JP4112772B2 - Desalination equipment - Google Patents

Desalination equipment Download PDF

Info

Publication number
JP4112772B2
JP4112772B2 JP2000096840A JP2000096840A JP4112772B2 JP 4112772 B2 JP4112772 B2 JP 4112772B2 JP 2000096840 A JP2000096840 A JP 2000096840A JP 2000096840 A JP2000096840 A JP 2000096840A JP 4112772 B2 JP4112772 B2 JP 4112772B2
Authority
JP
Japan
Prior art keywords
raw water
evaporator
concentrated
concentrated raw
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000096840A
Other languages
Japanese (ja)
Other versions
JP2001276812A (en
Inventor
祐三 楢崎
一郎 神谷
修行 井上
毅一 入江
徹 徳丸
知行 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000096840A priority Critical patent/JP4112772B2/en
Priority to AU2001244680A priority patent/AU2001244680A1/en
Priority to PCT/JP2001/002784 priority patent/WO2001072639A1/en
Publication of JP2001276812A publication Critical patent/JP2001276812A/en
Application granted granted Critical
Publication of JP4112772B2 publication Critical patent/JP4112772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は太陽熱を利用して海水、塩分を含んだ地下水(かん水)、産業廃水等の原水から蒸発・凝縮法により淡水(蒸留水)を得る淡水化装置に関するものである。
【0002】
【従来の技術】
従来の太陽熱を利用した淡水化装置には、装置が有効な日射を得る前に予め1日分の原水を装置内に導入し、1日単位で淡水を得るように構成したバッチ式淡水化装置がある。また、複数の蒸発器を備え、該複数の蒸発器を前段の蒸発器で発生した水蒸気を熱源として導入し、原水を加熱し発生した水蒸気を後段の蒸発器の熱源として次段の蒸発器に供給するように接続構成し、太陽熱集熱器からの加熱熱媒を最上段の蒸発器に熱源として導入する多重効用サイクルを利用した多重効用式の淡水化装置がある。
【0003】
上記従来の淡水化装置においては、発生した水蒸気を凝縮するための凝縮器の冷水として、淡水化装置に供給する前の原水を使用するか、若しくは市水等を使用していた。
【0004】
上記のように凝縮器の冷却水として、淡水化装置に供給する前の原水を使用する場合は、淡水化装置を運転するに従い、冷却水温度が上昇し、淡水化能力が低下するという問題がある。また、市水等を冷却水として使用する場合は、冷却水の供給/補給手段を設ける必要があり、コストが嵩む他そのメンテナンスが必要となるという等の問題がある。
【0005】
上記問題を解決するため、冷却水の供給/補給手段を設けず、濃縮原水を凝縮器の冷却水として使用するようにした淡水化装置もある。この場合は、淡水化装置の運転を開始し、濃縮原水が十分排出されるまで、冷却水が不足した状態で、即ち凝縮器の凝縮能力が低下した状態での運転となり、最悪の場合は冷却水が全くない状態が発生するという問題がある。
【0006】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたもので、濃縮原水を凝縮器の冷却水として使用し、且つ淡水化装置の運転を開始した時に、凝縮器の冷却水が不足し凝縮器の凝縮能力が低下した状態で運転することのない多重効用式の淡水化装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため請求項1に記載の発明は、太陽熱集熱器、複数台の蒸発器を多段の多重効用に配置した蒸発装置、及び凝縮器を有する冷却塔を具備し、蒸発装置の最上段の蒸発器に原水供給制御手段により原水を供給し、該蒸発器をオーバーフローした原水が順次次段の各蒸発器にオーバーフローして供給されると共に、次第に凝縮され最終段の蒸発器で濃縮原水となり、太陽熱集熱器で加熱した熱媒を蒸発装置の最上段の蒸発器に導入し、原水との間で熱交換を行い、冷却した熱媒を太陽熱集熱器に戻し、最上段の蒸発器で発生した水蒸気は順次次段の各蒸発器に送られ、該各蒸発器で原水との間で熱交換され蒸留水となり、蒸発装置の最終段の蒸発器で発生した水蒸気を冷却塔の凝縮器に導入して蒸留水とする淡水化装置において、凝縮器に濃縮原水を貯留する濃縮原水貯留槽を設けると共に、蒸発装置の最終段の蒸発器からの濃縮原水を濃縮原水貯留槽に供給する濃縮原水排出手段を設け、濃縮原水貯留槽の濃縮原水を凝縮器の冷却水とするように構成し、濃縮原水貯留槽内の濃縮原水貯留量を検出する濃縮原水貯留量検出手段を設け、淡水化装置の運転前、濃縮原水貯留量検出手段の出力から、濃縮原水の貯留量が所定量以下の場合、予め原水供給制御手段により原水を蒸発装置の蒸発器に供給すると共に、濃縮原水排出手段により蒸発装置の最終段の蒸発器の濃縮原水を濃縮原水貯留槽に供給する運転制御手段を設けたことを特徴とする。
【0008】
上記のように運転制御手段を設け、淡水化装置の運転前、濃縮原水貯留量検出手段の出力から、濃縮原水貯留槽内の濃縮原水の貯留量が所定量以下の場合、予め原水供給制御手段により原水を蒸発装置の蒸発器に供給すると共に、濃縮原水排出手段により該蒸発装置の最終段の蒸発器の濃縮原水を濃縮原水貯留槽に供給するので、濃縮原水を凝縮器の冷却水とする多重効用式の淡水化装置において、運転を開始した時に、凝縮器の冷却水が不足し凝縮器の凝縮能力が低下した状態で運転するということはなくなる。
【0009】
また、請求項2に記載の発明は、請求項1に記載の淡水化装置において、運転制御手段は、淡水化装置の運転前、原水供給制御手段により原水を蒸発装置の蒸発器に供給すると共に、濃縮原水排出手段により蒸発装置の最終段の蒸発器からの濃縮原水を濃縮原水貯留槽に供給した場合に、濃縮原水貯留量検出手段の出力から凝縮器の濃縮原水貯留槽内の濃縮原水が所定量に回復した場合、原水供給制御手段による原水の供給を停止すると共に、濃縮原水排出手段による凝縮器の濃縮原水貯留槽への濃縮原水の供給を停止することを特徴とする。
【0010】
上記のように濃縮原水貯留量検出手段の出力から該凝縮器の濃縮原水貯留槽内の濃縮原水が所定量に回復したと判断した場合、原水供給制御手段による原水の供給を停止すると共に、濃縮原水排出手段による濃縮原水の凝縮器の濃縮原水貯留槽への供給を停止するので、必要以上に原水が供給されることなく、太陽熱集熱器からの熱媒による原水加熱による温度上昇が遅くなったり、原水温度低下による水蒸気の発生率、即ち淡水化率の低下を防止できる。
【0011】
請求項3に記載の発明は、請求項1又は2に記載の淡水化装置において、原水供給制御手段が電気で直接又は間接的に駆動される電動弁であることを特徴とする。
【0012】
請求項4に記載の発明は、請求項1又は2又は3に記載の淡水化装置において、濃縮原水排出手段は、濃縮原水排水ポンプと該濃縮原水排出ポンプの排出側に設けた電動弁で構成されることを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づいて説明する。図1乃至図3は本発明に係る淡水化装置の構成例を示す図で、図1は全体構成を、図2及び図3は一部の詳細構成をそれぞれ示す。本淡水化装置は太陽熱集熱器1、蒸発装置2、冷却塔3、蒸留水タンク4、濃縮水タンク5及び真空手段6等から構成される。
【0014】
太陽熱集熱器1は太陽エネルギーにより熱媒を加熱する複数の太陽熱集熱パネル1−1〜1−6からなる。該太陽熱集熱器1の太陽熱集熱パネル1−1〜1−6で熱媒が加熱されて発生した熱媒蒸気Q1は配管7を通って蒸発装置2の脱気室2−1の熱交換器2−1a及び第1蒸発器2−2の熱交換器2−2aに送られ、凝縮した凝縮熱媒Q2が配管8を通してバッファタンク9に収容され、更に該バッファタンク9から熱媒循環ポンプ26及び配管10を通して太陽熱集熱器1に戻り循環するようになっている。この熱媒の循環はサーモサイフォンにより行われる。
【0015】
蒸発装置2は最上部に脱気室2−1が配置され、その下に複数台の蒸発器(ここでは第1蒸発器2−2〜第8蒸発器2−9の8台)が配置されて構成されている。例えば大気圧以上で常に原水を供給できる原水タンク等の原水源から供給される原水(ここでは海水)Wは、原水予熱配管12を通って予熱され、脱気室2−1に供給される。供給される原水Wは原水流量制御電動弁33により流量が制御されるようになっている。なお、原水流量制御電動弁33は電気モータで駆動させる電動弁のみではなく、電磁弁を含む電気で直接又は間接的に駆動される弁を指す。
【0016】
原水予熱配管12を通って脱気室2−1に供給される原水Wは所定量を超えるとオーバーフロー管13を通して、順次第1蒸発器2−2〜第8蒸発器2−9の各蒸発器に所定量の原水Wが貯留され、次第に濃縮されて、最後にオーバーフロー管14を通って濃縮水タンク5に収容されるようになっている。
【0017】
太陽熱集熱器1からの熱媒蒸気は脱気室2−1内に配置された熱交換器2−1aを通り、該脱気室2−1に貯留されている原水Wとの間で熱交換を行い、更に第1蒸発器2−2内に配置された熱交換器2−2aを通り、該第1蒸発器2−2に貯留されている原水との間で熱交換を行う。第1蒸発器2−2の原水の加熱で蒸発した水蒸気Waは蒸気配管15を通って第2蒸発器2−3の熱交換器2−3aに熱源として送られ原水Wとの間で熱交換が行われる。また、第3蒸発器2−4〜第7蒸発器2−8の原水Wの加熱で蒸発した水蒸気Waも次段の蒸発器の熱交換器に熱源として送られ原水Wとの間で熱交換が行われ、凝縮されて蒸留水となって最後に蒸留水タンク4に収容される。
【0018】
濃縮水タンク5の濃縮原水Wは濃縮原水排出ポンプ16により濃縮原水流量制御電動弁34及び配管27を通って冷却塔3の凝縮器3−1の下部タンク(濃縮原水貯留槽)3−1aに送られ、更に濃縮原水循環ポンプ17で散水ノズル3−1cに供給され、伝熱パイプ3−1b上に冷却水として散水されるようになっている。最終段の第8蒸発器2−9の熱交換器2−9aによる原水加熱で蒸発した水蒸気Waは配管18を通って凝縮器3−1の伝熱パイプ3−1bに送られ、上記散水された濃縮原水との間で熱交換が行われ、凝縮して蒸留水となり配管19を通って蒸留水タンク4に送られる。
【0019】
凝縮器3−1の下部タンク3−1aには濃縮原水貯留量を検出する濃縮原水貯留量検出手段31が設けられている。また、下部タンク3−1aをオーバーフローした濃縮水は濃縮水排出配管20を通って排水されるようになっている。
【0020】
真空手段6は気液分離器6−1及び該気液分離器6−1に接続された真空ポンプ6−2を具備する。気液分離器6−1は配管21、22、23を介して太陽熱集熱器1からの熱媒が通る配管7、蒸発装置2の脱気室2−1、凝縮器3−1のヘッダー3−1dに接続される。これにより蒸発装置2の蒸発空間及びこれに連通する凝縮空間及び蒸留水貯蔵空間を減圧状態にすることができる。
【0021】
また、蒸留水タンク4の蒸留水Wbは蒸留水ポンプ25により所定の場所に給水するようになっている。なお、図1において、電動V1〜V6はバルブである。
【0022】
図4は本発明に係る淡水化装置の制御部の構成を示す図である。30は運転制御手段であり、該運転制御手段30には濃縮原水貯留量検出手段31の出力が入力されるようになっている。また、運転制御手段30には原水流量制御電動弁33、濃縮原水排出ポンプ16及び濃縮原水流量制御電動弁34が接続され、後に詳述するように、蒸発装置2への原水Wの供給及び凝縮器3−1の下部タンク3−1aへ濃縮原水を供給できるようになっている。
【0023】
運転制御手段30は淡水化装置の運転前、濃縮原水貯留量検出手段31の出力を監視し、凝縮器3−1の下部タンク3−1aの濃縮原水Wの貯留量が所定量以下の場合、予め原水供給ポンプ11及び原水流量制御電動弁33により原水Wを蒸発装置2の脱気室2−1及び各蒸発器に供給すると共に、濃縮原水排出ポンプ16及び濃縮原水流量制御電動弁34により蒸発装置2の濃縮水タンク5内の濃縮原水Wを凝縮器3−1の下部タンク3−1aに供給する。これにより、淡水化装置の運転が開始した時に、凝縮器の冷却水が不足し凝縮器の凝縮能力が低下した状態で運転するということはなくなる。
【0024】
また、運転制御手段30は濃縮原水貯留量検出手段31の出力から凝縮器3−1の下部タンク3−1a内の濃縮原水Wが所定量に回復した場合、原水供給ポンプ11及び原水流量制御電動弁33により原水Wの蒸発装置2への供給を停止すると共に、濃縮原水排出ポンプ16及び原水流量制御電動弁33による濃縮原水Wの凝縮器3−1の下部タンク3−1aへの供給を停止する。
【0025】
このように、凝縮器3−1の下部タンク3−1aの濃縮原水が所定量に回復した場合、原水の蒸発装置2への供給を停止すると共に、濃縮原水Wの凝縮器3−1の下部タンク3−1aへの供給を停止するので、必要以上に原水が淡水化装置に供給されることなく、太陽熱集熱器1からの熱媒による原水加熱の温度上昇が遅くなったり、原水温度低下による水蒸気の発生率、即ち淡水化率の低下を防止できる。
【0026】
【発明の効果】
以上、説明したように各請求項に記載の発明によれば下記のような優れた効果がえられる。
【0027】
請求項1に記載の発明によれば、運転制御手段を設け、淡水化装置の運転前、濃縮原水貯留量検出手段の出力から、濃縮原水貯留槽内の濃縮原水の貯留量が所定量以下の場合、予め原水供給制御手段により原水を蒸発装置の蒸発器に供給すると共に、濃縮原水排出手段により該蒸発装置の最終段の蒸発器の濃縮原水を濃縮原水貯留槽に供給するので、濃縮原水を凝縮器の冷却水とする多重効用式の淡水化装置において、運転を開始した時に、凝縮器の冷却水が不足し凝縮器の凝縮能力が低下した状態で運転するということはなくなる。
【0028】
また、請求項2に記載の発明によれば、濃縮原水貯留量検出手段の出力から該凝縮器の濃縮原水貯留槽内の濃縮原水が所定量に回復したと判断した場合、原水供給制御手段による原水の供給を停止すると共に、濃縮原水排出手段による濃縮原水の凝縮器の濃縮原水貯留槽への供給を停止するので、必要以上に原水が供給されることなく、太陽熱集熱器からの熱媒による原水加熱による温度上昇が遅くなったり、原水温度低下による水蒸気の発生率、即ち淡水化率の低下を防止できる。
【図面の簡単な説明】
【図1】本発明に係る淡水化装置の全体構成例を示す図である。
【図2】本発明に係る淡水化装置の一部の詳細構成例を示す図である。
【図3】本発明に係る淡水化装置の一部の詳細構成例を示す図である。
【図4】 本発明に係る淡水化装置の制御部の構成を示す図である。
【符号の説明】
1 太陽熱集熱器
2 蒸発装置
2−1 脱気室
2−2〜9 第1〜第8蒸発器
3 冷却塔
3−1 凝縮器
3−2 ファン
4 蒸留水タンク
5 濃縮水タンク
6 真空手段
6−1 気液分離器
6−2 真空ポンプ
9 バッファタンク
12 原水予熱配管
13 オーバフロー管
14 オーバフロー管
15 蒸気配管
16 濃縮原水排出ポンプ
17 濃縮原水循環ポンプ
26 熱媒循環ポンプ
28 蒸留水流路
30 運転制御手段
31 濃縮原水貯留量検出手段
33 原水流量制御電動弁
34 濃縮原水流量制御電動弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a desalination apparatus that uses solar heat to obtain fresh water (distilled water) from raw water such as seawater, salty groundwater (brine water), and industrial wastewater by evaporation / condensation.
[0002]
[Prior art]
In a conventional desalination apparatus using solar heat, a batch-type desalination apparatus configured to introduce fresh water for one day in advance into the apparatus before the apparatus obtains effective solar radiation and to obtain fresh water in units of one day. There is. In addition, a plurality of evaporators are provided, the steam generated in the previous stage evaporator is introduced as a heat source, and the steam generated by heating the raw water is used as a heat source for the subsequent stage evaporator to the next stage evaporator. There is a multi-effect desalination apparatus using a multi-effect cycle that is connected and configured to supply, and that introduces a heating heat medium from a solar heat collector into the uppermost evaporator as a heat source.
[0003]
In the conventional desalination apparatus, raw water before being supplied to the desalination apparatus or city water or the like has been used as the cold water of the condenser for condensing the generated water vapor.
[0004]
As described above, when the raw water before being supplied to the desalination apparatus is used as the cooling water for the condenser, as the desalination apparatus is operated, the temperature of the cooling water rises and the desalination capacity decreases. is there. Further, when city water or the like is used as cooling water, there is a problem that it is necessary to provide means for supplying / supplying cooling water, which increases costs and requires maintenance.
[0005]
In order to solve the above problem, there is also a desalination apparatus in which concentrated raw water is used as cooling water for a condenser without providing cooling water supply / replenishment means. In this case, the operation of the desalination apparatus is started, and the operation is performed in a state where the cooling water is insufficient, that is, the condensing capacity of the condenser is lowered until the concentrated raw water is sufficiently discharged. There is a problem that a state without any water occurs.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above points. When the concentrated raw water is used as cooling water for the condenser and the operation of the desalination apparatus is started, the condenser cooling capacity is insufficient and the condensing capacity of the condenser is reduced. An object of the present invention is to provide a multi-effect desalination apparatus that does not operate in a state where the water content is lowered.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention described in claim 1 comprises a solar heat collector, an evaporator in which a plurality of evaporators are arranged in multiple stages, and a cooling tower having a condenser. The raw water is supplied to the uppermost evaporator by the raw water supply control means, and the raw water overflowing the evaporator is sequentially supplied to each evaporator in the next stage, and is gradually condensed and concentrated in the final stage evaporator. The heat medium that becomes raw water and is heated by the solar heat collector is introduced into the uppermost evaporator of the evaporator, heat is exchanged with the raw water, the cooled heat medium is returned to the solar heat collector, and the uppermost The water vapor generated in the evaporator is sequentially sent to each evaporator in the next stage, and heat exchange is performed with the raw water in each evaporator to form distilled water . The water vapor generated in the evaporator in the final stage of the evaporator is used as a cooling tower. In a desalination unit that is introduced into the condenser of the plant to produce distilled water The concentrated raw water storage tank for storing the concentrated raw water in the condenser is provided, and the concentrated raw water discharging means for supplying the concentrated raw water from the evaporator at the final stage of the evaporator to the concentrated raw water storage tank is provided to concentrate the concentrated raw water storage tank. Concentrated raw water storage amount detecting means for detecting the concentrated raw water storage amount in the concentrated raw water storage tank is provided so that the raw water is used as cooling water for the condenser, and before the operation of the desalination apparatus, the concentrated raw water storage amount detecting means From the output, when the amount of concentrated raw water stored is less than a predetermined amount, the raw water is supplied to the evaporator of the evaporator in advance by the raw water supply control means, and the concentrated raw water of the evaporator at the final stage of the evaporator is supplied by the concentrated raw water discharge means. An operation control means for supplying the concentrated raw water storage tank is provided.
[0008]
When the operation control means is provided as described above and the stored amount of concentrated raw water in the concentrated raw water storage tank is equal to or less than a predetermined amount from the output of the concentrated raw water storage amount detection means before the operation of the desalination apparatus, the raw water supply control means in advance supplies raw water to the evaporator of the evaporator, since supplying the raw water reservoir concentrated concentrated raw water of the evaporator of the final stage of the evaporation apparatus by concentrated raw water discharge means, the concentrated raw water and the condenser of the cooling water In the multi-effect desalination apparatus, when the operation is started, the operation is not performed in a state where the condenser cooling water is insufficient and the condenser capacity is reduced.
[0009]
According to a second aspect of the present invention, in the desalination apparatus according to the first aspect, the operation control means supplies the raw water to the evaporator of the evaporator by the raw water supply control means before the operation of the desalination apparatus. When the concentrated raw water from the final stage evaporator of the evaporator is supplied to the concentrated raw water storage tank by the concentrated raw water discharge means, the concentrated raw water in the concentrated raw water storage tank of the condenser is obtained from the output of the concentrated raw water storage amount detection means. When it returns to the predetermined amount, the supply of the raw water by the raw water supply control means is stopped, and the supply of the concentrated raw water to the concentrated raw water storage tank of the condenser by the concentrated raw water discharge means is stopped.
[0010]
As described above, when it is determined from the output of the concentrated raw water storage amount detection means that the concentrated raw water in the concentrated raw water storage tank of the condenser has recovered to a predetermined amount, the supply of the raw water by the raw water supply control means is stopped and concentrated. Since the supply of the concentrated raw water condenser to the concentrated raw water storage tank by the raw water discharge means is stopped, the raw water is not supplied more than necessary, and the temperature rise due to the heating of the raw water by the heat medium from the solar heat collector is delayed. In addition, it is possible to prevent the generation rate of water vapor, that is, the reduction of the desalination rate due to a decrease in raw water temperature.
[0011]
According to a third aspect of the present invention, in the desalination apparatus according to the first or second aspect, the raw water supply control means is an electrically operated valve driven directly or indirectly by electricity.
[0012]
The invention described in claim 4 is the desalination apparatus according to claim 1, 2 or 3, wherein the concentrated raw water discharge means comprises a concentrated raw water drain pump and an electric valve provided on the discharge side of the concentrated raw water discharge pump. It is characterized by being.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are diagrams showing a configuration example of a desalination apparatus according to the present invention. FIG. 1 shows an overall configuration, and FIGS. 2 and 3 show some detailed configurations. The desalination apparatus includes a solar heat collector 1, an evaporator 2, a cooling tower 3, a distilled water tank 4, a concentrated water tank 5, a vacuum means 6, and the like.
[0014]
The solar heat collector 1 includes a plurality of solar heat collection panels 1-1 to 1-6 that heat a heat medium by solar energy. The heat medium vapor Q1 generated by heating the heat medium in the solar heat collector panels 1-1 to 1-6 of the solar heat collector 1 passes through the pipe 7 and exchanges heat in the deaeration chamber 2-1 of the evaporator 2. The condensed heat medium Q2 that is sent to the heat exchanger 2-2a of the condenser 2-1a and the first evaporator 2-2 and is condensed is accommodated in the buffer tank 9 through the pipe 8, and further from the buffer tank 9 to the heat medium circulation pump 26 and the pipe 10 are returned to the solar heat collector 1 for circulation. The heat medium is circulated by a thermosiphon.
[0015]
In the evaporator 2, a deaeration chamber 2-1 is disposed at the top, and a plurality of evaporators (here, eight of the first evaporator 2-2 to the eighth evaporator 2-9) are disposed below it. Configured. For example, raw water (here, seawater) W supplied from a raw water source such as a raw water tank that can always supply raw water at atmospheric pressure or higher is preheated through the raw water preheating pipe 12 and supplied to the deaeration chamber 2-1. The flow rate of the supplied raw water W is controlled by a raw water flow rate control motor-operated valve 33. The raw water flow rate control motor-operated valve 33 indicates not only an electric valve driven by an electric motor but also a valve driven directly or indirectly by electricity including an electromagnetic valve.
[0016]
When the raw water W supplied to the deaeration chamber 2-1 through the raw water preheating pipe 12 exceeds a predetermined amount, the evaporators of the first evaporator 2-2 to the eighth evaporator 2-9 sequentially pass through the overflow pipe 13. A predetermined amount of the raw water W is stored, gradually concentrated, and finally stored in the concentrated water tank 5 through the overflow pipe 14.
[0017]
The heat medium vapor from the solar heat collector 1 passes through the heat exchanger 2-1a disposed in the deaeration chamber 2-1, and heats with the raw water W stored in the deaeration chamber 2-1. Exchange is performed, and further, heat exchange is performed with the raw water stored in the first evaporator 2-2 through the heat exchanger 2-2a disposed in the first evaporator 2-2. The water vapor Wa evaporated by heating the raw water of the first evaporator 2-2 is sent as a heat source to the heat exchanger 2-3a of the second evaporator 2-3 through the steam pipe 15, and exchanges heat with the raw water W. Is done. Further, the water vapor Wa evaporated by heating the raw water W of the third evaporator 2-4 to the seventh evaporator 2-8 is also sent as a heat source to the heat exchanger of the next-stage evaporator to exchange heat with the raw water W. Is condensed and becomes distilled water, and is finally stored in the distilled water tank 4.
[0018]
The concentrated raw water W in the concentrated water tank 5 is passed through the concentrated raw water flow control motor-operated valve 34 and the pipe 27 by the concentrated raw water discharge pump 16 to the lower tank (concentrated raw water storage tank) 3-1a of the condenser 3-1 of the cooling tower 3. Further, the concentrated raw water circulation pump 17 supplies the water to the water spray nozzle 3-1c, and the water is sprayed onto the heat transfer pipe 3-1b as cooling water. The water vapor Wa evaporated by the raw water heating by the heat exchanger 2-9a of the final stage eighth evaporator 2-9 is sent to the heat transfer pipe 3-1b of the condenser 3-1 through the pipe 18, and is sprinkled with water. Heat exchange is performed with the concentrated raw water, which is condensed to be distilled water, which is sent to the distilled water tank 4 through the pipe 19.
[0019]
The lower tank 3-1a of the condenser 3-1 is provided with concentrated raw water storage amount detection means 31 for detecting the concentrated raw water storage amount. The concentrated water overflowing the lower tank 3-1a is drained through the concentrated water discharge pipe 20.
[0020]
The vacuum means 6 includes a gas / liquid separator 6-1 and a vacuum pump 6-2 connected to the gas / liquid separator 6-1. The gas-liquid separator 6-1 includes a pipe 7 through which the heat medium from the solar heat collector 1 passes through the pipes 21, 22, and 23, a deaeration chamber 2-1 of the evaporator 2, and a header 3 of the condenser 3-1. Connected to -1d. Thereby, the evaporation space of the evaporator 2 and the condensation space and distilled water storage space which communicate with this can be made into a pressure reduction state.
[0021]
The distilled water Wb in the distilled water tank 4 is supplied to a predetermined place by a distilled water pump 25. In FIG. 1, electric motors V1 to V6 are valves.
[0022]
FIG. 4 is a diagram showing the configuration of the control unit of the desalination apparatus according to the present invention. 30 is an operation control means, and the output of the concentrated raw water storage amount detection means 31 is inputted to the operation control means 30. The operation control means 30 is connected with a raw water flow rate control motor-operated valve 33, a concentrated raw water discharge pump 16 and a concentrated raw water flow rate control motor-operated valve 34. As will be described in detail later, supply and condensation of the raw water W to the evaporator 2 are performed. The concentrated raw water can be supplied to the lower tank 3-1a of the vessel 3-1.
[0023]
The operation control unit 30 monitors the output of the concentrated raw water storage amount detection unit 31 before the operation of the desalination apparatus, and when the storage amount of the concentrated raw water W in the lower tank 3-1a of the condenser 3-1 is equal to or less than a predetermined amount, The raw water W is supplied in advance to the deaeration chamber 2-1 and each evaporator of the evaporator 2 by the raw water supply pump 11 and the raw water flow control motor-operated valve 33, and is evaporated by the concentrated raw water discharge pump 16 and the concentrated raw water flow control motor-operated valve 34. The concentrated raw water W in the concentrated water tank 5 of the apparatus 2 is supplied to the lower tank 3-1a of the condenser 3-1. Thereby, when the operation of the desalination apparatus is started, the operation is not performed in a state in which the condenser has insufficient cooling water and the condensation capacity of the condenser is reduced.
[0024]
In addition, when the concentrated raw water W in the lower tank 3-1a of the condenser 3-1 is restored to a predetermined amount from the output of the concentrated raw water storage amount detecting means 31, the operation control means 30 and the raw water supply pump 11 and the raw water flow control electric motor The supply of the raw water W to the evaporator 2 is stopped by the valve 33, and the supply of the concentrated raw water W to the lower tank 3-1a of the condenser 3-1 by the concentrated raw water discharge pump 16 and the raw water flow rate control motorized valve 33 is stopped. To do.
[0025]
As described above, when the concentrated raw water in the lower tank 3-1a of the condenser 3-1 recovers to a predetermined amount, the supply of the raw water to the evaporator 2 is stopped and the concentrated raw water W is below the condenser 3-1. Since the supply to the tank 3-1a is stopped, the raw water is not supplied to the desalination unit more than necessary, and the temperature rise of the raw water heating by the heating medium from the solar heat collector 1 is delayed or the raw water temperature is lowered. It is possible to prevent a decrease in water vapor generation rate, that is, a desalination rate.
[0026]
【The invention's effect】
As described above, according to the invention described in each claim, the following excellent effects can be obtained.
[0027]
According to the first aspect of the present invention, the operation control means is provided, and from the output of the concentrated raw water storage amount detection means before the operation of the desalination apparatus, the storage amount of the concentrated raw water in the concentrated raw water storage tank is a predetermined amount or less. In this case, the raw water is supplied to the evaporator of the evaporator by the raw water supply control means in advance, and the concentrated raw water of the evaporator at the final stage of the evaporator is supplied to the concentrated raw water storage tank by the concentrated raw water discharge means. In the multi-effect desalination apparatus that uses the condenser cooling water, when the operation is started, the operation is not performed in a state where the condenser cooling water is insufficient and the condensation capacity of the condenser is reduced.
[0028]
According to the invention described in claim 2, when it is determined from the output of the concentrated raw water storage amount detection means that the concentrated raw water in the concentrated raw water storage tank of the condenser has recovered to a predetermined amount, the raw water supply control means Since the supply of raw water is stopped and the supply of the concentrated raw water condenser to the concentrated raw water storage tank by the concentrated raw water discharge means is stopped, the raw water is not supplied more than necessary, and the heat medium from the solar collector is used. It is possible to prevent a rise in temperature due to heating of the raw water due to or a decrease in the generation rate of water vapor, that is, the desalination rate due to a reduction in raw water temperature.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of the overall configuration of a desalination apparatus according to the present invention.
FIG. 2 is a diagram showing a detailed configuration example of a part of a desalination apparatus according to the present invention.
FIG. 3 is a diagram showing a detailed configuration example of a part of the desalination apparatus according to the present invention.
FIG. 4 is a diagram showing a configuration of a control unit of the desalination apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solar thermal collector 2 Evaporator 2-1 Deaeration chamber 2-2-9 1st-8th evaporator 3 Cooling tower 3-1 Condenser 3-2 Fan 4 Distilled water tank 5 Concentrated water tank 6 Vacuum means 6 -1 Gas-liquid separator 6-2 Vacuum pump 9 Buffer tank 12 Raw water preheating pipe 13 Overflow pipe 14 Overflow pipe 15 Steam pipe 16 Concentrated raw water discharge pump 17 Concentrated raw water circulation pump 26 Heat medium circulation pump 28 Distilled water flow path 30 Operation control means 31 Concentrated raw water storage amount detection means 33 Raw water flow control motor operated valve 34 Concentrated raw water flow control motor operated valve

Claims (4)

太陽熱集熱器、複数台の蒸発器を多段の多重効用に配置した蒸発装置、及び凝縮器を有する冷却塔を具備し、前記蒸発装置の最上段の蒸発器に原水供給制御手段により原水を供給し、該蒸発器をオーバーフローした原水が順次次段の各蒸発器にオーバーフローして供給されると共に、次第に凝縮され最終段の蒸発器で濃縮原水となり、前記太陽熱集熱器で加熱した熱媒を前記蒸発装置の最上段の蒸発器に導入し、前記原水との間で熱交換を行い、冷却した熱媒を前記太陽熱集熱器に戻し、前記最上段の蒸発器で発生した水蒸気は順次次段の各蒸発器に送られ、該各蒸発器で原水との間で熱交換され蒸留水となり、前記蒸発装置の最終段の蒸発器で発生した水蒸気を前記冷却塔の凝縮器に導入して蒸留水とする淡水化装置において、
前記凝縮器に濃縮原水を貯留する濃縮原水貯留槽を設けると共に、前記蒸発装置の最終段の蒸発器からの濃縮原水を前記濃縮原水貯留槽に供給する濃縮原水排出手段を設け、前記濃縮原水貯留槽の濃縮原水を前記凝縮器の冷却水とするように構成し、
前記濃縮原水貯留槽内の濃縮原水貯留量を検出する濃縮原水貯留量検出手段を設け、
淡水化装置の運転前、前記濃縮原水貯留検出手段の出力から、濃縮原水の貯留量が所定量以下の場合、予め前記原水供給制御手段により原水を前記蒸発装置の蒸発器に供給すると共に、前記濃縮原水排出手段により前記蒸発装置の最終段の蒸発器の濃縮原水を前記濃縮原水貯留槽に供給する運転制御手段を設けたことを特徴とする淡水化装置。
Equipped with a solar heat collector, multiple evaporators arranged in multiple stages , and a cooling tower with a condenser, and raw water is supplied to the uppermost evaporator of the evaporator by raw water supply control means Then, the raw water overflowing the evaporator is sequentially supplied to the respective evaporators in the next stage, and is gradually condensed and becomes concentrated raw water in the final stage evaporator , and the heating medium heated by the solar heat collector is supplied. Introduced into the uppermost evaporator of the evaporator, exchanged heat with the raw water, returned the cooled heat medium to the solar heat collector, the water vapor generated in the uppermost evaporator sequentially It is sent to each evaporator of the stage, heat is exchanged with the raw water in each evaporator to become distilled water, and water vapor generated in the last stage evaporator of the evaporator is introduced into the condenser of the cooling tower. In the desalination equipment used as distilled water,
The concentrated raw water storage tank for storing the concentrated raw water in the condenser is provided, and the concentrated raw water discharging means for supplying the concentrated raw water from the final stage evaporator of the evaporator to the concentrated raw water storage tank is provided, and the concentrated raw water storage It is configured so that the concentrated raw water in the tank is used as cooling water for the condenser,
A concentrated raw water storage amount detecting means for detecting a concentrated raw water storage amount in the concentrated raw water storage tank is provided,
Before the operation of the desalination apparatus, from the output of the concentrated raw water storage amount detection means, when the concentrated raw water storage amount is a predetermined amount or less, the raw water supply control means supplies raw water to the evaporator of the evaporator in advance, The desalination apparatus according to claim 1, further comprising operation control means for supplying the concentrated raw water of the final stage evaporator of the evaporator to the concentrated raw water storage tank by the concentrated raw water discharging means.
請求項1に記載の淡水化装置において、
前記運転制御手段は、前記淡水化装置の運転前、前記原水供給制御手段により原水を前記蒸発装置の蒸発器に供給すると共に、前記濃縮原水排出手段により前記蒸発装置の最終段の蒸発器からの濃縮原水を前記濃縮原水貯留槽に供給した場合に、前記濃縮原水貯留量検出手段の出力から前記凝縮器の濃縮原水貯留槽内の濃縮原水が所定量に回復した場合、前記原水供給制御手段による原水の供給を停止すると共に、前記濃縮原水排出手段による前記凝縮器の濃縮原水貯留槽への濃縮原水の供給を停止することを特徴とする淡水化装置。
The desalination apparatus according to claim 1,
The operation control means supplies the raw water to the evaporator of the evaporator by the raw water supply control means before the operation of the desalination apparatus, and supplies the raw water from the final stage evaporator of the evaporator by the concentrated raw water discharge means. When the concentrated raw water is supplied to the concentrated raw water storage tank, when the concentrated raw water in the concentrated raw water storage tank of the condenser is restored to a predetermined amount from the output of the concentrated raw water storage amount detection means, the raw water supply control means A desalination apparatus characterized by stopping the supply of raw water and stopping the supply of concentrated raw water to the concentrated raw water storage tank of the condenser by the concentrated raw water discharge means.
請求項1又は2に記載の淡水化装置において、
前記原水供給制御手段が電気で直接又は間接的に駆動される電動弁であることを特徴とする淡水化装置。
The desalination apparatus according to claim 1 or 2,
The desalination apparatus characterized in that the raw water supply control means is a motor-operated valve that is driven directly or indirectly by electricity.
請求項1又は2又は3に記載の淡水化装置において、
前記濃縮原水排出手段は、濃縮原水排出ポンプと該濃縮原水排出ポンプの排出側に設けた電動弁で構成されることを特徴とする淡水化装置。
In the desalination apparatus of Claim 1 or 2 or 3,
The concentrated raw water discharge means comprises a concentrated raw water discharge pump and an electric valve provided on the discharge side of the concentrated raw water discharge pump.
JP2000096840A 2000-03-31 2000-03-31 Desalination equipment Expired - Fee Related JP4112772B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000096840A JP4112772B2 (en) 2000-03-31 2000-03-31 Desalination equipment
AU2001244680A AU2001244680A1 (en) 2000-03-31 2001-03-30 Water desalting apparatus
PCT/JP2001/002784 WO2001072639A1 (en) 2000-03-31 2001-03-30 Water desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000096840A JP4112772B2 (en) 2000-03-31 2000-03-31 Desalination equipment

Publications (2)

Publication Number Publication Date
JP2001276812A JP2001276812A (en) 2001-10-09
JP4112772B2 true JP4112772B2 (en) 2008-07-02

Family

ID=18611544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000096840A Expired - Fee Related JP4112772B2 (en) 2000-03-31 2000-03-31 Desalination equipment

Country Status (1)

Country Link
JP (1) JP4112772B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358655A (en) * 2011-06-30 2012-02-22 哈尔滨汽轮机厂辅机工程有限公司 Material water recycling seawater desalination system
CN109809515A (en) * 2019-04-08 2019-05-28 北京生态岛科技有限责任公司 A kind of industrial wastewater external circulation evaporation separation complete set of equipments with high salt

Also Published As

Publication number Publication date
JP2001276812A (en) 2001-10-09

Similar Documents

Publication Publication Date Title
AU759283B2 (en) Desalination method and desalination apparatus
US7225620B2 (en) Diffusion driven water purification apparatus and process
US6402897B1 (en) Apparatus for distilling, heating and storing liquid
JP2004136273A (en) Method for solution separation by multiple heat exchange vacuum distillation, cooling and freezing, and method of desalting seawater
EP0757776A1 (en) Absorption-type refrigeration systems and methods
JP5775267B2 (en) Water treatment system
JP2008229424A (en) Vacuum distillation apparatus
JP4139597B2 (en) Desalination equipment
WO2012057098A1 (en) Water treatment system and water treatment method
JP5743490B2 (en) Water treatment system and water treatment method
JPS5926184A (en) Compressed steam-type distillation of salt water
CN107840399A (en) Rotary evaporator and low-temperature evaporation condensing crystallizing equipment
CN101985368A (en) Condenser type seawater desalting device with steam turbine generator unit
JP2001526959A (en) Desalination method and desalination apparatus
JP4112772B2 (en) Desalination equipment
JP3712036B2 (en) Salt water desalination equipment
US10022646B1 (en) Solar cooling and water salination system
JP2000325945A (en) Device for desalting salt water
CN206397551U (en) The composite power circulatory system and electricity generation system
CN106523050B (en) The composite power circulatory system and its operation method and electricity generation system
KR101716836B1 (en) Apparatus for desalting seawater into fresh water
JP4112771B2 (en) Desalination equipment
KR101258433B1 (en) An Evaporator Unit for Multifunctional Modular Adsorption Desalination System
JPH0952083A (en) Apparatus for desalinating seawater
JP2000325948A (en) Apparatus for salt-to-fresh water distillation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070820

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees