WO2001070996A1 - Un procedimiento para desulfurar dibenzotiofeno utilizando como biocatalizador una cepa de pseudomonas putida recombinante - Google Patents

Un procedimiento para desulfurar dibenzotiofeno utilizando como biocatalizador una cepa de pseudomonas putida recombinante Download PDF

Info

Publication number
WO2001070996A1
WO2001070996A1 PCT/ES2001/000112 ES0100112W WO0170996A1 WO 2001070996 A1 WO2001070996 A1 WO 2001070996A1 ES 0100112 W ES0100112 W ES 0100112W WO 0170996 A1 WO0170996 A1 WO 0170996A1
Authority
WO
WIPO (PCT)
Prior art keywords
dibenzothiophene
hpac
plasmid
desulfurization
cells
Prior art date
Application number
PCT/ES2001/000112
Other languages
English (en)
French (fr)
Inventor
Beatriz GALÁN SICILIA
Eduardo DÍAZ FERNÁNDEZ
Abel FERRÁNDEZ BARCA
María Auxiliadora PRIETO JIMÉNEZ
José Luis GARCÍA LÓPEZ
Félix GARCIA-OCHOA SORIA
Eloy GARCÍA CALVO
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Complutense De Madrid
Universidad De Alcalá
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Complutense De Madrid, Universidad De Alcalá filed Critical Consejo Superior De Investigaciones Científicas
Priority to AU42529/01A priority Critical patent/AU4252901A/en
Publication of WO2001070996A1 publication Critical patent/WO2001070996A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/26Processes using, or culture media containing, hydrocarbons

Definitions

  • the invention claims a biodesulphurization process that uses a recombinant strain of Pseudomonas as a biocatalyst and, therefore, is included in the area of Biotechnology and Molecular Biology of Microorganisms. It describes the use of genes and enzymes of bacterial origin to carry out the conversion, with recombinant microorganisms, of dibenzothiophene in 2-hydroxybiphenyl and sulphite. This process has considerable advantages over other biodesulfurization processes previously described.
  • Rhodoccocus erythropolis IGTS8 ATCC53968
  • ATCC53968 Rhodoccocus erythropolis IGTS8
  • US Patents 5,356,801, 5,358,870, 5,358,813, 5,198,341, 5,132,219, 5,344,778, 5,104,801, 5,002,888, 5,804,433, 5,846,813, 5,879 .914, 5,733,773 US Patents 5,356,801, 5,358,870, 5,358,813, 5,198,341, 5,132,219, 5,344,778, 5,104,801, 5,002,888, 5,804,433, 5,846,813, 5,879 .914, 5,733,773
  • This microorganism has a metabolic pathway called the "4S” pathway capable of transforming the dibenzothiophene (DBT) molecule into 2-hydroxybiphenyl (2HBP) and sulfite (McFarland et al. (1998) Crit. Rev. Microbiol. 4, 99-147; McFarland (1999) Curr. Opin. Microbiol. 2, 257-264), thus producing the removal of the sulfur atom from the DBT without loss of carbon atoms in its structure, which is of great interest to the oil and petrochemical industry.
  • DBT dibenzothiophene
  • 2HBP 2-hydroxybiphenyl
  • sulfite McFarland et al. (1998) Crit. Rev. Microbiol. 4, 99-147; McFarland (1999) Curr. Opin. Microbiol. 2, 257-264
  • DBT is the molecule that most profusely has been used as a model compound to determine the desulfurizing capacity of a microorganism and, therefore, has been chosen for the studies described in this patent.
  • the "4S" desulfurization pathway of R. erythropolis IGTS8 consists of four enzymes called DszA, DszB, DszC and DszD (Gray et al. (1996) Nature Biotechnol. 14, 1705-1709).
  • the DszA and DszC proteins are FMNH 2- dependent monooxygenases that oxidize the DBT
  • the DszB enzyme is a desulfinase that releases the sulfur atom from the oxidized DBT structure
  • the DszD enzyme is a flavin: NADPH reductase that provides the FMNH 2 needed by the enzymes DszA and DszC.
  • dszABC genes which encode the enzymes DszA, DszB and DszC, respectively, are forming an operon located in a plasmid, while the dszD gene, which encodes the DszD reductase, is located on the chromosome of the bacteria (Denome et al. (1994) J. Bacteriol. 176, 6707-6716).
  • the present invention describes a process by which organisms capable of efficiently desulfurizing DBT can be obtained after cloning the dszABC genes involved in the desulfurization of this compound, from the R. erythropolis IGTS8 bacteria, together with the hpaC gene encoding the flavin: NADH HpaC reductase from E. coli W in a bacterium of the genus Pseudomonas.
  • HpaC flavin E. coli W NADH reductase ATCC11105 (Galán et al. (2000) J. Bacteriol., 182, 627-636.). This enzyme catalyzes the reaction:
  • the flavin NADH HpaC reductase from E. coli W in an active form in a strain of Pseudomonas.
  • the hpaC gene was cloned under the control of the Ptac promoter in the host wide spectrum vector PNLT31 (confers tetracycline resistance) (from Lorenzo et al. (1993) Gene 123, 17-24) thus originating the recombinant plasmid pBGl.
  • PNLT31 confers tetracycline resistance
  • plasmid pBGl a fragment of D ⁇ A containing the hpaC gene from plasmid pAJ28 (Prieto and Garc ⁇ a (1994) J. Biol. Chem.
  • putida KT2442 carrying the plasmid pBGl was obtained, which, once grown in a suitable medium, produced a high flavin activity: ADH reductase.
  • ADH reductase the HpaC reductase enzyme of E. coli W could be produced actively and functionally in a heterologous host such as Pseudomonas.
  • the last stage of this invention consisted of the construction of a recombinant Pseudomonas bacterium that simultaneously expressed the dszABC genes of R. erythropolis and the hpaC gene of E. coli W.
  • a synthetic operon formed by the hpaC- genes was constructed.
  • dszA-dszB-dszC that was inserted into a broad-spectrum host plasmid and under the control of the Ptac promoter, which is functional in a wide variety of gram-negative bacteria.
  • the hpaC gene was first amplified by the polymerase chain reaction (PCR) from plasmid pAJ28 mentioned above.
  • the D fragmentoA fragment from the amplification was digested with the restriction enzymes EcoRI and Xbal and ligated with the plasmid p ⁇ SOXl, a derivative of the plasmid pUC18 (Amersham-Pharmacia) that contains the dszABC genes and confers ampicillin resistance (Gallardo et al. (1997) J. Bacteriol. 179, 7156-7160), previously digested with the same enzymes, obtaining plasmid pBG7 from one of the ampicillin-resistant transformant E. coli clones.
  • plasmid pBG7 contains the hpaC-dszA-dszB-dszC genes in the form of an operon, being a derivative of pUC18 can only be replicated in E. coli and cannot be used in Pseudomonas. Therefore, it was necessary to subclone the artificial hpaC-dszA-dszB-dszC operon into the promiscuous plasmid pNLT31. For this, plasmid pBG7 was digested with restriction enzymes Ec ⁇ BI and Hind ⁇ Ll, and the resulting 4.3-kb D ⁇ A fragment was ligated to plasmid pVLT31 digested with the same restriction enzymes.
  • plasmid pBG8 was obtained, which expresses the hpaC-dszA-dszB-dszC operon under the control of the Ptac promoter in a promiscuous replicon, which was transferred by triparental conjugation to P. putida KT2442.
  • the P. putida strain KT2442 (pBG8) was used to determine, by means of a resting cell test, its desulfurizing capacity of DBT compared to that of the P. putida strain KT2442 (p ⁇ SOX3) (Gallardo et al. (1997) J. Bacteriol.
  • the objective of this experiment was to determine whether the enzyme flavin: NADH reductase HpaC from E. coli W could increase the desulfurizing capacity of DBT possessed by soluble protein extracts obtained from the strain of P. putida KT2442 (pESOX3) previously described ( Gallardo et al. (1997) J. Bacteriol. 179, 7156-7160).
  • E. coli producing the enzyme, according to previously published protocols (Galán et al. (2000) J. Bacteriol. 182, 627-636.), And it was found that it possessed an FMN activity: NADH reductase of 17.5 ⁇ mol / min mg of protein. This pure HpaC enzyme preparation was used for subsequent tests. To prepare the protein extracts for the in vitro DBT desulfurization assay, recombinant P.
  • putida KT2442 (pESOX3) cells were cultured 12 hours at 30 ° C with shaking (200 rpm, New Brunswick Incubator Model G25) in an erlenmeyer flask 100 ml containing 25 ml of a Luria-Bertani medium containing tetracycline (0.025 mg / ml) and 0.2 mM isopropyl- ⁇ -D-thiogalactopyranoside (IPTG).
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • buffer A 25 mM sodium phosphate, pH 7.0, containing 100 mM NaCl, and 0.5 mM dithiothreitol
  • soluble fraction enzyme extract
  • DBT of the enzyme extracts were incubated in a final volume of 1 ml containing 0.2 mM DBT, 0.02% Triton X-100, 0.01 mM FMN, 3 mM NADH, 50 mM glucose, 0.5 U of glucose dehydrogenase, 160 U of catalase, and enzyme extract (approximately 4 mg of total protein).
  • the cuvette in which the test was performed contained 0.06 mM FMN, 5 mM NADH in 50 mM HEPES buffer, pH 8.0, in a final volume of 0.5 ml.
  • the assay was started by adding 0.05 ml of the enzyme extract and was developed at 22 ° C. As a result of these analyzes, it could be concluded that P.
  • putida strain KT2442 (pBGl) produced an FMN: NADH reductase activity of 1.17 ⁇ mol / min mg protein.
  • FMN NADH reductase activity
  • plasmid pBG8 In order to construct plasmid pBG8 the first thing that was done was to obtain a DNA fragment that carried the genetic information corresponding to the hpaC gene of E coli W ATCC11105 and, for this, the PCR technique was used. To amplify by PCR the hpaC gene, the oligonucleotides hpaC5 '(5'-CCGAATTCTAAGGAGGTTAAGATGCAATTAGATG-3' were used as primers; the EcóRI restriction site is underlined) and hpaC3 'f5'-CCTCTAGATTAAATCGCAGCTTCCATTTCAGAG-3'; I know underlines the restriction site Xba ⁇ ) and as a template the plasmid pAJ28 described above (Prieto and Garc ⁇ a (1994) J.
  • the plasmid pBG7 thus constructed contains the hpaC-dszA-dszB-dszC genes in the form of an operon but, as the plasmid pUC18 from which it is derived can only be replicated in E. coli and not in Pseudomonas, it cannot be used to express said operon in Pseudomonas .
  • plasmid pBG7 from E. coli HB 101 (pBG7) was isolated and digested with restriction enzymes EcoRI and Hind ⁇ l. The 4.3 kb EcoRI-HwdHI DNA fragment carrying the hpaC-dszA-dszB-dszC operon was then isolated. This fragment was ligated with the 10 kb plasmid pVLT31 (from Lorenzo et al.
  • strain E. putida KT2442 (pBG8) was hereinafter referred to as C ⁇ CT 5279.
  • the strain of P. putida KT2442 (pBG8) CECT 5279 was used to determine by means of a resting cell test its desulfurizing capacity of DBT compared to the desulfurizing capacity of the strain P. putida KT2442 (pESOX3).
  • the cuvette in which the test was performed contained 0.06 mM FMN, 5 mM NADH in 50 mM HEPES buffer, pH 8.0, in a final volume of 0.5 ml.
  • the assay was started by adding 0.05 ml of the enzyme extract and was developed at 22 ° C. As a result of these analyzes, it could be concluded that the P. putida strain KT2442 (pBG8) produced an FMN: NADH reductase activity of 1.5 ⁇ mol / min mg protein.
  • P. putida KT2442 (pESOX3) were made by determining the ability to desulfurize DBT in a resting cell system.
  • a cell pre-circle is used to prepare said pre-circle.
  • the recombinant P. putida KT2442 cells were cultured 12 hours at 30 ° C with shaking (200 rpm, New Brunswick Incubator Model G25) in a 100 ml erlenmeyer flask, containing 25 ml of a medium of Luria-Bertani with tetracycline (0.025 mg / ml).
  • the cells were collected by centrifugation at 6,000 xg for 10 min at 4 ° C and washed twice with two volumes of 0.9% NaCl. These cells were then inoculated at an optical density of 0.1 measured at 600 nm in a 250 ml erlenmeyer flask containing 50 ml of BSM minimum medium (NaH 2 PO 4 -H 2 O 4 g / 1, K 2 HPO 4 -3H 2 O 4 g / 1, NFLC1 2 g / 1, MgCl 2 0.2 g / 1, CaCl 2 1 mg / 1, FeCl 3 1 mg / 1) and Mg 2 SO 4 2 mM as a source of sulfur and 20 g / 1 glutamate as a carbon source.
  • BSM minimum medium NaH 2 PO 4 -H 2 O 4 g / 1, K 2 HPO 4 -3H 2 O 4 g / 1, NFLC1 2 g / 1, MgCl 2 0.2 g / 1, CaCl 2
  • the final pH was adjusted to 7.0 with NaOH.
  • the culture medium also contained tetracycline (0.025 mg / ml) to ensure plasmid stability and 0.2 mM IPTG to induce the Ptac promoter.
  • the cells were incubated at 30 ° C with shaking (200 rpm, New Brunswick Incubator Model G25) until an optical density of 1.0 to 600 nm was reached.
  • the cells were separated from the culture by centrifugation at room temperature in a Sorval centrifuge (8500 rpm, 5 min, SS34 rotor).
  • the cells were washed twice with 0.9% NaCl and the cell pellet was resuspended in 50 mM HEPES buffer, pH 8.0 so that the suspension had an optical density of 1 to 600 nm.
  • This preparation constitutes the suspension of resting cells that are used for the DBT desulfurization assay.
  • the 20 ⁇ l samples of the ethanolic extract were analyzed in a Gilson HPLC equipped with a Lichrosphere 5 RP-8 column (150 x 4.6 mm) using an isocratic 50% acetonitrile-water phase with a flow of 1 ml / min
  • the DBT and 2HBP peaks coinciding with the retention times corresponding to the DBT and 2HBP standards were monitored with a UN spectrophotometer at 248 nm.
  • plasmid pBG8 can transfer the ability to desulfurize DBT to other bacteria and use this compound as the sole source of sulfur for growth, they were transformed with plasmid pBG8, which carries the hpaC-dszA-dszB-dszC genes, two different bacteria, a strain of E. coli DH5 ⁇ and a strain of Ralstonia eutropha JMP289.
  • the E. coli strain DH5 ⁇ was transformed by a conventional procedure using competent cells prepared with RbCl (Sambrook, J., Fritsch, EF and Maniatis, T. 1989. Molecular Cloning. CSHL Press, Cold Spring Harbor, New York).
  • the E. coli DH5 ⁇ transformants carrying the plasmid pBG8 were selected in a Luria-Bertani medium containing tetracycline (0.010 mg / ml).
  • the E. coli DH5 ⁇ strain was transformed with the plasmid p ⁇ SOX3 that expresses the dszA-dszB-dszC genes but which lacks the hpaC gene.
  • E. coli DH5 ⁇ transformants that carry the plasmid p ⁇ SOX3 were also selected in a Luria medium. -Bertani containing tetracycline (0.012 mg / ml). Then the E. coli DH5 ⁇ (pBG8), E. coli DH5 ⁇ (p ⁇ SOX3) and the non-recombinant parental strain E. coli DH5 ⁇ strains were inoculated independently in minimal medium BSM containing tetracycline (0.010 mg / ml), IPTG 0.2 M, 0.2 mM DBT as a source of sulfur and 0.2% glycerol as a source of carbon. Only E. coli strain DH5 ⁇ (pBG8) was able to grow in this medium (Table 3).
  • the strain of R eutropha JMP289 was transformed with the plasmid pBG8 by classical techniques of triparental conjugation (de Lorenzo and Timmis (1994) Meth. ⁇ nzymol. 235, 386-405).
  • the transformants of R. Eutropha JMP289 carrying the plasmid pBG8 were selected in a Luria-Bertani medium containing tetracycline (0.010 mg / ml).
  • the same strain of R. eutropha JMP289 was transformed by the same procedure with the parental plasmid pNLT31.
  • strains R eutropha JMP289 (pBG8), R eutropha JMP289 (pNLT31) and the non-recombinant parental strain R eutropha JMP289 were independently inoculated in minimal medium BSM containing tetracycline (0.010 mg / ml), 0.2 mM D? TG , 0.2 mM DBT as a source of sulfur and 0.2% fructose as a source of carbon. Only the strain of R eutropha JMP289 (pBG8) was able to grow in this medium (Table 3).
  • plasmid pBG8 is capable of transferring the ability to desulfurize DBT to bacteria other than P. putida where it is able to replicate, as is the case of E. coli or R. eutropha so that they use the sulfur of this compound for their growth, and that this capacity is linked to the presence of the four hpaC-dszA-dszB-dszC genes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plant Pathology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La invención consiste en el diseño y realización de un procedimiento para desulfurar dibenzotiofeno en el que se utiliza como biocatalizador una cepa recombinante de Pseudomonas putida KT2442 en la que se han clonado, mediante la construcción de un plásmido de amplio espectro de huésped denominado pBG8, los genes de desulfurización dszA, dszC y dszB aislados de Rhodococcus erythropolis IGTS8 ATCC53968 que codifican dos monooxigenasas y una desulfinasa, respectivamente, y el gen hpaC de Escherichia coli W ATCC11105 que codifica una flavin:NADH reductasa. Con el procedimiento se incrementa notablemente la velocidad de desulfuración de DBT del biocatalizador lo que mejora su rendimiento con vistas a su utilización en procesos de biodesulfuración de petróleo y/o fracciones petrolíferas.

Description

TÍTULO
Un procedimiento para desulfurar dibenzotiofeno utilizando como biocatalizador una cepa de Pseudomonas putida recombinante.
SECTOR DE LA TÉCNICA
La invención reivindica un procedimiento de biodesulfuración que utiliza como biocatalizador una cepa recombinante de Pseudomonas y, por tanto, se incluye en el área de Biotecnología y Biología Molecular de Microorganismos. En ella se describe la utilización de genes y enzimas de origen bacteriano para llevar a cabo la conversión, con microorganismos recombinantes, de dibenzotiofeno en 2-hidroxibifenilo y sulfito. Este proceso presenta considerables ventajas respecto a otros procesos de biodesulfuración previamente descritos.
ESTADO DE LA TÉCNICA La desulfuración del petróleo mediante el uso de microorganismos ha sido objeto de estudio durante la última parte de este siglo (McFarland y col. (1998) Crit. Rev. Microbiol. 4, 99-147; McFarland (1999) Curr. Opin. Microbiol. 2, 257-264). Las investigaciones que se han llevado a cabo han servido para desarrollar métodos biotecnológicos para eliminar el azufre del petróleo antes de su combustión. Las estrictas regulaciones que han impuesto los gobiernos sobre la emisión de azufre a la atmósfera han sido las verdaderas impulsoras de este desarrollo (McFarland y col. (1998) Crit. Rev. Microbiol. 4, 99-147).
El gran avance en el campo de la biodesulfuración del petróleo se produjo con el aislamiento y caracterización de la bacteria Rhodoccocus erythropolis IGTS8 (ATCC53968) una bacteria gram-positiva obtenida por el Institute of Gas Technology de Chicago que ha sido la fuente de inspiración para el desarrollo de muchos biocatalizadores y procesos (Patentes USA 5.356.801, 5.358.870, 5.358.813, 5.198.341, 5.132.219, 5.344.778, 5.104.801, 5.002.888, 5.804.433, 5.846.813, 5.879.914, 5.733.773). Este microorganismo posee una ruta metabólica denominada ruta "4S" capaz de transformar la molécula de dibenzotiofeno (DBT) en 2-hidroxibifenilo (2HBP) y sulfito (McFarland y col. (1998) Crit. Rev. Microbiol. 4, 99-147; McFarland (1999) Curr. Opin. Microbiol. 2, 257-264), produciendo así la eliminación del átomo de azufre del DBT sin pérdida de átomos de carbono en su estructura, lo que es de gran interés para la industria petrolera y petroleoquímica. Hay que señalar que el DBT es la molécula que con mayor profusión se ha utilizado como compuesto modelo para determinar la capacidad desulfurante de un microorganismo y, por ello, se ha elegido para los estudios que se describen en esta patente. La ruta de desulfuración "4S" de R. erythropolis IGTS8 está constituida por cuatro enzimas denominadas DszA, DszB, DszC y DszD (Gray y col. (1996) Nature Biotechnol. 14, 1705-1709). Acerca de la función de estas enzimas se sabe que las proteínas DszA y DszC son monooxigenasas dependientes de FMNH2 que oxidan el DBT, la enzima DszB es una desulfinasa que libera el átomo de azufre de la estructura del DBT oxidado, y la enzima DszD es una flavin:NADPH reductasa que proporciona el FMNH2 que necesitan las enzimas DszA y DszC. También se sabe que los genes dszABC, que codifican las enzimas DszA, DszB y DszC, respectivamente, se encuentran formando un operón localizado en un plásmido, en tanto que el gen dszD, que codifica la reductasa DszD, se encuentra localizado en el cromosoma de la bacteria (Denome y col. (1994) J. Bacteriol. 176, 6707-6716).
Aunque casi todos los procesos de biodesulfuración descritos hasta la fecha se han realizado con microorganismos salvajes, recientemente se han descrito unos pocos casos en los que se ha utilizado para la biodesulfuración de DBT bacterias recombinantes de R. erythropolis IGTS8 (Patentes USA 5.733.773, 5.789.914, 5.804.433). En estos casos, se ha tratado de incrementar la capacidad desulfurante de la bacteria salvaje de R. erythropolis IGTS8 mediante la adición de genes por técnicas de ingeniería genética. Es decir, se ha tratado de mejorar un microorganismo que ya tenía la capacidad de desulfuración. Sin embargo, resulta interesante que no se hayan realizado muchos estudios para intentar desarrollar microorganismos recombinantes capaces de desulfurar DBT a partir de bacterias que no poseían inicialmente dicha capacidad. La primera descripción de uno de estos casos fue realizada cuando se clonaron los genes dszABC de R. erythropolis IGTS8 en una cepa de Escherichia coli (Denome y col. (1994) J. Bacteriol. 176, 6707-6716), si bien sólo se constató la capacidad desulfurante por el hecho de que las cepas eran capaces de crecer en un medio mínimo de cultivo que contenía DBT como única fuente de azufre. Aparentemente, los pocos datos aportados en este trabajo sugieren que la capacidad desulfurante de DBT de estas cepas de E. coli recombinantes era escasa. Más recientemente, se ha descrito la construcción de varias cepas recombinantes del género Pseudomonas que portaban los genes dszABC de R. erythropolis IGTS8 y que eran capaces de crecer en un medio mínimo de cultivo que contenía como única fuente de azufre DBT (Gallardo y col. (1997) J. Bacteriol. 179, 7156-7160). En este caso, se pudo constatar que como consecuencia de la desulfuración del DBT se liberaba al medio de cultivo 2HBP y que las Pseudomonas recombinantes crecían más rápidamente en este medio mínimo que la cepa R. erythropolis IGTS8. A la vista de estos resultados se podía afirmar que las cepas de Pseudomonas recombinantes eran más eficaces que R. erythropolis IGTS8 en la desulfuración de DBT en las condiciones de cultivo ensayadas. Sin embargo, no se constató si estas cepas de Pseudomonas recombinantes eran capaces de desulfurar DBT en un reactor en condiciones de células en reposo (resting cells), el proceso de biodesulfuración de petróleo más utilizado a escala industrial (McFarland y col. (1998) Crit. Rev. Microbiol. 4, 99-147). Por otro lado, también hay que señalar que en estas cepas de Pseudomonas recombinantes sólo se habían introducido los genes de desulfuración, dszA, dszB, y dszC pero no el gen dszD cuyo producto también participa en el proceso. Se suponía que las Pseudomonas recombinantes podrían aportar una flavin:NADPH reductasa endógena que proporcionaría FMNH2 a las enzimas DszA y DszC, sin embargo los ensayos llevados a cabo con estas cepas indicaron que la desulfuración era menos eficiente de lo esperado. Por este motivo, se ha pensado en mejorar la eficiencia de desulfuración de DBT de las bacterias recombinantes del género Pseudomonas introduciendo en éstas un nuevo gen heterólogo que codifique una flavin:NADPH reductasa y que se exprese simultáneamente con los genes dszABC con alta eficiencia. Para ello, se ha pensado en diseñar un nuevo operón artificial con los genes dszABC de R. erythropolis IGTS8 y el gen hpaC de E. coli W ATCC11105, el cual codifica una flavin:NADH reductasa (Galán y col. (2000) J. Bacteriol., 182, 627-636.), y que esté contenido en un plásmido de amplio espectro de huésped capaz de replicar en Pseudomonas. Este es el objeto de esta patente. DESCRIPCIÓN DE LA INVENCIÓN
Breve descripción de la invención.
La presente invención describe un procedimiento mediante el cual se pueden obtener organismos capaces de desulfurar eficazmente DBT tras clonar los genes dszABC implicados en la desulfuración de este compuesto, procedentes de la bacteria R. erythropolis IGTS8, junto con el gen hpaC que codifica la flavin:NADH reductasa HpaC de E. coli W en una bacteria del género Pseudomonas.
Descripción detallada de la invención La presente invención está basada en el empleo de una nueva enzima denominada
HpaC flavin:NADH reductasa de E. coli W ATCC11105 (Galán y col. (2000) J. Bacteriol., 182, 627-636.). Esta enzima cataliza la reacción:
FMN + NADH + Ff = FMNH2 + NAD+ En el origen de esta invención se pensó que la enzima HpaC podría ser útil para incrementar la eficiencia de un biocatalizador para la desulfuración de DBT transfiriendo equivalentes reductores de FMNH desde el NADH a las monooxigenasas DszA y DszC, que forman parte de la ruta de desulfuración del biocatalizador que previamente se había diseñado (Gallardo y col. (1997) J. Bacteriol. 179, 7156-7160).
Para demostrar que la enzima HpaC era capaz de incrementar in vitro la desulfuración del DBT, se procedió en primer lugar a su purificación, según se ha descrito recientemente (Galán y col. (2000) J. Bacteriol., 182, 627-636.). En segundo lugar, se obtuvo un extracto proteico soluble de un cultivo de la cepa de Pseudomonas putida KT2442 transformada con el plásmido pESOX3 que porta y expresa los genes dszABC (Gallardo y col. (1997) J. Bacteriol. 179, 7156-7160). En tercer lugar, se estudió la capacidad que poseía el extracto de P. putida KT2442 (pESOX3) para desulfurar DBT in vitro tras incubación en las condiciones adecuadas y analizando la aparición de 2HBP con una cromatografía líquida de alta resolución (HPLC). Mediante estos ensayos se pudo comprobar que la adición de la reductasa HpaC purificada mejoraba significativamente la actividad desulfurante de DBT del extracto. Los resultados obtenidos in vitro con la enzima HpaC purificada hacían prever que la expresión de esta enzima in vivo en una cepa de Pseudomonas transformada con los genes dszABC podría mejorar la capacidad desulfurante de DBT de dicho biocatalizador, y, por lo tanto, supondría un avance significativo en el desarrollo de biocatalizadores más eficaces en procesos de biodesulfuración.
A continuación, se estudió si era factible producir la flavin:NADH reductasa HpaC de E. coli W en una forma activa en una cepa de Pseudomonas. Para ello, se clonó el gen hpaC bajo el control del promotor Ptac en el vector de amplio espectro de huésped PNLT31 (confiere resistencia a tetraciclina) (de Lorenzo y col. (1993) Gene 123, 17-24) originando así el plásmido recombinante pBGl. Para construir el plásmido pBGl se extrajo mediante corte con las enzimas de restricción EcoRI y Psή un fragmento de DΝA que contenía el gen hpaC a partir del plásmido pAJ28 (Prieto y García (1994) J. Biol. Chem. 269, 22823-22829), y se ligó al plásmido pNLT31 previamente digerido con las mismas enzimas de restricción. A partir de un clon de E. coli transformante resistente a tetraciclina se aisló el plásmido pBGl. Mediante técnicas clásicas de conjugación triparental (de Lorenzo y Timmis (1994) Meth. Εnzymol. 235, 386-405) se introdujo el plásmido pBGl en la cepa P. putida KT2442. Se obtuvo así una cepa recombinante de P. putida KT2442 portadora del plásmido pBGl, la cual, una vez cultivada en un medio adecuado, producía una elevada actividad flavin:ΝADH reductasa. Con este experimento se demostraba que la enzima HpaC reductasa de E. coli W podía producirse en forma activa y funcional en un huésped heterólogo como Pseudomonas.
La última etapa de esta invención consistió en la construcción de una bacteria recombinante de Pseudomonas que expresara simultáneamente los genes dszABC de R. erythropolis y el gen hpaC de E. coli W. Para ello, se construyó un operón sintético formado por los genes hpaC-dszA-dszB-dszC que se insertó en un plásmido de amplio espectro de huésped y bajo el control del promotor Ptac, el cual es funcional en una gran variedad de bacterias gram-negativas. Para llevar a cabo esta construcción, primero se amplificó el gen hpaC mediante la reacción de la polimerasa en cadena (PCR) a partir del plásmido pAJ28 antes mencionado. Εl fragmento de DΝA procedente de la amplificación se digirió con las enzimas de restricción EcoRI y Xbal y se ligó con el plásmido pΕSOXl, un derivado del plásmido pUC18 (Amersham-Pharmacia) que contiene los genes dszABC y confiere resistencia a ampicilina (Gallardo y col. (1997) J. Bacteriol. 179, 7156-7160), previamente digerido con las mismas enzimas, obteniéndose el plásmido pBG7 de uno de los clones de E. coli transformantes resistentes a ampicilina. Aunque el plásmido pBG7 contiene los genes hpaC-dszA-dszB-dszC en forma de un operón, al ser un derivado de pUC18 sólo puede replicarse en E. coli y no puede ser utilizado en Pseudomonas. Por ello, fue necesario subclonar el operón artificial hpaC-dszA-dszB-dszC en el plásmido promiscuo pNLT31. Para ello se digirió el plásmido pBG7 con las enzimas de restricción EcόBI y HindϊLl, y el fragmento de DΝA de 4.3-kb resultante se ligó al plásmido pVLT31 digerido con las mismas enzimas de restricción. De uno de los transformantes de E. coli resistentes a tetraciclina se obtuvo el plásmido pBG8, que expresa el operón hpaC-dszA- dszB-dszC bajo el control del promotor Ptac en un replicón promiscuo, que se transfirió mediante conjugación triparental a P. putida KT2442. La cepa P. putida KT2442 (pBG8) fue utilizada para determinar, mediante un ensayo de células en reposo su capacidad desulfurante de DBT en comparación con la de la cepa P. putida KT2442 (pΕSOX3) (Gallardo y col. (1997) J. Bacteriol. 179, 7156-7160), la cual expresa los genes dszABC en ausencia del gen hpaC. Los resultados demostraron que la cepa P. putida KT2442 (pBG8) poseía una capacidad desulfurante de DBT muy superior a la de la cepa P. putida KT2442 (pΕSOX3).
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN
En los ejemplos detallados a continuación, se exponen las investigaciones realizadas para desarrollar esta patente.
Ejemplo 1
Análisis in vitro de la actividad desulfurante de DBT de los extractos proteicos solubles de la cepa de P. putida KT2442 (pESOX3) en presencia y en ausencia de la enzima flavin:NADH reductasa HpaC de E coli W
El objetivo de este experimento era determinar si la enzima flavin:NADH reductasa HpaC de E. coli W podía aumentar la capacidad desulfurante de DBT que poseían los extractos proteicos solubles obtenidos a partir de la cepa de P. putida KT2442 (pESOX3) previamente descrita (Gallardo y col. (1997) J. Bacteriol. 179, 7156-7160).
La flavin:NADH reductasa HpaC de E coli W se purificó a partir de un cultivo de
E. coli (pAJ28) productor de la enzima, de acuerdo con los protocolos previamente publicados (Galán y col. (2000) J. Bacteriol. 182, 627-636.), y se comprobó que poseía una actividad de FMN:NADH reductasa de 17,5 μmol/min mg de proteína. Esta preparación de enzima HpaC pura fue utilizada para los ensayos posteriores. Para preparar los extractos proteicos para el ensayo de la desulfuración de DBT in vitro las células de P. putida KT2442 (pESOX3) recombinantes fueron cultivadas 12 horas a 30 °C con agitación (200 rpm, New Brunswick Incubator Model G25) en un matraz erlenmeyer de 100 mi conteniendo 25 mi de un medio de Luria-Bertani conteniendo tetraciclina (0,025 mg/ml) e isopropil-β-D-tiogalactopiranosido (IPTG) 0,2 mM. Una vez terminada la fermentación, las células se recogieron por centrifugación a 6.000 x g durante 10 min. a 4 °C y se lavaron dos veces con dos volúmenes de NaCl 0.9%. A continuación, estas células se resuspendieron en tampón A (fosfato sódico 25 mM, pH 7,0, conteniendo NaCl 100 mM, y ditiotreitol 0,5 mM) y se rompieron con una prensa French de tal forma que la fracción soluble (extracto enzimático), separada de los restos celulares por centrifugación a 30.000 x g durante 10 min a 4 °C, contuviera aproximadamente 5 mg proteína/ml.
Para determinar la actividad desulfurante de DBT de los extractos enzimáticos se incubaron en un volumen final de 1 mi conteniendo DBT 0,2 mM, Tritón X-100 0,02%, FMN 0,01 mM, NADH 3 mM, glucosa 50 mM, 0,5 U de glucosa deshidrogenasa, 160 U de catalasa, y extracto enzimático (aproximadamente 4 mg de proteína total). La mezcla se incubó a 22 °C con agitación (250 rpm, New Brunswick Incubator Model G25) con y sin la adición 0,08 U de la enzima HpaC (1U = 1 μmol/min mg proteína). A distintos intervalos de tiempo se tomaron muestras de 0,1 mi, se precipitaron las proteínas del extracto con 5% de ácido tricloroacético y se extrajeron las muestras en un tubo eppendorf con 0,1 mi de etanol. Después de 5 min de centrifugación en una microcentrífuga, el sobrenadante se recolectó y analizó por HPLC. Para ello, las muestras de 20 μl del extracto etanólico se analizaron en un HPLC Gilson equipado con una columna Lichrosphere 5 RP-8 (150 x 4.6 mm) utilizando una fase móvil ¡socrática de 50% acetonitrilo-agua con un flujo de 1 ml/min. Los picos de DBT y 2HBP coincidentes con los tiempos de retención correspondientes a los patrones de DBT y 2HBP fueron monitorizados con un espectrofotómetro UN a 248 nm. Los resultados de estos análisis se muestran en la Tabla 1. Tabla 1. Desulfuración de DBT de un extracto celular soluble obtenido de la cepa de P. putida KT2442 (pESOX3) incubado en las condiciones antes descritas y en presencia y en ausencia de la enzima flavin:NADH reductasa HpaC de E coli W.
EXTRACTO ADICIÓN INCUBACIÓN %DESAPARICION %APARICION
DE HpaC T--EMPO DE DBT DE 2HBP (MIN)
NO NO 30 0 0
NO SI 30 0 0
SI NO 15 7 7
SI NO 30 12 12
SI SI 15 75 19
SI SI 30 100 42
Ejemplo 2
Expresión del gen hpaC de E. coli W en la cepa P. putida KT2442
Para determinar si era posible expresar el gen hpaC de E. coli en la cepa P. putida KT2442 se procedió a clonar dicho gen en un plásmido que pudiera replicarse en P. putida, para lo cual se construyó el plásmido pBGl procediendo de la siguiente manera. En primer lugar, se digirió el plásmido pAJ28 (referencia) con las enzimas de restricción EcoRI y Pstl, y se aisló el fragmento EcoRI-EstI de 0,5 kb portador del gen hpaC. A continuación, este fragmento se ligó con el plásmido pVLT31 de 10 kb (de Lorenzo y col. (1993) Gene 123, 17-24) previamente digerido con las enzimas de restricción EcoRI y PstI. Los productos de la ligación se utilizaron para transformar la cepa de E. coli DH5α y se aisló un transformante resistente a tetraciclina que portaba el plásmido recombinante pBGl de 10,5 kb que contiene insertado el fragmento de DNA EcoRI-EstI de 0,5 kb portador del gen hpaC en el plásmido pVLT31. Εl plásmido pBGl así construido expresa el gen hpaC bajo el control del promotor Ptac. A continuación el plásmido pBGl se aisló de una cepa de E. coli DH5 (pBGl) portadora de dicho plásmido y se transfirió a la cepa de P. putida KT2442 mediante técnicas clásicas de conjugación triparental (de Lorenzo y Timmis (1994) Meth. Εnzymol. 235, 386-405). De esta manera se obtuvo la cepa P. putida KT2442 (pBGl). Todas las técnicas de manipulación de DNA empleadas para construir el plásmido pBGl de este Ejemplo están descritas en textos generales (p. ej., Sambrook, J., Fritsch, E.F. y Maniatis, T. 1989. Molecular Cloning. CSHL Press, Cold Spring Harbor, Nueva York). Las células de P. putida KT2442 (pBGl) se cultivaron a 30°C durante 12 horas en
5 mi de medio Luria-Bertani conteniendo tetraciclina (0,025 mg/ml) e IPTG 0,2 mM. Las células se recogieron por centrifugación a 6.000 x g durante 10 min a 4°C, se resuspendieron en 0,5 mi de tampón HEPES 50 mM, pH 8.0 y se rompieron por sonicación. La fracción soluble (extracto enzimático) fue separada de los restos celulares por centrifugación a 30.000 x g durante 10 min a 4 °C. La actividad FMN:NADH reductasa del extracto fue determinada espectrofotométricamente midiendo la desaparición del color amarillo, debido a la reducción del FMN por NADH a 450 nm (ε = 12.200 M"1 cm"1). La cubeta en la que se realizó el ensayo contenía FMN 0,06 mM, NADH 5 mM en tampón HEPES 50 mM, pH 8.0, en un volumen final de 0,5 mi. El ensayo se inició mediante la adición de 0,05 mi del extracto enzimático y se desarrolló a 22 °C. Como resultado de estos análisis, se pudo concluir que la cepa P. putida KT2442 (pBGl) producía una actividad FMN:NADH reductasa de 1,17 μmol /min mg proteína. Cuando los mismos análisis se realizaron con la cepa salvaje P. putida KT2442, los niveles de actividad FMN:NADH reductasa fueron indetectables en nuestras condiciones de ensayo.
Con este resultado se demostraba que la cepa P. putida KT2442 (pBGl) era capaz de expresar la actividad HpaC reductasa procedente de E. coli W.
Ejemplo 3 Construcción de la cepa P. putida KT2442 (pBG8) CECT 5279 y análisis de su actividad flavin.NADH reductasa.
Para poder construir el plásmido pBG8 lo primero que se hizo fue obtener un fragmento de DNA que portara la información genética correspondiente al gen hpaC de E coli W ATCC11105 y, para ello, se recurrió a la técnica de PCR. Para amplificar mediante PCR el gen hpaC se utilizaron como cebadores los oligonucleótidos hpaC5' (5'- CCGAATTCTAAGGAGGTTAAGATGCAATTAGATG-3'; se subraya el sitio de restricción EcóRI) y hpaC3' f5'-CCTCTAGATTAAATCGCAGCTTCCATTTCAG-3'; se subraya el sitio de restricción Xbaϊ) y como molde el plásmido pAJ28 antes descrito (Prieto y García (1994) J. Biol. Chem. 269, 22823-22829). El fragmento de DNA amplificado de 0,5 kb portador del gen hpaC se aisló y se digirió con las enzimas de restricción ^b l y EcoRI y el producto resultante se ligó con el plásmido pΕSOXl de 6,5 kb, que confiere resistencia a ampicilina ya que es un derivado del plásmido pUC18 (Amersham-Pharmacia) que contiene los genes dszABC (Gallardo y col. (1997) J. Bacteriol. 179, 7156-7160), previamente digerido con las mismas enzimas. Los productos de la ligación se utilizaron para transformar la cepa de E. coli HB101 y de los transformantes resistentes a ampicilina se seleccionó uno que portaban el plásmido pBG7 de 7 kb que contiene insertado el fragmento EcoKL-Xbal portador del gen hpaC en el plásmido pΕSOXl. Εl plásmido pBG7 así construido contiene los genes hpaC-dszA-dszB- dszC en forma de un operón pero, como el plásmido pUC18 del que deriva sólo puede replicarse en E. coli y no en Pseudomonas, no puede utilizarse para expresar dicho operón en Pseudomonas. Para poder expresar el operón hpaC-dszA-dszB-dszC en Pseudomonas fue necesario construir otro nuevo plásmido denominado pBG8. Para realizar esta nueva construcción, se aisló el plásmido pBG7 de E. coli HB 101 (pBG7) y se digirió con las enzimas de restricción EcoRI y Hindϊϊl. A continuación se aisló el fragmento de DNA EcoRI-HwdHI de 4,3 kb portador del operón hpaC-dszA-dszB-dszC. Este fragmento se ligó con el plásmido pVLT31 de 10 kb (de Lorenzo y col. (1993) Gene 123, 17-24) previamente digerido con las enzimas de restricción EcdBl y HindIIl. Los productos de la ligación se utilizaron para transformar la cepa E. coli HB101 y de los transformantes resistentes a tetraciclina se aisló uno que portaba el plásmido pBG8 de 14,3 kb que contiene insertado el fragmento EcoRI-H//.dIIII portador del operón hpaC- dszA-dszB-dszC en el plásmido pVLT31. Εl plásmido pBG8 así construido expresa el operón hpaC-dszA-dszB-ds∑C bajo el control del promotor Ptac. A continuación, el plásmido pBG8 se aisló de E. coli ΗB101 (pBG8) portadora de dicho plásmido y se trasfirió a una cepa de E. putida KT2442 se transfirió a la cepa de P. putida KT2442 mediante técnicas clásicas de conjugación triparental (de Lorenzo y Timmis (1994) Meth. Εnzymol. 235, 386-405). De esta manera se obtuvo la cepa E. putida KT2442 (pBG8) en lo sucesivo denominada CΕCT 5279.
Todas las técnicas de manipulación de DNA empleadas para construir los plásmidos pBG7 y pBG8 de este ejemplo están descritas en textos generales (p. ej., Sambrook, J., Fritsch, E.F. y Maniatis, T. 1989. Molecular Cloning. CSHL Press, Cold Spring Harbor, Nueva York).
La cepa de P. putida KT2442 (pBG8) CECT 5279 fue utilizada para determinar mediante un ensayo de células en reposo su capacidad desulfurante de DBT en comparación con la capacidad desulfurante de la cepa P. putida KT2442 (pESOX3).
Para determinar la actividad HpaC reductasa producida por las células de P. putida KT2442 (ρBG8) CECT 5279, éstas se cultivaron a 30°C durante 12 horas en 5 mi de medio Luria-Bertani conteniendo tetracicilina (0,025 mg/ml) e IPTG 0,2 mM. Las células se recogieron por centrifugación a 6.000 x g durante 10 min a 4 °C y se resuspendieron en 0,5 mi tampón HEPES 50 mM, pH 8.0 y se rompieron por sonicación. La fracción soluble (extracto enzimático) fue separada de los restos celulares por centrifugación a 30.000 x g durante 10 min a 4 °C. La actividad FMN:NADH reductasa del extracto fue determinada espectro-fotométricamente midiendo la desaparición del color amarillo debido a la reducción del FMN por NADH a 450 nm (ε = 12.200 M"1 cm"1). La cubeta en la que se realizó el ensayo contenía FMN 0,06 mM, NADH 5 mM en tampón HEPES 50 mM, pH 8.0, en un volumen final de 0,5 mi. El ensayo se inició mediante la adición de 0,05 mi del extracto enzimático y se desarrolló a 22°C. Como resultado de estos análisis, se pudo concluir que la cepa P. putida KT2442 (pBG8) producía una actividad FMN:NADH reductasa de 1,5 μmol/min mg proteína.
Ejemplo 4
Análisis de la actividad desulfurante de las cepas P. putida KT2442 (pBG8) CECT
5279 y P. putida KT2442 (pESOX3) en un sistema de células en reposo. Los análisis de la actividad desulfurante de las cepas P. putida KT2442 (pBG8) y
P. putida KT2442 (pESOX3) se hicieron determinando la capacidad de desulfurar DBT en un sistema de células en reposo.
Para iniciar la preparación de las células en reposo de P. putida KT2442 recombinantes para el ensayo de la desulfuración de DBT se parte de un preinóculo celular. Para preparar dicho preinóculo, las células de P. putida KT2442 recombinantes fueron cultivadas 12 horas a 30 °C con agitación (200 rpm, New Brunswick Incubator Model G25) en un matraz erlenmeyer de 100 mi, conteniendo 25 mi de un medio de Luria-Bertani con tetracicilina (0,025 mg/ml). Una vez terminada la fermentación las células, se recogieron por centrifugación a 6.000 x g durante 10 min a 4 °C y se lavaron dos veces con dos volúmenes de NaCl 0.9%. A continuación estas células se inocularon a una densidad óptica de 0.1 medida a 600 nm en un matraz erlenmeyer de 250 mi conteniendo 50 mi de medio mínimo BSM (NaH2PO4-H2O 4 g/1, K2HPO4-3H2O 4 g/1, NFLC1 2 g/1, MgCl2 0,2 g/1, CaCl2 1 mg/1, FeCl3 1 mg/1) y Mg2SO4 2 mM como fuente de azufre y 20 g/1 de glutamato como fuente de carbono. El pH final se ajustó a 7,0 con NaOH. El medio de cultivo también contenía tetraciclina (0,025 mg/ml) para asegurar la estabilidad del plásmido e IPTG 0,2 mM para inducir el promotor Ptac. Las células se incubaron a 30 °C con agitación (200 rpm, New Brunswick Incubator Model G25) hasta alcanzar una densidad óptica de 1.0 a 600 nm. Las células se separaronn del cultivo por centrifugación a temperatura ambiente en una centrífuga Sorval (8500 rpm, 5 min, rotor SS34). Las células se lavaron dos veces con NaCl 0.9% y el sedimento celular se resuspendió en tampón HEPES 50 mM, pH 8.0 para que la suspensión presentara una densidad óptica de 1 a 600 nm. Esta preparación constituye la suspensión de células en reposo que se utilizan para el ensayo de desulfuración de DBT.
Para determinar la actividad desulfurante de DBT de las células en reposo, 40 mi de estas células se colocaron en un erlenmeyer de 100 mi junto con 50 μl de DBT 20 mM preparado en 2-propanol. La mezcla se incubó a 30 °C con agitación (250 rpm, New Brunswick Incubator Model G25). A diferentes intervalos de tiempo se tomaron muestras de 0,1 mi y se extrajeron en un tubo eppendorf con 0,1 mi de etanol. Después de 5 min de centrifugación en una microcentrífuga, el sobrenadante se recolectó y analizó por HPLC. Para ello, las muestras de 20 μl del extracto etanólico se analizaron en un HPLC Gilson equipado con una columna Lichrosphere 5 RP-8 (150 x 4,6 mm) utilizando una fase móvil isocrática de 50% acetonitrilo-agua con un flujo de 1 ml/min. Los picos de DBT y 2HBP coincidentes con los tiempos de retención correspondientes a los patrones de DBT y 2HBP fueron monitorizados con un espectrofotómetro UN a 248 nm.
Los ensayos llevados a cabo con las células en reposo de P. putida KT2442 (pESOX3) y P. putida KT2442 (pBG8) CECT 5279 recombinantes mostrados en la Tabla 2 indican que la cepa portadora del plásmido pBG8 es mucho más eficiente en la desulfuración del DBT que la cepa portadora del plásmido pESOX3, lo que se demuestra la ventaja y enorme utilidad de esta invención. Tabla 2.
Ensayo de desulfuración de DBT a distintos tiempos de reacción utilizando células en reposo de P. putida KT2442 (pESOX3) y P. putida KT2442 (pBG8) CECT 5279.
CEPA TIEMPO %DESAPARICION %APARICION
(MIN) DE DBT DE 2HBP
P. putida KT2442 15 7 0
(pESOX3) 30 20 0
45 20 0
60 30 4
P. putida KT2442 (pBG8) 15 56 8
30 75 15
45 92 22
60 100 27
Ejemplo 5
Transferencia del plásmido pBG8 a otras bacterias
Para determinar la posibilidad de que el plásmido pBG8 pueda transferir a otras bacterias la capacidad de desulfurar DBT y utilizar este compuesto como única fuente de azufre para su crecimiento se transformaron con el plásmido pBG8, que porta los genes hpaC-dszA-dszB-dszC, dos bacterias diferentes, una cepa de E. coli DH5α y una cepa de Ralstonia eutropha JMP289.
La cepa de E. coli DH5α se transformó mediante un procedimiento convencional utilizando células competentes preparadas con RbCl (Sambrook, J., Fritsch, E.F. y Maniatis, T. 1989. Molecular Cloning. CSHL Press, Cold Spring Harbor, Nueva York). Los transformantes de E. coli DH5α que portan el plásmido pBG8 se seleccionaron en un medio Luria-Bertani conteniendo tetraciclina (0,010 mg/ml). Por otro lado la cepa E. coli DH5α se transformó con el plásmido pΕSOX3 que expresa los genes dszA-dszB-dszC pero que carece del gen hpaC Los transformantes de E. coli DH5α que portan el plásmido pΕSOX3 también se seleccionaron en un medio de Luria-Bertani conteniendo tetraciclina (0,012 mg/ml). A continuación las cepas E. coli DH5α (pBG8), E. coli DH5α (pΕSOX3) y la propia cepa parental no recombinante E. coli DH5α se inocularon independientemente en medio mínimo BSM conteniendo tetraciclina (0,010 mg/ml), IPTG 0,2 M, DBT 0,2 mM como fuente de azufre y glicerol al 0,2% como fuente de carbono. Sólo la cepa de E. coli DH5α (pBG8) fue capaz de crecer en este medio (Tabla 3).
La cepa de R eutropha JMP289 se transformó con el plásmido pBG8 mediante técnicas clásicas de conjugación triparental (de Lorenzo y Timmis (1994) Meth. Εnzymol. 235, 386-405). Los transformantes deR. eutropha JMP289 que portan el plásmido pBG8 se seleccionaron en un medio Luria-Bertani conteniendo tetraciclina (0,010 mg/ml). Como control la misma cepa de R. eutropha JMP289 se trasformó por el mismo procedimiento con el plásmido parental pNLT31. A continuación las cepas R eutropha JMP289 (pBG8), R eutropha JMP289 (pNLT31) y la propia cepa parental no recombinante R eutropha JMP289 se inocularon independientemente en medio mínimo BSM conteniendo tetraciclina (0,010 mg/ml), D?TG 0,2 mM, DBT 0,2 mM como fuente de azufre y fructosa al 0,2% como fuente de carbono. Sólo la cepa de R eutropha JMP289 (pBG8) fue capaz de crecer en este medio (Tabla 3).
Con esto se demuestra que el plásmido pBG8 es capaz de transferir la capacidad de desulfurar el DBT a otras bacterias distintas de P. putida donde sea capaz de replicarse, como es el caso deE. coli o R. eutropha para que estas utilicen el azufre de este compuesto para su crecimiento, y que esta capacidad va ligada a la presencia de los cuatro genes hpaC- dszA-dszB-dszC.
Tabla 3
Ensayo de utilización del DBT como única fuente de azufre para el crecimiento de distintas bacterias transformadas con distintos plásmidos
CEPA PLASMIDO GENOTIPO CRECIMIENTO RELEVANTE coli DH5α — NEGATIVO
E coΛ DH5α pΕSOX3 dszABC NEGATIVO
E. co/z DH5α pBG8 hpaC dszABC POSITIVO
R. eutropha — NEGATIVO
R eutropha PNLT31 — NEGATIVO
R eutropha pBG8 hpaC dszABC POSITIVO

Claims

REIVINDICACIONES
1. Un procedimiento para desulfurar dibenzotiofeno utilizando una bacteria recombinante de Pseudomonas putida que porta en un plásmido de amplio espectro de huésped las secuencias de nucleótidos que codifican las enzimas necesarias para la desulfuración del dibenzotiofeno, caracterizado por las siguientes operaciones: a) Aislar el fragmento de DNA que codifica las enzimas DszA, DszB y DszC de la bacteria Rhodococcus erythropolis IGTS8 y que son necesarias para la desulfuración del dibenzotiofeno. b) Aislar el fragmento de DNA que codifica en Escherichia coli W ATCC11105 la enzima flavin:NADH reductasa HpaC que proporciona el FMNH2 necesario para la desulfuración del dibenzotiofeno. c) Construcción de un plásmido de amplio espectro de huésped conteniendo un operón que porta las secuencias que codifican DszA, DszB, DszC y HpaC bajo el control de un promotor regulable y funcional en un gran número de bacterias gram- negativas, d) Introducción de dicho plásmido en las células de Pseudomonas, y e) Uso de dichas células recombinantes para desulfurar dibenzotiofeno.
2.- Procedimiento según la reivindicación 1 caracterizado porque: a) El operón contiene los genes dszA, dszB, dszC que codifican las monooxigenasas
DszA y DszC y la desulfinasa DszB de Rhodococcus erythropolis IGTS8 y el gen hpaC que codifica una flavin:NADH reductasa de Escherichia coli W ATCC11105. b) El plásmido construido es el pBG8, c) La introducción de dicho plásmido en células de P. putida KT2442 y que se corresponde con la bacteria CECT 5279, y d) El uso de las células de dicha bacteria CECT 5279 para desulfurar dibenzotiofeno.
3. Un procedimiento según una cualquiera de las reivindicaciones 1 y 2, caracterizado porque la flavin:NADH reductasa utilizada es homologa a la flavin:NADH reductasa HpaC de Escherichia coli W ATCC11105.
4.- Un procedimiento según una cualquiera de las reivindicaciones 1 a la 3, caracterizado porque las células transformadas se cultivan en un medio que permita la desulfuración del dibenzotiofeno.
5.- Un procedimiento según una cualquiera de las reivindicaciones 1 a la 4 caracterizado, porque las células transformadas se cultivan en medios que permitan la expresión de las proteínas DszA, DszB, DszC y HpaC y porque estas proteínas se utilizan, tanto dentro de células en crecimiento como dentro de células en reposo, para la desulfuración del dibenzotiofeno.
6.- Un procedimiento para desulfurar dibenzotiofeno utilizando una bacteria recombinante distinta de Pseudomonas putida, caracterizado porque la bacteria transformada y utilizada para desulfurar dibenzotiofeno porta el plásmido pBG8 descrito en las reivindicaciones 1 y
2.
7. Un procedimiento, según la reivindicación 6, caracterizado porque la flavin:NADH reductasa utilizada es homologa a la flavin.NADH reductasa HpaC de Escherichia coli W ATCC11105.
8.- Un procedimiento según una cualquiera de las reivindicaciones 6 y 7, caracterizado porque las células transformadas se cultivan en un medio que permita la desulfuración del dibenzotiofeno.
9.- Un procedimiento según una cualquiera de las reivindicaciones de la 6 a la 8, caracterizado porque las células transformadas se cultivan en medios que permitan la expresión de las proteínas DszA, DszB, DszC y HpaC y porque estas proteínas se utilizan, tanto dentro de células en crecimiento como dentro de células en reposo, para la desulfuración del dibenzotiofeno.
PCT/ES2001/000112 2000-03-20 2001-03-20 Un procedimiento para desulfurar dibenzotiofeno utilizando como biocatalizador una cepa de pseudomonas putida recombinante WO2001070996A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU42529/01A AU4252901A (en) 2000-03-20 2001-03-20 Method for desulfurization of dibenzothiophene using a recombinant pseudomonas putida strain as biocatalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200000661A ES2168945B1 (es) 2000-03-20 2000-03-20 Un procedimiento para desulfurar dibenzotiofeno utilizando como biocatalizador una cepa de pseudomonas putida recombinante.
ESP200000661 2000-03-20

Publications (1)

Publication Number Publication Date
WO2001070996A1 true WO2001070996A1 (es) 2001-09-27

Family

ID=8492772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2001/000112 WO2001070996A1 (es) 2000-03-20 2001-03-20 Un procedimiento para desulfurar dibenzotiofeno utilizando como biocatalizador una cepa de pseudomonas putida recombinante

Country Status (3)

Country Link
AU (1) AU4252901A (es)
ES (1) ES2168945B1 (es)
WO (1) WO2001070996A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2232290B1 (es) * 2003-07-16 2006-02-16 Universidad Complutense De Madrid Procedimiento de cultivo de la pseudomonas putida recombinante (cect 5279) para su utilizacion en la desulfuracion de dibenzotiofeno.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011185A1 (en) * 1995-09-21 1997-03-27 Energy Biosystems Corporation DszD UTILIZATION IN DESULFURIZATION OF DBT BY RHODOCOCCUS sp. IGTS8
WO1998045447A1 (en) * 1997-04-07 1998-10-15 Energy Biosystems Corporation Dsz gene expression in pseudomonas hosts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011185A1 (en) * 1995-09-21 1997-03-27 Energy Biosystems Corporation DszD UTILIZATION IN DESULFURIZATION OF DBT BY RHODOCOCCUS sp. IGTS8
WO1998045447A1 (en) * 1997-04-07 1998-10-15 Energy Biosystems Corporation Dsz gene expression in pseudomonas hosts

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GALAN B. ET AL.: "Functional analysis of the small component of the 4-hidroxyphenil acetate 3-monooxigenase of escherichia coli w : A prototype of a new flavin : NAD (P)H reductase subfamily", J. BACTERIOL., vol. 182, no. 3, February 2000 (2000-02-01), pages 327 - 636 *
GALLARDO M. ET AL.: "Designing recombinant pseudomonas strains to enhance biodensulfurization", J. BACTERIOL., 1997, pages 7156 - 7160 *
PRIETO M. ET AL.: "Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of escherichia coli", J. BIOL. CHEM., vol. 269, no. 36, 1994, pages 22823 - 22829 *

Also Published As

Publication number Publication date
AU4252901A (en) 2001-10-03
ES2168945B1 (es) 2003-12-01
ES2168945A1 (es) 2002-06-16

Similar Documents

Publication Publication Date Title
JP5473927B2 (ja) 新規代謝経路による再生可能な原料からの発酵によるアセトン生産
US9181539B2 (en) Strains for the production of flavonoids from glucose
Mann et al. Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum
US10246726B2 (en) Photosynthetic production of 3-hydroxybutyrate from carbon dioxide
US20130071892A1 (en) PROCESS FOR PRODUCTION OF POLYHYDROXYALKANOIC ACID USING GENETICALLY MODIFIED MICROORGANISM HAVING ENOYL-CoA HYDRATASE GENE INTRODUCED THEREIN
ES2251735T3 (es) Ciclacion de cofactor enzimatico utilizando piridina nucleotido transhidrogenasa soluble.
CN107429271B (zh) 从一碳化合物生物合成产物
JP2021506316A (ja) ネペタラクトールオキシドレダクターゼ、ネペタラクトールシンターゼ、及びネペタラクトンを産生する能力がある微生物
US20100203614A1 (en) Fatty aldehyde reductase
Chen et al. The SCIFF‐derived ranthipeptides participate in quorum sensing in solventogenic clostridia
US5352599A (en) Co-enzyme-independent L-sorbosone dehydrogenase of gluconobacter oxydans: isolation, characterization, and cloning and autologus expression of the gene
US20050196788A1 (en) Methods and compositions for NAD(P)(H) oxidases
ES2395945T3 (es) Expandasas mutantes
CN108587990B (zh) 一种有机磷降解活性纳米颗粒及其制备方法与应用
US10227617B2 (en) Sequestration of carbon dioxide with hydrogen to useful products
ES2741637T3 (es) Bacteria productora de alcohol isopropílico altamente productora
KR100507127B1 (ko) 폴리하이드록시알카노에이트 합성 효소 및 상기 효소를 코딩하는 유전자
WO2001070996A1 (es) Un procedimiento para desulfurar dibenzotiofeno utilizando como biocatalizador una cepa de pseudomonas putida recombinante
Banh et al. Establishment of Tn 5096-based transposon mutagenesis in Gordonia polyisoprenivorans
US9404139B2 (en) Mutated cephalosporin hydroxylase and its application in deacetylcephalosporanic acid synthesis
Warren et al. 5‐Aminolaevulinic Acid Synthase and Uroporphyrinogen Methylase: Two Key Control Enzymes of Tetrapyrrole Biosynthesis and Modification
WO2000004134A1 (fr) Nouveau gene et transformant portant ce gene
Venkateswar Reddy et al. Evaluation of the function of a luciferase-like monooxygenase homologue in 4, 4´-dithiodibutyric acid catabolism in Rhodococcus erythropolis MI2
Reddy et al. Evaluation of the function of a luciferase‑like monooxygenase homologue in 4, 4‑dithiodibutyric acid catabolism in Rhodococcus erythropolis MI2
Lofi Characterization of the Sulfite-Generating rDsrABL Complex of Allochromatium vinosum

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP