JP4092592B2 - Heating carrier, method for producing the same, and environmental purification method using heating carrier - Google Patents

Heating carrier, method for producing the same, and environmental purification method using heating carrier Download PDF

Info

Publication number
JP4092592B2
JP4092592B2 JP2007153856A JP2007153856A JP4092592B2 JP 4092592 B2 JP4092592 B2 JP 4092592B2 JP 2007153856 A JP2007153856 A JP 2007153856A JP 2007153856 A JP2007153856 A JP 2007153856A JP 4092592 B2 JP4092592 B2 JP 4092592B2
Authority
JP
Japan
Prior art keywords
carrier
heating carrier
heating
bacillus
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007153856A
Other languages
Japanese (ja)
Other versions
JP2007300931A (en
Inventor
立夫 角野
多佳子 小笠原
直樹 安部
和一 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2007153856A priority Critical patent/JP4092592B2/en
Publication of JP2007300931A publication Critical patent/JP2007300931A/en
Application granted granted Critical
Publication of JP4092592B2 publication Critical patent/JP4092592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

本発明は、廃水中や大気中の無機および/又は有機化合物などを生物学的に効率良く処理するための加熱担体及びその製造方法、並びに加熱担体を用いた環境浄化法に関する。   The present invention relates to a heating carrier for biologically and efficiently treating inorganic and / or organic compounds in wastewater or the atmosphere, a method for producing the same, and an environmental purification method using the heating carrier.

廃水や下水を微生物で処理する生物学的処理は、比較的低コストであることから広く採用されている。しかし、微生物の種類によっては、増殖速度が遅いものや、被毒し易いもの、又はその環境中において増殖し難いものがあり、必ずしも効率的な方法とはいえない場合がある。そこで、微生物が繁殖しやすい環境を積極的に形成するために、活性汚泥や特定の微生物を予め内部に包括固定した固定化微生物担体を用いて生物処理する処理方法がすでに実用化されている。   Biological treatment for treating wastewater and sewage with microorganisms is widely adopted because of its relatively low cost. However, some microorganisms have a slow growth rate, are easily poisoned, or are difficult to grow in the environment, and may not necessarily be an efficient method. Therefore, in order to actively form an environment in which microorganisms are easy to propagate, a treatment method has already been put into practical use using an activated microbial sludge or an immobilized microbial carrier in which specific microorganisms are preliminarily included and fixed inside.

微生物を内部に担持(保持)する固定化材料としてはゲル材料が通常用いられ、自然環境に対して無害であること、微生物によって変質又は分解されないこと、機械的強度が高いこと、微生物を多量に担持できること等が要求される。これまでに実用化されているゲル材料としては、下記の特許文献1に記載のポリエチレングリコール系のポリマ、ポリビニルアルコール系の樹脂等がある。一方、ゲル材料に包括固定化する微生物としては活性汚泥や純粋培養した微生物が用いられている。   Gel material is usually used as an immobilizing material for supporting (holding) microorganisms inside. It is harmless to the natural environment, is not altered or decomposed by microorganisms, has high mechanical strength, and contains a large amount of microorganisms. It must be supported. Examples of gel materials that have been put to practical use so far include polyethylene glycol polymers and polyvinyl alcohol resins described in Patent Document 1 below. On the other hand, activated sludge and purely cultured microorganisms are used as microorganisms to be comprehensively immobilized on the gel material.

近年、微生物として、枯草菌群細菌であるBacillusや放線菌が注目されている。Bacillusも放線菌も堆肥の発酵過程で増殖する菌で、油分の分解、高濃度BOD成分の分解、悪臭成分の分解除去、生物処理で発生する余剰汚泥の凝集性の向上、COD成分の分解等のいわゆる環境汚染物質の浄化に優れており、純粋菌利用技術が検討されている。
特願昭60−44131号公報
In recent years, Bacillus and actinomycetes, which are Bacillus subtilis bacteria, have attracted attention as microorganisms. Both Bacillus and Actinomycetes grow in the fermentation process of compost. Decomposition of oil, decomposition of high-concentration BOD component, decomposition and removal of malodorous component, improvement of coagulation of surplus sludge generated by biological treatment, decomposition of COD component, etc. The so-called environmental pollutants are excellent in purification, and pure bacteria utilization technology is being studied.
Japanese Patent Application No. 60-44131

ところで、Bacillusや放線菌を用いて環境汚染物質を生物学的処理するためには、Bacillusや放線菌を優占させBacillusや放線菌を高濃度に担持した固定化微生物担体を製造しなくてはならないが、従来は、図11に示すように、純粋培養したBacillusや放線菌をゲル材料に固定化する必要があった。   By the way, in order to biologically treat environmental pollutants using Bacillus and actinomycetes, it is necessary to produce Bacillus and actinomycetes to dominate and to produce immobilized microbial carriers carrying Bacillus and actinomycetes at high concentrations. However, conventionally, as shown in FIG. 11, it was necessary to immobilize purely cultured Bacillus and actinomycetes on a gel material.

しかしながら、純粋培養には培養タンクや大量の培地が必要であり、更には培養時間も長くかかり当然人件費もかさむことから製造コストがかかりすぎるという欠点がある。   However, pure culture requires a culture tank and a large amount of medium, and further has a disadvantage that it takes too much time for the culture and the production cost is too high because it naturally increases labor costs.

また、放線菌の場合には、単に菌数濃度を上げただけでは環境汚染物質、特にアオコを効率的に分解除去することができないという欠点がある。   Further, in the case of actinomycetes, there is a drawback that environmental pollutants, particularly water-bloom, cannot be efficiently decomposed and removed simply by increasing the number of bacteria.

本発明はこのような事情に鑑みてなされたもので、微生物の純粋培養を行うことなく特定の微生物、特にBacillusを固定化材料に高濃度に担持することができる加熱担体及びその製造方法、並びに加熱担体を用いた環境浄化方法を提供することを目的とする。   The present invention has been made in view of such circumstances, a heating carrier capable of supporting a specific microorganism, particularly Bacillus, on an immobilizing material at a high concentration without performing pure culture of the microorganism, a method for producing the same, and It is an object of the present invention to provide an environmental purification method using a heating carrier.

本発明の請求項1は前記目的を達成するために、耐熱性菌であるBacillusを含む汚泥を内部に包括固定化した固定化微生物担体を、加熱処理することを特徴とし、前記汚泥には、下水処理場の活性汚泥、湖沼や河川や海の底泥、又は地表の土壌を含むことを特徴とする加熱担体の製造方法を提供する。 In order to achieve the above object, claim 1 of the present invention is characterized in that an immobilized microorganism carrier in which sludge containing Bacillus, which is a heat-resistant bacterium, is entrapped and immobilized is heat-treated , The present invention provides a method for producing a heating carrier, comprising activated sludge from a sewage treatment plant, lakes and rivers, bottom mud from the sea, or surface soil .

本発明の請求項は、汚泥を裸のまま加熱処理するのではなく、汚泥が固定化材料に包括された状態で加熱処理することにより、複数の微生物が混在する汚泥から耐熱性を有する特定の微生物を優占状態で固定化材料に集積させることができるようにすると共に、その後の加熱担体の培養においても優占状態の微生物を効果的に増殖できるようにしたものである。また、使用する汚泥には、下水処理場の活性汚泥、湖沼や河川や海の底泥、又は地表の土壌を含むものとする。また、湖沼や河川や海の底泥とは湖沼や河川や海の底に堆積している汚泥や岸辺の汚泥をいい、地表の土壌とは農地、山林、工場、住宅地等の地表に存在する土壌をいう。 Claim 1 of the present invention, instead of heat treatment while the sludge naked, by heating in a state in which the sludge is entrapped in an immobilizing material, identified having heat resistance from a sludge more microorganisms coexist The microorganisms can be accumulated on the immobilization material in a dominant state, and the dominant microorganisms can be effectively propagated in the subsequent culture of the heating carrier. The sludge to be used includes activated sludge from sewage treatment plants, lakes, rivers, sea bottom mud, or soil on the surface. Also, the bottom mud of lakes, rivers and seas means sludge accumulated on the bottom of lakes, rivers and seas and sludge on the shore, and the soil on the surface is present on the surface of farmland, mountain forests, factories, residential areas, etc. It refers to the soil.

本発明の請求項は、請求項1における加熱処理の好ましい温度を規定したもので、加熱処理温度を40℃以上、130℃以下の範囲で行うことにより、Bacillusを固定化材料内に優占的に集積させた加熱担体を得ることができる。 Claim 2 of the present invention prescribes a preferable temperature for the heat treatment in claim 1, and by performing the heat treatment temperature in the range of 40 ° C. or higher and 130 ° C. or lower, Bacillus is dominant in the immobilization material. Integrated heating carrier can be obtained.

本発明の請求項は、請求項1または2の製造方法で製造された加熱担体である。 The third aspect of the present invention is a heating carrier manufactured by the manufacturing method according to the first or second aspect .

本発明の請求項は前記目的を達成するために、請求項の加熱担体を、油成分、BOD成分、COD成分、悪臭成分を構成する無機及び有機の環境汚染物質のうちの少なくとも1つの環境汚染物質と接触させて生物学的処理を行うことを特徴とする環境浄化方法を提供する。 According to a fourth aspect of the present invention, in order to achieve the above object, the heating carrier according to the third aspect is made of at least one of an inorganic component and an organic environmental pollutant constituting an oil component, a BOD component, a COD component, and a malodor component. Provided is an environmental purification method characterized in that biological treatment is performed by contacting with an environmental pollutant.

本発明の請求項は、Bacillusを高濃度に担持した加熱担体を、油成分、BOD成分、COD成分、悪臭成分を構成する無機及び有機の環境汚染物質のうちの少なくとも1つの環境汚染物質と接触させて生物学的処理を行うものであり、環境汚染物質を効率的に分解除去できる。 According to a fourth aspect of the present invention, there is provided a heating carrier carrying Bacillus at a high concentration with at least one environmental pollutant among inorganic and organic environmental pollutants constituting an oil component, a BOD component, a COD component, and a malodor component. Biological treatment is carried out by contact, and environmental pollutants can be efficiently decomposed and removed.

本発明の請求項は前記目的を達成するために、請求項の加熱担体を、生物処理で発生する余剰汚泥と接触させて生物学的処理を行うことを特徴とする環境浄化方法を提供する。 In order to achieve the above object, Claim 5 of the present invention provides an environmental purification method characterized in that biological treatment is performed by bringing the heating carrier of Claim 3 into contact with surplus sludge generated by biological treatment. To do.

本発明の請求項は、Bacillusを高濃度に担持した加熱担体を、生物処理で発生する余剰汚泥と接触させて生物学的処理を行うものであり、余剰汚泥の凝集性を効果的に向上させることができる。 Claim 5 of the present invention is to perform biological treatment by bringing a heating carrier carrying Bacillus at a high concentration into contact with surplus sludge generated by biological treatment, and effectively improve the cohesiveness of surplus sludge. Can be made.

本発明の請求項は前記目的を達成するために、請求項記載の加熱担体を、アオコを含有する水、又はアオコが発生するおそれのある水と接触させて生物学的処理を行うことを特徴とする環境浄化方法を提供する。 According to a sixth aspect of the present invention, in order to achieve the object, biological treatment is performed by bringing the heating carrier according to the third aspect into contact with water containing or having a possibility of generating water. An environmental purification method is provided.

本発明の請求項は、Bacillusを高濃度に担持した加熱担体を、アオコを含有する水、又はアオコが発生するおそれのある水と接触させて生物学的処理を行うものであり、アオコを効果的に分解除去できるだけでなく、アオコが発生するおそれのある水に対してアオコの発生を未然に防止できる。 Claim 6 of the present invention is to perform biological treatment by bringing a heating carrier carrying Bacillus at a high concentration into contact with water containing water or water that may generate water. Not only can it be effectively decomposed and removed, but it is also possible to prevent the occurrence of aqua against water in which there is a risk that it will occur.

本発明に係る加熱担体及びその製造方法によれば、微生物の純粋培養を行うことなく特定の微生物を固定化材料に高濃度に担持することができる。従って、本発明の加熱担体を用いれば、従来に比べて環境汚染物質を効果的に分解除去することができる。   According to the heating carrier and the method for producing the same according to the present invention, a specific microorganism can be supported on the immobilization material at a high concentration without performing pure culture of the microorganism. Therefore, if the heating carrier of the present invention is used, environmental pollutants can be effectively decomposed and removed as compared with the prior art.

以下添付図面に従って、本発明に係る加熱担体及びその製造方法、並びに加熱担体を用いた環境浄化方法の好ましい実施の形態について詳説する。また、参考までに放線菌を包括固定した固定化担体およびそれによる環境浄化方法についても説明する。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a heating carrier and a method for producing the same according to the present invention and an environmental purification method using the heating carrier will be described in detail below with reference to the accompanying drawings. For reference, an immobilization carrier in which actinomycetes are comprehensively immobilized and an environmental purification method using the same are also described.

図1は、湖沼や河川や海の底泥、又は地表の土壌を固定化材料に包括固定化した固定化担体について、担体内に包括固定化した汚泥濃度及び放線菌の菌濃度と、アオコの分解率との関係を示したものである。汚泥濃度の担体サンプルとしては、500mg/L、1000mg/L、2000mg/L、20000mg/Lの4水準のものを調製した。   Fig. 1 shows the concentration of sludge and actinomycetes that are immobilized in a carrier and the concentration of actinomycetes for the immobilized carrier in which the lake, river, sea bottom mud, or soil on the surface is entrapped and immobilized. It shows the relationship with the decomposition rate. As a carrier sample having a sludge concentration, four levels of 500 mg / L, 1000 mg / L, 2000 mg / L, and 20000 mg / L were prepared.

図1から分かるように、担体中の放線菌の菌濃度を大きくしていくとアオコの分解率が増加するが、汚泥濃度が2000mg/L(2mg/mL)以上のサンプルにおいて、放線菌の菌数が104(cells/ml)以上、好ましくは105(cells/ml)以上になったときにアオコの分解率が急激に向上する。このことは、アオコの分解率を顕著に向上させるためには、固定化担体中に、単に、放線菌を高濃度に担持するだけでなく、担体1mL当たり底泥や土壌が2mg以上固定化されていることが重要であることを意味する。底泥や土壌の濃度が重要な理由は、固定化担体中には放線菌の住みかとなる棲息空間が必要であり、固定化された底泥や土壌がその棲息空間を形成するためであると考えられ、好適な棲息空間を形成するには底泥や土壌の濃度が2mg/mL−担体以上必要であると考察される。ちなみに、放線菌の計測は松井三郎らの方法(松井三郎:環境微生物工学研究法、技報堂、頁55〜58(1993年))で行った。 As can be seen from FIG. 1, when the concentration of actinomycetes in the carrier is increased, the decomposition rate of the sea cucumber increases. However, in samples with a sludge concentration of 2000 mg / L (2 mg / mL) or more, actinomycetes When the number is 10 4 (cells / ml) or more, preferably 10 5 (cells / ml) or more, the decomposition rate of the sea cucumber is drastically improved. This means that, in order to significantly improve the decomposition rate of sea cucumber, not only the actinomycetes are supported at a high concentration in the immobilized carrier, but also 2 mg or more of bottom mud and soil are immobilized per 1 mL of the carrier. Means that it is important. The reason why the concentration of the bottom mud and soil is important is that the immobilization carrier needs a habitat where the actinomycetes live, and the immobilized mud and soil form the habitat. It is considered that a concentration of sediment or soil of 2 mg / mL-carrier or more is necessary to form a suitable habitat. Incidentally, actinomycetes were measured by the method of Saburo Matsui et al. (Saburo Matsui: Environmental Microbial Engineering Research Method, Gihodo, pages 55-58 (1993)).

放線菌と同様に環境汚染物質の浄化に優れているとされているBacillusは、単に、湖沼や河川や海の底泥、又は地表の土壌、或いは下水処理場の活性汚泥を固定化材料に包括固定化しただけでは、環境汚染物質を十分に分解除去するまでの菌数濃度に高めることができない。このことから、Bacillusのような耐熱性の微生物については本発明の加熱担体を製造することで菌数濃度を高めるようにした。   Bacillus, which is said to be excellent in purification of environmental pollutants as well as actinomycetes, simply includes lakes, rivers, sea bottom mud, surface soil, or activated sludge from sewage treatment plants as an immobilization material. Only by immobilization, it is not possible to increase the number of bacteria until the environmental pollutants are sufficiently decomposed and removed. For this reason, for the thermostable microorganisms such as Bacillus, the bacterial count concentration was increased by producing the heating carrier of the present invention.

図2は、本発明の加熱担体の製造方法を示した概念図であり、微生物として、湖沼や河川や海の底泥、又は地表の土壌、或いは下水処理場の活性汚泥(以下、底泥、土壌、活性汚泥を総称して単に「汚泥」という)の中のBacillusを固定化材料に優占的に集積して高濃度に担持する例で説明する。   FIG. 2 is a conceptual diagram showing a method for producing a heating carrier according to the present invention. As microorganisms, lakes, rivers, sea bottom mud, surface soil, or activated sludge from a sewage treatment plant (hereinafter referred to as bottom mud, An example will be described in which Bacillus in soil and activated sludge is simply referred to as “sludge” and is preferentially accumulated on the immobilization material and supported at a high concentration.

図2に示すように、本発明の加熱担体の製造方法は、汚泥を固定化材料に包括固定化して固定化微生物担体を製造し、この固定化微生物担体を加熱処理する。また、本発明の加熱担体の別の製造方法では、図示しないが、固定化材料であるモノマ又はプレポリマの何れかを、汚泥の存在下で加熱処理しながら重合する。これにより、本発明の加熱担体を得ることができる。この場合、Bacillusを固定化材料内に優占的に集積させるための加熱処理温度としては、40℃以上、130℃以下で、更に好ましくは60℃以上、110℃以下であることが好ましい。また、加熱処理時間としては1分以上、30分以下が好ましい。   As shown in FIG. 2, in the method for producing a heating carrier of the present invention, sludge is comprehensively immobilized on an immobilizing material to produce an immobilized microorganism carrier, and this immobilized microorganism carrier is heated. Moreover, in another manufacturing method of the heating carrier of the present invention, although not shown, either a monomer or a prepolymer which is an immobilizing material is polymerized while being heated in the presence of sludge. Thereby, the heating carrier of the present invention can be obtained. In this case, the heat treatment temperature for preferentially accumulating Bacillus in the immobilization material is 40 ° C. or higher and 130 ° C. or lower, more preferably 60 ° C. or higher and 110 ° C. or lower. Moreover, as heat processing time, 1 minute or more and 30 minutes or less are preferable.

即ち、本発明は、汚泥を裸のまま加熱処理するのではなく、汚泥が固定化材料に包括された状態で加熱処理、又は汚泥が固定化材料に包括されるゲル化反応での重合時に加熱処理されることが重要である。これにより、汚泥中に混在する複数種類の微生物のうち、固定化材料内に耐熱性菌であるBacillusが選択的に残存し、その後、急速な増殖を行う。この結果、固定化材料内の総菌数のうちBacillusの占める割合を顕著に大きくすることができるので、Bacillusを優占状態で担持した加熱担体を製造することができる。この場合、汚泥を裸のまま加熱処理すると、汚泥中の微生物が可溶化され易くなり、固定化後の微生物の棲息空間が形成されにくくなるが、固定化材料に包括固定化した後で加熱処理することにより微生物の棲息空間が形成され易くなる。更には、包括固定化した後で加熱処理した方が、コンタミネーションを受けにくい。また、その後の加熱担体の培養においても優占状態のBacillusの効果的な増殖が可能となる。また、本発明の副次的な効果として、加熱処理することにより、常温での重合よりも重合速度が速められるので、担体製造速度を大幅に向上することが可能となる。   That is, the present invention does not heat the sludge as it is naked, but heats it while the sludge is included in the immobilization material, or heats during polymerization in the gelation reaction where the sludge is included in the immobilization material. It is important to be processed. Thereby, among a plurality of types of microorganisms mixed in the sludge, Bacillus, which is a heat-resistant bacterium, selectively remains in the immobilization material, and then rapidly propagates. As a result, since the proportion of Bacillus in the total number of bacteria in the immobilization material can be significantly increased, a heating carrier carrying Bacillus in a dominant state can be produced. In this case, if the sludge is heat-treated while being bare, microorganisms in the sludge are easily solubilized, and it is difficult to form a habitat for the microorganisms after immobilization. By doing so, it becomes easy to form a habitation space of microorganisms. Furthermore, contamination is less likely to be caused by heat treatment after comprehensive immobilization. Further, the Bacillus in a dominant state can be effectively propagated in the subsequent culture of the heating carrier. Further, as a secondary effect of the present invention, the heat treatment increases the polymerization rate as compared with the polymerization at room temperature, so that the carrier production rate can be greatly improved.

図3は、下水処理場の活性汚泥を固定化材料に包括固定化した後で20〜130℃の加熱温度で加熱処理した本発明の加熱担体と、20〜130℃の加熱温度で裸のまま加熱処理した活性汚泥とについて、培養2週間後におけるBacillusの菌数を比較した結果である。図3の○は加熱担体、△は活性汚泥である。   FIG. 3 shows the heating carrier of the present invention in which activated sludge in a sewage treatment plant is comprehensively immobilized on an immobilization material and then heat-treated at a heating temperature of 20 to 130 ° C., and remains bare at a heating temperature of 20 to 130 ° C. It is the result of comparing the number of Bacillus bacteria after 2 weeks of culture with heat-treated activated sludge. In FIG. 3, ○ is a heating carrier and Δ is activated sludge.

図3に示すように、加熱温度が30℃以下では加熱担体も活性汚泥もBacillusの菌数が107(cells/ml)レベルで差はない。しかし、加熱担体のBacillusの菌数は、30℃を越えると急激に増加して100℃付近でピークとなり、この時のBacillusの菌数は1010(cells/ml)レベルであった。その後、低下して120℃でBacillus菌数は109(cells/ml)レベルから130℃で108(cells/ml)レベルまで低下した。一方、裸のまま加熱処理した活性汚泥のBacillusの菌数は、30℃を越えると低下しはじめて120℃のBacillusの菌数は105(cells/ml)レベルまで低下した。図3では、裸のまま加熱処理した活性汚泥自体のBacillusの菌数を測定したが、裸のまま加熱処理した活性汚泥を本発明の加熱担体に使用したと同じ固定化材料に包括固定化した後のBacillusの菌数も同様の結果であった。尚、図3の20〜30℃でBacillusが増殖しにくいのは、加熱処理が不十分で他の雑菌が増殖し、雑菌との相互作用によりBacillusの増殖が抑えられるものと考えられる。 As shown in FIG. 3, when the heating temperature is 30 ° C. or less, there is no difference between the heating carrier and the activated sludge at the Bacillus cell count of 10 7 (cells / ml). However, the number of Bacillus bacteria as a heating carrier rapidly increased when it exceeded 30 ° C. and peaked at around 100 ° C., and the number of Bacillus bacteria at this time was about 10 10 (cells / ml). Thereafter, the number of Bacillus bacteria decreased at 120 ° C. from a level of 10 9 (cells / ml) to a level of 10 8 (cells / ml) at 130 ° C. On the other hand, the number of Bacillus bacteria in activated sludge that had been heat-treated in a naked state began to decrease when the temperature exceeded 30 ° C., and the number of Bacillus bacteria at 120 ° C. decreased to the level of 10 5 (cells / ml). In FIG. 3, the number of Bacillus bacteria in the activated sludge itself that had been heat-treated naked was measured, but the activated sludge that had been heat-treated naked was comprehensively immobilized on the same immobilization material used in the heating carrier of the present invention. Later Bacillus counts were similar. The reason why Bacillus hardly grows at 20 to 30 ° C. in FIG. 3 is considered that the heat treatment is insufficient and other miscellaneous bacteria grow, and the growth of Bacillus can be suppressed by interaction with the miscellaneous bacteria.

図4は滋賀県の底泥を固定化材料に包括固定化した後で20〜130℃の加熱温度で加熱処理した本発明の加熱担体と、20〜130℃の加熱温度で裸のまま加熱処理した湖の底泥とについて、培養2週間後におけるBacillusの菌数を比較した結果であるが、図3の活性汚泥の場合の試験結果と殆ど同一の結果となった。   FIG. 4 shows the heat carrier of the present invention in which the bottom mud of Shiga Prefecture is comprehensively immobilized on the immobilization material and then heat-treated at a heating temperature of 20 to 130 ° C., and the heat treatment is left bare at a heating temperature of 20 to 130 ° C. The result was a comparison of the number of Bacillus bacteria after 2 weeks of culture for the bottom mud of the lake, which was almost the same as the test result for the activated sludge of FIG.

この結果から分かるように、Bacillusが耐熱性菌であるからといって、下水処理場の活性汚泥や湖沼の底泥等の汚泥を裸のまま加熱処理した後で、図11で示した従来の製造方法により固定化微生物担体を製造しても、製造された固定化微生物担体内のBacillusを増殖させることはできない。即ち、上記したように、本発明の加熱担体の製造は、汚泥を裸のまま加熱処理するのではなく、汚泥が固定化材料に包括された状態、又は包括される過程である重合の過程で加熱処理することが重要である。また、Bacillusを高い濃度に集積した加熱担体を得るための加熱温度としては、Bacillusの菌数が108(cells/ml)レベル以上を確保できることが好ましく、40℃以上、130℃以下、より好ましくはBacillusの菌数が109(cells/ml)レベル以上を確保できる60℃以上、110℃以下であることが好ましい。 As can be seen from this result, just because Bacillus is a heat-resistant bacterium, activated sludge from a sewage treatment plant, sludge such as bottom mud from a lake, etc. is heat-treated while being bare, and then the conventional sludge shown in FIG. Even if the immobilized microorganism carrier is produced by the production method, Bacillus in the produced immobilized microorganism carrier cannot be propagated. That is, as described above, the heating carrier of the present invention is not heated in the sludge as it is naked, but in the process of polymerization in which the sludge is included in the immobilization material or in the process of inclusion. It is important to heat-treat. The heating temperature for obtaining a heating carrier in which Bacillus is accumulated at a high concentration is preferably such that the number of Bacillus bacteria is 10 8 (cells / ml) or more, preferably 40 ° C. or more and 130 ° C. or less. Is preferably 60 ° C. or higher and 110 ° C. or lower which can ensure the number of Bacillus bacteria of 10 9 (cells / ml) or higher.

本発明の加熱担体の製造において用いる固定化材料としては、モノメタクリレート類、モノアクリレート類、ジメタクリレート類、ジアクリレート類、トリメタクリレート類、トリアクリレート類、テトラアクリレート類、ウレタンアクリレート類、エポキシアクリレート類、その他、ポリビニルアルコール、アクリルアミド、光硬化性ポリビニルアルコール、光硬化性ポリエチレングリコール、光硬化性ポリエチレングリコールポリプロピレングリコールプレポリマ等を使用することができる。   Examples of the fixing material used in the production of the heating carrier of the present invention include monomethacrylates, monoacrylates, dimethacrylates, diacrylates, trimethacrylates, triacrylates, tetraacrylates, urethane acrylates, epoxy acrylates. In addition, polyvinyl alcohol, acrylamide, photocurable polyvinyl alcohol, photocurable polyethylene glycol, photocurable polyethylene glycol polypropylene glycol prepolymer, and the like can be used.

また、Bacillusを高濃度に担持した本発明の加熱担体は、加熱担体を以下に説明する環境汚染物質に接触させて生物学的に処理することにより、環境汚染物質の効果的な分解除去が可能である。   In addition, the heating carrier of the present invention carrying Bacillus at a high concentration enables effective decomposition and removal of environmental pollutants by biologically treating the heating carrier in contact with the environmental pollutants described below. It is.

本発明の加熱担体により効果的な生物学的処理が可能な環境汚染物質としては、アオコ、赤潮、緑藻含有水、油成分(ヘキサン抽出物)、BOD成分、COD成分や、大気中のメルカプタン、硫化水素、アンモニア等の悪臭成分が対象である。   Examples of environmental pollutants that can be effectively biologically treated by the heating carrier of the present invention include aoko, red tide, green algae-containing water, oil component (hexane extract), BOD component, COD component, mercaptan in the atmosphere, The object is malodorous components such as hydrogen sulfide and ammonia.

また、Bacillusを高濃度に担持した本発明の加熱担体は、活性汚泥による生物学的処理より発生する余剰汚泥の凝集性を向上させることができる。   Moreover, the heating carrier of the present invention carrying Bacillus at a high concentration can improve the cohesiveness of excess sludge generated by biological treatment with activated sludge.

更に、Bacillusを高濃度に担持した本発明の加熱担体は、水中のアオコを効果的に分解除去できるだけでなく、アオコが発生するおそれのある水に対してアオコの発生を未然に防止できる。   Furthermore, the heating carrier of the present invention carrying Bacillus at a high concentration can not only effectively decompose and remove water mushrooms, but also can prevent the occurrence of water mushrooms in water where there is a risk of water mushroom generation.

尚、本実施の加熱担体の形態では、Bacillusを固定化材料に高濃度で集積させる例で説明したが、本発明はBacillusに限定するものではなく、複数の微生物が混在する湖沼や河川や海の底泥、又は地表の土壌、或いは下水処理場の活性汚泥から耐熱性を有する特定の微生物を優占状態で固定化材料に集積させることができるようにすると共に、その後の加熱担体の培養においても優占状態の微生物を効果的に増殖できるようにしたものである。   In the embodiment of the heating carrier of the present embodiment, Bacillus is accumulated at a high concentration on the immobilization material. However, the present invention is not limited to Bacillus, and lakes, rivers and seas in which a plurality of microorganisms are mixed. Specific heat-resistant microorganisms can be accumulated in the immobilization material in a dominant state from the bottom mud of the soil, the soil on the surface, or the activated sludge of the sewage treatment plant, and in the subsequent cultivation of the heating carrier In addition, the microorganisms in the dominant state can be effectively propagated.

[1]固定化担体によるアオコ分解試験
(実施例1)
千葉県のA沼から採取した底泥をポリエチレングリコール系プレポリマで包括固定化し、図5のように、3mm角の多数のペレットとした。表1は、固定化担体の組成であり、担体中の汚泥濃度が2mg/ml−担体以上になるようにした。
[1] Blue-flood decomposition test using immobilized carrier (Example 1)
The bottom mud collected from the A swamp in Chiba Prefecture was entrapped and fixed with a polyethylene glycol prepolymer to form a large number of 3 mm square pellets as shown in FIG. Table 1 shows the composition of the immobilized carrier, and the sludge concentration in the carrier was set to 2 mg / ml-carrier or more.

Figure 0004092592
Figure 0004092592

この固定化担体における放線菌の菌数濃度は4×105(cells/ml−担体)であった。この固定化担体200mlを用いて2Lの反応槽に投入し、アオコ含有の沼水(アオコ105cells/ml含有)を滞留時間48時間で連続処理した。 The cell count concentration of actinomycetes on this immobilization carrier was 4 × 10 5 (cells / ml-carrier). Using 200 ml of this immobilization carrier, it was put into a 2 L reaction tank, and aquatic swamp water (containing 10 5 cells / ml) was continuously treated with a residence time of 48 hours.

その結果、処理水中のアオコは102cells/ml以下で安定した。 As a result, the sea cucumber in the treated water was stabilized at 10 2 cells / ml or less.

(実施例2)
実施例1と同様の試験を東京湾の底泥、千葉県の農地の土壌、江戸川の河川敷の土壌、滋賀県の湖の底泥をそれぞれ採取してポリエチレングリコール系プレポリマで固定化し、図5のように、3mm角の多数のペレットとした。固定化担体の組成は表1と同じであり、担体中の汚泥濃度は2mg/ml−担体以上になるようにした。
(Example 2)
The same test as in Example 1 was carried out by collecting the bottom mud of Tokyo Bay, the soil of farmland in Chiba Prefecture, the soil of the riverbed of Edo River, and the bottom mud of the lake of Shiga Prefecture, and immobilizing them with a polyethylene glycol prepolymer. Thus, it was set as many pellets of 3 mm square. The composition of the immobilization carrier was the same as in Table 1, and the sludge concentration in the carrier was set to 2 mg / ml-carrier or more.

表2は、固定化担体中に担持される放線菌の菌数濃度とアオコ分解速度との関係を示したものである。   Table 2 shows the relationship between the number of actinomycetes supported on the immobilization carrier and the rate of decomposition of the sea cucumber.

Figure 0004092592
Figure 0004092592

表2の結果から分かるように、固定化担体中の放線菌濃度が104レベルでは、アオコ分解速度が1000(cells・アオコ/ml・担体)レベルのオーダであるが、放線菌濃度が105以上では104のときの10倍の分解速度となる。 As can be seen from the results in Table 2, when the concentration of actinomycetes in the immobilized carrier is 10 4 level, the rate of aquatic degradation is on the order of 1000 (cells / aico / ml · carrier), but the concentration of actinomycetes is 10 5. Thus, the decomposition rate is 10 times that of 10 4 .

このように、放線菌が高濃度で含有されている湖沼や河川や海の底泥、又は地表の土壌、特に農地の土壌を包括固定化して放線菌が繁殖しやすい環境を積極的に形成すると共に、担体中の汚泥濃度を2mg/ml−担体以上にすることで、アオコを効率的に分解除去することができる。特に、放線菌濃度が105以上の場合には、アオコを極めて効率的に分解除去することができる。 In this way, lakes and rivers and sea bottom mud containing high levels of actinomycetes, or soil on the surface, especially soils on farmland, are actively incorporated to form an environment where actinomycetes are easy to propagate. At the same time, when the sludge concentration in the carrier is 2 mg / ml-carrier or more, the sea cucumber can be efficiently decomposed and removed. In particular, when the actinomycete concentration is 10 5 or more, the sea cucumber can be decomposed and removed very efficiently.

一方、固定化担体内に汚泥を固定化せずに、純粋培養した放線菌のみをポリエチレングリコール系プレポリマで固定化したサンプルである純粋培養の固定化担体は、アオコ分解速度が340(cells・アオコ/ml・担体)と悪い結果になった。[2]本発明の加熱担体と、加熱処理をしていない従来の固定化微生物担体(以下「非加熱担体」と称す)について、Bacillusの優占状態、及び処理性能について比較試験を行った実施例について説明する。   On the other hand, a pure culture immobilization carrier, which is a sample in which only pure cultured actinomycetes are immobilized with a polyethylene glycol-based prepolymer without immobilizing sludge in the immobilization carrier, has a blue decomposition rate of 340 (cells / ml · carrier). [2] A comparative test of the dominant state of Bacillus and the treatment performance of the heating carrier of the present invention and a conventional immobilized microorganism carrier (hereinafter referred to as “non-heating carrier”) that has not been heat-treated. An example will be described.

汚泥の種類としては、千葉県のA下水処理場から採取した活性汚泥と、千葉県の湖から採取した底泥と、についてそれぞれポリエチレングリコール系プレポリマで固定化して加熱前の固定化微生物担体を調製し、図5のように、3mm角の多数のペレットとした。   As the types of sludge, activated sludge collected from the A sewage treatment plant in Chiba Prefecture and bottom sludge collected from the lake in Chiba Prefecture are each immobilized with a polyethylene glycol-based prepolymer to prepare an immobilized microorganism carrier before heating. Then, as shown in FIG.

そして、この加熱前の固定化微生物担体を非加熱担体Bのサンプルとした。この固定化微生物担体200mlと水道水300mlを1Lの三角フラスコに入れ、オートクレーブにより100℃で12分間加熱処理した。そして、この加熱後の固定化微生物担体を加熱担体Aのサンプルとした。   The immobilized microbial carrier before heating was used as a sample of the non-heated carrier B. 200 ml of this immobilized microorganism carrier and 300 ml of tap water were placed in a 1 L Erlenmeyer flask and heat-treated at 100 ° C. for 12 minutes by an autoclave. The immobilized microbial carrier after heating was used as a sample of the heating carrier A.

表3は、固定化微生物担体の組成である。   Table 3 shows the composition of the immobilized microbial carrier.

Figure 0004092592
Figure 0004092592

図6は、Bacillusの優占状態、及び処理性能について比較試験を行った連続処理運転用の試験装置10の模式図である。   FIG. 6 is a schematic diagram of the test apparatus 10 for continuous processing operation in which a comparative test was performed on the dominant state of Bacillus and the processing performance.

試験装置10は、図6に示す容積2Lの2つの曝気槽12、12を並設し、1つの曝気槽12には加熱担体Aを200ml添加して加熱担体用の試験装置とし、別の曝気槽12には非加熱担体Bを200ml添加して非加熱担体用の試験装置とした。この場合、それぞれの曝気槽12の担体充填率はどちらの試験装置10も同じ10%になるようにした。そして、合成廃水を、曝気槽12上部から連続的に流入させ、処理した処理水が曝気槽内側面に設けた担体流出防止網(スクリーン)14を経て流出するようにした。合成廃水の供給流量を11ml/分とし、曝気槽12における滞留時間が3時間となるように連続処理運転を行った。担体流出防止網14は、目開き2mmの塩化ビニール製のものを用いた。曝気槽12内への酸素の供給と加熱担体の撹絆のための空気供給管16を設け、この空気供給管16により曝気槽12内の合成廃水中に5L/分の通気量で曝気できるようにした。合成廃水の水温は20℃に調整した。   The test apparatus 10 includes two aeration tanks 12 and 12 having a volume of 2 L shown in FIG. 6, and 200 ml of heating carrier A is added to one aeration tank 12 to form a test apparatus for the heating carrier. 200 ml of non-heated carrier B was added to the tank 12 to obtain a test apparatus for the non-heated carrier. In this case, the carrier filling rate of each aeration tank 12 was set to 10% which is the same for both test apparatuses 10. Then, the synthetic waste water was continuously introduced from the upper part of the aeration tank 12 so that the treated water was discharged through the carrier outflow prevention network (screen) 14 provided on the inner surface of the aeration tank. The supply flow rate of synthetic waste water was 11 ml / min, and the continuous treatment operation was performed so that the residence time in the aeration tank 12 was 3 hours. The carrier outflow prevention net 14 was made of vinyl chloride having an opening of 2 mm. An air supply pipe 16 is provided for supplying oxygen into the aeration tank 12 and stirring the heating carrier so that the air supply pipe 16 can aerate the synthetic wastewater in the aeration tank 12 at an aeration rate of 5 L / min. I made it. The water temperature of the synthetic wastewater was adjusted to 20 ° C.

表4は、Bacillusの優占状態の試験に使用した合成廃水の組成である。   Table 4 shows the composition of the synthetic wastewater used in the test for Bacillus dominance.

Figure 0004092592
Figure 0004092592

表5は、加熱担体A及び非加熱担体Bの中の細菌数測定用に使用した標準寒天培地の組成である。   Table 5 shows the composition of the standard agar medium used for measuring the number of bacteria in the heating carrier A and the non-heating carrier B.

Figure 0004092592
Figure 0004092592

(実施例3)
先ず、千葉県のA下水処理場から採取した活性汚泥を使用した加熱担体Aと非加熱担体Bについて、図6の試験装置10を使用してBacillusの優先状態を試験した結果について説明する。
(Example 3)
First, the result of having tested the priority state of Bacillus using the test apparatus 10 of FIG. 6 about the heating carrier A and the non-heating carrier B using the activated sludge collected from the A sewage treatment plant in Chiba Prefecture will be described.

図7は、連続運転を行う前の加熱担体Aと非加熱担体Bのそれぞれについて、ホモジナイズし、表5の標準寒天培地にそれぞれ希釈平板して培養した後の生育したコロニーの状態を示した図である。図7に示すように、加熱担体Aの場合には白色の単一コロニーが生育したのに対し、非加熱担体Bの場合には白色、黄色等、様々なコロニーが生育した。加熱担体Aで生育した白色コロニーをbioMerieux社製同定キットで簡易同定した結果、Bacillusであると推定できた。このことは、加熱処理を行うことにより、担体A中にBacillusを優占状態で集積させることができることを意味している。   FIG. 7 is a diagram showing the state of colonies grown after homogenizing each of the heated carrier A and the non-heated carrier B before continuous operation and cultivating each of the diluted agar plates on the standard agar medium shown in Table 5. It is. As shown in FIG. 7, white colonies grew in the case of the heating carrier A, whereas various colonies such as white and yellow grew in the case of the non-heating carrier B. As a result of simple identification of a white colony grown on the heating carrier A with an identification kit manufactured by bioMerieux, it was estimated to be Bacillus. This means that Bacillus can be accumulated in the carrier A in a dominant state by performing the heat treatment.

次に、加熱担体Aと非加熱担体Bについて、表4のペプトンと肉エキスを主体とした合成廃水を使用して図6の試験装置10で6カ月の連続処理運転を行うことにより、連続運転前のBacillusの優占状態がどのようになるか、即ちBacillusの優占状態の安定性を評価した。   Next, with regard to the heating carrier A and the non-heating carrier B, a continuous treatment operation for 6 months is performed in the test apparatus 10 of FIG. 6 using synthetic waste water mainly composed of peptone and meat extract shown in Table 4. We evaluated the prevailing state of Bacillus, that is, the stability of Bacillus.

図8は、連続処理運転終了後の加熱担体Aと非加熱担体Bについて、担体A,B中の総菌数とBacillusの菌数を調べたものである。尚、連続運転前(初期担体)の総菌数は5×108(cells/ml)、Bacillus菌数は2×106(cells/ml)であった。 FIG. 8 shows the total number of bacteria in the carriers A and B and the number of Bacillus bacteria in the heated carrier A and the non-heated carrier B after completion of the continuous treatment operation. The total number of bacteria before continuous operation (initial carrier) was 5 × 10 8 (cells / ml), and the number of Bacillus bacteria was 2 × 10 6 (cells / ml).

図8から分かるように、連続処理運転終了後の加熱担体Aは、総菌数が1×1010(cells/ml)でBacillus菌数が8.5×109(cells/ml)となった。即ち、加熱担体Aの場合には、連続処理運転により増加した総菌数の殆どがBacillusの増殖であった。一方、非加熱担体Bは、総菌数が2×109(cells/ml)に増加したものの、Bacillus菌数は6×107となり、総菌数に対するBacillusの占有率が加熱担体Aに比べて顕著に小さかった。 As can be seen from FIG. 8, the heating carrier A after completion of the continuous treatment operation has a total bacterial count of 1 × 10 10 (cells / ml) and a Bacillus bacterial count of 8.5 × 10 9 (cells / ml). . That is, in the case of the heating carrier A, most of the total number of bacteria increased by the continuous treatment operation was growth of Bacillus. On the other hand, the non-heated carrier B increased the total number of bacteria to 2 × 10 9 (cells / ml), but the number of Bacillus was 6 × 10 7 , and the occupation rate of Bacillus relative to the total number of bacteria was higher than that of the heated carrier A. It was remarkably small.

図9は、連続処理運転終了後の加熱担体Aと非加熱担体Bについて、稀釈平板培養した時のコロニー形態を示す図である。   FIG. 9 is a diagram showing the colony morphology when the diluted carrier is cultured on the heated carrier A and the non-heated carrier B after the end of the continuous treatment operation.

図9(a)に示すように、非加熱担体Bの場合には白色や黄色の多様な小型コロニーが生育し、一方、加熱担体Aはほぼ均一な大型コロニーが生育していた。また、図9(b)は3%過酸化水素をコロニーにかけた写真であり、非加熱担体Bでは局部的に発泡したが、加熱担体Aでは全面的に激しく発泡し、大型コロニーがBacillusである証拠となる強いカタラーゼ活性が認められた。また、加熱担体Aの大型コロニーをbioMerieux社製同定キットで同定した結果、Bacillusであると推定できた。   As shown in FIG. 9A, in the case of the non-heated carrier B, various small colonies of white and yellow grew, while the heated carrier A grew almost uniform large colonies. FIG. 9B is a photograph in which 3% hydrogen peroxide is applied to the colony. The non-heated carrier B is locally foamed, but the heated carrier A is foamed violently and the large colony is Bacillus. Evidence of strong catalase activity was observed. Moreover, as a result of identifying a large colony of the heating carrier A with an identification kit manufactured by bioMerieux, it was estimated that it was Bacillus.

図7、図8及び図9の結果から、加熱担体Aは、連続処理運転前、連続処理運転終了後にかかわらず、Bacillusが常に優占して存在しており、Bacillusの優占状態の安定性が良いことが分かる。このことは、加熱担体Aは連続処理運転によりBacillusの集積培養が可能であることを意味する。   From FIG. 7, FIG. 8 and FIG. 9, the heating carrier A is always predominately present in Bacillus, regardless of whether the continuous treatment operation is performed or not, and the stability of the predominance state of Bacillus. I understand that is good. This means that the heating carrier A can accumulate Bacillus by continuous treatment.

次に、加熱担体Aと非加熱担体Bについて、図6の試験装置10を使用してBacillusの処理性能を試験した結果について説明する。   Next, the results of testing the treatment performance of Bacillus on the heating carrier A and the non-heating carrier B using the test apparatus 10 of FIG. 6 will be described.

処理性能試験は、上記の連続処理運転に使用したと同じ加熱担体Aと非加熱担体Bを用い、高濃度処理の可能性を明らかにするために、加熱担体用の試験装置10と非加熱担体用の試験装置10の各曝気槽12の合成廃水を、TOC(Total Organic Carbon、総有機系炭素量)170mg/Lの合成廃水に入れ換えて回分処理を行った。回分処理ではTOC濃度の低減推移を経時的に測定した。また、得られた処理水のTOC測定は、処理水を5A濾紙で濾過した濾過液について行い、加熱担体Aと非加熱担体BについてのTOCの除去速度を調べた。   The processing performance test uses the same heating carrier A and non-heating carrier B used in the above-mentioned continuous processing operation, and in order to clarify the possibility of high-concentration processing, the testing device 10 for heating carrier and the non-heating carrier The synthetic wastewater in each aeration tank 12 of the test apparatus 10 was replaced with synthetic wastewater of TOC (Total Organic Carbon, total organic carbon amount) 170 mg / L, and batch treatment was performed. In batch processing, the transition of TOC concentration was measured over time. Moreover, the TOC measurement of the obtained treated water was performed about the filtrate which filtered the treated water with 5A filter paper, and the removal rate of TOC about the heating carrier A and the non-heating carrier B was investigated.

TOCの除去速度は次式(1)により計算される。   The removal rate of TOC is calculated by the following equation (1).

[数1]
ds/dt=K×s…(1)
但し、s : 廃水TOC濃度(mg/l)
T : 時間(h)
K : 除去速度恒数(1/h)
結果を図10に示す。
[Equation 1]
ds / dt = K × s (1)
However, s: Wastewater TOC concentration (mg / l)
T: Time (h)
K: removal rate constant (1 / h)
The results are shown in FIG.

図10から分かるように、加熱担体A(Bacillus優占担体)のTOC除去速度は0.532h-1で、非加熱担体B(活性汚泥担体)のTOC除去速度は0.280h-1であり、加熱担体AのTOC除去速度は非加熱担体Bの約2倍であった。このことは、TOC濃度が170mg/L程度の中程度の濃度(負荷)の廃水の場合、加熱担体Aは非加熱担体Bの約2倍の処理性能があることを意味する。 As can be seen from FIG. 10, the TOC removal rate of the heated carrier A (Bacillus dominant carrier) is 0.532 h −1 , and the TOC removal rate of the non-heated carrier B (activated sludge carrier) is 0.280 h −1 . The TOC removal rate of the heated carrier A was about twice that of the non-heated carrier B. This means that in the case of wastewater having a medium concentration (load) with a TOC concentration of about 170 mg / L, the heating carrier A has about twice the treatment performance of the non-heating carrier B.

(実施例4)
実施例3と同様に、千葉県の湖から採取した底泥を使用した加熱担体Aと非加熱担体Bについて、図6の試験装置10を使用してBacillusの優先状態を試験した結果について説明する。
Example 4
Similar to Example 3, the results of testing the priority state of Bacillus using the test apparatus 10 of FIG. 6 for the heating carrier A and the non-heating carrier B using the bottom mud collected from the lake in Chiba Prefecture will be described. .

その結果、千葉県の湖から採取した底泥を使用した加熱担体Aについても常にBacillusコロニーが優占していた。また、表4のペプトンと肉エキスを主体とした合成廃水を使用して図6の試験装置10で6カ月の連続処理運転の結果では、連続運転前(初期担体)の加熱担体のBacillus菌数が4×105(cells/ml)であったものが、連続運転終了後には8×109(cells/ml)になっており、連続運転により集積培養が可能であることが見いだされた。一方、非加熱担体Bの場合には、連続運転終了後の総菌数は増加したものの、連続運転によるBacillusの集積培養が殆ど認められなかった。そして、連続運転後の加熱担体Aの希釈平板培養したときのコロニー形態としては、非加熱担体には白色や黄色の多様な小型コロニーが生育したのに対し、加熱担体では略均一な大型コロニーが生育した。そして、3%過酸化水素をコロニーにかけると、非加熱担体では局部的に発泡したのに対し、加熱担体では全面的に激しく発泡し、強いカタラーゼ活性が認められた。また、加熱担体Aの大型コロニーをbioMerieux社製同定キットで同定した結果、Bacillusであると推定できた。 As a result, Bacillus colonies were always dominant in the heating carrier A using the bottom mud collected from the lake in Chiba Prefecture. Moreover, using the synthetic waste water mainly composed of peptone and meat extract in Table 4, the result of continuous treatment operation for 6 months in the test apparatus 10 of FIG. 6 shows that the number of Bacillus bacteria of the heating carrier before the continuous operation (initial carrier). Of 4 × 10 5 (cells / ml) was 8 × 10 9 (cells / ml) after completion of continuous operation, and it was found that accumulation culture was possible by continuous operation. On the other hand, in the case of the non-heated carrier B, although the total number of bacteria after the continuous operation was increased, the accumulation culture of Bacillus by the continuous operation was hardly observed. And as a colony form when carrying out the dilution plate culture of the heating support | carrier A after a continuous driving | operation, while the non-heating support | carrier grew various small colonies of white and yellow, on the heating support | carrier, a substantially uniform large colony was formed. Growing up. When 3% hydrogen peroxide was applied to the colony, the non-heated carrier foamed locally, whereas the heated carrier foamed violently and showed strong catalase activity. Moreover, as a result of identifying a large colony of the heating carrier A with an identification kit manufactured by bioMerieux, it was estimated that it was Bacillus.

このように、汚泥の種類を実施例3の下水処理場の活性汚泥から湖から採取した底泥に変えた場合も同様の結果を得ることができた。   Thus, the same result was able to be obtained also when the kind of sludge was changed from the activated sludge of the sewage treatment plant of Example 3 to the bottom mud collected from the lake.

また、加熱担体Aと非加熱担体Bについて、図6の試験装置10を使用してBacillusの処理性能を試験した結果では、加熱担体A(Bacillus優占担体)のTOC除去速度は0.432h-1で、非加熱担体BのTOC除去速度は0.200h-1であり、加熱担体AのTOC除去速度は非加熱担体Bの2倍以上であった。 Further, as a result of testing the treatment performance of Bacillus using the test apparatus 10 of FIG. 6 for the heating carrier A and the non-heating carrier B, the TOC removal rate of the heating carrier A (Bacillus dominant carrier) is 0.432 h −. 1 , the TOC removal rate of the non-heated carrier B was 0.200 h −1 , and the TOC removal rate of the heated carrier A was twice or more that of the non-heated carrier B.

(実施例5)
実施例5は、加熱担体Aと非加熱担体Bのそれぞれについて、食品工場でのBOD成分、COD成分、SS(懸濁物質)、油分(n-ヘキサン抽出物)の除去性能について試験したものである。
(Example 5)
In Example 5, the heating carrier A and the non-heating carrier B were tested for the removal performance of BOD component, COD component, SS (suspended substance), and oil (n-hexane extract) at the food factory. is there.

実施例3又は4の試験終了後、曝気槽12の合成廃水を食品工場廃水に交換して、滞留時間4時間で連続処理した。   After completion of the test in Example 3 or 4, the synthetic wastewater in the aeration tank 12 was replaced with food factory wastewater, and was continuously treated with a residence time of 4 hours.

表6は、千葉県のA下水処理場から採取した活性汚泥を使用した場合であり、表7は千葉県の湖から採取した底泥を使用した場合である。   Table 6 shows the case where activated sludge collected from the A sewage treatment plant in Chiba Prefecture is used, and Table 7 shows the case where bottom mud collected from the lake in Chiba Prefecture is used.

Figure 0004092592
Figure 0004092592

Figure 0004092592
Figure 0004092592

表6及び表7の結果から分かるように、加熱担体Aを用いた本発明の処理水は、非加熱担体Bを用いた従来法の処理水に比べて、BOD、COD、n-ヘキサン抽出物について良い結果となった。特に、CODとn-ヘキサン抽出物である油分の分解性能がよかった。CODの分解性能が良い理由としては、Bacillusのカタラーゼがラジカル的にCOD成分を酸化していることが考えられる。   As can be seen from the results in Tables 6 and 7, the treated water of the present invention using the heated carrier A is extracted from BOD, COD, and n-hexane as compared with the treated water of the conventional method using the non-heated carrier B. Had good results about. In particular, the decomposition performance of oil as COD and n-hexane extract was good. The reason why the decomposition performance of COD is good may be that Bacillus catalase oxidizes the COD component radically.

(実施例6)
実施例6は、加熱担体Aと非加熱担体Bについて、アオコの分解性能を調べたものであり、千葉県のA下水処理場から採取した活性汚泥を使用した場合と、千葉県の湖から採取した底泥を使用した場合との両方について行った。
(Example 6)
In Example 6, the heating performance of the heating carrier A and the non-heating carrier B was examined, and the performance of blue sea urchin was examined. When activated sludge collected from the A sewage treatment plant in Chiba Prefecture was used, and sampled from the lake in Chiba Prefecture. This was done both when the bottom mud was used.

実施例6で使用した加熱担体Aは、加熱処理前の固定化微生物担体200mlと水道水300mlを1Lの三角フラスコに入れ、オートクレーブで60℃15分間加熱した。このように製造した加熱担体200mlを、4Lの加熱担体用の曝気槽12に投入し、まず表4に示す合成廃水で1週間培養した。1週間培養した後、曝気槽12内の合成廃水を、アオコ含有湖沼水[アオコ105(cells/ml)含有]に交換して滞留時間24時間で連続処理した。 In the heating carrier A used in Example 6, 200 ml of immobilized microorganism carrier and 300 ml of tap water before heat treatment were placed in a 1 L Erlenmeyer flask and heated in an autoclave at 60 ° C. for 15 minutes. 200 ml of the thus produced heating carrier was put into a 4 L heating carrier aeration tank 12 and first cultured in synthetic waste water shown in Table 4 for one week. After culturing for one week, the synthetic wastewater in the aeration tank 12 was replaced with blue water containing lake water [containing blue water 10 5 (cells / ml)] and continuously treated with a residence time of 24 hours.

従来法として、非加熱担体Bを非加熱担体用の曝気槽12に投入し、実施例6と同様に、表4の合成廃水で培養した後、アオコ含有湖沼水[アオコ105(cells/ml)含有]に交換して滞留時間24時間で連続処理した。 As a conventional method, the non-heated carrier B is put into the aeration tank 12 for the non-heated carrier, and after culturing with the synthetic waste water shown in Table 4 in the same manner as in Example 6, the aqua-containing lake water [Aoko 10 5 (cells / ml ) Contained] and continuously treated with a residence time of 24 hours.

その結果、加熱担体Aを用いた処理水中のアオコは102(cells/ml)以下まで安定して低減されたのに対し、非加熱担体Bを用いた処理水中のアオコは104〜105(cells/ml)で原水のアオコ含量とほとんど変わらなかった。 As a result, the water scale in the treated water using the heating carrier A was stably reduced to 10 2 (cells / ml) or less, whereas the water scale in the treated water using the non-heated carrier B was 10 4 to 10 5. (Cells / ml) was almost the same as the water content of raw water.

尚、実施例6で使用した千葉県のA下水処理場の活性汚泥や千葉県の湖から採取した底泥には放線菌が比較的少なかったので、このような場合には、実施例6のように加熱処理してBacillusを集積させることによってアオコを効果的に分解除去できる。   In addition, since there were relatively few actinomycetes in the activated sludge of the A sewage treatment plant in Chiba Prefecture and the bottom mud collected from the lake in Chiba Prefecture used in Example 6, in such a case, As described above, the heat treatment is performed to accumulate Bacillus, so that the water can be effectively decomposed and removed.

(実施例7)
実施例7は、大気中のメルカプタン、硫化水素、アンモニア等の悪臭成分の除去を行ったものであり、千葉県のA下水処理場から採取した活性汚泥を使用した場合と、千葉県の湖から採取した底泥を使用した場合との両方について行った。
(Example 7)
In Example 7, malodorous components such as mercaptans, hydrogen sulfide, and ammonia in the atmosphere were removed. When activated sludge collected from the A sewage treatment plant in Chiba Prefecture was used, and from a lake in Chiba Prefecture, Example 7 This was done both when the collected bottom mud was used.

試験は、直径5cm、高さ100cmの約2Lのカラム内に、加熱担体Aの充填率が70%になるようにした固定床式濾過層を設け、メルカプタンを含有する空気をカラムの下端から流入させ、固定床式濾過層を通過させてからカラム上端から排気した。そして、流入ガスと排気ガスのメルカプタン濃度を測定して除去率を求めた。カラム内でのガスの滞留時間を2分とした。   In the test, a fixed bed type filtration layer with a heating carrier A filling rate of 70% was provided in a 2 L column with a diameter of 5 cm and a height of 100 cm, and mercaptan-containing air was introduced from the lower end of the column. Then, after passing through a fixed bed filtration layer, the column was evacuated from the upper end. And the removal rate was calculated | required by measuring the mercaptan density | concentration of inflow gas and exhaust gas. The gas residence time in the column was 2 minutes.

同様に、硫化水素を含有する空気、アンモニアガスを含有する空気についても実施した。   Similarly, air containing hydrogen sulfide and air containing ammonia gas were also used.

その結果、メルカプタン、硫化水素、アンモニアのいずれの場合にも、99%の除去率を得ることができた。   As a result, a removal rate of 99% could be obtained in any of mercaptans, hydrogen sulfide, and ammonia.

固定化担体について、担体内に包括固定化した汚泥濃度及び放線菌の菌濃度と、アオコの分解率との関係を説明する説明図Explanatory drawing explaining the relationship between the sludge concentration and the concentration of actinomycetes immobilized in the carrier, and the decomposition rate of the blue sea urchin 本発明の加熱担体の製造方法を示した概念図The conceptual diagram which showed the manufacturing method of the heating carrier of this invention 下水処理場の活性汚泥について加熱処理温度とBacillus菌数の関係を示した図Figure showing the relationship between the heat treatment temperature and the number of Bacillus bacteria for activated sludge in a sewage treatment plant 湖の底泥について加熱処理温度とBacillus菌数の関係を示した図Figure showing the relationship between the heat treatment temperature and the number of Bacillus bacteria in the bottom mud of the lake 3mm角のペレット状にした加熱処理前の多数の固定化微生物担体を示した図The figure which showed many fixed microbial carriers before the heat processing made into the pellet form of 3 square mm 加熱担体と非加熱担体について連続処理運転を行った試験装置の模式図Schematic diagram of test equipment that performed continuous processing operation for heated and non-heated carriers 連続処理運転前の加熱担体と非加熱担体を標準寒天培地で培養した後の生育コロニーの図Diagram of growing colonies after culturing heated and non-heated carriers before continuous treatment on standard agar medium 連続処理運転終了後の加熱担体と非加熱担体の中の総菌数とBacillus菌数を調べた図Figure of the total number of bacteria and the number of Bacillus in heated and non-heated carriers after the end of continuous processing operation 連続処理運転終了後の加熱担体と非加熱担体を標準寒天培地で培養した後の生育コロニーの図Diagram of growing colonies after culturing heated and non-heated carriers on standard agar medium after continuous processing operation 加熱担体と非加熱担体のTOC除去性能を示した図Diagram showing TOC removal performance of heated carrier and non-heated carrier Bacillusを純粋培養してから固定化する従来の固定化方法を示した概念図Conceptual diagram showing the conventional immobilization method of immobilizing Bacillus after pure culture

符号の説明Explanation of symbols

10…試験装置、12…曝気槽、14…担体流出防止網、16…空気供給管、A…加熱担体、B…非加熱担体   DESCRIPTION OF SYMBOLS 10 ... Test apparatus, 12 ... Aeration tank, 14 ... Carrier outflow prevention network, 16 ... Air supply pipe, A ... Heating carrier, B ... Non-heating carrier

Claims (6)

耐熱性菌であるBacillusを含む汚泥を内部に包括固定化した固定化微生物担体を、加熱処理することを特徴とし、
前記汚泥には、下水処理場の活性汚泥、湖沼や河川や海の底泥、又は地表の土壌を含むことを特徴とする加熱担体の製造方法。
It is characterized by heat-treating an immobilized microbial carrier in which sludge containing Bacillus, a heat-resistant bacterium, is comprehensively immobilized ,
The method for producing a heating carrier, wherein the sludge includes activated sludge from a sewage treatment plant, bottom mud from lakes, rivers and seas, or soil from the surface .
前記加熱処理の温度は、40℃以上、130℃以下であることを特徴とする請求項1記載の加熱担体の製造方法。The method of manufacturing a heating carrier according to claim 1, wherein the temperature of the heat treatment is 40 ° C or higher and 130 ° C or lower. 請求項1または2に記載の加熱担体の製造方法により製造された加熱担体。A heating carrier manufactured by the heating carrier manufacturing method according to claim 1. 請求項3記載の加熱担体を、油成分、BOD成分、COD成分、悪臭成分を構成する無機及び有機の環境汚染物質のうちの少なくとも1つの環境汚染物質と接触させて生物学的処理を行うことを特徴とする環境浄化方法。A biological treatment is performed by contacting the heating carrier according to claim 3 with at least one of the inorganic and organic environmental pollutants constituting the oil component, the BOD component, the COD component, and the malodorous component. Environmental purification method characterized by. 請求項3記載の加熱担体を、生物処理で発生する余剰汚泥と接触させて生物学的処理を行うことを特徴とする環境浄化方法。An environmental purification method, wherein biological treatment is performed by contacting the heating carrier according to claim 3 with surplus sludge generated by biological treatment. 請求項3記載の加熱担体を、アオコを含有する水、又はアオコが発生するおそれのある水と接触させて生物学的処理を行うことを特徴とする環境浄化方法。A method for environmental purification, wherein biological treatment is carried out by bringing the heating carrier according to claim 3 into contact with water containing or having a possibility of generating water.
JP2007153856A 2001-02-21 2007-06-11 Heating carrier, method for producing the same, and environmental purification method using heating carrier Expired - Fee Related JP4092592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153856A JP4092592B2 (en) 2001-02-21 2007-06-11 Heating carrier, method for producing the same, and environmental purification method using heating carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001045209 2001-02-21
JP2007153856A JP4092592B2 (en) 2001-02-21 2007-06-11 Heating carrier, method for producing the same, and environmental purification method using heating carrier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002020022A Division JP3991691B2 (en) 2001-02-21 2002-01-29 Immobilization carrier and environmental purification method using immobilization carrier

Publications (2)

Publication Number Publication Date
JP2007300931A JP2007300931A (en) 2007-11-22
JP4092592B2 true JP4092592B2 (en) 2008-05-28

Family

ID=38835423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153856A Expired - Fee Related JP4092592B2 (en) 2001-02-21 2007-06-11 Heating carrier, method for producing the same, and environmental purification method using heating carrier

Country Status (1)

Country Link
JP (1) JP4092592B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102369105A (en) * 2008-09-24 2012-03-07 莱斯勒斯公司 Introduction of heat-and/or pressure-resistant organisms into materials
CN112341275A (en) * 2020-11-11 2021-02-09 宁夏陈敷生态科技有限公司 Good carrier capable of preserving agricultural microbial agent for long time
CN114409100A (en) * 2022-02-08 2022-04-29 北京建工资源循环利用投资有限公司 Method for purifying polluted water by combining composite bacteria and aggregate carrier
CN114409099A (en) * 2022-02-08 2022-04-29 北京建工资源循环利用投资有限公司 Aggregate composite purification carrier
CN114409097A (en) * 2022-02-08 2022-04-29 北京建工资源循环利用投资有限公司 Composite aggregate purification carrier
CN114436409A (en) * 2022-02-08 2022-05-06 北京建工资源循环利用投资有限公司 Multilayer composite aggregate purification carrier

Also Published As

Publication number Publication date
JP2007300931A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
Nagadomi et al. Simultaneous removal of chemical oxygen demand (COD), phosphate, nitrate and H2S in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria
Richard et al. Growth kinetics of Sphaerotilus species and their significance in activated sludge bulking
JP4092592B2 (en) Heating carrier, method for producing the same, and environmental purification method using heating carrier
US7960171B2 (en) Method and equipment for cultivating anaerobic ammonium-oxidizing bacteria
JP2004081926A (en) Treating agent and treating method for algae and microcystin
CA1328633C (en) Microbiological purification of water and a microorganism for use in said process
JP2006289347A (en) Method and apparatus for treating waste water
WO2012108437A1 (en) Method for treating 1,4-dioxane-containing wastewater, and treatment device
JP3991691B2 (en) Immobilization carrier and environmental purification method using immobilization carrier
CN114940957B (en) Paracoccus ubitus with facultative denitrification synchronous denitrification and dephosphorization performances
JP2002301494A (en) Activated sludge and wastewater disposal method
KR100759917B1 (en) Heated carriers, method for producing heated carriers and environmental protection method with use of heated carriers
JP4131315B2 (en) Encapsulated microbial carrier and method for producing the same
Kantachote et al. Isolation of Thiobacillus sp. for use in treatment of rubber sheet wastewater
CN1328192C (en) A method for comprehensive treatment of high-concentration organic wastewater
JP2016198763A (en) Liquid treatment method, and microorganism optimizing method
Kim et al. Denitrification of drinking water using biofilms formed by Paracoccus denitrificans and microbial adhesion
KR101479679B1 (en) Novel Acidithiobacillus thiooxidans SOB5VT1, apparatus and method for removing bad smells using the same
CN103981120B (en) One strain has facultative denitrifying phosphorus removing bacteria and the application thereof of synchronous denitrification denitrogenation dephosphorizing function
WO2024047922A1 (en) Method for culturing cold-resistant nitrifying bacteria, method for treating nitrogen-containing water, and device for treating nitrogen-containing water
JPH09225496A (en) Production of nitration filter medium
CN1305787C (en) A method for comprehensive treatment of wastewater
KR20080092091A (en) Method for improving water
Silvey Removing taste and odor compounds from water
Lestari et al. Kinetics of Sulfide Removal in Biofilter Employing Sulfur-Oxidizing Bacteria on Salak Fruit Seeds

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees