WO2001070637A1 - Method for direct clarification of ground water polluted with nitrate - Google Patents

Method for direct clarification of ground water polluted with nitrate Download PDF

Info

Publication number
WO2001070637A1
WO2001070637A1 PCT/JP2001/002362 JP0102362W WO0170637A1 WO 2001070637 A1 WO2001070637 A1 WO 2001070637A1 JP 0102362 W JP0102362 W JP 0102362W WO 0170637 A1 WO0170637 A1 WO 0170637A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
direct purification
carrier
purification method
derived
Prior art date
Application number
PCT/JP2001/002362
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoshi Matsumura
Rey Nayve Fidel
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to US10/239,419 priority Critical patent/US6926831B2/en
Priority to EP01915742A priority patent/EP1270517A4/en
Publication of WO2001070637A1 publication Critical patent/WO2001070637A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

A method for direct clarification of a ground water polluted with nitrates, which comprises providing a biodegradable plastic derived from starch and usable both as a single carbon source and as a carrier for immobilizing bacterial bodies, immobilizing denitrifying bacteria on the carrier, and contacting the resulting immobilized bacteria with a ground water polluted with nitrate nitrogen; and an apparatus for practicing the method. The method allows the use of a carbon source with high efficiency and the densification of denitrifying bacteria, and thus can be used for clarifying a ground water directly with high safety, with no need for the addition of a heavy metal.

Description

明 細 書  Specification
硝酸汚染地下水の直接浄化方法 技術分野  Method for direct purification of groundwater contaminated with nitric acid
この出願の発明は、 硝酸汚染地下水の直接浄化方法とその装置に 関するものである。 さらに詳しくは、 この出願の発明は、 硝酸態の 窒素で汚染された飲用および灌漑用等の地下水の効率的で、 安全か つ安価な直接的浄化方法に関するものである。 背景技術  The invention of the present application relates to a method and an apparatus for directly purifying nitric acid-contaminated groundwater. More specifically, the invention of this application relates to an efficient, safe and inexpensive direct purification method of groundwater for drinking and irrigation, etc., contaminated with nitrate nitrogen. Background art
生物学的脱窒においては、 電子供与態となる炭素源が必須である ことから、 従来の硝酸汚染、 すなわち硝酸態窒素により汚染された 地下水の直接浄化には、 脱窒菌と水溶性の炭素源を別々に地下水に 投入する方法が用いられてきた。 しかしながらこのような従来の方 法では、 脱窒菌と水溶性の炭素源は容易に地下水脈中に拡散し、 充 分に効果を発揮することができないという問題があった。  In biological denitrification, a carbon source that is in the form of an electron donor is indispensable.For conventional nitrate contamination, that is, direct purification of groundwater contaminated with nitrate nitrogen, denitrifying bacteria and a water-soluble carbon source are required. Separately, they have been separately injected into groundwater. However, such a conventional method has a problem in that the denitrifying bacteria and the water-soluble carbon source easily diffuse into the groundwater vein and cannot be effectively used for filling.
また、 飲用を目的とした脱窒においては、 用いる炭素源は、 メタ ノール等のように毒性が危惧されるものを避けなければならず、 選 択される炭素源も制約されてしまうという問題があった。  In addition, in the case of denitrification for drinking, the carbon source to be used must avoid those that are toxic, such as methanol, and the selected carbon source is also restricted. Was.
さらにまた、 脱窒代謝過程に関与する酵素の多くが金属酵素であ ることから、 従来、 脱窒菌の能力を十分発揮させるには、 F e 、 o 、 M n 、 C uなどの重金属の微量添加が必要とされてきた。 しか し、 地下水の金属含有量は様々であり、 一般的に金属含有量の高い ものは飲用には利用されないという問題もある。  Furthermore, since many of the enzymes involved in the denitrification metabolism process are metalloenzymes, it has heretofore been necessary to use trace amounts of heavy metals such as Fe, o, Mn, and Cu in order to fully demonstrate the ability of denitrifying bacteria. Addition has been required. However, there is a problem that the metal content of groundwater varies, and those with high metal content are not generally used for drinking.
そこで、 この出願の発明は、 以上のとおりの従来技術の問題点を 解消し、 効率的な炭素源の利用と脱窒菌の高濃度化を図ることがで き、 重金属の添加を必要とせず、 より安全性の高い地下水の直接浄 化を可能とする新しい浄化方法とそのための装置を提供することを 課題としている。 発明の開示 Therefore, the invention of the present application solves the above-mentioned problems of the prior art, and enables efficient use of a carbon source and high concentration of denitrifying bacteria. It is an object of the present invention to provide a new purification method and a device for directly purifying groundwater with higher safety without adding heavy metals. Disclosure of the invention
この出願の発明は、 上記のとおりの課題を解決するものとして、 まず第 1 には、 澱粉由来の生分解性プラスチックを単一炭素源並び に菌体固定化担体とし、 この担体に脱窒菌を固定化して硝酸態窒素 に汚染された地下水と接触させることを特徴とする硝酸汚染地下水 の直接浄化方法を提供する。  The invention of the present application solves the problems as described above. First, a biodegradable plastic derived from starch is used as a single carbon source and a carrier for immobilizing cells. Provided is a method for directly purifying nitrate-contaminated groundwater, which is fixed and brought into contact with groundwater contaminated with nitrate nitrogen.
また、 この出願の発明は、 第 2には澱粉由来の生分解性プラスチ ックの澱粉含有量が 6 0重量%以上である前記の直接浄化方法を、 第 3には、 澱粉由来の生分解性プラスチックが多孔質である前記の 直接浄化方法を、 そして第 4には、 澱粉由来の生分解性プラスチッ クの気孔率が 1 0 %以上である前記の直接浄化方法をそれぞれ提供 する。  Also, the invention of this application is characterized in that, second, the above-mentioned direct purification method in which the starch content of the biodegradable plastic derived from starch is 60% by weight or more; Fourthly, the present invention provides the above-mentioned direct purification method in which the conductive plastic is porous, and fourthly, the above-mentioned direct purification method in which the porosity of starch-derived biodegradable plastic is 10% or more.
さらに、 この出願の発明は、 第 5には、 澱粉由来の生分解性ブラ スチックが水に対する溶解性の低いものであること、 および第 6に は、 澱粉由来の生分解性プラスチックが、 廃棄物の再利用品である ことを前記直接浄化方法の態様として提供する。  Furthermore, the invention of the present application is, fifthly, that biodegradable plastics derived from starch have low solubility in water; and sixth, biodegradable plastics derived from starch are waste products. Is provided as an embodiment of the direct purification method.
第 7には、 この出願の発明は、 脱窒菌が、 重金属を要求せず、 亜 硝酸を蓄積することなく 2 0 °C以下の低い温度で脱窒能を示すもの である前記の直接浄化方法を提供する。  Seventh, the invention of the present application is directed to the direct purification method, wherein the denitrifying bacterium exhibits a denitrifying ability at a low temperature of 20 ° C or less without requiring heavy metals and without accumulating nitrous acid. I will provide a.
そして、 この出願の発明は第 8には、 前記の菌体固定化担体を網 ケースに充填し、 これを上下方向に揺動させて水との接触を図るよ うにした直接浄化方法を提供し、 第 9には、 この直接浄化方法のた めの装置として、少なくとも担体を収納充填する網ケースとともに、 これを地下水との接触時に上下方向に揺動させる揺動手段を備えて いることを特徴とする硝酸汚染地下水の直接浄化装置をも提供する, 図面の簡単な説明 Eighth, the invention of the present application provides a direct purification method in which the cell-immobilized carrier is filled in a net case, and this is shaken up and down to make contact with water. Ninth, the direct purification method A direct purification device for nitric acid-contaminated groundwater, comprising a mesh case for storing and filling the carrier at least and a rocking means for rocking it vertically when it comes into contact with groundwater. Do, brief description of the drawings
図 1 は、 この発明の装置構成の一例を示した概要図である。  FIG. 1 is a schematic diagram showing an example of the device configuration of the present invention.
また、 図 2は、 実施例としての脱窒処理の結果を例示した図であ る。 発明を実施するための最良の形態  FIG. 2 is a diagram exemplifying a result of the denitrification treatment as an example. BEST MODE FOR CARRYING OUT THE INVENTION
この出願の発明は、 上記のとおりの特徴をもつものであるが、 以 下にその実施の形態について説明する。  The invention of this application has the features as described above, and embodiments thereof will be described below.
なによりもこの出願の発明が特徴とすることは、 澱粉を単一の炭 素源として生育できる脱窒菌を安価な澱粉由来生分解性プラスチッ クに固定化して硝酸態窒素汚染地下水の直接浄化を行うことである, この直接浄化方法では、 脱窒菌が常に炭素源と共に存在すること から効率的な炭素源の利用と、 脱窒菌の高濃度化が図れる。 また、 澱粉にはメタノールを炭素源とする場合のような毒性の危惧はなく またこれを資化する微生物も多数おり、 有用な脱窒菌を分離するの に有利である。  Above all, the invention is characterized by the direct purification of groundwater contaminated with nitrate nitrogen by immobilizing denitrifying bacteria capable of growing starch as a single carbon source on inexpensive biodegradable plastic derived from starch. In this direct purification method, since the denitrifying bacteria are always present together with the carbon source, efficient use of the carbon source and high concentration of the denitrifying bacteria can be achieved. In addition, starch has no danger of toxicity as in the case of using methanol as a carbon source, and there are many microorganisms that can utilize the same, which is advantageous for separating useful denitrifying bacteria.
澱粉由来の生分解性プラスチックは、 澱粉含有量が 6 0重量%以 上、 たとえば 7 0重量%前後で、 水に対する溶解性が低く、 かつ多 孔質であるものが好適に用いられる。 これらの特性は、 多数の脱窒 菌を固定化し、 比較的長期間にわたる処理を可能とするのに重要な 要因である。  As the biodegradable plastic derived from starch, those having a starch content of 60% by weight or more, for example, about 70% by weight, having low solubility in water and being porous are preferably used. These properties are important factors in immobilizing large numbers of denitrifying bacteria and enabling relatively long-term treatment.
好適な澱粉由来の生分解性プラスチックについてその物性値を例 示すると、 たとえば比重 1 . 0 1 〜 1 . 0 5で、 懸濁が容易なもの、 そして気孔率は〗 0〜 6 0 %のものが挙げられる。 また、 澱粉の原 料については、 馬鈴薯、 サツマィモ、 小麦、 トウモロコシ等の各種 のものであってよい。 さらに、 メチルァクリ レー卜等の不飽和結合 を有し、 重合性の良好なモノマーによリグラフ 卜重合した澱粉もこ の出願の発明において好適に用いられる。 Examples of physical properties of suitable starch-derived biodegradable plastics For example, those having a specific gravity of 1.01 to 1.05, easily suspended, and having a porosity of 0 to 60% are exemplified. The raw material for starch may be various substances such as potato, sweet potato, wheat, corn and the like. Further, starch having an unsaturated bond such as methyl acrylate and the like which is subjected to repolymerization with a monomer having good polymerizability is also suitably used in the invention of this application.
澱粉由来の生分解性プラスチックとしては、 たとえば澱粉を乳酸 ポリマーとの複合化や共重合化したもの、 あるいはシクロデキス卜 リン等により架橋 (重合) 処理したもの、 その他の各種の天然物ポ リマーとの複合化により成形したもの等の各種のものが用いられる t ただ、 菌体固定化担体としてだけでなく、 単一の炭素源としても使 用することから、 生分解性プラスチックに占める澱粉もしくは澱粉 のブロックの割合は 6 0重量%以上とすることが好ましい。 また、 菌体をより大量に固定化させ、 水との接触面積を大きくする観点か ら、 生分解性プラスチックは多孔質のもの、 より好ましくは気孔率 が 1 0 %以上、 さらには 1 5〜 4 5 %程度のものとすることが好ま しい。 Examples of biodegradable plastics derived from starch include those obtained by compounding or copolymerizing starch with lactic acid polymer, those subjected to crosslinking (polymerization) treatment with cyclodextrin, etc., and various other natural polymers. Various types such as those formed by complexation are used.t Since they are used not only as a carrier for immobilizing cells but also as a single carbon source, starch or starch in biodegradable plastics is used. The proportion of the block is preferably at least 60% by weight. Further, from the viewpoint of immobilizing the cells in a larger amount and increasing the contact area with water, the biodegradable plastic is porous, more preferably has a porosity of 10% or more, and more preferably 15 to 50%. It is preferable to be about 45%.
また、 澱粉由来生分解性プラスチックとしては、 パッキング材等 として実際に利用されている使い捨て物質、 つまり廃棄物の再利用 品を用いることもできる。この場合にはこの発明の直接浄化方法は、 極めて安価なものとなる。 そして、 廃棄物の有効利用という観点か らも意義がある。  In addition, as the starch-derived biodegradable plastic, a disposable substance actually used as a packing material or the like, that is, a recycled product of waste can also be used. In this case, the direct purification method of the present invention is extremely inexpensive. It is also significant from the viewpoint of effective use of waste.
たとえば以上のような生分解性プラスチックを担体とするこの発 明の方法においては、 この担体に脱窒菌を固定化する。 菌の固定化 は、 たとえば菌体懸濁液に乾燥した担体を投入するだけでよく、 担 体の細孔内に菌体が吸引され容易に定着することになる。 この場合 の脱室菌としては、 Pseudomonas H ^ Janthinobacterium . Zoogloe 属、 Alcal igenes H ¾ Ni trobacter . Ni trosomonas , Klebsiel la 属等のものか ら各種の脱窒菌を選択できる。 具体的には、 Pseudomonas aeruginosa , Pseudomonas stutzer i、 Pseudomonas mephitica, Janth i nobacter i um I i v i dum、 Zoogloea sp.、 Alcal igenes den i t r i f i cans. Paracoccus den i tr i f i cans 等 示さ も。 好ま しくは、 重金属を添加することなく脱窒能を発揮する菌とする。 ま た、 井戸水は 1 5 °C前後であることから、 一般的には 2 0 °C以下の 低温下での増殖および脱窒能力を有するものが望ましい。 For example, in the method of the present invention using a biodegradable plastic as a carrier, denitrifying bacteria are immobilized on the carrier. For immobilization of the bacteria, for example, it is only necessary to put a dried carrier into the suspension of the bacteria, and the bacteria are sucked into the pores of the carrier and easily fixed. in this case Various types of denitrifying bacteria can be selected from those of the genus Pseudomonas H ^ Janthinobacterium. Zoogloe, Alcal igenes H ¾ Ni trobacter. Nitrosomonas, Klebsiel la and the like. Specifically, Pseudomonas aeruginosa, Pseudomonas stutzer i, Pseudomonas mephitica, Janth i nobacterium um I ivi dum, Zoogloea sp., Alcal igenes den itrifi cans. Preferably, the bacterium exhibits a denitrifying ability without adding a heavy metal. In addition, since well water has a temperature of around 15 ° C, it is generally desirable that it has the ability to proliferate and denitrify at low temperatures of 20 ° C or less.
前記の脱窒菌の選択においては、 例えば実施例にも例示したよう に、 Gi I tay-Starch 培地に移植し、 ガスの発生が認められるものを 脱望のあるものとして判定することができる。 また、 重金属による 影響についても容易に判定することができる。  In the above-mentioned selection of denitrifying bacteria, for example, as exemplified in the Examples, the cells are transplanted into a GiItay-Starch medium, and those in which gas generation is observed can be determined as those having despair. In addition, the influence of heavy metals can be easily determined.
この出願の発明の方法を用いて、二次汚染を引き起こすことなく、 澱粉由来生分解性プラスチックに固定化した上記の菌体を地下水脈 中に投入して直接浄化を図る場合、 よりその効果を発揮するために は水脈中に相当大量の固定化菌体を投入することが望ましい。 した がって、 この発明では、 硝酸汚染地下水を井戸の中で浄化するため の装置をも提供する。  When the above-mentioned cells immobilized on starch-derived biodegradable plastics are introduced into the groundwater vein without using the method of the invention of the present application to cause secondary contamination, the effect is further improved. In order to exert the effect, it is desirable to put a considerably large amount of immobilized cells into the water vein. Therefore, the present invention also provides an apparatus for purifying nitric acid-contaminated groundwater in a well.
このような装置では、 脱窒菌の活性化に伴って多くの窒素ガスが 発生し、 これが担体に付着して担体を浮上させることから、 担体と 水との接触が悪くなリ、 処理効率の低下が起こるとの問題が予測で きる。 したがって、 この発明の装置では、 そのような問題の発生を 未然に防止するために、 物理的強度が少なく脆弱な担体を破砕する ことなく、 狭い井戸の中で担体を水中に分散させる。 このため、 た とえば具体的には図 1 に例示したように、 円筒状の網籠 (A ) の中 に籠容積の 6 0〜 7 0 %の固定化担体 ( B ) を充填し、 これをエア 一 · シリンダー (C ) 等の上下方向の揺動手段で鉛直方向に運動さ せるようにする。 その際、 たとえば下降させる場合には比較的ゆつ く りと移動させ、 上昇させる場合には素早く移動させる。 このよう な籠の動きによって内部の担体は、 浮力によって水中を上昇して水 との良好な接触が保たれる。 脱窒の進行に伴って担体が消耗し、 こ の補充が必要となることから、 担体を充填した籠はカートリッジ式 とするとよい。 また、 交換時には古いカー トリッジの中の担体を新 規カー 卜リッジの中に混入させることができる。この操作によって、 古い担体に付着していた脱窒菌が新たに担体に移行して再び脱窒を 行うことができる。 In such a device, a large amount of nitrogen gas is generated along with the activation of the denitrifying bacteria, and this gas adheres to the carrier and floats the carrier, so that the contact between the carrier and water is poor and the treatment efficiency is reduced. The problem of the occurrence of the problem can be predicted. Therefore, in the apparatus of the present invention, in order to prevent such a problem from occurring, the carrier is dispersed in water in a narrow well without crushing a fragile carrier having a small physical strength. For this reason, for example, as shown in Fig. 1, the inside of a cylindrical mesh basket (A) The cage is filled with 60 to 70% of the immobilized carrier (B) in the cage volume, and this is vertically moved by a vertical rocking means such as an air cylinder (C). At that time, for example, when moving down, move relatively slowly, and when moving up, move quickly. Such movement of the cage causes the internal carrier to rise in the water by buoyancy and maintain good contact with the water. Since the carrier is consumed as the denitrification progresses and needs to be replenished, the cage filled with the carrier should be a cartridge type. At the time of replacement, the carrier in the old cartridge can be mixed into the new cartridge. By this operation, the denitrifying bacteria attached to the old carrier can be newly transferred to the carrier and denitrified again.
そこで、 以下に実施例を示し、 さらに詳しくはこの発明の方法に ついて説明する。 もちろんこの発明は以下の実施例によって限定さ れるものではない。 実施例  Therefore, examples are shown below, and the method of the present invention will be described in more detail. Of course, the present invention is not limited by the following embodiments. Example
<脱窒菌 1 >  <Denitrifying bacteria 1>
湖沼の底泥を分離源として、 脱窒菌株を分離した。 菌の分離源は 水戸市千波湖の底泥である。 分離方法は以下のとおりである。  The denitrifying bacteria were isolated from the sediment of the lake. The source of the bacteria is the bottom mud of Senba Lake, Mito City. The separation method is as follows.
すなわち、 十分希釈した底泥懸濁液を、 増殖寒天プレー卜に塗布 し、 4 °Cで 3〜 4週間培養し、 発生したコロニーを可溶性澱粉を含 む寒天プレー卜 (ペプトン、 酵母エキス含有) に移植して、 4 °Cで 3 ~ 4週間培養した。 発生したコロニーによる澱粉分解は、 ヨウ素 一ヨウ化カリ溶液をプレー卜上に注入して、 コロニー周辺に黒青色 が現れないことによつて確認した。 澱粉分解性が確認されたコロニ 一は、 再度ペプトン、 酵母エキスを含まない澱粉含有寒天培地に移 植し、 澱粉だけが単一の炭素源である栄養分の少ない最小培地での 増殖を確認した。 That is, a well-diluted bottom mud suspension is applied to a growth agar plate, cultured at 4 ° C for 3 to 4 weeks, and the resulting colonies are agar plates containing soluble starch (containing peptone and yeast extract). And cultured at 4 ° C for 3 to 4 weeks. Starch degradation by the generated colonies was confirmed by injecting a solution of potassium iodide and potassium iodide onto the plate, and by confirming that no black blue color appeared around the colonies. Colonies whose starch degradability was confirmed were transferred again to a starch-containing agar medium containing no peptone and yeast extract. The plants were planted and confirmed to grow on minimal nutrient media with only starch being the sole carbon source.
この試験を通過した 2 5菌株について脱窒能の有無を検討した。  The 25 strains that passed this test were examined for their ability to denitrify.
Gi ay-Starch 培地 2 0 m I を含む試験管にコロニーを移植し、 1 0 日間培養した。 培地のグリーン色が青色に変化し、 ガスの発生が 認められるものを脱窒能ありと判定し、脱窒能の高い株を取得した。 The colony was transplanted to a test tube containing 20 ml of a Gay-Starch medium and cultured for 10 days. When the green color of the medium changed to blue and gas generation was observed, it was determined that the medium had denitrification ability, and a strain having high denitrification ability was obtained.
分離菌株の 16SrRNAによる解析をおこなったところ、 BLAST Search Dataに基づき高い相同性 (98. 12%) で / .と判定された。  Analysis of the isolated strain using 16S rRNA revealed a high homology (98.12%) based on BLAST Search Data and was determined to be /.
さらに、 この菌は、 1 5 °Cの低温下、 重金属無添加のもとで、 亜 硝酸を蓄積することなく 3 5 0 p p mの高濃度硝酸を窒素ガスに変 換した。 また、 この菌は、 重金属の添加と 3 0 °Cの温度では脱窒能 が阻害されるという特性をも有していた。  In addition, the bacterium converted high-concentration nitric acid (350 ppm) to nitrogen gas at a low temperature of 15 ° C and without heavy metal addition without accumulating nitrite. This bacterium also had the property that the addition of heavy metals and the temperature of 30 ° C inhibited the denitrification ability.
ぐ脱窒菌 2 > Denitrifying bacteria 2>
前記の脱窒菌 1 の場合と同様の判定方法により、 Pseudomonas 属 より Pseudomonas mephi ticaと て、 脱窒能が高く、 重金属を要求 せずに亜硝酸を蓄積することなく 2 0 °C以下の温度で脱窒能を示す 脱窒菌を選択した。  By the same determination method as in the case of the aforementioned denitrifying bacterium 1, Pseudomonas mephi tica has a higher denitrifying capacity than Pseudomonas genus, does not require heavy metals, and does not accumulate nitrite at a temperature of 20 ° C or less. Denitrifying bacteria showing denitrification ability were selected.
ぐ脱窒菌 3 > Denitrifying bacteria 3>
脱窒菌 2 と 同様の方法 に よ リ Janthinobacterium 属 よ り Janthinobacterium I ividumヒして脱窒菌を選択した。  According to the same method as that of Denitrifying Bacterium 2, a denitrifying bacterium was selected from Janthinobacterium genus of the genus Janthinobacterium.
<直接浄化 > <Direct purification>
実験室内の模擬井戸における脱窒処理を、 図 1 の構成の装置を用 いて行った。  The denitrification treatment in the simulated well in the laboratory was performed using the device with the configuration shown in Fig. 1.
ステンレス製の網籠 (basket) ( A ) の容積は、 リアクター容犢の 2 0 %とした。 この網籠 (A ) には、 前記の菌体を固定化した担体 ( B ) を充填した。 担体および炭素源として、 パッキング材として実用化されている 澱粉由来の多孔質の生分解性プラスチック(澱粉含有量 7 2重量%) の廃棄物を再利用した。 The volume of the stainless steel basket (A) was set at 20% of the volume of the reactor calf. The mesh basket (A) was filled with a carrier (B) on which the above-mentioned cells were immobilized. As a carrier and a carbon source, waste of a starch-derived porous biodegradable plastic (starch content: 72% by weight), which is practically used as a packing material, was reused.
このものは、 比重が 1 . 0 3で、 気孔率は 2 0 %である。 この担 体を、 前記の菌体の懸濁液に投入して菌の固定化を行った。  It has a specific gravity of 1.03 and a porosity of 20%. The carrier was added to the suspension of the cells to immobilize the cells.
図 2は、 脱窒処理の繰り返し回分法による試験の結果を経時的に 示したものである。 図中の矢印は、 新たな硝酸ナトリウムが投入さ れたことを意味している。 N 0 3態の窒素と、 N 0 2態の窒素の変化 を示した。 Figure 2 shows the results over time of the test by the repetitive batch method of the denitrification treatment. The arrow in the figure means that new sodium nitrate was added. And nitrogen N 0 3 states, shows changes of nitrogen N 0 2 state.
この図 2において、 1 7 日目に添加した後は ( 1 7 〜 2 3 日)、 硝 酸の減少が起きていないが、 これは実験開始時に添加した澱粉担体 が全て消費され尽く したためである。 2 3 日目に新たな澱粉担体を 投入したところ、 脱望が再開された。  In FIG. 2, the nitric acid did not decrease after the addition on the 17th day (17 to 23 days), because the starch carrier added at the start of the experiment was completely consumed. . A new starch carrier was added on the 23rd day, and despairing resumed.
さらに、 この図 2に示したように、 1 5 °Cの低温下で 1 7 0 p p mの硝酸態窒素を 4〜 5 日で、 亜硝酸を蓄積することなく完全に除 去できることが確認された。 また、 消耗した担体を補充することに よつて長期間脱窒処理が可能であることが示された。  Furthermore, as shown in Fig. 2, it was confirmed that 170 ppm of nitrate nitrogen could be completely removed at a low temperature of 15 ° C in 4 to 5 days without accumulating nitrous acid. . It was also shown that long-term denitrification can be achieved by replenishing the spent carrier.
脱窒菌 2および 3の場合にも、 1 5 °Cの低温下で、 各々 4 0 p p m、 1 5 0 p p mの硝酸態窒素を 4 ~ 5 日で、 亜硝酸を蓄積するこ となく完全に除去できることが確認され、 上記とほぼ同様の結果が 得られた。 産業上の利用可能性  In the case of denitrifying bacteria 2 and 3, 40 ppm and 150 ppm of nitrate nitrogen were completely removed at a low temperature of 15 ° C in 4 to 5 days without accumulating nitrite. It was confirmed that it was possible, and almost the same results as above were obtained. Industrial applicability
以上詳しく説明したとおり、 この出願の発明においては、 澱粉を 単一の炭素源として生育できる脱窒菌を安価な澱粉由来生分解性プ ラスチックに固定化して硝酸態窒素汚染地下水の直接浄化を行うこ とから、 脱窒菌が常に炭素源と共に存在し、 効率的な炭素源の利用 と脱窒菌の高濃度化が図れる。 澱粉にはメタノールを炭素源とする 場合のような毒性の危惧はない。 As described in detail above, in the invention of this application, denitrifying bacteria capable of growing with starch as a single carbon source are immobilized on inexpensive starch-derived biodegradable plastics to directly purify nitrate-nitrogen-contaminated groundwater. Therefore, the denitrifying bacteria are always present together with the carbon source, and efficient use of the carbon source and high concentration of the denitrifying bacteria can be achieved. Starch does not have the danger of toxicity unlike methanol as a carbon source.
したがって、 この出願の発明によって、 効率的に、 しかも毒性へ の懸念もなく、 安価に硝酸汚染地下水を直接浄化することが可能と なる。  Therefore, the invention of this application makes it possible to directly purify nitrate-contaminated groundwater efficiently and at a low cost without concern about toxicity.

Claims

請求の範囲 . 澱粉由来の生分解性プラスチックを単一炭素源並びに菌体固定 化担体とし、 この担体に脱窒菌を固定化して硝酸態窒素に汚染さ れた地下水と接触させることを特徴とする硝酸汚染地下水の直接 浄化方法。Claims. A biodegradable plastic derived from starch is used as a single carbon source and a carrier for immobilizing cells, and a denitrifying bacterium is immobilized on the carrier and brought into contact with groundwater contaminated with nitrate nitrogen. Direct purification method for nitrate-contaminated groundwater.
. 澱粉由来の生分解性プラスチックは、 澱粉含有量が 6 0重量% 以上である請求項 1 の直接浄化方法。The direct purification method according to claim 1, wherein the starch-derived biodegradable plastic has a starch content of 60% by weight or more.
. 澱粉由来の生分解性プラスチックは、 多孔質である請求項 1 ま たは 2の直接浄化方法。3. The direct purification method according to claim 1, wherein the biodegradable plastic derived from starch is porous.
. 澱粉由来の生分解性プラスチックは、 気孔率が 1 0 %以上であ る請求項 3の直接浄化方法。 4. The direct purification method according to claim 3, wherein the biodegradable plastic derived from starch has a porosity of 10% or more.
. 澱粉由来の生分解性プラスチックは、 水に対する溶解性が低い ものである請求項 1 ないし 4のいずれかの直接浄化方法。The direct purification method according to any one of claims 1 to 4, wherein the starch-derived biodegradable plastic has low solubility in water.
. 澱粉由来の生分解性プラスチックは、 廃棄物の再利用品である 請求項 1 ないし 5のいずれかの直接浄化方法。The direct purification method according to any one of claims 1 to 5, wherein the starch-derived biodegradable plastic is reused waste.
. 脱窒菌は、 重金属を要求せず、 亜硝酸を蓄積することなく、 2 0 °C以下の低い温度で脱窒能を示すものである請求項 1 ないし 6 のいずれかの直接浄化方法。The direct purification method according to any one of claims 1 to 6, wherein the denitrifying bacterium does not require heavy metals, does not accumulate nitrous acid, and exhibits a denitrifying ability at a low temperature of 20 ° C or less.
. 担体を網ケースに充填し、 これを上下方向に揺動させて水との 接触を図る請求項 1 ないし 7のいずれかの直接浄化方法。The direct purification method according to any one of claims 1 to 7, wherein the netting case is filled with a carrier, and this is swung up and down to make contact with water.
. 請求項 8の直接浄化方法のための装置であって、 担体を収納充 填する網ケースとともに、 これを地下水との接触状態において上 下方向に揺動させる揺動手段を備えていることを特徴とする硝酸 汚染地下水の直接浄化装置。 9. The apparatus for a direct purification method according to claim 8, further comprising: a mesh case for storing and filling the carrier, and a swinging means for swinging the mesh case up and down in a state of contact with groundwater. Features A direct purification device for nitric acid-contaminated groundwater.
PCT/JP2001/002362 2000-03-24 2001-03-23 Method for direct clarification of ground water polluted with nitrate WO2001070637A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/239,419 US6926831B2 (en) 2000-03-24 2001-03-23 Method for direct clarification of groundwater polluted with nitrate
EP01915742A EP1270517A4 (en) 2000-03-24 2001-03-23 Method for direct clarification of ground water polluted with nitrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000085416A JP2001269699A (en) 2000-03-24 2000-03-24 Direct cleaning method for ground water contaminated with nitric acid
JP2000-85416 2000-03-24

Publications (1)

Publication Number Publication Date
WO2001070637A1 true WO2001070637A1 (en) 2001-09-27

Family

ID=18601756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002362 WO2001070637A1 (en) 2000-03-24 2001-03-23 Method for direct clarification of ground water polluted with nitrate

Country Status (5)

Country Link
US (1) US6926831B2 (en)
EP (1) EP1270517A4 (en)
JP (1) JP2001269699A (en)
KR (1) KR100456749B1 (en)
WO (1) WO2001070637A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075364A1 (en) * 2004-02-06 2005-08-18 Takachiho Corp. Water purification solid material produced from natural raw material whose main component is polysaccharide and method of water purification therewith
CN112225323A (en) * 2020-09-11 2021-01-15 同济大学 Method for preparing composite fruit and vegetable carbon source by compounding rotten fruits and vegetables and application

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493927B2 (en) * 2003-04-28 2010-06-30 新日鐵化学株式会社 Nitrate nitrogen treatment material and nitrate nitrogen treatment method
KR100783688B1 (en) * 2004-02-06 2007-12-07 가부시키가이샤 다카치호 Water purification solid material produced from natural raw material whose main component is polysaccharide and method of water purification therewith
JP4779337B2 (en) * 2004-10-20 2011-09-28 株式会社カネカ Biodegradable foam
CN1304303C (en) * 2005-01-07 2007-03-14 清华大学 Method for preparing controlled release high molecular carbon source material for biological method to treat water
JP2007260549A (en) * 2006-03-28 2007-10-11 Dowa Holdings Co Ltd Water cleaning method and apparatus
JP4521384B2 (en) * 2006-09-13 2010-08-11 有限会社室田工業所 Nitrogen compound removal equipment
GB0624167D0 (en) * 2006-12-04 2007-01-10 Univ Gent Process and apparatus for the biological treatment of waste water
WO2011003062A2 (en) * 2009-07-03 2011-01-06 James Madison University Probiotic compositions and processes thereof
JP5421862B2 (en) * 2010-06-18 2014-02-19 オルガノ株式会社 Perchlorate ion-containing water treatment method and perchlorate ion-containing water treatment apparatus
CN101973666B (en) * 2010-09-29 2012-04-18 中国科学院沈阳应用生态研究所 Method for synchronously removing heavy metal and nitrate from drinking water and device thereof
WO2013149662A1 (en) * 2012-04-04 2013-10-10 Hera S.P.A. Inoculated bioplastic-based moving bed biofilm carriers
CN104556407A (en) * 2014-12-31 2015-04-29 深圳市鸿鹄科技发展有限公司 Method for treating wastewater by immobilizing microorganisms to sisal hemp silk
CN114229991B (en) * 2021-12-10 2023-09-08 西北工业大学深圳研究院 Biological fermentation of kitchen waste liquid for preparing sewage carbon

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2607114A1 (en) * 1975-02-27 1976-09-09 Euroc Administration Ab PROCEDURE FOR REMOVING NITROGEN COMPOUNDS IN WATER
JPH0631296A (en) * 1992-07-16 1994-02-08 Kubota Corp Sewage treatment device
JPH08267081A (en) * 1995-03-31 1996-10-15 Onoki Furotsuku Kogyo Kk Microorganisms stuck carrier
JPH08323381A (en) * 1995-05-31 1996-12-10 Hitachi Plant Eng & Constr Co Ltd Treating agent and treating method of waste water
JPH1085782A (en) * 1996-09-13 1998-04-07 Susumu Maruyama Bacterium implantation tool
JPH10165733A (en) * 1996-12-16 1998-06-23 Matsushita Electric Ind Co Ltd Filter material
JPH1190471A (en) * 1997-09-25 1999-04-06 Sekisui Plastics Co Ltd Biological water purifying apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3410412A1 (en) * 1984-03-21 1985-10-03 Manfred 7000 Stuttgart Erne Process for biological denitrification and reactor for denitrification
JPH04135481A (en) * 1990-09-28 1992-05-08 Aasunikusu Kk Biocatalyst-carrying material for bioreactor, biocatalyst-immobilized carrying material, and method for treating with biocatalyst
JPH08256773A (en) * 1995-03-27 1996-10-08 Bio Material:Kk Carrier for immobilizing microorganism and conversion of nitrogen compound in liquid using the same
DE29619016U1 (en) * 1996-11-01 1998-03-12 Mueller Wolf Ruediger Biodegradable plastic product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2607114A1 (en) * 1975-02-27 1976-09-09 Euroc Administration Ab PROCEDURE FOR REMOVING NITROGEN COMPOUNDS IN WATER
JPH0631296A (en) * 1992-07-16 1994-02-08 Kubota Corp Sewage treatment device
JPH08267081A (en) * 1995-03-31 1996-10-15 Onoki Furotsuku Kogyo Kk Microorganisms stuck carrier
JPH08323381A (en) * 1995-05-31 1996-12-10 Hitachi Plant Eng & Constr Co Ltd Treating agent and treating method of waste water
JPH1085782A (en) * 1996-09-13 1998-04-07 Susumu Maruyama Bacterium implantation tool
JPH10165733A (en) * 1996-12-16 1998-06-23 Matsushita Electric Ind Co Ltd Filter material
JPH1190471A (en) * 1997-09-25 1999-04-06 Sekisui Plastics Co Ltd Biological water purifying apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1270517A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075364A1 (en) * 2004-02-06 2005-08-18 Takachiho Corp. Water purification solid material produced from natural raw material whose main component is polysaccharide and method of water purification therewith
US7604745B2 (en) 2004-02-06 2009-10-20 Takachiho Corp. Water-purifying solid material made of a natural raw material containing polysaccharides as principal components, and water-purifying method using the same
CN112225323A (en) * 2020-09-11 2021-01-15 同济大学 Method for preparing composite fruit and vegetable carbon source by compounding rotten fruits and vegetables and application

Also Published As

Publication number Publication date
EP1270517A4 (en) 2006-05-17
US6926831B2 (en) 2005-08-09
JP2001269699A (en) 2001-10-02
KR20030040198A (en) 2003-05-22
EP1270517A1 (en) 2003-01-02
KR100456749B1 (en) 2004-11-10
US20040084376A1 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
Raper et al. Industrial wastewater treatment through bioaugmentation
EP3411339B1 (en) Process for aerobic nitritation of ammonia
Bae et al. Enrichment of ANAMMOX bacteria from conventional activated sludge entrapped in poly (vinyl alcohol)/sodium alginate gel
Lebeau et al. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: effects of Cd, pH and techniques of culture
Zhang et al. Behavior of solid carbon sources for biological denitrification in groundwater remediation
WO2001070637A1 (en) Method for direct clarification of ground water polluted with nitrate
Bae et al. Core-shell structured poly (vinyl alcohol)/sodium alginate bead for single-stage autotrophic nitrogen removal
JP5046183B2 (en) Method for culturing and acclimatizing 1,4-dioxane-degrading bacteria, method for producing 1,4-dioxane-degrading bacteria-immobilized carrier, wastewater treatment method and apparatus
CN101955885B (en) High-efficiency denitrification mixed bacterial agent and application thereof
CN111117914B (en) Salt-tolerant heterotrophic aerobic nitrobacteria strain, culture method, bacterial liquid and application
Bromley-Challenor et al. Bacterial growth on N, N-dimethylformamide: implications for the biotreatment of industrial wastewater
Saini et al. Biofilm-mediated wastewater treatment: a comprehensive review
KR20150037909A (en) Method and device for treating ammonia nitrogen-containing water at low temperature
US6863815B1 (en) Small-scale hydrogen-oxidizing-denitrifying bioreactor
JP2018174839A (en) Method for culturing microorganisms and wastewater treatment method and apparatus
CN109133355A (en) A kind of high nitrogen phosphorus creek water remediation method and immobilization cell
JP2008068233A (en) Nitrogen elimination measure and nitrogen removing apparatus
JP5548633B2 (en) Method and apparatus for treating 1,4-dioxane-containing wastewater
Yang et al. Bio-augmentation as a tool for improving the modified sequencing batch biofilm reactor
CN101456625A (en) Method for gathering denitrifying microorganism
JP2003000238A (en) Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier
CN113502247A (en) Composite functional microbial inoculum for removing total nitrogen from high-salinity wastewater and application thereof
Kim et al. Denitrification of drinking water using biofilms formed by Paracoccus denitrificans and microbial adhesion
JP2003000237A (en) Inclusively immobilized microbe carrier and method for manufacturing the same
JP2001212594A (en) Method for removing nitrate nitrogen in wastewater

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020027012291

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001915742

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10239419

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001915742

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027012291

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020027012291

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2001915742

Country of ref document: EP