JPS5926184A - Compressed steam-type distillation of salt water - Google Patents

Compressed steam-type distillation of salt water

Info

Publication number
JPS5926184A
JPS5926184A JP57137699A JP13769982A JPS5926184A JP S5926184 A JPS5926184 A JP S5926184A JP 57137699 A JP57137699 A JP 57137699A JP 13769982 A JP13769982 A JP 13769982A JP S5926184 A JPS5926184 A JP S5926184A
Authority
JP
Japan
Prior art keywords
heat
water
compressor
distiller
salt water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57137699A
Other languages
Japanese (ja)
Inventor
Kazuharu Takada
和治 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP57137699A priority Critical patent/JPS5926184A/en
Priority to FR838312514A priority patent/FR2531418B1/en
Priority to KR1019830003600A priority patent/KR860001490B1/en
Priority to DE3327958A priority patent/DE3327958C2/en
Publication of JPS5926184A publication Critical patent/JPS5926184A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To perform efficient evaporation with the saved consumption amount of electric power, by adding the condensation heat of a heat medium compressed by a heat medium compressor to the distiller of an apparatus for distilling salt waterm and evaporating the liquefied heat medium by heat exchanging it with water discharged from the distiller. CONSTITUTION:A heat-pump apparatus 5 has a compressor 11 to be driven by a motor, a condenser 10, a throttle valve 12 and an evaporator 13 provided in a closed circuit, and a heat medium such as flon is circulated through said circuit. The evaporator 13 exchanges the heat of concd. water of about 19 deg.C introduced through a pump 14 and a pipe 15 from a heat exchanger 4. Flon is evaporated, while the concd. water is further cooled down to a lower temp. and drained through a pipe 16. Hereon, the evaporated flon of about 14 deg.C is adiabatically compressed by a compressor 11, heated up to about 73 deg.C, itroduced into the condenser 10 and then heat exchange with preheated raw salt water of about 68 deg.C to transfer condensation heat to it. The raw salt water is heated up to about 71 deg.C, while the flon is condensed, converted into a gaseous phase through the throttle valve 12 and recycled.

Description

【発明の詳細な説明】 蒸留によって塩水淡水化を行うのに最もエネルギー消費
率の低い方法の一つ(rま、蒸留すべき塩水から発生す
る水蒸気を直接圧縮する方式である。
DETAILED DESCRIPTION OF THE INVENTION Distillation is one of the least energy-consuming methods for desalination of brine, in which the water vapor generated from the brine to be distilled is directly compressed.

この蒸留方法に放てエネルギー消費率を更に低くする手
段の第1は、塩水蒸留器の性能を高くして水蒸気圧縮機
金車さな圧縮比で作動さすても熱平衡が維持できるよう
にすることである。該手段の第2は、塩水蒸留器を作動
温度(常温より高温度)に維持するための供給エネルギ
ーを減少させることである。
The first means of further lowering the energy consumption rate of this distillation method is to improve the performance of the brine distiller so that thermal equilibrium can be maintained even when the steam compressor is operated at a small compression ratio. It is. The second of these measures is to reduce the energy supply to maintain the brine still at operating temperature (above ambient temperature).

本発明は該手段の第2に関するものである。水蒸気圧縮
機が小さな圧縮比で作動するよう省エネルギー化が計ら
れると、この動力が熱に換る量も当然少なくなって、冷
た゛い原料水が供給されると塩水蒸留器全所定温度(本
発明の実施例では72℃)に維持するのにほとんど役立
たない。従って外部より、単に加熱目的たけに多くの占
ネルギーを加えなければならず、このエネルギー量が大
きいと全体のエネルギー消費量が大きくなってしまう5
本発明を実施することによりこの加熱用エネルギーか数
分の−になって、プロセス全体としての省エネルギー効
果が大きくなる。
The present invention relates to the second of said means. If the water vapor compressor is operated at a small compression ratio to save energy, the amount of power converted into heat will naturally decrease, and when cold raw water is supplied, the entire brine distillation temperature (in accordance with the present invention) will be reduced. example, it is of little use in maintaining the temperature (72°C). Therefore, a large amount of energy must be added from the outside just for the purpose of heating, and if this amount of energy is large, the overall energy consumption will be large5.
By carrying out the present invention, this heating energy can be reduced to several minutes, thereby increasing the energy saving effect of the entire process.

従来の水蒸気圧縮機では熱効率の向上全図るため、生成
凝縮水、排出源イ宿水の保有する熱を原料水に附与する
熱交換が材用されているが、これのみでは未だ塩水蒸発
温度が吐い領域にとどまり十分でない。この不足熱を補
い、塩水蒸留器が所定の作動温度全維持できるようにす
るため、外部より水蒸気を加えたり、排気ガスの熱全利
用する方法等がとられてきたが、最も簡便な方法りま′
(気ヒーターケ用いることである。というのは、′電気
は場所、条件を問わず広く利用できるエネルギーである
からである。しかし衆知のよう(て、電気は熱として用
いる場合tl IKWH当り860Kcal Lか発熱
せず最も高価なエネルギー源であって、単(て86OK
ca1分として用いたのではコストが、高くμs位1生
が失われ−る〇 上記に鑑み本発明は水蒸気圧縮式蒸留器の生成凝縮水、
排出濃縮水等の保有熱量をヒートポンプで汲み上げ、蒸
留器に供給する方法を採用することにより、池の熱源を
使用せr少ない電力の消費のみで高温を維持しつつ正常
な蒸発を行わ仕る、省エネルギーケ目的としてなされた
ものである。
In order to fully improve thermal efficiency, conventional steam compressors use a heat exchange method that imparts heat from the generated condensed water and discharge source water to the raw water, but this alone still does not reach the brine evaporation temperature. remains in the vomit area and is not sufficient. In order to make up for this lack of heat and allow the salt water distiller to maintain the specified operating temperature, methods have been used such as adding steam from outside or using all the heat from the exhaust gas, but the simplest method is Ma'
(This is because electricity is an energy that can be used widely regardless of location or condition. However, as is well known, when electricity is used as heat, it produces 860 Kcal per IKWH. It is the most expensive energy source and does not generate heat.
If it is used as ca 1 minute, the cost will be high and about 1 μs will be lost. In view of the above, the present invention has developed
By using a method of pumping up the retained heat of discharged concentrated water, etc. using a heat pump and supplying it to the distiller, normal evaporation can be performed while maintaining high temperature using the heat source of the pond and consuming only a small amount of electricity. This was done for the purpose of saving energy.

これケ数値で説明すれば、例えば電気ヒーターのみで約
70℃の蒸発ケ行わせるため(では約12040Kca
l/hの熱を必要とする。電力換算で約141侃I(と
なる。しかるに、例えば5.5 kwのヒートポンプで
14℃から73℃まで熱を汲み上げると、市販のヒート
ポンプのデータより約7’/30Kcal/hとなる。
To explain this numerically, for example, in order to perform evaporation at about 70℃ using only an electric heater (approximately 12,040Kca)
Requires 1/h of heat. This is approximately 141 Kcal/h in terms of electric power. However, if a 5.5 kW heat pump pumps heat from 14°C to 73°C, it will be approximately 7'/30 Kcal/h based on the data of a commercially available heat pump.

5.5 kw ヒ−トポンプの発熱量は4730Kca
l/h (5,5kw X 860Kca 1/h )
である力)ら、刀口熱に有効なS喰は7730+473
0 = 12460Kcal/hとなり、電力のみの場
合の熱量と近似し、よって14 KWHの所要動力が加
熱効率が得られる。
The calorific value of the 5.5 kw heat pump is 4730 Kca
l/h (5.5kw x 860Kca 1/h)
The effective S-eating for Katuguchi fever is 7730 + 473.
0 = 12460 Kcal/h, which approximates the amount of heat in the case of electric power only, and therefore, the required power of 14 KWH provides heating efficiency.

本発明の一実施例を添付の図面によって説明する。水蒸
気圧縮式塩水蒸留器1は主に蒸留器本体2、モーター駆
動による水蒸気圧縮器3、熱交換器4および排出水の温
度を給水に汲み上げるためのヒートポンプ装置5から構
成されている。
An embodiment of the present invention will be described with reference to the accompanying drawings. The steam compression salt water distiller 1 mainly includes a distiller main body 2, a steam compressor 3 driven by a motor, a heat exchanger 4, and a heat pump device 5 for pumping the temperature of discharged water to feed water.

上記の装置に2いて、約15℃の原料塩水は管6を経て
供給され、分岐して熱交換器4に入り、管束7.8で凝
縮水、濃縮水とそ11ぞn熱交換し、約68℃−まで加
熱される。熱交換後の塩水は合流し、管9全油りヒート
ポンプ装置の凝縮器10に導かれる。
In the above apparatus 2, raw brine at about 15° C. is supplied through pipe 6, branches into heat exchanger 4, and undergoes heat exchange with condensed water and concentrated water through tube bundle 7.8, It is heated to about 68°C. The salt water after heat exchange is combined and led to the condenser 10 of the pipe 9 all-oil heat pump device.

ヒートポンプ装@5はモーター駆動による圧縮機11、
凝縮器10、絞り12及び蒸発器13が閉鎖回路に設け
られ、8亥回路にフロンのごとき熱!(%う;循(賃す
る。蒸発器13は前記熱交換器4からポンプ14、管1
5を経て導入された約19℃の濃縮水と熱交換し、フロ
ンは蒸発し濃縮水(はさらに代部となって管16から排
出されろ。ここで蒸発した約14℃のフロンは圧縮機1
1で萌整LE砿さ几、約7301で温度上昇したのち凝
縮器10に入り、前記予熱さr′した約68Cの原1=
1・塩水と熱交換して凝縮熱を与え約71℃まで加熱し
、フロンは凝縮したのち絞り12を経て気相となり再循
環する。
The heat pump equipment @5 is a compressor 11 driven by a motor,
A condenser 10, an aperture 12, and an evaporator 13 are installed in a closed circuit, and the 8-circuit is filled with heat like freon! The evaporator 13 is connected from the heat exchanger 4 to the pump 14 and the pipe 1.
The fluorocarbons undergo heat exchange with the concentrated water at about 19°C introduced through step 5, and the concentrated water (further becomes a substitute and is discharged from pipe 16. 1
1, the temperature rises to about 7301, enters the condenser 10, and the preheated raw material of about 68C 1=
1. Heat exchange with salt water to give heat of condensation and heat to approximately 71°C. After condensing, the freon passes through the throttle 12 and becomes a gas phase and is recirculated.

このようにして蒸留器の非出水の排;整ケ回収し、さら
に圧制機でEなaさrL;tフロンの凝縮熱によって加
熱された原料塩水は、セ17ケ通り蒸留器本体2内のト
レー18に溜まり、これから水モ伝熱管19(C万逼な
く赦7rσされる。該伝熱管内部には水蒸気圧縮機3で
圧縮さ才″した約73.5℃の水蒸気が導入され、管外
面で蒸発が起き、発生蒸気(1管20を経て水蒸気圧縮
機3に吸引圧1mlされ、(展皐百71(が底部21に
涌−まり、管22を経て約720で熱交換器4に至り、
前記原料塩水とも交換する。一方、水平伝熱管19内部
でトゴ水蒸気は凝縮し、管から流下して凝縮水溜23に
溜まり、管24を経て約73.5℃で前記熱交換器4に
導入され、原料塩水と熱交換し、約19℃となってポン
プ25、管26から取出される。凝縮水溜23の上部に
け抽気装置27が連絡し不凝縮性ガス?大気へ排出して
いる。 ゛ 図示では圧縮機で圧縮された熱媒の凝縮熱を水蒸気圧縮
式蒸留器に加えるのに、原料塩水Vこ加える手段を採用
したが、原料塩水に限らず蒸餉器本体内の適宜の場所で
a細氷、凝縮水に1吋与してもよく、また熱回収は凝縮
水からも行うことができることはm論である。また熱ノ
渫はフロン以外の慣用のものも採用でき、原料塩水とし
ては地丁水、工場排水、海水などがあげられ広く適用で
きる。
In this way, the unreleased water from the distiller is drained, sorted and collected, and the raw brine heated by the heat of condensation of the chlorofluorocarbons in the compressor is heated in the distiller main body 2 in 17 ways. The water vapor accumulates in the tray 18, and is then transferred to the heat transfer tube 19 (C). Steam at about 73.5°C, which has been compressed by the steam compressor 3, is introduced into the heat transfer tube, and the water vapor is compressed by the steam compressor 3. Evaporation occurs, the generated steam (passes through the pipe 20, is suctioned to the steam compressor 3 at a suction pressure of 1 ml, and the vapor (1ml) flows into the bottom 21, passes through the pipe 22, and reaches the heat exchanger 4 at about 720). ,
The raw material brine is also replaced. On the other hand, the Togo steam condenses inside the horizontal heat transfer tube 19, flows down from the tube and collects in the condensed water reservoir 23, and is introduced into the heat exchanger 4 at about 73.5° C. through the tube 24, where it exchanges heat with the raw brine. , and is taken out from the pump 25 and tube 26 at about 19°C. An air extraction device 27 is connected to the upper part of the condensed water reservoir 23 to remove non-condensable gas. Emitted into the atmosphere.゛In the illustration, in order to add the heat of condensation of the heating medium compressed by the compressor to the steam compression distiller, a means of adding the raw brine V is used, but it is not limited to the raw brine, but it can also be added to an appropriate place in the steamer body. It is a theory that 1 ounce of thin ice and condensed water can be added, and that heat recovery can also be performed from the condensed water. In addition, conventional salt water other than chlorofluorocarbons can be used for the heat treatment, and raw salt water includes ground water, industrial wastewater, seawater, etc., and can be widely applied.

なお水蒸気圧、陥機、然媒圧紬機は必ずしもモーター駆
動に限るものではないが、モーター駆動が最も簡便とな
る。
Note that the water vapor pressure, depression machine, and natural medium pressure pongee machine are not necessarily limited to motor drive, but motor drive is the simplest method.

本発明においては、水蒸気圧縮塩水蒸留器とヒートポン
プ装置合せ、圧諦さrした熱媒の凝に5熱に該蒸留器に
加えて温水蒸発温度?高温としたから程度の電力で所定
の加熱を行うと七ができ省エネルギーとなる。
In the present invention, a steam compression salt water distiller and a heat pump device are combined to condense the compressed heat medium, add heat to the distiller, and add hot water to the evaporation temperature. If the specified heating is carried out at a high temperature and with a moderate amount of electricity, 7 times can be achieved, resulting in energy savings.

このようCて本発明ンこ2いては蒸留に際して電力のみ
の供給を受け、しかも少ない電力で功率よく蒸発できる
ので、ポーラ−設備等のない箇所における淡水譲細氷、
7)収得に最適であ石。
In this way, in the present invention, only electric power is supplied during distillation, and the evaporation can be carried out efficiently with a small amount of electric power.
7) Best stone for harvesting.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例Vておけるフローシートである。 1 水蒸気圧、ml弐喘水蒸沼器  2・蒸留器本体3
・・水蒸気圧縮機  4 ・熱文団器  5 ・ヒ=ト
ボンプ装置  7.8・管束   10凝緬器11EF
、縮機  12  絞り  1.3  蒸発器18・ト
レー  19・水平伝熱α  23・凝糊水溜27  
抽気装置 特許出頴人  株式会社笹倉機械製作所昭和57汀特訂
願    第137690号2、発明の名称 71(FA気ET’、IIW式IY7水fA留法4、補
IL命令の日イ4    自発 5、補mにJ:り増加づる発明の数   06、補i[
のス・1象  明細出の発明の詳細な説明のIII7
The figure is a flow sheet in Example V of the present invention. 1 Water vapor pressure, ml 2 Steam steamer 2 Distiller body 3
・・Steam compressor 4・Thermobunder device 5・Hitobump device 7.8・Pipe bundle 10 Condenser 11EF
, compressor 12 throttle 1.3 evaporator 18, tray 19, horizontal heat transfer α 23, condensate reservoir 27
Air bleed device patent issuer: Sasakura Machinery Co., Ltd. 1982 Special revision application No. 137690 2, title of invention 71 (FA ET', IIW type IY 7 water fA distillation method 4, supplementary IL order day 4 spontaneity 5 , Complement m to J: Number of inventions increasing by 06, Complement i [
Part 1 of the Detailed Description of the Specified Invention

Claims (1)

【特許請求の範囲】[Claims] 塩水から発生1〜た水蒸気を水蒸気圧縮機で圧縮した後
蒸留器で凝縮させるようにした塩水蒸留装置において、
熱媒圧縮機で圧縮された熱媒の凝縮熱を該塩水蒸留装置
の蒸留器に加え、液化した該熱媒を該蒸留器からの排出
水と熱交換して蒸発させるようにした水蒸気圧縮式塩水
蒸留方法。
In a salt water distillation apparatus in which water vapor generated from salt water is compressed with a steam compressor and then condensed with a distiller,
A steam compression type in which the heat of condensation of the heating medium compressed by the heating medium compressor is added to the distiller of the salt water distillation apparatus, and the liquefied heating medium is evaporated by exchanging heat with the discharged water from the distiller. Salt water distillation method.
JP57137699A 1982-08-06 1982-08-06 Compressed steam-type distillation of salt water Pending JPS5926184A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57137699A JPS5926184A (en) 1982-08-06 1982-08-06 Compressed steam-type distillation of salt water
FR838312514A FR2531418B1 (en) 1982-08-06 1983-07-29 METHOD AND APPARATUS FOR DISTILLATION OF BRINE FOR OBTAINING FRESH WATER
KR1019830003600A KR860001490B1 (en) 1982-08-06 1983-08-01 A system and method for distilling brine to obtain fresh water
DE3327958A DE3327958C2 (en) 1982-08-06 1983-08-03 Device for distilling salt water to produce industrial water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57137699A JPS5926184A (en) 1982-08-06 1982-08-06 Compressed steam-type distillation of salt water

Publications (1)

Publication Number Publication Date
JPS5926184A true JPS5926184A (en) 1984-02-10

Family

ID=15204741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57137699A Pending JPS5926184A (en) 1982-08-06 1982-08-06 Compressed steam-type distillation of salt water

Country Status (4)

Country Link
JP (1) JPS5926184A (en)
KR (1) KR860001490B1 (en)
DE (1) DE3327958C2 (en)
FR (1) FR2531418B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100602U (en) * 1989-01-30 1990-08-10
CN107651805A (en) * 2017-11-21 2018-02-02 青岛新欧亚能源有限公司 Press vapour method sea water desalinating unit and method
KR20180074378A (en) 2016-12-23 2018-07-03 단국대학교 산학협력단 Ground contact type finger input device and method
KR20190024309A (en) 2017-08-31 2019-03-08 단국대학교 산학협력단 Non-contact Finger Input Device and Method in Virtual Space
CN110342599A (en) * 2019-07-04 2019-10-18 浙江大学 A kind of membrane distillation purified water preparation system
JP7044458B1 (en) * 2020-12-07 2022-03-30 木村化工機株式会社 Concentrator

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4431546A1 (en) * 1994-09-05 1996-03-07 Jakob Dr Ing Hois Process and device for desalination of sea water
AU4125396A (en) * 1994-12-08 1996-06-26 Allick Royhit Lal Combined heating and cooling apparatus and method therefor
US6436242B1 (en) 2000-02-10 2002-08-20 Pedro Joaquin Sanchez Belmar Device and method for distilling water
KR20030008255A (en) * 2001-07-16 2003-01-25 천봉우 Clean water by condensing
WO2009000016A1 (en) * 2007-06-22 2008-12-31 Desalination Technology Pty Ltd Desalination
CN102225238A (en) * 2011-05-05 2011-10-26 天津大学 Evaporation concentration system combining vapor compressor and high-temperature heat pump
DE102011055514A1 (en) * 2011-11-18 2013-05-23 Fariba Khandanian Process for the treatment of aqueous solutions
US10233094B2 (en) * 2013-12-06 2019-03-19 Arthur Francisco Hurtado System and method for distillation using a condensing probe and recycled heat
US10532934B1 (en) 2014-12-05 2020-01-14 Arthur Francisco Hurtado Energy recycling and heat exchange systems
US11083977B2 (en) 2017-03-10 2021-08-10 Sanjeev Bedi Distillation apparatus and method
GR20170100407A (en) 2017-09-07 2019-05-09 Αριστειδης Εμμανουηλ Δερμιτζακης Compressor with multiple mechanical vapor recompression chambers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB164525A (en) * 1920-02-16 1921-06-16 Franco Merz Method of and arrangement for evaporation of liquids with the recovery of the vapours by condensation
DE1444321B2 (en) * 1963-04-30 1981-02-19 Aqua-Chem., Inc., Waukesha, Wis. (V.St.A.) Evaporator with vapor compression
AU431422B2 (en) * 1967-07-26 1973-01-03 LESLIE FOLEY and ALWYN HALLEY CHENEY NORMAN Desalinisation of water
DE2847365C2 (en) * 1978-10-31 1987-01-22 MAN Technologie GmbH, 8000 München Plant for generating electrical and thermal energy by means of an internal combustion engine
SE429647B (en) * 1982-01-20 1983-09-19 Bjorn Elmer SET AND DEVICE TO REDUCE THE NEED OF ENERGY FOR DISTILLATION PROCESSES

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100602U (en) * 1989-01-30 1990-08-10
KR20180074378A (en) 2016-12-23 2018-07-03 단국대학교 산학협력단 Ground contact type finger input device and method
KR20190024309A (en) 2017-08-31 2019-03-08 단국대학교 산학협력단 Non-contact Finger Input Device and Method in Virtual Space
CN107651805A (en) * 2017-11-21 2018-02-02 青岛新欧亚能源有限公司 Press vapour method sea water desalinating unit and method
CN110342599A (en) * 2019-07-04 2019-10-18 浙江大学 A kind of membrane distillation purified water preparation system
JP7044458B1 (en) * 2020-12-07 2022-03-30 木村化工機株式会社 Concentrator

Also Published As

Publication number Publication date
KR840005706A (en) 1984-11-15
FR2531418A1 (en) 1984-02-10
KR860001490B1 (en) 1986-09-27
DE3327958A1 (en) 1984-02-09
FR2531418B1 (en) 1989-03-24
DE3327958C2 (en) 1985-05-30

Similar Documents

Publication Publication Date Title
JPS5926184A (en) Compressed steam-type distillation of salt water
US6919000B2 (en) Diffusion driven desalination apparatus and process
US4209364A (en) Process of water recovery and removal
US7225620B2 (en) Diffusion driven water purification apparatus and process
EP0933331B1 (en) Evaporative concentration apparatus for waste water
US4267022A (en) Energy efficient process and apparatus for desalinizing water
US5346592A (en) Combined water purification and power of generating plant
US3869351A (en) Evaporation system as for the conversion of salt water
JPH07508926A (en) water distillation equipment
JPH0816566B2 (en) Absorption refrigeration
US4324983A (en) Binary vapor cycle method of electrical power generation
CN103550941B (en) Low-temperature evaporation and concentration device and high-concentration waste water concentration method
US3486985A (en) Flash distillation apparatus with refrigerant heat exchange circuits
JP4139597B2 (en) Desalination equipment
US4345971A (en) Distillation employing heat pump
CN109626473A (en) Closed-loop refrigeration formula humidifies dehumidification seawater desalination system and its working method
CN1306942A (en) Method and apparatus for preparing fresh water from sea water
WO1981002154A1 (en) A desalination apparatus with power generation
US3461460A (en) Flash distillation with condensed refrigerant as heat exchanger
JP3712036B2 (en) Salt water desalination equipment
GB1603574A (en) Energy efficient process for desalinizing water
JP4187563B2 (en) Ammonia absorption refrigerator
CN102249470B (en) Water distilling equipment, and drinking water machine comprising water distilling equipment
JPH06320140A (en) Vacuum distilling plant for water
RU2784151C1 (en) Compact water distillation plant