JP2003000237A - Inclusively immobilized microbe carrier and method for manufacturing the same - Google Patents

Inclusively immobilized microbe carrier and method for manufacturing the same

Info

Publication number
JP2003000237A
JP2003000237A JP2001190829A JP2001190829A JP2003000237A JP 2003000237 A JP2003000237 A JP 2003000237A JP 2001190829 A JP2001190829 A JP 2001190829A JP 2001190829 A JP2001190829 A JP 2001190829A JP 2003000237 A JP2003000237 A JP 2003000237A
Authority
JP
Japan
Prior art keywords
carrier
immobilization
microbial carrier
polymerization
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001190829A
Other languages
Japanese (ja)
Other versions
JP4131315B2 (en
Inventor
Tatsuo Sumino
立夫 角野
Naomichi Mori
直道 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2001190829A priority Critical patent/JP4131315B2/en
Publication of JP2003000237A publication Critical patent/JP2003000237A/en
Application granted granted Critical
Publication of JP4131315B2 publication Critical patent/JP4131315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a method for supporting a microbe on a immobilizing material in a high concentration without needing pure culturing of the microbe. SOLUTION: The method for manufacturing an inclusively immobilized microbe carrier comprises producing a support prepared by inclusively immobilizing a microbe by polymerizing a monomer or a prepolymer in the presence of the microbe. The polymerization is carried out using a monomer block or a prepolymer block having the diameter or the thickness of 1-10 cm to obtain the carrier A of the present invention.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、 廃水中や大気中の
無機および/又は有機化合物を生物学的に効率良く処理
するための包括固定化微生物担体及びその製造方法に関
する。
TECHNICAL FIELD The present invention relates to a comprehensively immobilized microbial carrier for biologically efficiently treating inorganic and / or organic compounds in wastewater or air and a method for producing the same.

【0002】[0002]

【従来技術】廃水や下水を微生物で処理する生物学的処
理は、 比較的低コストであることから広く採用されてい
る。 しかし、 微生物の種類によっては、 増殖速度が遅い
ものや、 被毒し易いもの、 又はその環境中において増殖
し難いものがあり、 必ずしも効率的な方法とはいえない
場合がある。そこで、 微生物が繁殖しやすい環境を積極
的に形成するために、活性汚泥や特定の微生物を予め内
部に包括固定した包括固定化微生物担体を用いて生物処
理する処理方法がすでに実用化されている。
Biological treatment of wastewater and sewage with microorganisms has been widely adopted because of its relatively low cost. However, depending on the type of microorganism, there are some that have a slow growth rate, some that are easily poisoned, and some that are difficult to grow in their environment, and thus it may not always be an efficient method. Therefore, in order to actively form an environment in which microorganisms can easily reproduce, a treatment method has already been put into practical use, in which biological treatment is carried out using an entrapping immobilization microbial carrier in which activated sludge and specific microorganisms are entrapped and fixed in advance. .

【0003】微生物を内部に担持(保持)する固定化材
料としてはゲル材料が通常用いられ、 自然環境に対して
無害であること、 微生物によって変質又は分解されない
こと、 機械的強度が高いこと、 微生物を多量に担持でき
ること等が要求される。これまでに実用化されているゲ
ル材料としては、 特願昭60−44131号公報に記載
のポリエチレングリコール系のポリマ、 ポリビニルアル
コール系の樹脂等がある。一方、ゲル材料に包括固定化
する微生物としては活性汚泥や純粋培養した微生物が用
いられている。
A gel material is usually used as an immobilizing material for supporting (holding) microorganisms therein, which is harmless to the natural environment, is not altered or decomposed by microorganisms, has high mechanical strength, It is required to be able to support a large amount. Examples of gel materials that have been put to practical use so far include polyethylene glycol-based polymers and polyvinyl alcohol-based resins described in Japanese Patent Application No. 60-44131. On the other hand, activated sludge and purely cultured microorganisms are used as the microorganisms to be entrapped and immobilized in the gel material.

【0004】近年、 微生物として、嫌気性細菌が注目さ
れている。この嫌気性細菌は、油分の分解、高濃度BO
D成分の分解、亜硝酸性窒素成分や硝酸性窒素成分の脱
窒、悪臭成分の分解除去等のいわゆる環境汚染物質の浄
化に優れており、純粋菌利用技術が検討されている。
Recently, anaerobic bacteria have been attracting attention as microorganisms. This anaerobic bacterium decomposes oil and has a high concentration of BO.
It is excellent in the purification of so-called environmental pollutants such as decomposition of component D, denitrification of nitrite nitrogen component and nitrate nitrogen component, decomposition and removal of malodorous component, and techniques for utilizing pure bacteria have been studied.

【0005】[0005]

【発明が解決しようとする課題】ところで、嫌気性細菌
を用いて環境汚染物質を生物学的処理するためには、嫌
気性細菌を優占させ高濃度に担持した包括固定化微生物
担体を製造しなくてはならないが、従来は、純粋培養し
た嫌気性細菌をゲル材料に固定化する必要があった。
By the way, in order to biologically treat environmental pollutants using anaerobic bacteria, an entrapping immobilization microbial carrier in which anaerobic bacteria are dominated and supported at a high concentration is produced. It is necessary, but conventionally, it was necessary to immobilize purely cultured anaerobic bacteria on a gel material.

【0006】しかしながら、純粋培養には培養タンクや
大量の培地が必要であり、 更には培養時間も長くかかり
当然人件費もかさむことから製造コストがかかりすぎる
という欠点がある。
However, pure culture requires a culture tank and a large amount of medium, and further has a drawback that the production cost is too high because the culture time is long and the labor cost is naturally high.

【0007】本発明はこのような事情に鑑みてなされた
もので、微生物の純粋培養を行うことなく微生物をモノ
マ又はプレポリマの固定化材料に高濃度に担持すること
ができる包括固定化微生物担体及びその製造方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and a comprehensively immobilized microbial carrier capable of supporting a high concentration of a microorganism on an immobilization material for a monomer or a prepolymer without performing pure culture of the microorganism, It is an object to provide a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】本発明は前記目的を達成
するために、微生物の存在下でモノマ又はプレポリマの
固定化材料を重合して微生物を包括固定化させた担体を
製造する包括固定化微生物担体の製造方法において、前
記固定化材料の径又は厚みを1〜10cmの大きさで重
合させることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a carrier in which microorganisms are entrapped and immobilized by polymerizing an immobilization material of a monomer or a prepolymer in the presence of microorganisms. The method for producing a microbial carrier is characterized in that the immobilization material is polymerized in a diameter or thickness of 1 to 10 cm.

【0009】本発明は、微生物、特に嫌気性細菌をモノ
マ又はプレポリマの固定化材料に高濃度に集積させるた
めの技術を検討した結果、固定化材料の径又は厚みを1
cm以上で重合して包括固定化微生物担体を製造するこ
とにより、その後の包括固定化微生物担体の培養におい
て微生物を効果的に増殖できるようにしたものである。
The present invention has examined the technique for accumulating microorganisms, particularly anaerobic bacteria, in a high concentration on a monomer or prepolymer immobilization material, and as a result, the diameter or thickness of the immobilization material is 1
By polymerizing the entrapping immobilization microbial carrier by polymerization at cm or more, the microorganism can be effectively proliferated in the subsequent culture of the entrapping immobilization microbial carrier.

【0010】これは、固定化材料の径又は厚みを1〜1
0cmの大きな形で重合することにより、重合時に固定
化材料の内部に重合熱がたまり、外に向けて放射状に重
合が進行することにより放射状のスポンジ構造が形成さ
れるので、菌の棲息領域が増加するためと考えられる。
This is because the diameter or thickness of the immobilizing material is 1 to 1
By polymerizing in a large size of 0 cm, the heat of polymerization is accumulated inside the immobilizing material during the polymerization, and the radial polymerization progresses radially to form a radial sponge structure. It is thought to increase.

【0011】固定化材料の径又は厚みを1〜10cmの
大きさにする態様としては、1〜10cmの成形型に入
れて重合するか又は固定化材料を1〜10cmの大きさ
でアルカリ金属イオン又は多価金属イオンを含む水性溶
媒中又は有機溶媒中に滴下して重合することができる。
As a mode in which the diameter or thickness of the immobilizing material is adjusted to 1 to 10 cm, the immobilizing material is placed in a mold of 1 to 10 cm for polymerization, or the immobilizing material is 1 to 10 cm in size and alkali metal ions are added. Alternatively, the polymerization can be carried out by dropping into an aqueous solvent containing a polyvalent metal ion or an organic solvent.

【0012】本発明の好ましい態様としては、重合時の
重合温度を30〜60°Cにすることが微生物濃度を一
層高めるために好ましく、更には重合時における固定化
材料の中心部温度から外気温度を引いた温度差を5〜1
0°Cにすることが好ましい。また、固定化材料に無機
物の粒子又は有機物の粒子を含有させることが一層好ま
しい。
In a preferred embodiment of the present invention, the polymerization temperature during the polymerization is preferably set to 30 to 60 ° C. in order to further increase the concentration of microorganisms, and further, the temperature of the central portion of the immobilizing material during the polymerization to the outside temperature. The temperature difference minus
It is preferably 0 ° C. Further, it is more preferable that the immobilization material contains inorganic particles or organic particles.

【0013】また、本発明は前記目的を達成するため
に、請求項1〜6の何れか1に記載の包括固定化微生物
担体の製造方法により製造されたことを特徴とする。
Further, in order to achieve the above object, the present invention is characterized by being manufactured by the method for manufacturing a comprehensively immobilized microbial carrier according to any one of claims 1 to 6.

【0014】本発明は、本発明の包括固定化微生物担体
の製造方法で製造された包括固定化微生物担体を提供す
るものである。
The present invention provides an entrapping immobilization microbial carrier produced by the method for producing an entrapping immobilization microbial carrier of the present invention.

【0015】[0015]

【発明の実施の形態】以下添付図面に従って、本発明に
係る包括固定化微生物担体及びその製造方法の好ましい
実施の形態について詳説する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the entrapping immobilization microorganism carrier and the method for producing the same according to the present invention will be described below in detail with reference to the accompanying drawings.

【0016】本発明の包括固定化微生物担体の製造方法
は、微生物を包括固定化するためのモノマ又はプレポリ
マの固定化材料を、微生物の存在下で1〜10cmの大
きさで、好ましくは3〜5cmの大きさで重合する。こ
の大きさで重合するためには、球相当径が1〜10c
m、好ましくは3〜5cmの大きさの成形型で重合して
もよく、或いは厚み1〜10cm、好ましくは3〜5c
mの大きさのシート状に重合して、その後、1〜10c
m、好ましくは3〜5cmの大きさに成形してもよい。
更には、1〜10cm、好ましくは3〜5cmの大きさ
でアルカリ金属イオン又は多価金属イオンを含む水性溶
媒中又は有機溶媒中に滴下して重合してもよい。これに
より、本発明の径又は厚さが1〜10cm、好ましくは
3〜5cmの大きさのスポンジ構造をした包括固定化微
生物担体を得ることができる。
The method for producing the entrapping immobilization microbial carrier of the present invention comprises a monomer or prepolymer immobilization material for entrapping immobilization of microorganisms in the presence of microorganisms in a size of 1 to 10 cm, preferably 3 to. Polymerize with a size of 5 cm. In order to polymerize at this size, the equivalent spherical diameter is 1 to 10c.
m, preferably 3-5 cm, may be polymerized in a mold or have a thickness of 1-10 cm, preferably 3-5 c.
Polymerized into a sheet of size m, then 1-10c
It may be molded into a size of m, preferably 3 to 5 cm.
Further, polymerization may be carried out by dropping into an aqueous solvent or an organic solvent containing an alkali metal ion or a polyvalent metal ion having a size of 1 to 10 cm, preferably 3 to 5 cm. Thereby, the entrapping immobilization microorganism carrier having a sponge structure having a diameter or thickness of 1 to 10 cm, preferably 3 to 5 cm, of the present invention can be obtained.

【0017】以下、微生物として嫌気性細菌の例で説明
するが、本発明は嫌気性細菌に限定するものではない。
Hereinafter, an anaerobic bacterium will be described as an example of the microorganism, but the present invention is not limited to the anaerobic bacterium.

【0018】図1は、重合時の固定化材料の大きさが、
得られた包括固定化微生物担体の培養時の菌数増加にど
のような影響を及ぼすかを実験したもので、ポリエチレ
ングリコールプレポリマで活性汚泥を包括固定化したと
きの固定化材料の球相当径の大きさと、培養後の嫌気性
細菌の菌数との関係を調べたものである。実験条件は、
活性汚泥を2%含有する包括固定化微生物担体を、ペプ
トン、肉エキスが含有する培地で3週間嫌気培養したと
きの嫌気性細菌の菌数を測定した。
FIG. 1 shows that the size of the immobilizing material at the time of polymerization is
This is an experiment conducted to see how it affects the increase in the number of bacteria during culturing of the obtained entrapping immobilization microbial carrier, and the equivalent spherical diameter of the immobilization material when encapsulating the activated sludge with polyethylene glycol prepolymer. And the number of anaerobic bacteria after culturing was investigated. The experimental conditions are
When the entrapped immobilized microbial carrier containing 2% of activated sludge was anaerobically cultured for 3 weeks in a medium containing peptone and meat extract, the number of anaerobic bacteria was measured.

【0019】図1の実験結果から分かるように、培養開
始前の菌数が約106 (cells/cm3- 担体)であったも
のが、球相当径を10mmを超えて大きくするにしたが
って菌数が増加し始め、球相当径が30mmで菌数が最
大の約1011(cells/cm3 -担体)になった。そして、
球相当径が50mmまで最大の菌数が維持され、その
後、球相当径が50mmを超えると菌数が次第に低下
し、球相当径が100mmを超えて大きくなると培養開
始前の菌数と同じ約108 (cells/cm3 - 担体)まで低
下した。これは、重合時の固定化材料の球相当径が10
mm以上で重合して得られた包括固定化微生物担体は、
重合時に固定化材料の中心部で重合熱がたまり、外に向
けた放射状の重合が進行し易くなることによって、固定
化材料が放射状のスポンジ構造になり、菌の棲息領域が
増加するためと考えられる。事実、固定化材料の球相当
径を30mmまで次第に大きくして重合して得られた包
括固定化微生物担体の内部構造は、均一な密の構造から
スポンジ構造が次第に現れはじめ、球相当径が30mm
以上で完全にスポンジ構造となった。この場合、図1で
球相当径50mmを超えるとスポンジ構造であるにもか
かわらず菌数が低下するのは、基質の拡散が律速になる
ために担体全体での菌の保持量が低下するためであろう
と考察される。図2は、外に向け放射状に重合が進行し
て得られた包括固定化微生物担体Aを概念的に示した図
で、包括固定化微生物担体の内部断面を示したものであ
る。図2の(a)は、固定化材料を微生物の存在下で一
辺が3.5cmの四角状の成形型で重合して得られた包
括固定化微生物担体Aであり、(b)は、固定化材料を
微生物の存在下で3.5cmの大きさでアルカリ金属イ
オン又は多価金属イオンを含む水性溶媒中に滴下して重
合して得られた包括固定化微生物担体Aである。また、
図2の(c)は厚みが3.5cmで縦横が10cmの成
形型で板状(シート状)に重合させて得られた包括固定
化微生物担体Aである。このようにして重合して得られ
た包括固定化微生物担体Aは、図3(a)(b)の電子
顕微鏡写真の図から分かるように、ポーラスなスポンジ
構造が形成されていた。図3(a)は、ポーラスな穴が
見える方向からの電子顕微鏡写真の図であり、図3
(b)は、重合が進行する方向に沿った電子顕微鏡写真
の図である。
As can be seen from the experimental results shown in FIG. 1, the number of bacteria before the start of culturing was about 10 6 (cells / cm 3 -carrier), but the number of bacteria increased as the equivalent sphere diameter exceeded 10 mm. The number started to increase, and the equivalent number of spheres was 30 mm and the number of bacteria became the maximum, about 10 11 (cells / cm 3 -carrier). And
The maximum number of bacteria is maintained up to a sphere-equivalent diameter of 50 mm, then the number of bacteria gradually decreases when the sphere-equivalent diameter exceeds 50 mm, and the same as the number of cells before the start of culture when the sphere-equivalent diameter exceeds 100 mm. It decreased to 10 8 (cells / cm 3 -carrier). This is because the equivalent spherical diameter of the immobilizing material during polymerization is 10
The entrapping immobilization microbial carrier obtained by polymerizing at mm or more,
It is considered that the heat of polymerization accumulates at the center of the immobilization material during polymerization, which facilitates outward radial polymerization, resulting in the immobilization material having a radial sponge structure and an increased habitat area for bacteria. To be In fact, the internal structure of the entrapping immobilization microbial carrier obtained by polymerizing the immobilization material by gradually increasing the equivalent sphere diameter to 30 mm, the sponge structure gradually begins to appear from a uniform dense structure, and the equivalent sphere diameter is 30 mm.
With the above, the sponge structure was completely obtained. In this case, in FIG. 1, when the equivalent sphere diameter exceeds 50 mm, the number of bacteria decreases despite the sponge structure because the diffusion rate of the substrate is rate-determining and the amount of bacteria retained in the entire carrier decreases. Will be considered. FIG. 2 is a view conceptually showing the entrapping immobilization microbial carrier A obtained by the outward radial polymerization, and shows an internal cross section of the entrapping immobilization microbial carrier. 2 (a) is an entrapping immobilization microbial carrier A obtained by polymerizing an immobilization material in a square mold having a side of 3.5 cm in the presence of microorganisms, and (b) is immobilization. The entrapped immobilized microbial carrier A is obtained by polymerizing a chemical compound by dropping it into an aqueous solvent containing an alkali metal ion or a polyvalent metal ion in a size of 3.5 cm in the presence of a microorganism. Also,
FIG. 2 (c) shows the entrapping immobilization microbial carrier A obtained by polymerizing in a plate shape (sheet shape) with a molding die having a thickness of 3.5 cm and a length and width of 10 cm. The entrapping immobilization microbial carrier A obtained by polymerization in this way had a porous sponge structure as seen from the electron micrographs of FIGS. 3 (a) and 3 (b). FIG. 3A is a view of an electron micrograph taken from a direction in which a porous hole is visible.
(B) is a view of an electron micrograph taken along the direction in which polymerization proceeds.

【0020】これにより、微生物を高濃度に包括した包
括固定化微生物担体Aを得るためには、固定化材料を、
微生物の存在下で1〜10cmの大きさで、好ましくは
3〜5cmの大きさで重合することが重要である。
Thus, in order to obtain the entrapping immobilization microbial carrier A in which the microorganisms are entrapped at a high concentration, the immobilization material is
It is important to polymerize in the presence of microorganisms in a size of 1-10 cm, preferably 3-5 cm.

【0021】図4は、重合温度と嫌気性細菌の菌数との
関係を調べたものである。
FIG. 4 shows the relationship between the polymerization temperature and the number of anaerobic bacteria.

【0022】実験条件は、活性汚泥を2%含有する3.
5cmの球相当径の包括固定化微生物担体Aを、ペプト
ン、肉エキスが含有する培地で3週間嫌気培養したとき
の嫌気性細菌の菌数を測定した。
The experimental condition is that the activated sludge is contained at 2%.
The number of anaerobic bacteria was measured when the entrapped immobilized microbial carrier A having a sphere equivalent diameter of 5 cm was anaerobically cultured in a medium containing peptone and meat extract for 3 weeks.

【0023】図4の実験結果から分かるように、重合温
度を上げていくと菌数が次第に増加し、30°Cで最大
の約1011(cells/cm3 - 担体)になり、60°Cまで
最大の菌数を維持した後、60°Cを超えると再び低下
した。これは、重合温度を上げることで外に向けた放射
状の重合が一層進行し易くなるためと考えられる。ま
た、60°Cを超えると再び菌数が低下する理由として
は、温度を高くすることで菌が死滅し易くなる他に、熱
による固定化材料の収縮によりスポンジ構造が形成され
にくくなり、菌の棲息領域がかえって減少してしまうも
のと考察される。これにより、微生物を高濃度に包括し
た包括固定化微生物担体Aを得るためには、固定化材料
を1〜10cmの大きさで重合することに加えて重合温
度を30〜60°Cにすることが好ましい。
As can be seen from the experimental results shown in FIG. 4, as the polymerization temperature was raised, the number of bacteria gradually increased, reaching a maximum of about 10 11 (cells / cm 3 -carrier) at 30 ° C, and 60 ° C. After maintaining the maximum number of bacteria up to 60 ° C, it decreased again when the temperature exceeded 60 ° C. This is presumably because increasing the polymerization temperature facilitates the outward radial polymerization. The reason why the number of bacteria decreases again when the temperature exceeds 60 ° C is that the bacteria are easily killed by increasing the temperature, and the sponge structure is less likely to be formed due to shrinkage of the immobilization material due to heat. It is considered that the habitat area of the island will decrease. Thus, in order to obtain the entrapping immobilization microbial carrier A in which the microorganisms are entrapped at a high concentration, in addition to polymerizing the immobilization material in a size of 1 to 10 cm, the polymerization temperature is set to 30 to 60 ° C. Is preferred.

【0024】図5は、重合時における固定化材料の中心
部温度と外気温度との温度差と嫌気性細菌の菌数との関
係を調べたものである。
FIG. 5 shows the relationship between the temperature difference between the center temperature of the immobilizing material and the outside air temperature during polymerization and the number of anaerobic bacteria.

【0025】実験条件は、活性汚泥を2%含有する3.
5cmの角型の包括固定化微生物担体Aを、ペプトン、
肉エキスが含有する培地で3週間嫌気培養したときの嫌
気性細菌の菌数を測定した。
The experimental condition is that the activated sludge is contained in 2%.
A 5 cm square entrapping immobilization microbial carrier A was added to peptone,
The number of anaerobic bacteria when anaerobically cultured for 3 weeks in a medium containing meat extract was measured.

【0026】図5の実験結果から分かるように、重合時
における固定化材料の中心部温度と外気温度との温度差
を大きくしていくと菌数が次第に増加し、温度差が5°
C付近で最大の約1011(cells/cm3 - 担体)になり、
温度差10°C付近までは最大の菌数を維持し、温度差
が10°Cを超えると再び菌数が低下した。これは、固
定化材料の中心部温度から外気温度を引いた温度差が適
度にあった方が、温度差による放熱現象が緩やかに進行
して確実にスポンジ構造を形成するのに対し、温度差が
10°Cを超えて大きくなり過ぎると、放熱現象が速す
ぎて、スポンジ構造の形成が間に合わないためと考えら
れる。
As can be seen from the experimental results shown in FIG. 5, as the temperature difference between the center temperature of the immobilizing material and the outside air temperature during polymerization is increased, the number of bacteria gradually increases and the temperature difference is 5 °.
The maximum is around 10 11 (cells / cm 3 -carrier) near C,
The maximum number of bacteria was maintained until the temperature difference reached around 10 ° C, and the number of bacteria decreased again when the temperature difference exceeded 10 ° C. This is because when the temperature difference obtained by subtracting the outside air temperature from the center temperature of the immobilization material is moderate, the heat dissipation phenomenon due to the temperature difference gradually progresses and the sponge structure is reliably formed, whereas the temperature difference It is considered that when the temperature exceeds 10 ° C and becomes too large, the heat dissipation phenomenon is too fast and the formation of the sponge structure cannot be completed in time.

【0027】これにより、微生物を高濃度に包括した包
括固定化微生物担体Aを得るためには、固定化材料を1
〜10cmの大きさで重合することに加えて重合温度を
30〜60°Cにすることが好ましく、更には重合時に
おける固定化材料の中心部温度と外気温度との温度差を
5〜10°Cにすることが好ましい。
Thus, in order to obtain the entrapping immobilization microbial carrier A containing the microorganisms at a high concentration, 1
In addition to polymerization with a size of 10 cm, it is preferable to set the polymerization temperature to 30 to 60 ° C. Further, the temperature difference between the center temperature of the immobilizing material and the outside air temperature during the polymerization is 5 to 10 °. It is preferably C.

【0028】表1は、重合される固定化材料に無機物の
粒子又は有機物の粒子を含有させた場合に嫌気性細菌の
菌数がどのようになるかを調べたものである。
Table 1 shows how the number of anaerobic bacteria becomes when the immobilizing material to be polymerized contains inorganic particles or organic particles.

【0029】実験条件は、活性汚泥を2%含有する3.
5cmの角型の包括固定化微生物担体Aを、ペプトン、
肉エキスが含有する培地で3週間嫌気培養したときの嫌
気性細菌の菌数を測定した。
The experimental condition is that the activated sludge is contained at 2%.
A 5 cm square entrapping immobilization microbial carrier A was added to peptone,
The number of anaerobic bacteria when anaerobically cultured for 3 weeks in a medium containing meat extract was measured.

【0030】[0030]

【表1】 [Table 1]

【0031】表1の結果から分かるように、重合される
固定化材料に無機物の粒子又は有機物の粒子を含有させ
て得られた包括固定化微生物担体Aは、無添加の従来の
ものに比べて何れも菌数が大きくなった。特に、でんぷ
ん粒子や生分解性プラスチックの効果が大きかった。
As can be seen from the results in Table 1, the entrapping immobilization microbial carrier A obtained by incorporating the inorganic particles or the organic particles in the immobilizing material to be polymerized has a higher density than the conventional non-additive one. In both cases, the number of bacteria increased. In particular, the effect of starch particles and biodegradable plastic was great.

【0032】これにより、微生物を高濃度に包括した包
括固定化微生物担体Aを得るためには、重合される固定
化材料に、活性炭、砂、ガラス、ゼオライト等の無機物
の粒子、或いは生分解性プラスチック、多糖類、セルロ
ース等の有機物の粒子を含有させるとよい。また、固定
化材料に含有させるものとして、活性汚泥を0.2g/
L以上多量に含有させると、汚泥の分解物が炭素供給源
になるので、嫌気性細菌の繁殖には好ましい。特に、脱
窒菌での脱窒作用の水素供与体となる。
As a result, in order to obtain the entrapping immobilization microbial carrier A in which the microorganisms are entrapped in a high concentration, the immobilization material to be polymerized contains inorganic particles such as activated carbon, sand, glass, zeolite, or biodegradability. Particles of organic substances such as plastics, polysaccharides and cellulose may be contained. In addition, 0.2 g / ml of activated sludge is contained in the immobilization material.
If a large amount of L or more is contained, the sludge decomposition product becomes a carbon supply source, which is preferable for the propagation of anaerobic bacteria. In particular, it serves as a hydrogen donor for denitrification by denitrifying bacteria.

【0033】本発明の包括固定化に用いることのできる
固定化材料の固定化材料としては次のものを好適に使用
することができる。 (モノメタクリレート類)ポリエチレングリコールモノ
メタクリレート、ポリプレングリコールモノメタクリレ
ート、ポリプロピレングリコールモノメタクリレート、
メトキシジエチレングリコールメタクリレート、メトキ
シポリエチレングリコールメタクリレート、メタクリロ
イルオキシエチルハイドロジェンフタレート、メタクリ
ロイルオキシエチルハイドロジェンサクシネート、3-ク
ロロ-2- ヒドロキシプロピルメタクリレート、ステアリ
ルメタクリレート、2-ヒドロキキシメタクリレート、エ
チルメタクリレート等 (モノアクリレート類)ノニルフェノキシポリエチレン
グリコールアクリレート、ノニルフェノキシポリプロピ
レングリコールアクリレート、シリコン変性アクリレー
ト、ポリプロピレングリコールモノアクリレート、フェ
ノキシエチルアクリレート、フェノキシジエチレングリ
コールアクリレート、フェノキシポリエチレングリコー
ルアクリレート、メトキシポリエチレングリコールアク
リレート、アクリロイルオキシエチルハイドロジェンサ
クシネート、ラウリルアクリレート等 (ジメタクリレート類)1,3-ブチレングリコールジメタ
クリレート、1,4-ブタンジオールジメタクリレート、エ
チレングリコールジメタクリレート、ジエチレングリコ
ールジメタクリレート、トリエチレングリコールジメタ
クリレート、ポリエチレングリコールジメタクリレー
ト、ブチレングリコールジメタクリレート、ヘキサンジ
オールジメタクリレート、ネオペンチルグリコールジメ
タクリレート、ポリプレングリコールジメタクリレー
ト、2-ヒドロキシ1,3-ジメタクリロキシプロパン、2,2-
ビス4-メタクリロキシエトキシフェニルプロパン、2,2-
ビス4-メタクリロキシジエトキシフェニルプロパン、2,
2-ビス4-メタクリロキシポリエトキシフェニルプロパン
等 (ジアクリレート類)エトキシ化ネオペンチルグリコー
ルジアクリレート、プロポキシ化ネオペンチルグリコー
ルジアクリレート、ポリエチレングリコールジアクリレ
ート、1,6-ヘキサンジオールジアクリレート、ネオペン
チルグリコールジアクリレート、トリプロピレングリコ
ールジアクリレート、ポリプロピレングリコールジアク
リレート、2,2-ビス4-アクリロキシジエトキシフェニル
プロパン、2-ヒドロキシ1-アクリロキシ、3-メタクリロ
キシプロパン等 (トリメタクリレート類)トリメチロールプロパントリ
メタクリレート等 (トリアクリレート類)エトキシ化トリメチロールプロ
パントリアクリレート、エトキシ化トリメチロールプロ
パントリアクリレート、プロポキシ化トリメチロールプ
ロパントリアクリレート等 (テトラアクリレート類)エトキシ化ペンタエリスリト
ールテトラアクリレート、プロポキシ化ペンタエリスイ
リトールテトラアクリレート、ジトリメチロールプロパ
ンテトラアクリレート等 (ウレタンアクリレート類)ウレタンアクリレート、ウ
レタンジメチルアクリレート、ウレタントリメチルアク
リレート等 (エポキシアクリレート類) (その他)アクリルアミド、光硬化性ポリビニルアルコ
ール、光硬化性ポリエチレングリコール、光硬化性ポリ
エチレングリコールポリプロピレングリコールプレポリ
マ上記した包括固定化微生物担体の製造方法により嫌気
性細菌を高濃度に担持した本発明の包括固定化微生物担
体Aは、以下に説明する環境汚染物質に接触させて生物
学的処理を行うことにより、環境汚染物質の効果的な分
解除去或いは脱窒除去が可能である。
As the immobilization material of the immobilization material that can be used for the comprehensive immobilization of the present invention, the following materials can be preferably used. (Monomethacrylates) polyethylene glycol monomethacrylate, polypropylene glycol monomethacrylate, polypropylene glycol monomethacrylate,
Methoxydiethylene glycol methacrylate, methoxypolyethylene glycol methacrylate, methacryloyloxyethyl hydrogen phthalate, methacryloyloxyethyl hydrogen succinate, 3-chloro-2-hydroxypropyl methacrylate, stearyl methacrylate, 2-hydroxyxymethacrylate, ethyl methacrylate, etc. (monoacrylates ) Nonylphenoxy polyethylene glycol acrylate, nonylphenoxy polypropylene glycol acrylate, silicon modified acrylate, polypropylene glycol monoacrylate, phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, phenoxy polyethylene glycol acrylate, methoxy polyethylene glycol Relate, acryloyloxyethyl hydrogen succinate, lauryl acrylate, etc. (dimethacrylates) 1,3-butylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate , Polyethylene glycol dimethacrylate, butylene glycol dimethacrylate, hexanediol dimethacrylate, neopentyl glycol dimethacrylate, polypropylene glycol dimethacrylate, 2-hydroxy 1,3-dimethacryloxypropane, 2,2-
Bis4-methacryloxyethoxyphenylpropane, 2,2-
Bis 4-methacryloxydiethoxyphenyl propane, 2,
2-bis 4-methacryloxy polyethoxyphenyl propane (diacrylates) ethoxylated neopentyl glycol diacrylate, propoxylated neopentyl glycol diacrylate, polyethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol Diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, 2,2-bis-4-acryloxydiethoxyphenyl propane, 2-hydroxy 1-acryloxy, 3-methacryloxy propane (trimethacrylates) trimethylol propane tri Methacrylate, etc. (Triacrylates) Ethoxylated trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethyl Roll propane triacrylate, etc. (tetraacrylates) Ethoxylated pentaerythritol tetraacrylate, propoxylated pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, etc. (urethane acrylates) Urethane acrylate, urethane dimethyl acrylate, urethane trimethyl acrylate, etc. Acrylates (Others) Acrylamide, photo-curable polyvinyl alcohol, photo-curable polyethylene glycol, photo-curable polyethylene glycol polypropylene glycol prepolymer A book in which anaerobic bacteria are supported at a high concentration by the above-mentioned method for producing the entrapped immobilized microbial carrier. The entrapping immobilization microbial carrier A of the present invention is obtained by contacting the environmental pollutants described below with biological treatment. Effective decomposition and removal or denitrification removal of environmental pollutants are possible.

【0034】嫌気性細菌による効果的な生物学的に可能
な環境汚染物質としては、主として、廃水中の油成分
(ヘキサン抽出物)、BOD成分、亜硝酸性窒素成分や
硝酸性窒素成分、大気中のメルカプタン、硫化水素、ア
ンモニア等の悪臭成分が対象である。以下、本発明の包
括固定化微生物担体Aを用いた環境汚染物質の除去につ
いて実施例にて説明する。
Effective biologically possible environmental pollutants due to anaerobic bacteria are mainly oil components (hexane extract) in waste water, BOD components, nitrite nitrogen components and nitrate nitrogen components, and air. The target is odorous components such as mercaptan, hydrogen sulfide, and ammonia. Hereinafter, removal of environmental pollutants using the entrapping immobilization microorganism carrier A of the present invention will be described in Examples.

【0035】[0035]

【実施例】(実施例1)実施例1は、本発明の包括固定
化微生物担体Aの処理性能及び嫌気性細菌の高濃度培養
状態の安定性、並びに高濃度BOD廃水の処理能力を試
験したものである。
Example 1 In Example 1, the treatment performance of the entrapped immobilized microbial carrier A of the present invention, the stability of anaerobic bacteria in a high concentration culture state, and the treatment capability of a high concentration BOD wastewater were tested. It is a thing.

【0036】下水処理場から採取した活性汚泥をポリエ
チレングリコール系プレポリマ(ポリエチレングリコー
ルジメタクリレート)で固定化した本発明の3.5cm
角型の包括固定化微生物担体を連続処理運転のサンプル
として試験に供した(以下「発明法担体A」という)。
発明法担体Aは、3.5cmの成形型で30℃で重合し
て、スポンジ構造の担体としたものである。
3.5 cm of the present invention in which activated sludge collected from a sewage treatment plant is fixed with a polyethylene glycol prepolymer (polyethylene glycol dimethacrylate).
A rectangular entrapping immobilization microbial carrier was subjected to a test as a sample for continuous treatment operation (hereinafter referred to as "invention method carrier A").
Inventive method carrier A is a carrier having a sponge structure obtained by polymerization at 30 ° C. in a 3.5 cm mold.

【0037】比較例として、同様に下水処理場から採取
した活性汚泥をポリエチレングリコール系プレポリマ
(ポリエチレングリコールジメタクリレート)で3mm
の厚さでシート状に重合したものを3mm角型に切断
し、これを従来の包括固定化微生物担体(以下「従来法
担体B」という)として試験に供した。
As a comparative example, similarly, activated sludge collected from a sewage treatment plant was treated with polyethylene glycol-based prepolymer (polyethylene glycol dimethacrylate) to 3 mm.
The sheet-like polymer having a thickness of 3 mm was cut into a 3 mm square shape, and this was used as a conventional entrapping immobilization microbial carrier (hereinafter referred to as “conventional method carrier B”).

【0038】表2は、包括固定化微生物担体の組成であ
り、発明法担体A及び従来法担体Bともに同様である。
Table 2 shows the composition of the entrapping immobilization microbial carrier, which is the same for both the inventive method carrier A and the conventional method carrier B.

【0039】[0039]

【表2】 [Table 2]

【0040】表3は、発明法担体A中及び従来法担体B
中の菌数測定用として使用した標準寒天培地である。ま
た、菌の測定は全て嫌気性培養で評価した。
Table 3 shows the results in the carrier A of the invention method and the carrier B of the conventional method.
It is a standard agar medium used for measuring the number of bacteria in the medium. In addition, all bacteria were evaluated by anaerobic culture.

【0041】[0041]

【表3】 [Table 3]

【0042】図6は、連続処理運転に用いた試験装置1
0の概念図である。
FIG. 6 shows a test apparatus 1 used for continuous processing operation.
It is a conceptual diagram of 0.

【0043】試験装置10は、容積が2Lの反応槽12
に、上記した3.5cm角型の大径な発明法担体Aを1
000mL充填し充填率を50%とした固定床式の連続
処理装置で、原水はポンプ14により反応槽12の底部
から流入し、側面上部から処理水が流出する構造であ
る。連続処理運転での、滞留時間を24時間とし、流量
を1.4mL/分とした。尚、エア供給配管16を備え
ており、反応槽16内へのエア供給も必要に応じて可能
である。
The test apparatus 10 comprises a reaction tank 12 having a volume of 2 L.
To the above-mentioned 3.5 cm square large-diameter invention carrier A
It is a fixed bed type continuous treatment device with a filling rate of 000 mL and a filling rate of 50%. Raw water flows in from the bottom of the reaction tank 12 by the pump 14, and the treated water flows out from the upper side surface. In the continuous treatment operation, the residence time was 24 hours and the flow rate was 1.4 mL / min. An air supply pipe 16 is provided, and air can be supplied into the reaction tank 16 as needed.

【0044】上記試験装置10を用いて発明法担体Aと
従来法担体Bについて、処理性能及び嫌気性細菌の高濃
度培養状態の安定性を評価するために合成廃水(BOD
8000mg/L)での連続処理運転を嫌気性条件下で
行った。
In order to evaluate the treatment performance and the stability of the anaerobic bacteria in the high concentration culture state of the carrier A of the invention method and the carrier B of the conventional method using the above test apparatus 10, a synthetic wastewater (BOD) was used.
Continuous treatment run at 8000 mg / L) was performed under anaerobic conditions.

【0045】その結果、発明法担体A中の嫌気性細菌が
顕著に増殖した。初期の嫌気性細菌数は2×106 (ce
lls/cm3 - 担体)であったものが、4か月の連続処理運
転終了後に菌数を測定したところ4.4×1010(cell
s/cm3 - 担体)まで増加し、連続処理運転で高濃度培養
が可能であることが分かった。一方、従来法担体Bの場
合には、4か月の連続処理運転終了後に菌数を測定した
ところ8.6×108(cells/cm3 - 担体)で高濃度化
には至らなかった。また、発明法担体Aを使用した処理
水のBODは、350〜590mg/Lで推移したのに
対し、従来法担体Bを使用した処理水のBODは、90
0〜1200mg/Lで推移し、発明法担体Aは従来法
担体Bに比べて処理性能が優れていた。また、連続処理
運転後の担体の稀釈平板培養を行ったときのコロニー形
態を観察したところ、発明法担体A及び従来法担体Bと
もに白色や褐色などの多様な小型コロニーが生育し、分
離した菌をbioMerieux社製同定キットで同定した結果、
通性嫌気性細菌であるPseudomonas sp. 等が同定でき
た。このことは、発明法担体A及び従来法担体Bともに
合成廃水の連続処理試験で嫌気性細菌が増殖するが、発
明法担体Aは従来法担体Bに比べて処理性能及び嫌気性
細菌の高濃度培養状態において優れていることを意味す
る。
As a result, the anaerobic bacteria in the carrier A of the invention method proliferated remarkably. The initial number of anaerobic bacteria was 2 × 10 6 (ce
lls / cm 3 -carrier), the number of bacteria was 4.4 × 10 10 (cells) after the continuous treatment for 4 months.
s / cm 3 -carrier), and it was found that high-concentration culture is possible in continuous treatment operation. On the other hand, in the case of the conventional carrier B, when the number of bacteria was measured after the completion of the continuous treatment operation for 4 months, the concentration was 8.6 × 10 8 (cells / cm 3 -carrier) and the concentration could not be increased. The BOD of the treated water using the carrier A of the invention method remained at 350 to 590 mg / L, whereas the BOD of the treated water using the carrier B of the conventional method was 90.
The carrier performance of the invention carrier A was superior to that of the conventional carrier B as compared with the conventional carrier B. In addition, when observing the colony morphology of the diluted plate culture of the carrier after the continuous treatment operation, various small colonies such as white and brown grew in both the inventive method carrier A and the conventional method carrier B, and the isolated fungus was isolated. As a result of identifying with the bioMerieux identification kit,
Pseudomonas sp., Which is a facultative anaerobic bacterium, was identified. This means that the anaerobic bacteria grow in the continuous treatment test of the synthetic wastewater in both the inventive carrier A and the conventional carrier B, but the inventive carrier A has a higher treatment performance and a higher anaerobic bacteria concentration than the conventional carrier B. It means that it is excellent in culture.

【0046】次に、連続処理運転に使用した発明法担体
Aと従来法担体Bを用いて動力学的係数を明らかにする
ために、上記した食品工場廃水を使用して回分処理を行
った。
Next, in order to clarify the kinetic coefficient using the carrier of the invention method A and the carrier of the conventional method B used in the continuous treatment operation, batch treatment was carried out using the above-mentioned food factory wastewater.

【0047】合成廃水での連続処理運転終了後、発明法
担体A及び従来法担体Bのそれぞれの反応槽12の水を
食品工場廃水に入れ換え、回分実験ではBODの除去速
度を調べた。食品工場廃水のBOD濃度は5430mg
/Lの高濃度のものを使用した。処理水のBOD分析
は、5A濾紙で濾過した液を分析した。また、運転終了
後に発明法担体A及び従来法担体Bの菌数を測定した。
After the continuous treatment operation with the synthetic wastewater was completed, the water in the reaction tank 12 of each of the carrier A of the invention method and the carrier B of the conventional method was replaced with the wastewater of the food factory, and the removal rate of BOD was examined in the batch experiment. BOD concentration of food factory wastewater is 5430mg
A high concentration of / L was used. The BOD analysis of the treated water analyzed the liquid filtered by 5A filter paper. After the operation was completed, the numbers of bacteria of the invention method carrier A and the conventional method carrier B were measured.

【0048】BODの除去速度は次式(1)により計算
される。
The removal rate of BOD is calculated by the following equation (1).

【0049】[0049]

【数1】 ds/dt=K×s…(1) s:食品工場廃水のBOD濃度(mg/L) t:時間(h) K:除去速度恒数(1/h) その結果、従来法担体BのBOD除去速度は、0.15
0h-1であるのに対し、発明法担体AのBOD除去速度
は、0.228h-1となり、高濃度BOD廃水のBOD
除去速度は、発明法担体Aが従来法担体Bの約1.5倍
速いことが分かった。 (実施例2)実施例2は、発明法担体Aと従来法担体B
のそれぞれについて、食品工場での中濃度BOD成分、
COD成分、SS(懸濁物質)、油分(n−ヘキサン抽
出物)の除去性能を試験したものである。
## EQU1 ## ds / dt = K × s (1) s: BOD concentration of food factory wastewater (mg / L) t: time (h) K: constant removal rate (1 / h) As a result, conventional method BOD removal rate of carrier B is 0.15
Whereas a 0h -1, BOD removal rate of the invention method the carrier A is, 0.228h -1 next, BOD of high concentration BOD wastewater
It was found that the carrier A of the invention method was about 1.5 times faster than the carrier B of the conventional method in the removal rate. (Example 2) In Example 2, carrier A of the invention method and carrier B of the conventional method are used.
For each of the
It is a test for removing performance of COD component, SS (suspended substance), and oil component (n-hexane extract).

【0050】実施例1の実験終了後、空気を1L/分で
通気する好気性条件(但し、担体の中心部は嫌気性状態
になる)で、食品工場廃水を滞留時間12時間で連続処
理した。
After the completion of the experiment of Example 1, the food factory wastewater was continuously treated under aerobic conditions in which air was aerated at 1 L / min (however, the center of the carrier became anaerobic) with a residence time of 12 hours. .

【0051】結果を表4に示す。本発明の処理水とは発
明法担体Aを使用した処理水であり、従来法の処理水と
は従来法担体Bを使用した処理水である。
The results are shown in Table 4. The treated water of the present invention is treated water using the inventive carrier A, and the treated water of the conventional method is treated water using the conventional carrier B.

【0052】[0052]

【表4】 [Table 4]

【0053】表4の結果から分かるように、発明法担体
Aを用いた本発明の処理水は、従来法担体Bを用いた従
来法の処理水に比べて、BOD、COD、n-ヘキサン抽
出物について良い結果となった。BOD分解性能が良い
理由としては、発明法担体Aは従来法担体Bに比べて担
体の径又は厚みを大幅に大きくしたことにより、担体中
に良好な嫌気性条件を形成することができるためと考え
られる。また、発明法担体Aは、COD成分についての
分解性能も良いが、これは嫌気性細菌と好気性細菌との
共役反応によりCOD成分を分解していることが考えら
れる。 (実施例3)実施例3は、発明法担体Aと従来法担体B
のそれぞれについて、亜硝酸性窒素成分や硝酸性窒素成
分の脱窒性能を試験したものである。
As can be seen from the results in Table 4, the treated water of the present invention using the carrier A of the present invention was extracted by BOD, COD and n-hexane as compared with the treated water of the conventional method using the carrier B of the conventional method. The result was good. The reason why the BOD decomposition performance is good is that the carrier A of the invention method has a significantly larger diameter or thickness than the carrier B of the conventional method, so that good anaerobic conditions can be formed in the carrier. Conceivable. Further, the carrier A of the invention method has a good decomposition performance for the COD component, but it is considered that this is because the COD component is decomposed by the coupling reaction between the anaerobic bacterium and the aerobic bacterium. (Example 3) In Example 3, carrier A of the invention and carrier B of the conventional method are used.
For each of the above, the denitrification performance of the nitrite nitrogen component and the nitrate nitrogen component was tested.

【0054】発明法担体A及び従来法担体Bの製造方
法、並びに担体の大きさは実施例1と同様である。
The method of producing the carrier A of the invention and the carrier B of the conventional method, and the size of the carrier are the same as in Example 1.

【0055】試験装置は直径50cm、高さ150cm
のカラムに担体を60%になるように充填した固定床式
の窒素処理装置を、発明法担体Aと従来法担体Bとのそ
れぞれについて準備した。そして、それぞれの窒素処理
装置のカラム内に千葉県のT沼の水を連続的に流入させ
てカラム内で滞留時間15分で担体と接触させて窒素処
理を行い、処理した処理水を流出させた。T沼の水は、
アンモニア性窒素1.2mg/L、硝酸性窒素0.8m
g/L、有機体炭素濃度2mg/Lを含有する水であ
る。運転開始3週間目で処理水が安定し、その後6ヶ月
間硝化反応と脱窒反応が同時に進行した。
The test equipment has a diameter of 50 cm and a height of 150 cm.
A fixed-bed type nitrogen treatment device in which the column was filled with 60% of the carrier was prepared for each of the inventive carrier A and the conventional carrier B. Then, the water of Tuma in Chiba Prefecture was continuously flowed into the column of each nitrogen treatment device, and the nitrogen treatment was carried out by contacting with the carrier at a retention time of 15 minutes in the column, and the treated water was discharged. It was The water of T swamp is
Ammonia nitrogen 1.2mg / L, Nitrate nitrogen 0.8m
Water containing g / L and an organic carbon concentration of 2 mg / L. The treated water became stable 3 weeks after the start of operation, and thereafter, nitrification reaction and denitrification reaction proceeded simultaneously for 6 months.

【0056】その結果、発明法担体Aを用いた処理水の
平均水質は、アンモニア性窒素0.4mg/L、硝酸性
窒素0.6mg/L、有機体炭素濃度0.5mg/L
で、亜硝酸性窒素は検出されなかった。一方、従来法担
体Bを用いた処理水の平均水質は、アンモニア性窒素
0.4mg/L、硝酸性窒素1.2mg/L、有機体炭
素濃度0.5mg/Lで、亜硝酸性窒素は検出されなか
った。この結果から分かるように、従来法担体Bの処理
水は発明法担体Aの処理水に比べて硝酸性窒素の残存量
が2倍になっており、脱窒反応が生じにくいことが分か
る。また、6ヶ月間の連続運転終了後の発明法担体Aと
従来法担体Bとの菌数を測定したところ、発明法担体A
の場合には初期の嫌気性細菌数2×106 (cells/cm3
- 担体)であったものが、連続運転終了後では5.4×
1010(cells/cm3 - 担体)であり連続運転で高濃度培
養が可能である。担体の径又は厚みが大きな発明法担体
Aでは、担体表面近傍で硝化細菌が増殖し、担体の表面
から離れた内部で高濃度の嫌気性細菌が増殖していた。
これに対し、担体の径又は厚みが小さな従来法担体Bで
は連続運転終了後の菌数は、2.6×108 (cells/cm
3 - 担体)と高濃度化には至らなかった。 (実施例4)実施例5は、排気ガス中のメルカプタン、
硫化水素、アンモニア等の悪臭成分の除去を行ったもの
である。
As a result, the average water quality of the treated water using the inventive carrier A was 0.4 mg / L of ammonia nitrogen, 0.6 mg / L of nitrate nitrogen, and 0.5 mg / L of organic carbon concentration.
, No nitrite nitrogen was detected. On the other hand, the average water quality of treated water using the conventional carrier B is ammonia nitrogen 0.4 mg / L, nitrate nitrogen 1.2 mg / L, organic carbon concentration 0.5 mg / L, and nitrite nitrogen is Not detected. As can be seen from these results, the treated water of the conventional method carrier B has twice the remaining amount of nitrate nitrogen as compared with the treated water of the inventive method carrier A, indicating that the denitrification reaction is unlikely to occur. In addition, the number of bacteria of the invention method carrier A and the conventional method carrier B after the continuous operation for 6 months was measured.
In the case of, the initial number of anaerobic bacteria was 2 × 10 6 (cells / cm 3
-Carrier), but 5.4x after continuous operation
It is 10 10 (cells / cm 3 -carrier), and high-concentration culture is possible in continuous operation. In the inventive method carrier A having a large diameter or thickness of the carrier, nitrifying bacteria grew near the surface of the carrier, and high concentration of anaerobic bacteria grew inside the carrier away from the surface of the carrier.
On the other hand, in the case of the conventional carrier B having a small carrier diameter or thickness, the number of bacteria after the continuous operation was 2.6 × 10 8 (cells / cm
3 -carrier) and the concentration did not increase. (Example 4) In Example 5, mercaptan in exhaust gas,
The odorous components such as hydrogen sulfide and ammonia were removed.

【0057】試験装置は、直径10cm、高さ200c
mのカラム内に、担体を50%になるように充填した固
定床式の排ガス処理装置を、発明法担体A及び従来法担
体Bのそれぞれについて準備した。充填した発明法担体
Aと従来法担体Bの担体の製造方法及び担体の大きさは
実施例1と同様である。
The test apparatus has a diameter of 10 cm and a height of 200 c.
A fixed-bed type exhaust gas treating apparatus in which the carrier was packed in the column of m so as to be 50% was prepared for each of the inventive method carrier A and the conventional method carrier B. The method of manufacturing the carrier of the inventive method carrier A and the conventional method carrier B and the size of the carrier thus filled are the same as in Example 1.

【0058】そして、メルカプタンを含有するガスをカ
ラムの下端から流入させ、固定床を通過させてからカラ
ム上端から排気し、流入ガスと排気ガスのメルカプタン
濃度を測定して除去率を求めた。カラム内でのガスの滞
留時間を2分とした。
Then, a gas containing mercaptan was introduced from the lower end of the column, passed through a fixed bed and then exhausted from the upper end of the column, and the mercaptan concentration of the inflow gas and the exhaust gas was measured to obtain the removal rate. The residence time of the gas in the column was 2 minutes.

【0059】同様に、硫化水素を含有するガス、アンモ
ニアを含有するガスについても実施した。
Similarly, a gas containing hydrogen sulfide and a gas containing ammonia were also tested.

【0060】その結果、発明法担体Aを使用した場合に
は、メルカプタン、硫化水素、アンモニアのいずれの場
合も99%の除去率を得ることができた。これに対し、
従来法担体Bの使用した場合にも85〜99%の除去率
を得ることができたが、除去率が変動し不安定であっ
た。また、発明法担体Aを使用した場合には、排ガス中
の窒素成分の脱窒が生じ、全窒素量の30%が窒素ガス
に変換することができたが、従来法担体Bの場合には1
5%止まりであった。
As a result, when the inventive carrier A was used, a removal rate of 99% could be obtained for any of mercaptan, hydrogen sulfide and ammonia. In contrast,
Even when the conventional carrier B was used, a removal rate of 85 to 99% could be obtained, but the removal rate fluctuated and was unstable. Further, when the inventive method carrier A was used, denitrification of the nitrogen component in the exhaust gas occurred, and 30% of the total nitrogen amount could be converted to nitrogen gas, but in the case of the conventional method carrier B, 1
It was only 5%.

【0061】[0061]

【発明の効果】以上説明したように、本発明に係る包括
固定化微生物担体及びその製造方法によれば、微生物の
純粋培養を行うことなく特定の微生物をモノマ又はプレ
ポリマの固定化材料に高濃度に担持することができる。
Industrial Applicability As described above, according to the entrapping immobilization microbial carrier and the method for producing the same according to the present invention, a specific microorganism can be highly concentrated in a monomer or prepolymer immobilization material without performing pure culture of the microorganism. Can be carried on.

【0062】従って、本発明の包括固定化微生物担体を
用いれば、従来の包括固定化微生物担体に比べて環境汚
染物質を効果的に分解除去することができる。
Therefore, by using the entrapping immobilization microbial carrier of the present invention, environmental pollutants can be decomposed and removed more effectively than the conventional entrapping immobilization microbial carriers.

【図面の簡単な説明】[Brief description of drawings]

【図1】重合時における固定化材料の球相当径と嫌気性
細菌の菌数との関係図
FIG. 1 is a diagram showing the relationship between the equivalent-sphere diameter of an immobilization material and the number of anaerobic bacteria during polymerization.

【図2】本発明の包括固定化微生物担体の製造における
スポンジ構造が形成される状況を示す概念図
FIG. 2 is a conceptual diagram showing a situation in which a sponge structure is formed in the production of the entrapping immobilization microbial carrier of the present invention.

【図3】本発明の包括固定化微生物担体のスポンジ構造
の電子顕微鏡写真を図示した図
FIG. 3 is a view showing an electron micrograph of a sponge structure of the entrapping immobilization microbial carrier of the present invention.

【図4】重合時のおける重合温度と嫌気性細菌の菌数と
の関係図
[Fig. 4] Relationship between polymerization temperature and number of anaerobic bacteria during polymerization

【図5】重合時における固定化材料の中心部温度から外
気温度を引いた温度差と嫌気性細菌の菌数との関係図
FIG. 5 is a graph showing the relationship between the temperature difference obtained by subtracting the outside air temperature from the center temperature of the immobilization material during polymerization and the number of anaerobic bacteria.

【図6】連続処理運転装置の概念図FIG. 6 is a conceptual diagram of a continuous processing operation device.

【符号の説明】[Explanation of symbols]

10…試験装置、12…反応槽、14…ポンプ、16…
エア供給配管、A…発明法担体(本発明の包括固定化微
生物担体)、B…従来法担体(従来の包括固定化微生物
担体)
10 ... Testing device, 12 ... Reaction tank, 14 ... Pump, 16 ...
Air supply pipe, A ... Inventive method carrier (entrapping entrapped microbial carrier of the present invention), B ... Conventional method carrier (conventional entrapping immobilized microbial carrier)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/58 C08F 2/44 Z 53/81 B01D 53/34 116A C02F 3/10 121C ZAB 126 C08F 2/00 131 2/44 Fターム(参考) 4B033 NA03 NA19 NB36 NB62 NB66 NB68 NC04 NC06 ND04 NF06 4D003 AA01 CA08 DA01 EA14 EA19 EA26 EA30 EA38 FA02 FA10 4J011 GA05 GB07 PA55 PB06 PB35 PC02 PC08 PC13 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01D 53/58 C08F 2/44 Z 53/81 B01D 53/34 116A C02F 3/10 121C ZAB 126 C08F 2 / 00 131 2/44 F term (reference) 4B033 NA03 NA19 NB36 NB62 NB66 NB68 NC04 NC06 ND04 NF06 4D003 AA01 CA08 DA01 EA14 EA19 EA26 EA30 EA38 FA02 FA10 4J011 GA05 GB07 PA55 PB06 PB35 PC02 PC08 PC13

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】微生物の存在下でモノマ又はプレポリマの
固定化材料を重合して微生物を包括固定化させた担体を
製造する包括固定化微生物担体の製造方法において、 前記固定化材料の径又は厚みを1〜10cmの大きさで
重合させることを特徴とする包括固定化微生物担体の製
造方法。
1. A method for producing an entrapping immobilization microbial carrier for producing a carrier in which microorganisms are entrapped and immobilized by polymerizing an immobilization material for a monomer or a prepolymer in the presence of microorganisms, wherein a diameter or a thickness of the immobilization material. Is produced in a size of 1 to 10 cm.
【請求項2】前記固定化材料を1〜10cmの成形型に
入れて重合することを特徴とする請求項1の包括固定化
微生物担体の製造方法。
2. The method for producing an entrapping immobilization microbial carrier according to claim 1, wherein the immobilization material is placed in a mold of 1 to 10 cm and polymerized.
【請求項3】前記固定化材料を1〜10cmの大きさで
アルカリ金属イオン又は多価金属イオンを含む水性溶媒
中又は有機溶媒中に滴下して重合することを特徴とする
請求項1に記載の包括固定化微生物担体の製造方法。
3. The immobilization material having a size of 1 to 10 cm is dropped into an aqueous solvent or an organic solvent containing an alkali metal ion or a polyvalent metal ion to polymerize. A method for producing a comprehensively immobilized microbial carrier.
【請求項4】前記重合時の重合温度を30〜60°Cに
することを特徴とする請求項1〜3の何れか1に記載の
包括固定化微生物担体の製造方法。
4. The method for producing a comprehensively immobilized microbial carrier according to any one of claims 1 to 3, wherein the polymerization temperature during the polymerization is 30 to 60 ° C.
【請求項5】前記重合時における固定化材料の中心部温
度から外気温度を引いた温度差を5〜10°Cにするこ
とを特徴とする請求項4に記載の包括固定化微生物担体
の製造方法。
5. The production of the entrapping immobilization microbial carrier according to claim 4, wherein the temperature difference obtained by subtracting the outside air temperature from the center temperature of the immobilization material during the polymerization is set to 5 to 10 ° C. Method.
【請求項6】前記固定化材料に無機物の粒子又は有機物
の粒子を含有させることを特徴とする1〜5の何れか1
に記載の包括固定化微生物担体の製造方法。
6. The immobilizing material contains inorganic particles or organic particles, according to any one of 1 to 5 above.
A method for producing the entrapping immobilization microbial carrier according to item 1.
【請求項7】請求項1〜6の何れか1に記載の包括固定
化微生物担体の製造方法により製造された包括固定化微
生物担体。
7. An entrapping immobilization microbial carrier produced by the method for producing an entrapping immobilization microbial carrier according to any one of claims 1 to 6.
JP2001190829A 2001-06-25 2001-06-25 Encapsulated microbial carrier and method for producing the same Expired - Fee Related JP4131315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190829A JP4131315B2 (en) 2001-06-25 2001-06-25 Encapsulated microbial carrier and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190829A JP4131315B2 (en) 2001-06-25 2001-06-25 Encapsulated microbial carrier and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003000237A true JP2003000237A (en) 2003-01-07
JP4131315B2 JP4131315B2 (en) 2008-08-13

Family

ID=19029542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190829A Expired - Fee Related JP4131315B2 (en) 2001-06-25 2001-06-25 Encapsulated microbial carrier and method for producing the same

Country Status (1)

Country Link
JP (1) JP4131315B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089880A (en) * 2002-08-30 2004-03-25 Tokico Ltd Water purification apparatus
JP2007268368A (en) * 2006-03-30 2007-10-18 Hitachi Plant Technologies Ltd Entrapping immobilization carrier and wastewater treatment system using it
US8030041B2 (en) 2005-06-06 2011-10-04 Hitachi Plant Technologies, Ltd. Process for producing pellets entrapping and immobilizing microorganisms
KR101278577B1 (en) 2005-07-13 2013-06-25 가부시키가이샤 히타치플랜트테크놀로지 Entrapping immobilization pellets and process for producing the same
KR101299485B1 (en) 2006-07-06 2013-08-29 가부시키가이샤 히다찌 플랜트 테크놀로지 Inclusive immobilization support, wastewater disposal apparatus and wastewater disposal method using the inclusive immobilization support

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442512B1 (en) * 2012-11-22 2014-09-26 한국세라믹기술원 Entrapment matrix enhancing internal mass transfer, and biosensor using the same, and preparing method of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089880A (en) * 2002-08-30 2004-03-25 Tokico Ltd Water purification apparatus
US8030041B2 (en) 2005-06-06 2011-10-04 Hitachi Plant Technologies, Ltd. Process for producing pellets entrapping and immobilizing microorganisms
US8227238B2 (en) 2005-06-06 2012-07-24 Hitachi Plant Technologies, Ltd. Apparatus for producing pellets containing entrapped and immobilized microorganisms
KR101263346B1 (en) * 2005-06-06 2013-05-16 가부시키가이샤 히타치플랜트테크놀로지 Process and apparatus for producing entrapping immobilization pellets
KR101278577B1 (en) 2005-07-13 2013-06-25 가부시키가이샤 히타치플랜트테크놀로지 Entrapping immobilization pellets and process for producing the same
JP2007268368A (en) * 2006-03-30 2007-10-18 Hitachi Plant Technologies Ltd Entrapping immobilization carrier and wastewater treatment system using it
KR101299485B1 (en) 2006-07-06 2013-08-29 가부시키가이샤 히다찌 플랜트 테크놀로지 Inclusive immobilization support, wastewater disposal apparatus and wastewater disposal method using the inclusive immobilization support

Also Published As

Publication number Publication date
JP4131315B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
Cohen Biofiltration–the treatment of fluids by microorganisms immobilized into the filter bedding material: a review
US10584047B2 (en) Aerobic nitritation of ammonia and integrated anammox processes
FI69293C (en) FOLLOWING MEASURES AT BEFRAEMJA TILLVAEXTEN AV BIOLOGISKT MATERIAL FRAON ETT LAEMPLIGT NAERINGSMEDEL
Pai et al. Continuous degradation of phenol by Rhodococcus sp. immobilized on granular activated carbon and in calcium alginate
KR101344801B1 (en) Entrapping immobilization pellets and process for producing the same, and wastewater treatment process and equipment using the same
JP5046183B2 (en) Method for culturing and acclimatizing 1,4-dioxane-degrading bacteria, method for producing 1,4-dioxane-degrading bacteria-immobilized carrier, wastewater treatment method and apparatus
JP2007125460A (en) Comprehensive immobilized carrier and its production method
JP2001269699A (en) Direct cleaning method for ground water contaminated with nitric acid
JP4210947B2 (en) Method for storing and manufacturing entrapping immobilization carrier
JP4092592B2 (en) Heating carrier, method for producing the same, and environmental purification method using heating carrier
JP4131315B2 (en) Encapsulated microbial carrier and method for producing the same
JP2003000238A (en) Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier
JP2006061097A (en) Method for producing immobilized microorganism, and immobilized microorganism produced by the method, and reactor using the immobilized microorganism
JP2007268368A (en) Entrapping immobilization carrier and wastewater treatment system using it
JPS6352556B2 (en)
JP3470392B2 (en) Organic wastewater treatment method and treatment apparatus
JP2003235554A (en) Microorganism-immobilized carrier and method for producing the same
JP4006750B2 (en) Immobilized microorganism carrier and environmental purification method using the same
Li et al. Comparative study of the nitrification characteristics of two different nitrifier immobilization methods
Kim et al. Denitrification of drinking water using biofilms formed by Paracoccus denitrificans and microbial adhesion
JP3389811B2 (en) Encapsulated carrier
CA2372397C (en) Heated support, method for manufacturing the same and method for environment remediation therewith
US20070170114A1 (en) Method and biological product for the residential and commercial aquatic environment
JP4000593B2 (en) Immobilized microorganism carrier and method for producing the same
JP3991691B2 (en) Immobilization carrier and environmental purification method using immobilization carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees