increases, water vapor (29) is produced. The water vapor (29) in the seawater tank (21) is further heated by solar energy and reaches 50''C to 60°C. glass-lined heat exchanger (3
0) and condenses into fresh water (33).

熱交換器(30)の冷却水は約25°Cの表層l毎水が
使用される。冷却用海水は太陽電池(26)を電力源と
して動作する海水ポンプ(32)を動作させることによ
って冷却用海水注入管(31)を通って熱交換器(30
)に導かれ海水排出管(37)を通って海へ排出される
。水流気(29)の温度と冷却用海水の温度との温度差
は約25°C〜35°Cに達するので熱交換器(30)
のところで盛んに結露が生じ真水が生成する。
As the cooling water for the heat exchanger (30), water at a temperature of approximately 25° C. is used per surface layer. Cooling seawater is supplied to a heat exchanger (30) through a cooling seawater injection pipe (31) by operating a seawater pump (32) that operates using a solar cell (26) as a power source.
) and is discharged into the sea through a seawater discharge pipe (37). The temperature difference between the temperature of the water stream (29) and the temperature of the cooling seawater reaches approximately 25°C to 35°C, so the heat exchanger (30)
A lot of condensation occurs and fresh water is produced.

この発明の実施例における海水淡水化装置においては、
第2図に示すように熱交換″A″’j 00)は傾斜し
て取り付けられているので、生成した真水(33)は低
い方向へ流れ熱交換器(30)の下方に設置された真水
タンク(38)に貯水される。水蒸気(29)の蒸発に
よって海水(22)の塩分濃度が高濃度になった場合に
は電磁弁(35)を開いて濃塩水排水管(25)より濃
塩水を排出し新しい海水と入れ替えを行う。
In the seawater desalination apparatus in the embodiment of this invention,
As shown in Figure 2, the heat exchanger "A"'j 00) is installed at an angle, so the generated fresh water (33) flows in a lower direction and flows into the fresh water installed below the heat exchanger (30). Water is stored in a tank (38). When the salt concentration of seawater (22) becomes high due to evaporation of water vapor (29), the solenoid valve (35) is opened to drain the concentrated salt water from the concentrated salt water drain pipe (25) and replace it with fresh sea water. .

海水ポンプ(24)、(32) 、真空ポンプ(28)
を動かす電力および制御系に必要な電力は全て太陽電池
(26)の出力または太陽電池(26)の出力によって
蓄電された電力によって賄われる。また、使用する海水
は全て表層海水であるので消費電力の小さな海水ポンプ
(24)、 (32)が使用できる。さらに、海水ポン
プ(24)、 (32)と真空ポンプ(28)とは同時
に起動させることはなく、海水ポンプ(24)、真空ポ
ンプ(28)、海水ポンプ(32)の順に順次各ポンプ
(24)、 (21り、 (32)を起動させることに
なるので、太陽電池(26)も大出力である必要はない
Seawater pump (24), (32), vacuum pump (28)
All the power required for operating the system and the control system is provided by the output of the solar cell (26) or the power stored by the output of the solar cell (26). In addition, since all the seawater used is surface seawater, seawater pumps (24) and (32) with low power consumption can be used. Furthermore, the seawater pumps (24), (32) and the vacuum pump (28) are not started at the same time, but the seawater pump (24), the vacuum pump (28), and the seawater pump (32) are sequentially activated. ), (21), (32), so the solar cell (26) does not need to have a high output either.

なお、太陽電池(26)の透明基板の一方または全面を
球面状にすることによって集光性をもたせることもでき
る。
Note that it is also possible to provide light condensing properties by making one or the entire surface of the transparent substrate of the solar cell (26) spherical.

[発明の効果] 以上説明したように、この発明の1毎水淡水化装置は、
熱線が透過する太陽電池を海水タンクの屋根として使用
したことにより、海水タンク内の海水は加熱され熱個交
換器用の冷却水としてよン毎の冷却水を用いることなく
に層海水で賄うことができ、また海水タンク内の水蒸気
圧力が高(なり、その結果低いコストの海水ポンプと真
空ポンプとを用いて真水を製造することができる。また
、1ffii水ポンプ、真空ポンプは太陽電池から得ら
れた電力により駆動するようになっているので、ランニ
ングコストも低減化される。
[Effects of the Invention] As explained above, the water desalination device of the present invention has the following features:
By using solar cells that transmit heat rays as the roof of the seawater tank, the seawater in the seawater tank is heated and can be used as cooling water for the heat exchanger without using cooling water for each tank. In addition, the water vapor pressure in the seawater tank is high (as a result, fresh water can be produced using low-cost seawater pumps and vacuum pumps. Also, 1ffii water pumps and vacuum pumps can be obtained from solar cells. Since it is driven by electric power, running costs are also reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による海水淡水化装置の構
成図、第2図は第1図の側面[4、第3図は従来の海水
淡水化装置の構成図である。 図において、(21)はf角氷タンク、(22)はl角
氷、(24)、 (32)はt角氷ポンプ、(26)は
太陽電池、(27)は空間域、(28)は真空ポンプ、
(29)は水蒸気、(30)はへ交換器、(33)は良
木、(38)は真水タンクである。 なお、 15図中、 l」\ 9 。 同一符号は同−又は相当部分を 昂2図 27 T哨戒 2B!!il’ホ9二ア
FIG. 1 is a configuration diagram of a seawater desalination apparatus according to an embodiment of the present invention, FIG. 2 is a side view [4] of FIG. 1, and FIG. 3 is a configuration diagram of a conventional seawater desalination apparatus. In the figure, (21) is the F ice cube tank, (22) is the L ice cube, (24), (32) is the T ice cube pump, (26) is the solar cell, (27) is the space area, and (28) is a vacuum pump,
(29) is water vapor, (30) is an exchanger, (33) is wood, and (38) is a fresh water tank. In addition, in Figure 15, "l"\9. The same reference numerals refer to the same or corresponding parts as in Figure 27 T Patrol 2B! ! il'ho92a

Claims (1)

【特許請求の範囲】[Claims] 海水を貯留する海水タンクと、この海水タンクの透明基
板上に形成され熱線を透過する太陽電池と、前記海水タ
ンク内の空間域と連通し真水を貯留する真水タンクと、
この真水タンクに設けられ、前記太陽電池を電力源とし
て駆動する海水ポンプにより内部に海水が供給され真水
タンク内の水蒸気を凝縮する熱交換器と、前記海水タン
ク内の空間域と前記真水タンク内の空間域とを前記太陽
電池を電力源として駆動し減圧する真空ポンプとを備え
たことを特徴とする海水淡水化装置。
A seawater tank that stores seawater, a solar cell that is formed on a transparent substrate of the seawater tank and transmits heat rays, and a freshwater tank that communicates with a spatial area within the seawater tank and stores fresh water.
A heat exchanger provided in the fresh water tank and configured to supply seawater to the inside by a seawater pump driven by the solar cell as a power source and condense water vapor in the fresh water tank; A seawater desalination apparatus comprising: a vacuum pump that reduces pressure by driving a spatial region using the solar cell as a power source.
JP63254771A 1988-10-12 1988-10-12 Seawater desalination device Pending JPH02102777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63254771A JPH02102777A (en) 1988-10-12 1988-10-12 Seawater desalination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63254771A JPH02102777A (en) 1988-10-12 1988-10-12 Seawater desalination device

Publications (1)

Publication Number Publication Date
JPH02102777A true JPH02102777A (en) 1990-04-16

Family

ID=17269657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63254771A Pending JPH02102777A (en) 1988-10-12 1988-10-12 Seawater desalination device

Country Status (1)

Country Link
JP (1) JPH02102777A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998001202A1 (en) * 1996-07-03 1998-01-15 Christoph Schuster Device for extracting fresh water
WO2001072639A1 (en) * 2000-03-31 2001-10-04 Ebara Corporation Water desalting apparatus
JP2011025119A (en) * 2009-07-23 2011-02-10 Michihiro Oe Fresh water production device and fresh water production-power generation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998001202A1 (en) * 1996-07-03 1998-01-15 Christoph Schuster Device for extracting fresh water
WO2001072639A1 (en) * 2000-03-31 2001-10-04 Ebara Corporation Water desalting apparatus
JP2011025119A (en) * 2009-07-23 2011-02-10 Michihiro Oe Fresh water production device and fresh water production-power generation device

Similar Documents

Publication Publication Date Title
US6391162B1 (en) Desalination apparatus and method of operating the same
CN101475233B (en) Vacuum distillation apparatus and method for desalting seawater and bitter-salt water by simply using solar energy
CN102923802B (en) Sea water desalting plant with fixed bar mirror combination for linear solar condensation, and desalting method thereof
CN108203129A (en) Heat pump driven injection type negative pressure desalination plant and method
CN102408139B (en) Solar magnetic-refrigeration seawater desalination device and seawater desalination method thereof
CN210085000U (en) Radiation refrigeration type seawater desalination device
JPH02102777A (en) Seawater desalination device
CN205709956U (en) A kind of solar energy photovoltaic heat pump desalinization and heat cooling couple system
WO2006005242A1 (en) Method and equipment of power generation
KR20190085400A (en) Solar evaporative desalination aparatus of sea water using heat pump
CN203625073U (en) Seawater desalination system
CN109293119B (en) Device for desalinating seawater
CN102363531A (en) Heat circulating energy-saving low-cost seawater desalting method
CN104150548B (en) A kind of seawater desalination system
CN202936283U (en) Combined type seawater desalting device utilizing fixed bar-type mirror surfaces to condense solar light rays
CN1522966A (en) Solar energy evaporating type separation method and apparatus therefor
WO1999052827A1 (en) Device and method for desalinating salt water and method of producing carbon dioxide exhausting means
CN208054957U (en) A kind of solar energy sea water desalination apparatus
JP2718972B2 (en) Seawater desalination equipment
RU2732929C1 (en) Seawater desalting method
CN212127580U (en) Freezing and icing and membrane distillation combined seawater desalination device
CN105174331B (en) A kind of heat pump cycle formula sea water desalinating unit and its application method
JP2000325941A (en) Device for desalting salt water
CN213569603U (en) Low-temperature solar seawater desalination device
JPS59165873A (en) Sea temperature difference power plant