JPS5939301A - System for controlling supply amount of liquid to be concentrated in multistage concentrating apparatus - Google Patents

System for controlling supply amount of liquid to be concentrated in multistage concentrating apparatus

Info

Publication number
JPS5939301A
JPS5939301A JP57148747A JP14874782A JPS5939301A JP S5939301 A JPS5939301 A JP S5939301A JP 57148747 A JP57148747 A JP 57148747A JP 14874782 A JP14874782 A JP 14874782A JP S5939301 A JPS5939301 A JP S5939301A
Authority
JP
Japan
Prior art keywords
stage
amount
liquid
concentrated
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57148747A
Other languages
Japanese (ja)
Other versions
JPS636241B2 (en
Inventor
Kenji Tsumura
津村 健児
Masayuki Yamashita
正幸 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIENTAL METAL SEIZO KK
Original Assignee
ORIENTAL METAL SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIENTAL METAL SEIZO KK filed Critical ORIENTAL METAL SEIZO KK
Priority to JP57148747A priority Critical patent/JPS5939301A/en
Publication of JPS5939301A publication Critical patent/JPS5939301A/en
Publication of JPS636241B2 publication Critical patent/JPS636241B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Abstract

PURPOSE:To make it possible to supply an optimum amount of sea water to each stages, by a method wherein the evaporation temp. of each stages or either one of each stage is measured to determine the optimum amount of the liquid to be concentrated. CONSTITUTION:The amount of heat supplied to a multistage concentrating apparatus is measured by arranging a temp. sensor 11 such as a thermocouple on the upper surface of the uppermost stage of a heating and condensing plate, and temp. information measured by the temp. sensor 11 is sent to a control box 12 while the opening degree of a valve in a second distributor 6 is controlled by the signal from the control box 12 and the supply amount of sea water to a final distributor 7 is regulated to control the water level of a tank 8. By this method, the amount of sea water supplied to all stages of the concentrating apparatus is adjusted to an optimum amount.

Description

【発明の詳細な説明】 本発明は特定の多段濃縮装置に用いる被濃縮液供給量制
御システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a concentrated liquid supply rate control system used in a specific multistage concentrator.

本発明に用いる特定の多段濃縮装置は、低濃度の溶液を
とくに沸騰せしめたり減圧にして蒸発せしめたりするこ
となく、最小の熱h【で最大の濃縮効率をうろことがで
きるものであり1本出願人示先に開発したものである(
特願1ft:156−69649号)。
The specific multi-stage concentrator used in the present invention is capable of achieving the maximum concentration efficiency with the minimum amount of heat (h) without boiling a low-concentration solution or evaporating it under reduced pressure. It was developed at the request of the applicant (
(Patent application 1ft: No. 156-69649).

その多段濃縮装置は第1図に示すように・6枚以上の熱
伝導性の良好な加熱凝縮板(El)〜(IDn+1)を
断熱ケース(1)内に間隔を設けて配置し、各版の下面
に吸液層(Sl)〜(S□)を設けて複数の濃縮段を形
成してなるものである。
As shown in Figure 1, the multi-stage concentrator is constructed by arranging six or more heating condensing plates (El) to (IDn+1) with good thermal conductivity at intervals in an insulating case (1), and A plurality of concentration stages are formed by providing liquid absorption layers (Sl) to (S□) on the lower surface of the tank.

熱源(H8)が太陽熱のように上方から加えられるはあ
い、吸液JM(Sl)〜(Sりは濃縮部となり・板(恥
)〜(gn+1)の上面が凝縮面となる。被濃縮液は供
給パイプ(Pl)〜(Pn)から吸液層(Sl)〜(1
3n)に供給され、濃縮液排出パイプ(01)〜(0□
)から濃縮液が、また凝縮液排出パイプ(Wl)〜(”
n)から凝縮液が排出される。
When the heat source (H8) is applied from above like solar heat, the liquid absorption JM (Sl) ~ (S becomes the concentrating part, and the upper surface of the plate (shame) ~ (gn+1) becomes the condensing surface. The liquid to be concentrated is from the supply pipes (Pl) to (Pn) to the liquid absorption layer (Sl) to (1
3n), and concentrated liquid discharge pipes (01) to (0□
) from the condensate discharge pipe (Wl) to (”
Condensate is discharged from n).

熱源が地熱や他の廃熱などのような下方から加えられる
ものであるばあいは、濃縮部と凝縮部とが逆の位置とな
る。
If the heat source is applied from below, such as geothermal heat or other waste heat, the concentration section and condensation section will be in opposite positions.

以下、本発明に用いる多段濃縮装置の作用を熱源(H3
)として太陽熱を用い、被濃縮液としてijη水を用い
た太陽熱を利用した海水の淡水化を代表例にあげて説明
する。
Hereinafter, the operation of the multistage concentrator used in the present invention will be explained using a heat source (H3).
) and seawater desalination using solar heat using solar heat as the liquid to be concentrated will be explained.

111記の構成を有する多段濃縮装置は、太陽熱により
板(El)を加熱し、各段における海水の蒸発→凝縮の
繰返しによって潜熱の形で熱をつぎの段へ順次移動せし
めるものである。このはあい板(El)〜(Fn+l)
の一方の面が蒸発面となり他方の面が凝縮部となる。し
かし排出される蒸留水および濃縮海水により熱が糸外に
排出されるなどの熱損失によって上段から下段へと温度
勾配が生じており、そのため連続的な蒸発→凝縮が繰返
されるのである。そこで今1段目の吸侮水M(81)の
蒸発温度をT1とすると、フラジウス・クラペイロンの
式から1段目で生成する蒸留水の生成m W4 L1次
式で近似的に表わされる。
The multi-stage concentrator having the configuration described in No. 111 heats the plate (El) with solar heat, and sequentially transfers heat in the form of latent heat to the next stage by repeating evaporation → condensation of seawater at each stage. This board (El) ~ (Fn+l)
One surface becomes the evaporation surface and the other surface becomes the condensation section. However, a temperature gradient occurs from the upper stage to the lower stage due to heat loss such as heat being discharged to the outside of the thread due to the discharged distilled water and concentrated seawater, which causes a continuous cycle of evaporation and condensation. Therefore, if the evaporation temperature of the water absorption M (81) in the first stage is T1, the production of distilled water produced in the first stage m W4 L is approximately expressed by the linear equation based on the Frasius-Clapeyron equation.

Wに1oA−%(1) (式中、AおよびBは定数である。) 式(1)から明らかなようにT1か大きくなればWlは
大となり、したがって定常的に連続運転するためにはW
jに見合う1fIJ水を補充しなけれはならない。本発
明者らの実験および研究の結果、その海水の補充闇F1
は、次式: %式% で近似的に表わされ、定iaは約1.6〜3.0がii
+j当であることが見出された。
1oA-%(1) for W (In the formula, A and B are constants.) As is clear from formula (1), as T1 increases, Wl increases, so in order to operate steadily and continuously, W
1fIJ of water corresponding to j must be replenished. As a result of the inventors' experiments and research, the seawater replenishment darkness F1
is approximately expressed by the following formula: %Formula% The constant ia is approximately 1.6 to 3.0, and ii
+j was found to be true.

それを超えて渋川に海水を補給すると海水の)J11熱
に多くの熱量が消費されしかも蒸光残垣が多いため、糸
外に多量の熱が排出されるので熱効率がオ〕るくなる。
If seawater is replenished to Shibukawa beyond this point, a large amount of heat will be consumed by the J11 heat of the seawater, and since there will be a large amount of evaporation residue, a large amount of heat will be discharged outside the threads, increasing thermal efficiency.

また少なずぎても濃縮されすぎてスケールや固形塩分の
析出などの問題が生ずる。
Moreover, even if it is too small, it will become too concentrated and problems such as scale and precipitation of solid salts will occur.

さらに前記のごとく各段の温度はそれぞれ異なり、熱源
に近い方から順次低くなる温度勾配を有しているため、
各版に供給する?fu水の最鋼J+tも変化する。すな
わち飽和蒸気圧曲線に対応して蒸発においてもδト縮に
おいても高湿はどその、11(は大きい。したがって上
段は下段よりも多く fiσ水を供給する必要がある。
Furthermore, as mentioned above, the temperature of each stage is different, and there is a temperature gradient that gradually decreases from the side closer to the heat source.
Supply each edition? The most steel J+t of fu water also changes. That is, corresponding to the saturated vapor pressure curve, 11( is larger at high humidity in both evaporation and δ-condensation. Therefore, it is necessary to supply more fiσ water to the upper stage than to the lower stage.

ところで、段間隔などの条件を同じにするときは、隣接
する段間の生成蒸留水量の減衰率Gt(=Wりは1未満
i−1 の値でマクロ的にみればほぼ一定の(j(iをとる。
By the way, when conditions such as stage spacing are the same, the attenuation rate Gt(=W) of the amount of distilled water produced between adjacent stages is less than 1 i-1, which is almost constant from a macroscopic perspective (j( Take i.

すなわち為後述のごとく財= 0.85〜0.95とな
る。
In other words, as described below, goods = 0.85 to 0.95.

したがってi+1段目の海水の供給ff1F4+1は次
式によって表わされる。
Therefore, the seawater supply ff1F4+1 of the i+1st stage is expressed by the following equation.

Fi+l = aGl+1 wi < Fl(II)以
上のごとく、本発明者らは棹々研fzを重ねた結果1各
段の供給量は各段またはいずれかの段の蒸発温度を測定
することにより被濃縮液の最適供給量が決定できること
を見出し、その゛原理に基ツいて各段へ最適71σ水量
を供給するシステムを開発した。
Fi + l = aGl + 1 wi < Fl (II) As described above, the inventors of the present invention repeatedly conducted repeated tests of We discovered that the optimum amount of water to be supplied can be determined, and based on this principle, we developed a system that supplies the optimum amount of 71σ water to each stage.

すなわち本発明は、3枚以上の熱伝導性の良好な加熱凝
縮板を断熱ケース内に間隔を設けて配置し、各版の少な
くとも下面に吸液層を設けて複数の濃縮段を影成し、被
濃縮液を各加熱凝縮板の熱源に対して背面側・暑−―に
通して加熱蒸発せしめ1対面する加熱凝縮板の凝縮面で
蒸気を凝縮する多段濃縮装置において・該多段濃縮装置
に供給される熱量または少なくとも1つの濃縮段の温度
を測定し、核熱に閃する情報に基づいて各段への被濃縮
液の供給量を最適Mtに維持することを特徴とする多段
濃縮装置の被濃縮液供給量制御システムに関する。
That is, in the present invention, three or more heating condensing plates with good thermal conductivity are arranged at intervals in a heat insulating case, and a liquid absorption layer is provided on at least the lower surface of each plate to form a plurality of concentrating stages. In a multi-stage concentrator in which the liquid to be concentrated is heated and evaporated by passing it through the heat source on the back side of each heating condensing plate and condensing the vapor on the condensing surface of the heating condensing plate facing the other. A multi-stage concentrator characterized in that the amount of heat supplied or the temperature of at least one concentrating stage is measured, and the amount of liquid to be concentrated supplied to each stage is maintained at the optimum Mt based on information obtained from nuclear heat. The present invention relates to a concentrated liquid supply amount control system.

本明細書におい゛(多段濃縮装置に供給される熱量とは
、多段濃縮装置自体に供給される熱量のみならず、多段
濃縮装置の近傍で該濃縮装置とほぼ同一条件の個所に供
給される熱量をも含む概念である。
In this specification, "(the amount of heat supplied to a multi-stage concentrator) refers not only to the amount of heat supplied to the multi-stage concentrator itself, but also to the amount of heat supplied to a location near the multi-stage concentrator under almost the same conditions as the concentrator. It is a concept that also includes.

濃縮段の温度の測定は、いずれが1つの濃縮段または加
熱凝縮板について行なってもよく、全段または全加熱凝
縮板について行なってもよい。
The temperature of the concentration stage may be measured for any one concentration stage or heating condensation plate, or for all stages or heating condensation plates.

そこでまず多段濃縮装置に供給される熱量を測定して制
御を行なうばあいについて説明する。
First, a case will be described in which the amount of heat supplied to the multistage concentrator is measured and controlled.

なお、以下被濃縮液として海水を用い、熱源として太陽
熱を用いるはあいを代表例としてあげて説明する。
The following description will be made using seawater as the liquid to be concentrated and solar heat as the heat source as a representative example.

第2図に本発明の制御システムを用いるスケールアップ
された濃縮システムの系統図を、第3図に本発明に用い
る多段濃縮装置と最終分配器の一実施例を示す。
FIG. 2 shows a system diagram of a scaled-up concentration system using the control system of the present invention, and FIG. 3 shows an embodiment of the multistage concentrator and final distributor used in the present invention.

第2図に示す濃縮システムは5段の多段製縮装Pt(2
)を6台組合せたものであり、d9水はタンク(3)か
らメインポンプ(4)で第1分配器(5)に送られ、゛
2等分されて第2分配器(6)に送られ・この第2分配
器でさらに6等分されて最終分配器(7)に送られる。
The concentration system shown in Figure 2 consists of five stages of multi-stage condensation Pt (2
), the d9 water is sent from the tank (3) to the first distributor (5) by the main pump (4), divided into two equal parts and sent to the second distributor (6). This second distributor further divides it into six equal parts and sends it to the final distributor (7).

最終分配器(7)からは濃縮装置(2)の各段に5本の
パイプが連結されている。
Five pipes are connected from the final distributor (7) to each stage of the concentrator (2).

最終分配器(7)からの各段への供給量の比率は、前記
式(llI)を参考にして実験の繰返しによってあらか
じめ決められている。このような供給量の比率が固定さ
れている最終分配器(7)の一実施例を第6図に基づい
て説明する。
The ratio of the amount supplied from the final distributor (7) to each stage is determined in advance through repeated experiments with reference to the formula (llI). An embodiment of the final distributor (7) in which the ratio of the supply amount is fixed will be described with reference to FIG.

最終分配器(7)はタンク(8)と5本のキャピラリー
管(9a)〜(9θ)からなり、各キャピラリー管(9
a)〜(9e)のヘッド(10)は大気と連通してしす
る。
The final distributor (7) consists of a tank (8) and five capillary tubes (9a) to (9θ), each capillary tube (9
The heads (10) of a) to (9e) communicate with the atmosphere.

キャピラリー管(9a)〜(9e)はそれぞれ口径また
は管長の異なるものであり、それらによって5本のキャ
ピラリー管を通過する海水の1社をあらかじめ決められ
た比率にすることができZ)。
The capillary tubes (9a) to (9e) have different diameters or tube lengths, so that one of the seawaters passing through the five capillary tubes can be adjusted to a predetermined ratio (Z).

また各ギヤピラリ−管な通過する海水の紙の増減はタン
ク(8)中の?In水の水位でコントロール1゛ること
かできる。
Also, is there an increase or decrease in the amount of seawater passing through each gear pillar pipe in the tank (8)? You can control the water level by controlling the water level.

すなわぢ濃縮装置(2)の各段への海水σ〕最適鼠のコ
ントロールは、タンク(8)へのrig 水の供fa 
ffiによつ、てコントロールすることができるのであ
る。
In other words, seawater σ to each stage of the concentrator (2)] Optimum control is by supplying rig water to the tank (8).
It can be controlled by ffi.

したがって、最終分配器(7)への海水の供給量を、た
とえはメインポンプ(4)、第1分配器(5)および(
または)第2分配器(6)でコントロールすれはよい。
Therefore, the amount of seawater supplied to the final distributor (7), for example, the main pump (4), the first distributor (5) and (
or) It may be controlled by the second distributor (6).

またはそれらを連結するノ々イブ(こ)くルブ(図示さ
れていない)を設りてコントロールしてもよい。
Alternatively, a knob (not shown) may be provided to connect them for control.

そのほか第5図に示すように、高架タンク0勾と定水頭
タンク(16)とワックスエレメント弁08)またはバ
イメタル弁とを組合せたシステムにより供11tをコン
トロールしてもよい。
In addition, as shown in FIG. 5, the water tank 11t may be controlled by a system that combines an elevated tank with zero gradient, a constant head tank (16), and a wax element valve (08) or a bimetallic valve.

第6図に示す実施例では多段濃縮装置に供給される熱気
を最上段の加熱凝縮板の」二表面に熱電対などの湿度セ
ンサOυを配置することによって測定している。
In the embodiment shown in FIG. 6, the hot air supplied to the multistage concentrator is measured by arranging a humidity sensor Oυ such as a thermocouple on the top surface of the heating condensing plate in the uppermost stage.

温度センサθυで測定された温度情報はコントロールボ
ックス02)に送られ、コントロールボックス02)か
らの信号により第2分配器(6)中のパルプ(図示され
ていない)の開度をフントロールし、最終分配器(7)
への海水の供給量を#:N frJL/てタンク(8)
の水位をコントロールする。その結果濃縮装置の全段に
供給される11は水の琺が最適量に調節される。
The temperature information measured by the temperature sensor θυ is sent to the control box 02), and the opening degree of the pulp (not shown) in the second distributor (6) is controlled by the signal from the control box 02). Final distributor (7)
The amount of seawater supplied to #:N frJL/tank (8)
control the water level. As a result, the amount of water supplied to all stages of the concentrator is adjusted to an optimum amount.

このように最上段の温度を測定するばあい、コントロー
ルボックス02)での処理は1.第1段用のキャピラリ
ー管(9a)の原鉱か前記式(1)と(11)を満足す
るように第2分配器からの供給域の制御を行なうだけで
よい。というのは、残りのキャピラリー管(9b)〜(
9θ)はそれぞれ前記式(lit)を満足するようにあ
らかじめ供給比率が置市されているからである。
When measuring the temperature at the top stage in this way, the processing in the control box 02) is as follows: It is only necessary to control the supply range from the second distributor so that the raw ore in the capillary tube (9a) for the first stage satisfies the above formulas (1) and (11). This is because the remaining capillary tubes (9b) ~ (
9θ), the supply ratios are set in advance so as to satisfy the above formula (lit).

また濃縮装置の中間段に温度センサを配置べしても同様
に全段の供給域をフン) yy−ルすることができる。
Furthermore, even if a temperature sensor is placed in the middle stage of the concentrator, the supply area of all stages can be controlled in the same way.

さらに温度センサ(1])からの信号をメインポンプ(
4)に送り、メインポンプの出力を制ワ11シてもよく
、メインポンプ(4)にダイヤフラムポンプを使用して
ダイヤプラムのストロークを制?+’il シてもよい
Furthermore, the signal from the temperature sensor (1]) is sent to the main pump (
4) to control the output of the main pump, or use a diaphragm pump as the main pump (4) to control the stroke of the diaphragm. +'il shi may be used.

前記のごとく温度センサを?、@!J縮装置?縮装置部
でft曳1!j′↓縮装置道の上表面とほぼ同−冬作の
個所(、−配[t ’U−5て海水の供給量を制御して
もよく、ぞのばあいたとえは差温式日射計の隼熱板温パ
〔または廃熱利用におりる加熱部温度を測定ずれはよい
Temperature sensor as mentioned above? ,@! J-shrinking device? 1ft pull in the compressor section! j'↓Approximately the same as the upper surface of the compressor road - winter cropping area (, - distribution [t 'U-5 may be used to control the amount of seawater supplied; in this case, a differential temperature type pyranometer Measure the temperature of the heating part using the Hayabusa heating plate (or waste heat utilization).

なお第6図に示ずI’A縮装置について前記式、(Il
)で用いた減衰率Gは、本発明者らが繰返し実験した結
果、はぼ0.85〜0.95の範囲の値であった。
For the I'A compression device not shown in FIG. 6, the above formula, (Il
As a result of repeated experiments by the present inventors, the attenuation factor G used in ) was in the range of approximately 0.85 to 0.95.

また最終分配器(7)からのYIV水の分配供給に、キ
ャピラリー!(9a)〜(9e)に代えて開度があらか
しめ決められているバルブ(図示されていない)を用い
てもよい。
Also, for the distribution supply of YIV water from the final distributor (7), a capillary! In place of (9a) to (9e), valves (not shown) whose opening degrees are predetermined may be used.

つぎに各段の熱k(温度)をそれぞれt(一定するばあ
いについて第4図に基づいて説明する。
Next, the case where the heat k (temperature) of each stage is constant (t) will be explained based on FIG. 4.

この実施例では、最終分配器(7)と濃縮装置(2)と
を連結するバイブにはそれぞ第1パルプ(Vl)〜(■
5)が設けられており、各段ごとに7゛亀水の供給鮎を
調節する。
In this embodiment, the vibrators connecting the final distributor (7) and the concentrator (2) each have a first pulp (Vl) to (■
5) is provided, and the supply of sweetfish with 7゛ turtle water is adjusted for each stage.

濃縮装置(3)の各段で測定された温度情へ1、はコン
トロールボックスθ3)に送うれ、フントロールホック
ス[13) ’T各段につき前記式(1)および(11
〕に基づいて各温良情報を処理し、ついで各段のバルブ
(■ユ)〜・(V5)にそれぞれ制御子8号を送る。そ
の割筒1信号に応じて各バルブ(vl)〜(v5)は開
度を貫4県し、その結果各段ごとに最、14尺の海水が
供給される。
The temperature information measured at each stage of the concentrator (3) is sent to the control box θ3), and the above equations (1) and (11
], and then sends controller No. 8 to the valves (■YU) to (V5) in each stage. In response to the split tube 1 signal, each valve (vl) to (v5) changes its opening degree by four degrees, and as a result, up to 14 shaku of seawater is supplied to each stage.

このように各段に温度センサを設りるばあいは1連続運
転による^線膜の経時変化にも対処しつる制御をイjな
うことができる。
When a temperature sensor is provided at each stage in this way, it is possible to deal with changes in the wire film over time due to one continuous operation, and to avoid strain control.

通常の1壮気回路で行なってもよいが、段数が増jJl
l iるなと濃縮システムが複雑になるときは、マイク
ロプロセッサにより行なうこともできる。
You can do it with the normal 1 Soki circuit, but the number of stages is increased.
When the concentration system becomes complex, it can also be performed by a microprocessor.

つぎに第5図および第6図に基づき、t→ね装置の近傍
に供給される熱量により直接パルプの開度を11節して
海水の供給猷をコントローフしする実於例ど説明する。
Next, based on FIG. 5 and FIG. 6, an actual example will be explained in which the opening degree of the pulp is directly controlled by the amount of heat supplied near the t→p device to control the seawater supply hole.

この実施例では、メインポンプ(4)と第1分配器(5
)の間に高架タンク(Iりと定水距タンク(=)とワッ
クスエレメント弁418)とからなる制御部が設けられ
ている。
In this embodiment, a main pump (4) and a first distributor (5) are used.
) is provided with a control section consisting of an elevated tank (a constant water distance tank (=) and a wax element valve 418).

メインポンプ(4)により測水タンク(3)から汲みあ
けられた河水は高架タンクQ嚇に入れられる。
The river water pumped out from the water measuring tank (3) by the main pump (4) is put into the elevated tank Q.

尚架タンク0りにはレベルスイッチ(154か配設され
・Cおり、レベルスイッチ(151の尚低によりメイン
ポンプ(4,)を自動的に間欠運転せしめて1%架タン
ク0りの水位をW4Nする。
In addition, a level switch (154) is installed at the empty tank, and when the level switch (151) becomes low, the main pump (4,) is automatically operated intermittently to reduce the water level to 1% of the empty tank. W4N.

靜架タンク(+1)から定水頭タンク(博への供給はボ
ールタップ07)により海水の重力によって行ない、そ
の結果症水頭タンク06)の水位は常に一定となってい
る。定水頭タンクθG)から第1分配器(5)への海水
の供給はワックスエレメント弁θ印によって行なう。
Supply from the static tank (+1) to the constant head tank (ball tap 07) is carried out by the gravity of seawater, and as a result, the water level in the constant head tank (06) is always constant. Seawater is supplied from the constant head tank θG) to the first distributor (5) by means of a wax element valve θ.

ワックスエレメント弁08)は第6図に示すごとく1ワ
ツクスエレメント□□□と弁sC2υとから構成されて
いる。
The wax element valve 08) is composed of one wax element □□□ and a valve sC2υ, as shown in FIG.

ワックスエレメントに)は弁部Qυの上部蓋(ハ)に取
りつけられており、ガラスカバー(ハ)で覆われている
。ワックスエレメント(財)は弁部?υのシャフトQ◆
に断熱継手に)により連結されており、シャフトψ◆の
他端には弁(21が設けられている。該弁Q1と弁座勃
の間隔により人口ニップル(ハ)から出ロニップル四へ
と流れる海水の鍬をRIM Mjする。
The wax element) is attached to the upper lid (c) of the valve part Qυ, and is covered with a glass cover (c). Is wax element (foundation) a valve part? υ shaft Q◆
A valve (21 is provided at the other end of the shaft ψ RIM Mj the seawater hoe.

ワラクスエレメント021Gt該エレメントに供給され
る熱量、たとえは日射量に応じて内封されているワック
スが体積変化することを利用し)ワックスエレメントの
芯illを伸縮せしめるものである。
Wax Element 021Gt This element expands and contracts the core ill of the wax element by utilizing the volume change of the wax enclosed therein depending on the amount of heat supplied to the element, for example, the amount of solar radiation.

日射量が増大するとワックスエレメント内のワックスが
膨張して8俸cl’tが伸長し、シャフトHを押し下げ
、弁9時と弁座17)の間B111を拡げて通過海水量
を増す。1]射旭が減少すると逆の動作が生起し\スプ
リング(0の働きにより日射量に応じた位1uまでシャ
フトが上がる。
When the amount of solar radiation increases, the wax in the wax element expands and 8 cl't expands, pushing down the shaft H and expanding B111 between the valve 9 o'clock and the valve seat 17) to increase the amount of seawater passing through. 1] When the radiation intensity decreases, the opposite action occurs and the shaft rises to 1u according to the amount of solar radiation due to the action of the spring (0).

日射量に応じた流水幇全決定するには、前記式(1)と
(n)および実験に基づき、ワックス屋しメント(イ)
の取りつけ位りなどを調節することにより行なえはよい
In order to determine the flow rate according to the amount of solar radiation, based on the above equations (1) and (n) and experiments,
This can be done by adjusting the mounting position etc.

このようにこの実施例では第1分配器(5)への・■f
q水の供給、−4yxわち最終分配器(7)への海水の
供給は、前記の実施例とは異なり温度センサ(すなわち
ワックスエレメント)と弁とをダイレクトに連動せしめ
ることができるため、コントロールボックスなどの電気
的、電子的処理機構が不要となり、故障などの問題が減
少しメインテナンスなどもきわめて容易になる。
In this way, in this embodiment, ・■f to the first distributor (5)
The supply of q water, -4yx, that is, the supply of seawater to the final distributor (7), can be controlled by directly interlocking the temperature sensor (i.e. wax element) and the valve, unlike in the previous embodiment. Electrical and electronic processing mechanisms such as boxes are no longer required, reducing problems such as breakdowns and making maintenance extremely easy.

なお、ワックスエレメントに代えてバイメタルを用いて
も同様の制御を行なうことができる。
Note that similar control can be performed by using a bimetal instead of the wax element.

本′発明に用いる多段濃縮装置八番1種々の溶液の濃縮
、蒸留だけではなく、海水の淡水化などにも用いること
ができる。他の溶液を用いるばあいにはその溶液ごとに
実駅により前記定数&や減衰率Gi、その他の条件をあ
らかじめ決定する必要がある。
Multi-stage concentrator used in the present invention No. 1: It can be used not only for concentration and distillation of various solutions, but also for desalination of seawater. When using other solutions, it is necessary to determine the constant &, the attenuation rate Gi, and other conditions in advance for each solution based on the actual station.

【図面の簡単な説明】[Brief explanation of the drawing]

□第1図は本発明の制御システムによって制御する多段
濃縮装置の一実施例の概略断面図、第2図は本発明の制
御システムの系統図、第3図は多段濃縮装置の別の実施
例と最終分配器とを組合せた状態の斜視図1第4図は本
発明の制御システムの刷り実施もの概略説明図、第5図
は本発明の制御システムの別の実施例を用いる濃1ti
t システムの系統図、第6図はワックスエレメント弁
の部分縦断面図である。 ・(図面の主要符号) (2)二多段濃縮装置 (3):海水タンク (4):メインlシブ (6):第2分配器 (7):最終分配器 (8):タンク (9a))(9b)−(9c)、 (9d)、(9θ):キャビラリー管 (]l):温度センサ (ロ)、0■:コントロールボックス (IC1)S(Ez)・ (E3)s (’−Tl) :加熱凝縮板(H8):熱
 tjj (PL) N (P2)、 (P3)、(Pn) :被濃縮液供給パイプ(Sl)、
(S2)、 (S3% (”n) : yi液層 (Vl)、(′v2) −1(v3) 5ff4) N
 (V5) :パルプ (Wl)、(W2)S(Wn)二凝縮液排出パイプ第1
図 S
□Figure 1 is a schematic sectional view of one embodiment of a multistage concentrator controlled by the control system of the present invention, Figure 2 is a system diagram of the control system of the present invention, and Figure 3 is another embodiment of the multistage concentrator. FIG. 4 is a schematic illustration of the embodiment of the control system of the present invention, and FIG. 5 is a perspective view of a state in which the control system and the final distributor are combined.
FIG. 6 is a partial vertical sectional view of the wax element valve.・(Main symbols in the drawing) (2) Two-stage concentrator (3): Seawater tank (4): Main latch (6): Second distributor (7): Final distributor (8): Tank (9a) )) (9b) - (9c), (9d), (9θ): Cavillary pipe (]l): Temperature sensor (b), 0■: Control box (IC1)S (Ez)・(E3)s ( '-Tl): Heating condensation plate (H8): Heat tjj (PL) N (P2), (P3), (Pn): Concentrated liquid supply pipe (Sl),
(S2), (S3% (''n): yi liquid layer (Vl), ('v2) -1(v3) 5ff4) N
(V5): Pulp (Wl), (W2)S (Wn) two condensate discharge pipes 1st
Figure S

Claims (1)

【特許請求の範囲】[Claims] 16枚以上の熱伝導性の良好な加熱凝縮板を断熱ケース
内に間隔を設けて配置し、各版の少なくとも下面に吸液
層を設りて複数の濃縮段を形成し、被濃縮液を各加熱凝
縮板の熱源に対して背面似・拳働脅に通して加熱蒸発せ
しめ、対面する加熱凝縮板の凝縮面で蒸気を凝縮する多
段濃縮装置において、該多段濃縮装置に供給される熱量
または少なくとも1つの濃縮段の温度を測定し、核熱に
関する情報に基づいて各段への被濃縮液の供給量を最適
17(に維持することを特徴とする多段濃縮装置の被濃
縮液供給量制御システム。
16 or more heating condensation plates with good thermal conductivity are arranged at intervals in an insulated case, and a liquid absorption layer is provided on at least the bottom surface of each plate to form a plurality of concentration stages, and the liquid to be concentrated is In a multi-stage concentrator that heats and evaporates vapor by passing the heat source of each heating condensing plate through a back-to-back or fist-force operation and condensing the vapor on the condensing surface of the facing heating condensing plate, the amount of heat supplied to the multi-stage concentrating device or Control of supply amount of liquid to be concentrated in a multi-stage concentrator, characterized in that the temperature of at least one concentration stage is measured and the amount of liquid to be concentrated supplied to each stage is maintained at an optimum level 17 (17) based on information regarding nuclear heat. system.
JP57148747A 1982-08-26 1982-08-26 System for controlling supply amount of liquid to be concentrated in multistage concentrating apparatus Granted JPS5939301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57148747A JPS5939301A (en) 1982-08-26 1982-08-26 System for controlling supply amount of liquid to be concentrated in multistage concentrating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57148747A JPS5939301A (en) 1982-08-26 1982-08-26 System for controlling supply amount of liquid to be concentrated in multistage concentrating apparatus

Publications (2)

Publication Number Publication Date
JPS5939301A true JPS5939301A (en) 1984-03-03
JPS636241B2 JPS636241B2 (en) 1988-02-09

Family

ID=15459714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57148747A Granted JPS5939301A (en) 1982-08-26 1982-08-26 System for controlling supply amount of liquid to be concentrated in multistage concentrating apparatus

Country Status (1)

Country Link
JP (1) JPS5939301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241792U (en) * 1988-09-13 1990-03-22
WO2001072639A1 (en) * 2000-03-31 2001-10-04 Ebara Corporation Water desalting apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551187A (en) * 1991-08-27 1993-03-02 Toshiba Corp Elevator damping device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147101A (en) * 1979-05-04 1980-11-15 Ebara Corp Controlling method of concentrating tank

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147101A (en) * 1979-05-04 1980-11-15 Ebara Corp Controlling method of concentrating tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241792U (en) * 1988-09-13 1990-03-22
WO2001072639A1 (en) * 2000-03-31 2001-10-04 Ebara Corporation Water desalting apparatus

Also Published As

Publication number Publication date
JPS636241B2 (en) 1988-02-09

Similar Documents

Publication Publication Date Title
Nawayseh et al. Solar desalination based on humidification process—I. Evaluating the heat and mass transfer coefficients
CN101652736B (en) Heating system control based on required heating power
US6073448A (en) Method and apparatus for steam generation from isothermal geothermal reservoirs
US7785448B2 (en) Method and apparatus for phase change enhancement
US4420032A (en) Method of controlling the energy management of an energy system and energy system based on said method
Bacha et al. Modelling and simulation of a water desalination station with solar multiple condensation evaporation cycle technique
US7949236B2 (en) Home heating radiator using a phase change heat transfer fluid
Chen et al. Flower‐type pulsating heat pipe for a solar collector
Raihananda et al. Low-cost floating solar still for developing countries: Prototyping and heat-mass transfer analysis
US11209217B2 (en) Mechanical vapour compression arrangement having a low compression ratio
JPS5939301A (en) System for controlling supply amount of liquid to be concentrated in multistage concentrating apparatus
US4545217A (en) Steam generating and condensing apparatus
McNeil et al. Shell-side boiling of water at sub-atmospheric pressures
Parametthanuwat et al. Heat transfer characteristics of closed-end thermosyphon (CE-TPCT)
Shaikh et al. Performance evaluation of a solar humidification dehumidification desalination system employing a multistage bubble column dehumidifier
El-Nashar et al. Simulation of the performance of MES evaporators under unsteady state operating conditions
Manimaran Performance assessment of solar PV and thermal-driven humidification dehumidification systems: A CFD modelling approach
US2027057A (en) Refrigeration
Shen et al. Thermal analysis of heat transfer performance in a horizontal tube bundle
Abarajith et al. Numerical simulation and experimental validation of the dynamics of multiple bubble merger during pool boiling under microgravity conditions
KR101739688B1 (en) Steam boiler
Al-Madhhachi et al. Evaluation of the convection heat transfer coefficient in a thermoelectric distillation system
Charoensawan et al. Flat plate solar water heater with closed-loop oscillating heat pipes
US2333780A (en) Continuous absorption refrigerating system
Yagov The main mechanism of nucleate boiling