CN108587990B - 一种有机磷降解活性纳米颗粒及其制备方法与应用 - Google Patents

一种有机磷降解活性纳米颗粒及其制备方法与应用 Download PDF

Info

Publication number
CN108587990B
CN108587990B CN201810325191.7A CN201810325191A CN108587990B CN 108587990 B CN108587990 B CN 108587990B CN 201810325191 A CN201810325191 A CN 201810325191A CN 108587990 B CN108587990 B CN 108587990B
Authority
CN
China
Prior art keywords
ala
leu
gly
val
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810325191.7A
Other languages
English (en)
Other versions
CN108587990A (zh
Inventor
龙丽娟
杨键
李茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Sea Institute of Oceanology of CAS
Original Assignee
South China Sea Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Sea Institute of Oceanology of CAS filed Critical South China Sea Institute of Oceanology of CAS
Priority to CN201810325191.7A priority Critical patent/CN108587990B/zh
Publication of CN108587990A publication Critical patent/CN108587990A/zh
Application granted granted Critical
Publication of CN108587990B publication Critical patent/CN108587990B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/27Removal of unwanted matter, e.g. deodorisation or detoxification by chemical treatment, by adsorption or by absorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种有机磷降解活性纳米颗粒及其制备方法与应用。本发明通过构建表达β‑酮基硫解酶、乙酰乙酰CoA还原酶、有机磷酸酐水解酶与聚羟基脂肪酸酯合成酶的融合蛋白和有机磷酸酐水解酶与聚羟基脂肪酸酯结合蛋白的融合蛋白的工程菌,将获得的工程化有机磷酸酐水解酶通过共价和非共价两种方式联合固定于聚羟基脂肪酸酯纳米颗粒表面,通过发酵法一步高效生产具备有机磷降解活性的纳米颗粒;其具有较高的稳定性和可回收利用效果。相较于传统酶固定化方法,本发明无需分别制备酶蛋白和固定化载体,可一步法完成固定化颗粒的生产,生产成本低廉。本发明在果蔬农药残留净化与环境污染物治理方面具有广泛的用途。

Description

一种有机磷降解活性纳米颗粒及其制备方法与应用
技术领域
本发明属于生物技术领域,具体涉及一种有机磷降解活性纳米颗粒及其生产工程菌株、发酵制备方法和应用。
背景技术
人类生产活动排放大量有机污染物,造成环境污染,威胁生态安全与人类健康。有机磷化合物是一类膦酸或氨基磷酸的酯或硫醇衍生物,通过与乙酰胆碱酯酶活性中心丝氨酸共价结合发挥毒力。自1937年首次合成以来,被广泛应用与人类战争及生产活动。二战期间G型和V型有机磷神经毒剂是重要化学武器,在现代工农业领域有机磷被广泛用作农药、阻燃剂、石油添加剂和增塑剂。世界有机磷化学武器总储存达20万吨,我国有机磷农药年需求量约为8万吨,占总农药使用量的一半以上,有机磷阻燃剂年需求量约为3万吨。有机磷化合物规模应用和排放对全球生态安全造成威胁,世界每年有近300万起因摄入有机磷化合物引发的中毒事件。传统物理(填埋、冲刷稀释等)、化学法(次氯酸、强碱等)修复环境有机磷污染存在无法彻底清除有机磷及引入二次污染的缺陷,而生物法利用活性菌剂或固定化酶等生物制剂可在温和条件下高效降解环境或食品有机磷残留,具有其他两种方法不可比拟的优势。目前研究较多的微生物有机磷降解酶主要包括三类:有机磷水解酶(organophosphorus h ydrolase,OPH)、甲基对硫磷水解酶(methyl parathionhydrolase,MPH)和有机磷酸酐水解酶(organophosphorous acid anhydrolase,OPAA)。申请人前期将海洋细菌来源的二肽酶在体外进化为有机磷酸酐水解酶,该突变酶对对氧磷和甲基对硫磷的水解效率常数分别提高了30.68倍和8837.71倍(专利申请号:CN201610705142.7)。
固定化酶往往具有较游离酶更优良的重复利用性和更高的稳定性,许多酶制剂以固定化酶的形式应用。常规酶的固定化是通过物理、化学方法将酶蛋白与固定化载体结合,蛋白与载体之间的连接方式包括共价结合、非共价结合和包埋等。常规酶的固定化需要分别制备游离酶蛋白和固定化载体,操作繁琐,成本相对高昂。因而,许多研究探索了一步发酵法制备固定化生物催化剂的方法,最普遍的做法是通过锚定蛋白将酶蛋白展示在微生物细胞(如大肠杆菌、酵母等)表面,获得的重组微生物细胞可作为固定化酶使用。近年还出现了将酶蛋白固定于芽孢杆菌属内生芽孢表面的研究(Highly active spore biocatalystby self-assembly of co-expressed anchoring scaffoldin and multimeric enzyme,doi:10.1002/bit.26492)。相对微米级微生物细胞,纳米级芽孢颗粒具有更高的比表面积,原则上可结合更多的酶蛋白。上述固定化酶发酵法制备技术中,酶蛋白与微生物细胞/芽孢表面结合主要依赖锚定蛋白与细胞/芽孢壁上的有机高分子物质间形成的非共价作用力。该非共价作用力易受环境因素(如表面活性剂、pH等)的影响而致酶蛋白与载体分离。
聚羟基脂肪酸酯(polyhydroxyalkanoates,PHA)是微生物产生的一类高分子生物聚酯,在细胞内以不溶性颗粒形式存在(大小约20~100nm),被认为是细菌碳源和能量的贮藏物质。多个酶和蛋白参与了PHA的合成:β-酮基硫解酶(phaA)和乙酰乙酰CoA还原酶(phaB)串联催化单体羟基脂肪酰CoA的合成;PHA合酶(phaC)催化羟基脂肪酰CoA单体脱去CoA聚合形成PHA,phaC蛋白是一种可溶的两性分子,通过共价结合的方式催化聚酯链的延伸;PHA颗粒结合蛋白(phaP)是一种两性蛋白,对PHA颗粒的形成具有调节作用,其疏水区与PHA颗粒接触,亲水区朝向胞浆。共表达蛋白phaA、phaB、phaC编码基因可在大肠杆菌中实现聚羟基脂肪酸酯的合成。
发明内容
本发明的目的是提供一种具有更加优良的稳定性和可回收利用率的有机磷降解活性的纳米颗粒,以及生产工程菌、制备方法和在污染物净化中的应用。
本发明的有机磷降解活性纳米颗粒是通过联合共价与非共价结合方式将有机磷酸酐水解酶固定于聚羟基脂肪酸酯颗粒表面。用于制备该有机磷降解活性纳米颗粒的工程菌是将聚羟基脂肪酸酯合成相关酶及含有有机磷酸酐水解酶融合蛋白的编码基因同时转入宿主细胞获得,该工程菌可用于发酵生产有机磷降解活性纳米颗粒,其可用于日化、环保等领域以净化有机磷污染残留。
本发明通过以下技术方案实现的:
重叠延伸聚合酶链式反应将有机磷酸酐水解酶的羧基端与聚羟基脂肪酸酯合成酶phaC的氨基端的编码基因融合,形成融合蛋白OPAAphaC的氨基酸序列如SEQ ID NO.1所示。重叠延伸聚合酶链式反应构建具有3个串联聚羟基脂肪酸酯结合蛋白phaP的融合蛋白(phaP)3,并将有机磷酸酐水解酶的氨基端与串联的聚羟基脂肪酸酯结合蛋白(phaP)3的羧基端的编码基因融合,形成融合蛋白(phaP)3OPAA的氨基酸序列如SEQ ID NO.2所示。
将β-酮基硫解酶phaA(其氨基酸序列如SEQ ID NO.3所示)、乙酰乙酰CoA还原酶phaB(其氨基酸序列如SEQ ID NO.4所示)、有机磷酸酐水解酶与聚羟基脂肪酸酯合成酶的融合蛋白OPAAphaC、有机磷酸酐水解酶与聚羟基脂肪酸酯结合蛋白的融合蛋白(phaP)3OPA A的编码基因通过表达载体同时导入宿主细胞以获得合成有机磷降解活性纳米颗粒的工程菌。所述β-酮基硫解酶、乙酰乙酰CoA、有机磷酸酐水解酶与聚羟基脂肪酸酯合成酶的融合蛋白OPAAphaC、有机磷酸酐水解酶与聚羟基脂肪酸酯结合蛋白的融合蛋白(phaP)3OPAA还原酶的编码基因与表达载体连接的方式可包括共用一个启动子构成多顺反子,或分别使用两个启动子构成多表达盒,或分别插入含不同复制子的两个表达载体启动子下游同时转入宿主细胞。所用的载体为常规商业载体,可从生物公司,如Novagen等,购买获得。基因与表达载体的连接方式及表达载体的类型可在保证实现本发明目的的前提下进行改变或调整。
本发明的工程菌E.coli BL21(DE3)-NANOopaa典型的发酵培养基的组分:蛋白胨含量为1~30g/L,酵母粉含量为1~30g/L,氯化钠含量为0.5~15g/L,诱导剂为0.5~10g/L乳糖或0.1~2mmol/L异丙基硫代半乳糖苷,余量为水。典型的发酵温度为15~37℃。
本发明典型的从工程菌发酵产物中分离收集有机磷降解活性纳米颗粒的方法,包括细胞破碎、超速离心分离、超滤洗涤三个步骤。高压匀浆或超声波细胞破碎,80000~100000g超速离心2~4h,所用超速离心介质为甘油或蔗糖溶液,截留分子量100~300kDa超滤清洗纳米颗粒。
因此本发明的第一个目的是提供一种生产有机磷降解活性纳米颗粒的工程菌,其是在宿主细胞中表达β-酮基硫解酶phaA、乙酰乙酰CoA还原酶phaB、有机磷酸酐水解酶与聚羟基脂肪酸酯合成酶的融合蛋白OPAAphaC和有机磷酸酐水解酶与聚羟基脂肪酸酯结合蛋白的融合蛋白(phaP)3OPAA;
所述的β-酮基硫解酶phaA的氨基酸序列如SEQ ID NO.3所示,
所述的乙酰乙酰CoA还原酶phaB的氨基酸序列如SEQ ID NO.4所示,
所述的有机磷酸酐水解酶与聚羟基脂肪酸酯合成酶的融合蛋白OPAAphaC的氨基酸序列如SEQ ID NO.1所示,
所述的有机磷酸酐水解酶与聚羟基脂肪酸酯结合蛋白的融合蛋白(phaP)3OPAA的氨基酸序列如SEQ ID NO.2所示。
优选,所述的宿主细胞是大肠杆菌Escherichia coli BL21(DE3)。
本发明还提供一种有机磷降解活性纳米颗粒的制备方法,其是将所述的工程菌进行发酵培养,然后经细胞破碎、超速离心分离、超滤洗涤制备得到有机磷降解活性纳米颗粒。
优选,所述的有机磷降解活性纳米颗粒的制备方法,包括以下步骤:
a.将所述的工程菌进行发酵培养,发酵培养基为所述的工程菌的常规发酵培养基并添加有0.5~10g/L乳糖或0.1~2mmol/L异丙基硫代半乳糖苷作为诱导剂,培养温度为15~37℃;
b.收集步骤a的诱导发酵液,离心,弃上清,洗涤菌体,然后再用pH7.5的10mM磷酸盐缓冲液重悬菌体,将菌悬液超声破碎30min,超声5s、间歇5s,充分裂解菌体细胞,然后将细胞裂解液用甘油密度梯度离心,80000~100000g离心2~4h,离心后将聚羟基脂肪酸酯颗粒层取出,加入无菌水,使用100kDa~300kDa截留分子量的超滤管进行多次洗涤,冷冻干燥即得有机磷降解活性纳米颗粒。
优选,所述的工程菌的常规发酵培养基含有蛋白胨1~30g/L,酵母粉1~30g/L,氯化钠0.5~15g/L。
本发明还提供一种根据上述方法制备得到的有机磷降解活性纳米颗粒。
优选,所述的有机磷降解活性纳米颗粒的直径为20-100nm。
本发明还提供所述的有机磷降解活性纳米颗粒在降解有机磷污染物中的应用。
本发明利用基因工程手段将获得的工程化有机磷酸酐水解酶通过共价和非共价两种方式联合固定于聚羟基脂肪酸酯纳米颗粒表面,通过发酵法一步高效生产具备有机磷降解活性的纳米颗粒。
本发明的有益效果如下:
本发明提供了一种新的有机磷降解活性纳米颗粒,该纳米颗粒为有机磷酸酐水解酶通过共价结合和非共价结合固定于聚羟基脂肪酸聚酯颗粒的表面。该纳米颗粒具有降解有机磷污染物的能力,可回收利用率高,重复利用效果好,相对于游离酶蛋白,该纳米颗粒固定化酶具有更优良的稳定性(温度、pH和表面活性剂)。相较于传统酶固定化方法,本发明无需分别制备酶蛋白和固定化载体,可一步法完成固定化颗粒的生产,生产成本低廉。本发明的在果蔬农药残留、环境污染物净化等方面具有广泛的用途。
附图说明
图1是有机磷降解活性纳米颗粒生产工程菌构建方案示意图。
图2是发酵生产有机磷降解活性纳米颗粒荧光显微镜(A为对照组,B为实验组)及投射电镜检测(C为对照组,D为实验组)。
图3是温度、pH对有机磷降解活性纳米颗粒与游离有机磷酸酐水解酶OPAA4301的影响。
图4是有机磷降解活性纳米颗粒的重复回收利用率。
图5是游离有机磷酸酐水解酶OPAA4301和有机磷降解活性纳米颗粒对表面活性剂的稳定性表征,图中游离酶表示游离有机磷酸酐水解酶OPAA4301,活性纳米颗粒表示有机磷降解活性纳米颗粒。
具体实施方式
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
在本发明的实施例中所用到的材料包括:重组质粒pET-22b-opaa4301由本实验保藏和构建,该重组质粒是将编码有机磷酸酐水解酶OPAA4301的编码基因插入至商用表达载体pET22b(购自novagen公司)的多克隆位点NcoI和XhoI之间获得;钩虫贪铜菌(Cupriavidus necator)BNCC137386购自北纳生物公司;表达质粒pETDuet-1和pACYCDuet-1购自淼灵质粒平台,大肠杆菌Escherichia coli BL21(DE3),大肠杆菌E.coli trans-T1,限制性内切酶,Pfu DNA聚合酶,T4DNA连接酶,Steam Less无缝连接试剂盒均购自北京全式金生物科技有限公司;胶回收试剂盒购自北京康润诚业生物科技有限公司;质粒提取试剂盒、基因组提取试剂购自Magen美基生物。
有机磷酸酐水解酶OPAA4301的编码基因(有机磷酸酐水解酶基因opaa4301)的核苷酸序列已公开于专利号为201610705142.7,专利名称为一种二肽酶突变体及其编码基因和应用的专利申请中;具体为专利201610705142.7说明书序列表中SEQ ID NO.1所示氨基酸序列。
实施例1
1.1Cupriavidus necator基因组DNA的提取
(1)培养5mL放线菌培养物,取1mL的培养物12000rpm离心2min;
(2)沉淀物中加入567μL TE buffer,反复吹打使之重悬。加入30μL 20mg/mL溶菌酶,37℃水浴1h;
(3)加入300μL 10%SDS和30μL 20mg/mL蛋白酶K,混匀,37℃水浴1h;
(4)加入100μL 5M NaCl,充分混匀,再加入80μL CTAB/NaCl溶液,混匀,65度水浴10min;
(5)分别加入等体积酚/氯仿,氯仿溶液抽提一次;
(6)加入0.6倍体积异丙醇,轻轻混合,12000rpm离心5min,弃上清,70%乙醇洗涤两次,超净台风干;
(7)加入50μL TE缓冲液,4℃过夜溶解DNA。
1.2目的基因的扩增
以Cupriavidus necator基因组DNA为模板,根据Genbank公布的基因序列(Genbank登录号:CAJ92573.1)设计引物phaA no start NcoⅠ(5’-AGATATACCATGGGCACTGACGTTGTCATCGTATC-3’)和phaA NotⅠ(5’-GCATTATGCGGCCGCTTTGCGCTCGACTGCCAGCGCCAC-3’)扩增β-酮基硫解酶编码基因;以Cupriavidus necator基因组DNA为模板,根据Genbank公布的基因序列(Genbank登录号:CAJ92574.1)设计引物phaB no start NdeI(5’–GGAGATATACATATGACTCAGCGCATTGCGTATGTGACC-3’)和phaB stop KpnI(5’-AGACTCGAGGGTACCTTAGCCCATATGCAGGCCGCCGTTGA-3’)扩增乙酰乙酰CoA还原酶编码基因。
以Cupriavidus necator基因组DNA为模板,根据Genbank公布的基因序列(Genbank登录号:FJ897463)设计引物phaC no start NcoⅠ(5’-AGATATACCATGGGCGCGACCGGCAAAGGCGCGGCAGCTTCCACGCAG-3’)和phaC stop AflIⅠ(5’-GCATTATCTTAAGTCATGCCTTGGCTTTGACGTATCGCCCAGGCGCG-3’)扩增聚羟基脂肪酸酯合成酶编码基因;以重组质粒pET-22b-opaa4301为模板,使用opaa4301no start EcoRⅠ(5’-AGATATAGAATTCGGATAAATTAGCGGTGTTATATG-3’)和opaa4301linker(5’-CAGAACCACCACCGCTACCACCACCATCTAAGTGTAGATCACGGG-3’)扩增有机磷酸酐水解酶OPAA4301编码基因;使用重叠延伸PCR的方法将聚羟基脂肪酸酯合成酶和有机磷酸酐水解酶OPAA4301的基因融合为一条基因opaa4301-linker-phaC,有机磷酸酐水解酶OPAA4301编码基因在5’端,聚羟基脂肪酸酯合成酶编码基因在3’端。
以Cupriavidus necator基因组DNA为模板,使用引物phaP-1no start NdeⅠ(5’-GCG CCATATGATCCTCACCCCGGAACAAGTTGCAGC)和phaP-1linker BglⅡ(5’-GCGCAGA TCTTGAAATCCTTCCCTCGATCCCGAGGTTGTTGTTATTGTTGGCAGCCGTCGTCTTCTTTGCCGT-3’),phaP-2linkerBglⅡ(5’-GCGCAGATCTATCCTCACCCCGGAACAAGTTGC-3’)和phaP-2linker KpnⅠ(5’-GCGCGGTACCTGAAATCCTTCCCTCGATCCCGAGGTTGTTGT TATTGTTGGCAGCCGTCGTCTTCTTTGCCGT-3’),phaP-3linker KpnⅠ(5’-GCGCGGTACC ATCCTCACCCCGGAACAAGTTGC-3’)和phaP-3linker(5’-TGAAATCCTTCCCTCGATCCC GAGGTTGTTGTTATTGTTGGCAGCCGTCGTCTTCTTTGCCGT-3’)分别扩增3条含有不同酶切位点的聚羟基脂肪酸酯结合蛋白编码基因phaP-1,phaP-2,phaP-3;以重组质粒pET-22b-o paa4301为模板,使用引物opaa4301linker-1(5’-GAGGGAAGGATTTCAGATAAATTAGCG GTGTTATATGCCG-3’)和opaa4301stop AvrII(5’-GCGCCCTAGGTCAATCTAAGTGTAGAT CACGGG-3’)扩增有机磷酸酐水解酶OPAA4301编码基因;使用重叠延伸PCR的方法将聚羟基脂肪酸酯结合蛋白编码基因phaP-3片段与有机磷酸酐水解酶OPAA4301基因片段融合为一条基因phaP-3-opaa4301,聚羟基脂肪酸酯结合蛋白编码基因phaP-3在5’端,有机磷酸酐水解酶OPAA4301编码基因在3’端。
1.3有机磷降解活性纳米颗粒生产工程菌的构建
1.3.1羟基脂肪酸单体合成工程菌
用NcoⅠ和NotⅠ限制性内切酶对pACYCDuet-1进行双酶切线性化,将扩增获得的β-酮基硫解酶phaA编码基因片段纯化后通过无缝连接试剂盒连接到线性化载体上,转化入trans-T1大肠杆菌感受态细胞,菌落PCR及酶切验证挑取阳性转化子。提取阳性菌株质粒,用NdeⅠ和KpnⅠ进行双酶切,相同的方法将乙酰乙酰CoA还原酶phaB的编码基因片段连接到线性质粒上,转化入trans-T1大肠杆菌感受态细胞中。获得的重组质粒pACYCDuet-1-phaAB中同时含有β-酮基硫解酶和乙酰乙酰CoA还原酶编码基因,两个基因分别位于两个T7启动子下游。将表达载体pACYCDuet-1-phaAB转化至大肠杆菌BL21(DE3)中,该重组菌即羟基脂肪酸单体合成工程菌E.coli BL21(DE3)-MONO。
1.3.2融合蛋白共表达元件的构建
分别用NdeⅠ和BglⅡ对质粒pETDuet-1和实施例1.2获得的聚羟基脂肪酸酯结合蛋白phaP-1进行双酶切、连接,转化入trans-T1大肠杆菌感受态,挑取阳性克隆子,提取质粒pETDuet-1-phaP-1。将质粒pETDuet-1-phaP-1和实施例1.2获得的phaP-2基因片段用BglⅡ和Kpn I进行双酶切、连接,挑取阳性克隆子并提取质粒pETDuet-1-phaP-2。将质粒pETDuet-1-phaP-2和实施例1.2获得的融合基因片段phaP-3-opaa4301使用Kpn I和AvrⅡ进行酶切、连接,挑取阳性克隆子,提取质粒即得三联聚羟基脂肪酸酯结合蛋白与有机磷酸酐水解酶融合表达载体pETDuet-(phaP)3-opaa。
将实施例1.2获得的聚羟基脂肪酸酯合成酶和有机磷酸酐水解酶OPAA4301的融合基因opaa4301-linker-phaC与质粒pETDuet-(phaP)3-opaa用限制性内切酶EcoRⅠ和AflⅠI分别酶切并连接,转化入trans-T1大肠杆菌感受态细胞,平板过夜培养,挑取阳性转化子,菌液PCR及酶切验证,提取重组质粒pETDuet-(phaP)3opaa-opaaphaC。
所得质粒pETDuet-(phaP)3opaa-opaaphaC即可用于有机磷酸酐水解酶OPAA4301-聚羟基脂肪酸酯合成酶、聚羟基脂肪酸酯结合蛋白-有机磷酸酐水解酶融合蛋白的共表达,两个融合蛋白的编码基因分别位于表达载体两个启动子的下游。将共表达质粒电转化至工程菌E.coli BL21(DE3)-MONO细胞中,及获得可用于生产有机磷降解活性纳米颗粒的工程菌E.coli BL21(DE3)-NANOopaa。
1.4有机磷降解活性纳米颗粒的发酵制备
挑取工程菌E.coli BL21(DE3)-NANOopaa单菌落至5mL LB培养基(蛋白胨20g/L,酵母粉10g/L,氯化钠10g/L,氨苄青霉素50μg/L,氯霉素20μg/L)中,37℃,220r/min摇床振荡培养过夜,得种子液;取1mL种子液接种于200mL含有氨苄青霉素(50μg/L)和氯霉素(20μg/L)的TB培养基(酵母粉24g/L,蛋白胨12g/L,K2HPO4 17mmol/L,KH2PO4 17mmol/L,甘油4g/L)中,待OD600约为0.6左右加入1mM IPTG,在25℃,200r/min诱导表达48h。
取1.5mL诱导菌悬液,5000×g离心1min收集细胞,1mL磷酸盐缓冲液(10mM,pH7.5)重悬,加入2μL浓度为0.25mg/mL的尼罗蓝A染料,于25℃下避光染色30min,取5μL染色混合物置于玻片上,荧光显微镜460nm观察。细胞发出绿色荧光信号,表明已成功合成聚羟基脂肪酸酯颗粒(附图2A、B)。
细胞切片透射电镜观察结果也显示相对于对照组,工程菌E.coli BL21(DE3)-NANOopaa诱导后细胞内部产生大量直径为20~100nm左右的颗粒状物质(附图2C、D)。
1.5有机磷降解活性纳米颗粒的分离提取
收集100mL工程菌E.coli BL21(DE3)-NANOopaa诱导发酵液,4℃,5000×g离心20min,弃上清。磷酸盐缓冲液(10mM,pH7.5)洗涤两遍,加入15mL磷酸盐缓冲液(10mMpH7.5)重悬菌体。将菌悬液超声破碎破碎30min(超声5s,间歇5s),充分裂解菌体细胞。细胞裂解液用甘油密度梯度离心,80000~100000g离心2~4h,离心后将聚羟基脂肪酸酯颗粒层取出,加入10倍体积的无菌水,使用100kDa~300kDa截留分子量的超滤管进行多次洗涤,冷冻干燥即得有机磷降解活性纳米颗粒粉末。
1.6有机磷降解活性纳米颗粒活性测定及与游离的有机磷酸酐水解酶OPAA4301的对比
取适当稀释度的有机磷降解活性纳米颗粒(nanoOPAA)悬液25μL,加入175μL 50mMpH8.5甘氨酸-氢氧化钠缓冲液,25μL 5mmol/L乙基对氧磷,25μL 5mM锰离子,总反应体系为250μL。55℃下反应40min,迅速放沸水浴中终止反应。12000r/min离心5min,取200μL在405nm波长下测定其吸光值。以游离的有机磷酸酐水解酶OPAA4301在相同实验条件下的反应作为对照。
从温度、pH对催化活性和稳定性影响图(图3)中可以看出,相对于游离的有机磷酸酐水解酶OPAA4301,固定化的有机磷降解活性纳米颗粒具有更宽泛的温度、pH催化适应范围和稳定性。
高速离心(12000r/min)5min回收有机磷降解活性纳米颗粒,检测回收后有机磷降解活性纳米颗粒与初始活性进行比较,以确定该纳米颗粒的重复利用率。在经过8次回收利用后,纳米颗粒的催化活性能保持初始活性的90%以上,表明该纳米颗粒具有良好的重复利用效果(图4)。
将游离的有机磷酸酐水解酶OPAA4301、有机磷降解活性纳米颗粒分别与1%终浓度的表面活性剂十二万基磺酸钠(SDS)、椰油酸二乙醇酰胺6501(CAD)或烷基糖苷APG0810(A PG)混合,于室温(25℃)下放置1小时后检测残余对氧磷水解酶活性,结果显示,相较于对照组(不添加表面活性剂组)有机磷降解活性纳米颗粒对对氧磷的降解活性总体没有明显变化,而游离有机磷酸酐水解酶OPAA4301的活性有较明显的下降(图5)。说明制备的有机磷降解活性纳米颗粒较游离有机磷酸酐水解酶OPAA4301更加能适应表面活性剂存在的环境,可在洗涤剂等行业得到应用。
序列表
<110> 中国科学院南海海洋研究所
<120> 一种有机磷降解活性纳米颗粒及其制备方法与应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1040
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 1
Met Asp Lys Leu Ala Val Leu Tyr Ala Glu His Ile Ala Thr Leu Gln
1 5 10 15
Gln Arg Thr Arg Thr Ile Thr Glu Arg Glu Gly Leu Glu Gly Leu Val
20 25 30
Ile His Ser Gly Gln Ala Lys Arg Gln Phe Leu Asp Asp Met Tyr Tyr
35 40 45
Pro Phe Lys Val Asn Pro Gln Phe Lys Ala Trp Leu Pro Val Ile Asp
50 55 60
Asn Pro His Cys Trp Ile Val Val Asp Gly Ala Ser Lys Pro Lys Leu
65 70 75 80
Ile Phe Tyr Arg Pro Val Asp Phe Trp His Lys Val Pro Asp Glu Pro
85 90 95
Arg Asp Phe Trp Ala Glu Tyr Phe Asp Ile Glu Leu Leu Val Gln Pro
100 105 110
Asp Gln Val Glu Lys Leu Leu Pro Tyr Asp Lys Ala Asn Tyr Ala Tyr
115 120 125
Ile Gly Glu Tyr Leu Glu Val Ala Gln Ala Leu Gly Phe Ser Ile Met
130 135 140
Asn Pro Glu Pro Val Met Asn Tyr Leu His Phe His Arg Ala Tyr Lys
145 150 155 160
Thr Gln Tyr Glu Leu Glu Cys Leu Arg Gln Ala Asn Arg Ile Ala Val
165 170 175
Glu Gly His Lys Ala Ala Arg Asp Thr Phe Phe Asn Gly Gly Ser Glu
180 185 190
Phe Asp Ile Gln His Ala Tyr Leu Met Ala Thr Arg Gln Ser Glu Asn
195 200 205
Glu Met Pro Tyr Gly Asn Ile Val Ala Leu Asn Glu Asn Cys Ala Ile
210 215 220
Leu His Tyr Thr His Phe Glu Pro Thr Ala Pro His Thr His His Ser
225 230 235 240
Phe Leu Ile Asp Ala Gly Ala Asn Phe Asn Gly Tyr Ala Ala Asp Ile
245 250 255
Thr Arg Thr Tyr Asp Phe Lys Lys Ser Gly Glu Phe Ser Asp Leu Ile
260 265 270
Gln Val Met Thr Glu His Gln Ile Ala Leu Gly Lys Ala Leu Lys Pro
275 280 285
Gly Leu Leu Tyr Gly Glu Leu His Leu Glu Cys His Gln Arg Val Ala
290 295 300
Gln Val Leu Ser Asp Phe Asn Ile Val Lys Leu Pro Ala Ala Asp Ile
305 310 315 320
Val Glu Arg Gly Ile Thr Ser Thr Phe Phe Pro His Gly Leu Gly His
325 330 335
His Leu Gly Leu Gln Val His Asp Met Gly Gly Phe Met Ala Asp Glu
340 345 350
Ser Gly Thr His Gln Ala Pro Pro Glu Gly His Pro Phe Leu Arg Cys
355 360 365
Thr Arg Leu Ile Glu Lys Asn Gln Val Phe Thr Ile Glu Pro Gly Leu
370 375 380
Tyr Phe Ile Asp Ser Leu Leu Gly Asp Leu Ala Gln Thr Asp Asn Lys
385 390 395 400
Gln Phe Ile Asn Trp Glu Lys Val Glu Glu Phe Lys Pro Phe Gly Gly
405 410 415
Ile Arg Ile Glu Asp Asn Ile Ile Val His Glu Asp Ser Leu Glu Asn
420 425 430
Met Thr Arg Asp Leu His Leu Asp Gly Gly Gly Ser Gly Gly Gly Ser
435 440 445
Gly Gly Gly Ser Ala Thr Gly Lys Gly Ala Ala Ala Ser Thr Gln Glu
450 455 460
Gly Lys Ser Gln Pro Phe Lys Val Thr Pro Gly Pro Phe Asp Pro Ala
465 470 475 480
Thr Trp Leu Glu Trp Ser Arg Gln Trp Gln Gly Thr Glu Gly Asn Gly
485 490 495
His Ala Ala Ala Ser Gly Ile Pro Gly Leu Asp Ala Leu Ala Gly Val
500 505 510
Lys Ile Ala Pro Ala Gln Leu Gly Asp Ile Gln Gln Arg Tyr Met Lys
515 520 525
Asp Phe Ser Ala Leu Trp Gln Ala Met Ala Glu Gly Lys Ala Glu Ala
530 535 540
Thr Gly Pro Leu His Asp Arg Arg Phe Ala Gly Asp Ala Trp Arg Thr
545 550 555 560
Asn Leu Pro Tyr Arg Phe Ala Ala Ala Phe Tyr Leu Leu Asn Ala Arg
565 570 575
Ala Leu Thr Glu Leu Ala Asp Ala Val Glu Ala Asp Ala Lys Thr Arg
580 585 590
Gln Arg Ile Arg Phe Ala Ile Ser Gln Trp Val Asp Ala Met Ser Pro
595 600 605
Ala Asn Phe Leu Ala Thr Asn Pro Glu Ala Gln Arg Leu Leu Ile Glu
610 615 620
Ser Gly Gly Glu Ser Leu Arg Ala Gly Val Arg Asn Met Met Glu Asp
625 630 635 640
Leu Thr Arg Gly Lys Ile Ser Gln Thr Asp Glu Ser Ala Phe Glu Val
645 650 655
Gly Arg Asn Val Ala Val Thr Glu Gly Ala Val Val Phe Glu Asn Glu
660 665 670
Tyr Phe Gln Leu Leu Gln Tyr Lys Pro Leu Thr Asp Lys Val His Ala
675 680 685
Arg Pro Leu Leu Met Val Pro Pro Cys Ile Asn Lys Tyr Tyr Ile Leu
690 695 700
Asp Leu Gln Pro Glu Ser Ser Leu Val Arg His Val Val Glu Gln Gly
705 710 715 720
His Thr Val Phe Leu Val Ser Trp Arg Asn Pro Asp Ala Ser Met Ala
725 730 735
Gly Ser Thr Trp Asp Asp Tyr Ile Glu His Ala Ala Ile Arg Ala Ile
740 745 750
Glu Val Ala Arg Asp Ile Ser Gly Gln Asp Lys Ile Asn Val Leu Gly
755 760 765
Phe Cys Val Gly Gly Thr Ile Val Ser Thr Ala Leu Ala Val Leu Ala
770 775 780
Ala Arg Gly Glu His Pro Ala Ala Ser Val Thr Leu Leu Thr Thr Leu
785 790 795 800
Leu Asp Phe Ala Asp Thr Gly Ile Leu Asp Val Phe Val Asp Glu Gly
805 810 815
His Val Gln Leu Arg Glu Ala Thr Leu Gly Gly Gly Ala Gly Ala Pro
820 825 830
Cys Ala Leu Leu Arg Gly Leu Glu Leu Ala Asn Thr Phe Ser Phe Leu
835 840 845
Arg Pro Asn Asp Leu Val Trp Asn Tyr Val Val Asp Asn Tyr Leu Lys
850 855 860
Gly Asn Thr Pro Val Pro Phe Asp Leu Leu Phe Trp Asn Gly Asp Ala
865 870 875 880
Thr Asn Leu Pro Gly Pro Trp Tyr Cys Trp Tyr Leu Arg His Thr Tyr
885 890 895
Leu Gln Asn Glu Leu Lys Val Pro Gly Lys Leu Thr Val Cys Gly Val
900 905 910
Pro Val Asp Leu Ala Ser Ile Asp Val Pro Thr Tyr Ile Tyr Gly Ser
915 920 925
Arg Glu Asp His Ile Val Pro Trp Thr Ala Ala Tyr Ala Ser Thr Ala
930 935 940
Leu Leu Ala Asn Lys Leu Arg Phe Val Leu Gly Ala Ser Gly His Ile
945 950 955 960
Ala Gly Val Ile Asn Pro Pro Ala Lys Asn Lys Arg Ser His Trp Thr
965 970 975
Asn Asp Ala Leu Pro Glu Ser Pro Gln Gln Trp Leu Ala Gly Ala Ile
980 985 990
Glu His His Gly Ser Trp Trp Pro Asp Trp Thr Ala Trp Leu Ala Gly
995 1000 1005
Gln Ala Gly Ala Lys Arg Ala Ala Pro Ala Asn Tyr Gly Asn Ala Arg
1010 1015 1020
Tyr Arg Ala Ile Glu Pro Ala Pro Gly Arg Tyr Val Lys Ala Lys Ala
1025 1030 1035 1040
<210> 2
<211> 1056
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Ile Leu Thr Pro Glu Gln Val Ala Ala Ala Gln Lys Ala Asn Leu
1 5 10 15
Glu Thr Leu Phe Gly Leu Thr Thr Lys Ala Phe Glu Gly Val Glu Lys
20 25 30
Leu Val Glu Leu Asn Leu Gln Val Val Lys Thr Ser Phe Ala Glu Gly
35 40 45
Val Asp Asn Ala Lys Lys Ala Leu Ser Ala Lys Asp Ala Gln Glu Leu
50 55 60
Leu Ala Ile Gln Ala Ala Ala Val Gln Pro Val Ala Glu Lys Thr Leu
65 70 75 80
Ala Tyr Thr Arg His Leu Tyr Glu Ile Ala Ser Glu Thr Gln Ser Glu
85 90 95
Phe Thr Lys Val Ala Glu Ala Gln Leu Ala Glu Gly Ser Lys Asn Val
100 105 110
Gln Ala Leu Val Glu Asn Leu Ala Lys Asn Ala Pro Ala Gly Ser Glu
115 120 125
Ser Thr Val Ala Ile Val Lys Ser Ala Ile Ser Ala Ala Asn Asn Ala
130 135 140
Tyr Glu Ser Val Gln Lys Ala Thr Lys Gln Ala Val Glu Ile Ala Glu
145 150 155 160
Thr Asn Phe Gln Ala Ala Ala Thr Ala Ala Thr Lys Ala Ala Gln Gln
165 170 175
Ala Ser Ala Thr Ala Arg Thr Ala Thr Ala Lys Lys Thr Thr Ala Ala
180 185 190
Asn Asn Asn Asn Asn Leu Gly Ile Glu Gly Arg Ile Ser Arg Ser Ile
195 200 205
Leu Thr Pro Glu Gln Val Ala Ala Ala Gln Lys Ala Asn Leu Glu Thr
210 215 220
Leu Phe Gly Leu Thr Thr Lys Ala Phe Glu Gly Val Glu Lys Leu Val
225 230 235 240
Glu Leu Asn Leu Gln Val Val Lys Thr Ser Phe Ala Glu Gly Val Asp
245 250 255
Asn Ala Lys Lys Ala Leu Ser Ala Lys Asp Ala Gln Glu Leu Leu Ala
260 265 270
Ile Gln Ala Ala Ala Val Gln Pro Val Ala Glu Lys Thr Leu Ala Tyr
275 280 285
Thr Arg His Leu Tyr Glu Ile Ala Ser Glu Thr Gln Ser Glu Phe Thr
290 295 300
Lys Val Ala Glu Ala Gln Leu Ala Glu Gly Ser Lys Asn Val Gln Ala
305 310 315 320
Leu Val Glu Asn Leu Ala Lys Asn Ala Pro Ala Gly Ser Glu Ser Thr
325 330 335
Val Ala Ile Val Lys Ser Ala Ile Ser Ala Ala Asn Asn Ala Tyr Glu
340 345 350
Ser Val Gln Lys Ala Thr Lys Gln Ala Val Glu Ile Ala Glu Thr Asn
355 360 365
Phe Gln Ala Ala Ala Thr Ala Ala Thr Lys Ala Ala Gln Gln Ala Ser
370 375 380
Ala Thr Ala Arg Thr Ala Thr Ala Lys Lys Thr Thr Ala Ala Asn Asn
385 390 395 400
Asn Asn Asn Leu Gly Ile Glu Gly Arg Ile Ser Gly Thr Ile Leu Thr
405 410 415
Pro Glu Gln Val Ala Ala Ala Gln Lys Ala Asn Leu Glu Thr Leu Phe
420 425 430
Gly Leu Thr Thr Lys Ala Phe Glu Gly Val Glu Lys Leu Val Glu Leu
435 440 445
Asn Leu Gln Val Val Lys Thr Ser Phe Ala Glu Gly Val Asp Asn Ala
450 455 460
Lys Lys Ala Leu Ser Ala Lys Asp Ala Gln Glu Leu Leu Ala Ile Gln
465 470 475 480
Ala Ala Ala Val Gln Pro Val Ala Glu Lys Thr Leu Ala Tyr Thr Arg
485 490 495
His Leu Tyr Glu Ile Ala Ser Glu Thr Gln Ser Glu Phe Thr Lys Val
500 505 510
Ala Glu Ala Gln Leu Ala Glu Gly Ser Lys Asn Val Gln Ala Leu Val
515 520 525
Glu Asn Leu Ala Lys Asn Ala Pro Ala Gly Ser Glu Ser Thr Val Ala
530 535 540
Ile Val Lys Ser Ala Ile Ser Ala Ala Asn Asn Ala Tyr Glu Ser Val
545 550 555 560
Gln Lys Ala Thr Lys Gln Ala Val Glu Ile Ala Glu Thr Asn Phe Gln
565 570 575
Ala Ala Ala Thr Ala Ala Thr Lys Ala Ala Gln Gln Ala Ser Ala Thr
580 585 590
Ala Arg Thr Ala Thr Ala Lys Lys Thr Thr Ala Ala Asn Asn Asn Asn
595 600 605
Asn Leu Gly Ile Glu Gly Arg Ile Ser Asp Lys Leu Ala Val Leu Tyr
610 615 620
Ala Glu His Ile Ala Thr Leu Gln Gln Arg Thr Arg Thr Ile Thr Glu
625 630 635 640
Arg Glu Gly Leu Glu Gly Leu Val Ile His Ser Gly Gln Ala Lys Arg
645 650 655
Gln Phe Leu Asp Asp Met Tyr Tyr Pro Phe Lys Val Asn Pro Gln Phe
660 665 670
Lys Ala Trp Leu Pro Val Ile Asp Asn Pro His Cys Trp Ile Val Val
675 680 685
Asp Gly Ala Ser Lys Pro Lys Leu Ile Phe Tyr Arg Pro Val Asp Phe
690 695 700
Trp His Lys Val Pro Asp Glu Pro Arg Asp Phe Trp Ala Glu Tyr Phe
705 710 715 720
Asp Ile Glu Leu Leu Val Gln Pro Asp Gln Val Glu Lys Leu Leu Pro
725 730 735
Tyr Asp Lys Ala Asn Tyr Ala Tyr Ile Gly Glu Tyr Leu Glu Val Ala
740 745 750
Gln Ala Leu Gly Phe Ser Ile Met Asn Pro Glu Pro Val Met Asn Tyr
755 760 765
Leu His Phe His Arg Ala Tyr Lys Thr Gln Tyr Glu Leu Glu Cys Leu
770 775 780
Arg Gln Ala Asn Arg Ile Ala Val Glu Gly His Lys Ala Ala Arg Asp
785 790 795 800
Thr Phe Phe Asn Gly Gly Ser Glu Phe Asp Ile Gln His Ala Tyr Leu
805 810 815
Met Ala Thr Arg Gln Ser Glu Asn Glu Met Pro Tyr Gly Asn Ile Val
820 825 830
Ala Leu Asn Glu Asn Cys Ala Ile Leu His Tyr Thr His Phe Glu Pro
835 840 845
Thr Ala Pro His Thr His His Ser Phe Leu Ile Asp Ala Gly Ala Asn
850 855 860
Phe Asn Gly Tyr Ala Ala Asp Ile Thr Arg Thr Tyr Asp Phe Lys Lys
865 870 875 880
Ser Gly Glu Phe Ser Asp Leu Ile Gln Val Met Thr Glu His Gln Ile
885 890 895
Ala Leu Gly Lys Ala Leu Lys Pro Gly Leu Leu Tyr Gly Glu Leu His
900 905 910
Leu Glu Cys His Gln Arg Val Ala Gln Val Leu Ser Asp Phe Asn Ile
915 920 925
Val Lys Leu Pro Ala Ala Asp Ile Val Glu Arg Gly Ile Thr Ser Thr
930 935 940
Phe Phe Pro His Gly Leu Gly His His Leu Gly Leu Gln Val His Asp
945 950 955 960
Met Gly Gly Phe Met Ala Asp Glu Ser Gly Thr His Gln Ala Pro Pro
965 970 975
Glu Gly His Pro Phe Leu Arg Cys Thr Arg Leu Ile Glu Lys Asn Gln
980 985 990
Val Phe Thr Ile Glu Pro Gly Leu Tyr Phe Ile Asp Ser Leu Leu Gly
995 1000 1005
Asp Leu Ala Gln Thr Asp Asn Lys Gln Phe Ile Asn Trp Glu Lys Val
1010 1015 1020
Glu Glu Phe Lys Pro Phe Gly Gly Ile Arg Ile Glu Asp Asn Ile Ile
1025 1030 1035 1040
Val His Glu Asp Ser Leu Glu Asn Met Thr Arg Asp Leu His Leu Asp
1045 1050 1055
<210> 3
<211> 393
<212> PRT
<213> 钩虫贪铜菌 BNCC137386(Cupriavidus necator BNCC137386)
<400> 3
Met Thr Asp Val Val Ile Val Ser Ala Ala Arg Thr Ala Val Gly Lys
1 5 10 15
Phe Gly Gly Ser Leu Ala Lys Ile Pro Ala Pro Glu Leu Gly Ala Val
20 25 30
Val Ile Lys Ala Ala Leu Glu Arg Ala Gly Val Lys Pro Glu Gln Val
35 40 45
Ser Glu Val Ile Met Gly Gln Val Leu Thr Ala Gly Ser Gly Gln Asn
50 55 60
Pro Ala Arg Gln Ala Ala Ile Lys Ala Gly Leu Pro Ala Met Val Pro
65 70 75 80
Ala Met Thr Ile Asn Lys Val Cys Gly Ser Gly Leu Lys Ala Val Met
85 90 95
Leu Ala Ala Asn Ala Ile Met Ala Gly Asp Ala Glu Ile Val Val Ala
100 105 110
Gly Gly Gln Glu Asn Met Ser Ala Ala Pro His Val Leu Pro Gly Ser
115 120 125
Arg Asp Gly Phe Arg Met Gly Asp Ala Lys Leu Val Asp Thr Met Ile
130 135 140
Val Asp Gly Leu Trp Asp Val Tyr Asn Gln Tyr His Met Gly Ile Thr
145 150 155 160
Ala Glu Asn Val Ala Lys Glu Tyr Gly Ile Thr Arg Glu Ala Gln Asp
165 170 175
Glu Phe Ala Val Gly Ser Gln Asn Lys Ala Glu Ala Ala Gln Lys Ala
180 185 190
Gly Lys Phe Asp Glu Glu Ile Val Pro Val Leu Ile Pro Gln Arg Lys
195 200 205
Gly Asp Pro Val Ala Phe Lys Thr Asp Glu Phe Val Arg Gln Gly Ala
210 215 220
Thr Leu Asp Ser Met Ser Gly Leu Lys Pro Ala Phe Asp Lys Ala Gly
225 230 235 240
Thr Val Thr Ala Ala Asn Ala Ser Gly Leu Asn Asp Gly Ala Ala Ala
245 250 255
Val Val Val Met Ser Ala Ala Lys Ala Lys Glu Leu Gly Leu Thr Pro
260 265 270
Leu Ala Thr Ile Lys Ser Tyr Ala Asn Ala Gly Val Asp Pro Lys Val
275 280 285
Met Gly Met Gly Pro Val Pro Ala Ser Lys Arg Ala Leu Ser Arg Ala
290 295 300
Glu Trp Thr Pro Gln Asp Leu Asp Leu Met Glu Ile Asn Glu Ala Phe
305 310 315 320
Ala Ala Gln Ala Leu Ala Val His Gln Gln Met Gly Trp Asp Thr Ser
325 330 335
Lys Val Asn Val Asn Gly Gly Ala Ile Ala Ile Gly His Pro Ile Gly
340 345 350
Ala Ser Gly Cys Arg Ile Leu Val Thr Leu Leu His Glu Met Lys Arg
355 360 365
Arg Asp Ala Lys Lys Gly Leu Ala Ser Leu Cys Ile Gly Gly Gly Met
370 375 380
Gly Val Ala Leu Ala Val Glu Arg Lys
385 390
<210> 4
<211> 246
<212> PRT
<213> 钩虫贪铜菌 BNCC137386(Cupriavidus necator BNCC137386)
<400> 4
Met Thr Gln Arg Ile Ala Tyr Val Thr Gly Gly Met Gly Gly Ile Gly
1 5 10 15
Thr Ala Ile Cys Gln Arg Leu Ala Lys Asp Gly Phe Arg Val Val Ala
20 25 30
Gly Cys Gly Pro Asn Ser Pro Arg Arg Glu Lys Trp Leu Glu Gln Gln
35 40 45
Lys Ala Leu Gly Phe Asp Phe Ile Ala Ser Glu Gly Asn Val Ala Asp
50 55 60
Trp Asp Ser Thr Lys Thr Ala Phe Asp Lys Val Lys Ser Glu Val Gly
65 70 75 80
Glu Val Asp Val Leu Ile Asn Asn Ala Gly Ile Thr Arg Asp Val Val
85 90 95
Phe Arg Lys Met Thr Arg Ala Asp Trp Asp Ala Val Ile Asp Thr Asn
100 105 110
Leu Thr Ser Leu Phe Asn Val Thr Lys Gln Val Ile Asp Gly Met Ala
115 120 125
Asp Arg Gly Trp Gly Arg Ile Val Asn Ile Ser Ser Val Asn Gly Gln
130 135 140
Lys Gly Gln Phe Gly Gln Thr Asn Tyr Ser Thr Ala Lys Ala Gly Leu
145 150 155 160
His Gly Phe Thr Met Ala Leu Ala Gln Glu Val Ala Thr Lys Gly Val
165 170 175
Thr Val Asn Thr Val Ser Pro Gly Tyr Ile Ala Thr Asp Met Val Lys
180 185 190
Ala Ile Arg Gln Asp Val Leu Asp Lys Ile Val Ala Thr Ile Pro Val
195 200 205
Lys Arg Leu Gly Leu Pro Glu Glu Ile Ala Ser Ile Cys Ala Trp Leu
210 215 220
Ser Ser Glu Glu Ser Gly Phe Ser Thr Gly Ala Asp Phe Ser Leu Asn
225 230 235 240
Gly Gly Leu His Met Gly
245

Claims (7)

1.一种生产有机磷降解活性纳米颗粒的工程菌,其特征在于,其是在大肠杆菌Escherichia coli BL21(DE3)中表达β-酮基硫解酶phaA、乙酰乙酰CoA还原酶phaB、有机磷酸酐水解酶与聚羟基脂肪酸酯合成酶的融合蛋白OPAAphaC和有机磷酸酐水解酶与聚羟基脂肪酸酯结合蛋白的融合蛋白(phaP)3OPAA;
所述的β-酮基硫解酶phaA的氨基酸序列如SEQ ID NO.3所示,
所述的乙酰乙酰CoA还原酶phaB的氨基酸序列如SEQ ID NO.4所示,
所述的有机磷酸酐水解酶与聚羟基脂肪酸酯合成酶的融合蛋白OPAAphaC的氨基酸序列如SEQ ID NO.1所示,
所述的有机磷酸酐水解酶与聚羟基脂肪酸酯结合蛋白的融合蛋白(phaP)3OPAA的氨基酸序列如SEQ ID NO.2所示。
2.一种有机磷降解活性纳米颗粒的制备方法,其特征在于,其是将权利要求1所述的工程菌进行发酵培养,然后经细胞破碎、超速离心分离、超滤洗涤制备得到有机磷降解活性纳米颗粒。
3.根据权利要求2所述的制备方法,其特征在于,包括以下步骤:
a.将权利要求1所述的工程菌进行发酵培养,发酵培养基为所述的工程菌的常规发酵培养基并添加有0.5~10g/L乳糖或0.1~2mmol/L异丙基硫代半乳糖苷作为诱导剂,培养温度为15~37℃;
b.收集步骤a的诱导发酵液,离心,弃上清,洗涤菌体,然后再用pH7.5的10mM磷酸盐缓冲液重悬菌体,将菌悬液超声破碎30min,超声5s、间歇5s,充分裂解菌体细胞,然后将细胞裂解液用甘油密度梯度离心,80000~100000g离心2~4h,离心后将聚羟基脂肪酸酯颗粒层取出,加入无菌水,使用100kDa~300kDa截留分子量的超滤管进行多次洗涤,冷冻干燥即得有机磷降解活性纳米颗粒。
4.根据权利要求3所述的制备方法,其特征在于,所述的工程菌的常规发酵培养基含有蛋白胨1~30g/L,酵母粉1~30g/L,氯化钠0.5~15g/L。
5.一种根据权利要求2-4任一所述的方法制备得到的有机磷降解活性纳米颗粒。
6.根据权利要求5所述的有机磷降解活性纳米颗粒,其特征在于,其直径为20-100nm。
7.权利要求5所述的有机磷降解活性纳米颗粒在降解有机磷污染物中的应用。
CN201810325191.7A 2018-04-12 2018-04-12 一种有机磷降解活性纳米颗粒及其制备方法与应用 Active CN108587990B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810325191.7A CN108587990B (zh) 2018-04-12 2018-04-12 一种有机磷降解活性纳米颗粒及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810325191.7A CN108587990B (zh) 2018-04-12 2018-04-12 一种有机磷降解活性纳米颗粒及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN108587990A CN108587990A (zh) 2018-09-28
CN108587990B true CN108587990B (zh) 2020-10-09

Family

ID=63622194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810325191.7A Active CN108587990B (zh) 2018-04-12 2018-04-12 一种有机磷降解活性纳米颗粒及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN108587990B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111346580B (zh) * 2020-04-29 2020-12-11 吉林中粮生化有限公司 高温高压下结合超声提取聚羟基脂肪酸酯的方法和系统
CN113466162A (zh) * 2021-06-28 2021-10-01 北京农业质量标准与检测技术研究中心 一种对氧磷总量紫外分光光度法快速检测方法
CN113896786B (zh) * 2021-09-15 2024-01-12 北京绿氮生物科技有限公司 一种具有生物活力的人工合成材料及其农业应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101058799A (zh) * 2007-04-19 2007-10-24 清华大学 一种生产聚羟基脂肪酸酯的方法及其专用工程菌
CN106318928A (zh) * 2016-08-22 2017-01-11 中国科学院南海海洋研究所 一种二肽酶突变体及其编码基因和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101058799A (zh) * 2007-04-19 2007-10-24 清华大学 一种生产聚羟基脂肪酸酯的方法及其专用工程菌
CN106318928A (zh) * 2016-08-22 2017-01-11 中国科学院南海海洋研究所 一种二肽酶突变体及其编码基因和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
In vivo immobilization of an organophosphorus hydrolyzing enzyme on bacterial polyhydroxyalkanoate nano‑granules;Ru Li等;《Microbial Cell Factories》;20191010;第18卷;166 *
海洋细菌有机磷酸酐水解酶在大肠杆菌中的分泌表达研究;肖运柱 等;《生物加工过程》;20170531;第15卷(第3期);1-6页 *

Also Published As

Publication number Publication date
CN108587990A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
Wilkerson et al. Nanoreactors: Strategies to encapsulate enzyme biocatalysts in virus-like particles
CN108587990B (zh) 一种有机磷降解活性纳米颗粒及其制备方法与应用
JP2021509804A (ja) 生体内変換によるタウロウルソデオキシコール酸の調製方法およびその応用
US20130071892A1 (en) PROCESS FOR PRODUCTION OF POLYHYDROXYALKANOIC ACID USING GENETICALLY MODIFIED MICROORGANISM HAVING ENOYL-CoA HYDRATASE GENE INTRODUCED THEREIN
EP2970953B1 (en) Improved surface display of functional proteins in a broad range of gram negative bacteria
US20130224828A1 (en) RNA-Directed Packaging of Enzymes Within Protein Particles
CN109456960A (zh) 一种还原氧化石墨烯固定化苯丙氨酸脱氢酶的方法
CN111778229B (zh) 环己烯甲酸酯水解酶及其突变体、编码基因、表达载体、重组菌与应用
CN112680433B (zh) 一种利用嗜盐细菌生产并分泌蛋白的方法
CN109609524A (zh) 一种植物乳杆菌亚硝酸盐还原酶基因及其编码的蛋白质和应用
Zhao et al. Purification and immobilization of the soluble and insoluble portions of recombinant lipase by gram-positive enhancer matrix (GEM) particles
Wu et al. Surface display of transglucosidase on Escherichia coli by using the ice nucleation protein of Xanthomonas campestris and its application in glucosylation of hydroquinone
KR20200134333A (ko) 발효에 의한 히스타민 생산을 위해 조작된 생합성 경로
CN109576239A (zh) 耐热磷酸化酶及其应用
CN106520733B (zh) 一种β-木糖苷酶体内酶聚集体及其制备方法
CN110607289B (zh) 一种氨基酸脱氢酶及其应用
CN113005071A (zh) 一种SsgA编码基因SMDS_1018的用途、重组菌株及其构建方法
CN117603926A (zh) 一种突变型重组月季多酚氧化酶原及其制备方法与应用
CN109593739B (zh) 重组酮酸还原酶突变体、基因、工程菌及其应用
CN116732009A (zh) 一种重组二肽酶突变体及其在l-肌肽生产中的应用
CN107099523B (zh) 头孢拉定合成酶突变体及其编码基因
CN111363709B (zh) 一种提高异戊二烯产量的基因工程菌及其构建方法与应用
CN113088504A (zh) 一种改造的酸性磷酸酶及其应用
CN113736813B (zh) 重组大肠杆菌表达L-天冬氨酸-α-脱羧酶的载体和方法
RU2593172C2 (ru) РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pER-TA1 GyrA-AcSer, КОДИРУЮЩАЯ СЕРИНОВУЮ АЦЕТИЛТРАНСФЕРАЗУ, СПОСОБНУЮ in vivo АЦЕТИЛИРОВАТЬ N-КОНЦЕВОЙ СЕРИН ДЕЗАЦЕТИЛТИМОЗИНА α1 И ГИБРИДНЫЙ БЕЛОК, СПОСОБНЫЙ К АВТОКАТАЛИТИЧЕСКОМУ РАСЩЕПЛЕНИЮ С ОБРАЗОВАНИЕМ ТИМОЗИНА α1 ЧЕЛОВЕКА, ШТАММ Eschrichia coli C3030/pER-TA1GyrA-AcSer - ПРОДУЦЕНТ УКАЗАННЫХ БЕЛКОВ И СПОСОБ ПОЛУЧЕНИЯ ГЕННО-ИНЖЕНЕРНОГО ТИМОЗИНА α1 ЧЕЛОВЕКА

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No.1119 Haibin Road, Nansha District, Guangzhou City, Guangdong Province

Applicant after: SOUTH CHINA SEA INSTITUTE OF OCEANOLOGY, CHINESE ACADEMY OF SCIENCES

Address before: 510301 No. 164 West Xingang Road, Guangzhou, Guangdong, Haizhuqu District

Applicant before: SOUTH CHINA SEA INSTITUTE OF OCEANOLOGY, CHINESE ACADEMY OF SCIENCES

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant