JP4006750B2 - Immobilized microorganism carrier and environmental purification method using the same - Google Patents

Immobilized microorganism carrier and environmental purification method using the same Download PDF

Info

Publication number
JP4006750B2
JP4006750B2 JP2002071501A JP2002071501A JP4006750B2 JP 4006750 B2 JP4006750 B2 JP 4006750B2 JP 2002071501 A JP2002071501 A JP 2002071501A JP 2002071501 A JP2002071501 A JP 2002071501A JP 4006750 B2 JP4006750 B2 JP 4006750B2
Authority
JP
Japan
Prior art keywords
immobilized
denitrification
carrier
water
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002071501A
Other languages
Japanese (ja)
Other versions
JP2003265170A (en
Inventor
立夫 角野
多佳子 小笠原
直樹 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2002071501A priority Critical patent/JP4006750B2/en
Publication of JP2003265170A publication Critical patent/JP2003265170A/en
Application granted granted Critical
Publication of JP4006750B2 publication Critical patent/JP4006750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は、固定化微生物担体及びそれを用いた環境浄化方法に係り、特に、排水中又は大気中の窒素成分を生物学的に除去するための固定化微生物担体及びそれを用いた環境浄化方法に関する。
【0002】
【従来の技術】
廃水や下水を微生物で処理する生物学的処理は、 比較的低コストであることから広く採用されている。 しかし、 微生物の種類によっては、 増殖速度が遅いものや、 被毒し易いもの、 又はその環境中において増殖し難いものがあり、 必ずしも効率的な方法とはいえない場合がある。そこで、 微生物が繁殖しやすい環境を積極的に形成するために、活性汚泥や特定の微生物を予め内部に包括固定化した固定化微生物担体を用いて生物学的処理を行うことが既に実用化されている。
【0003】
活性汚泥や微生物を包括固定化する固定化材料としては、 自然環境に無害であること、微生物によって変質又は分解されないこと、機械的強度が高いこと、微生物を多量に保持できること等が要求される。これまで実用化されている固定化材料としては、ポリエチレングリコール系のポリマ、 ポリビニルアルコール系の樹脂等がある。ゲル材料に包括固定化する微生物としては、下水処理場の活性汚泥や純粋培養した微生物を微生物供給源として主にアンモニア性窒素を酸化する硝化菌が用いられている。
【0004】
アンモニア性窒素を含有する廃水や下水の生物学的処理は、硝化工程においてアンモニア性窒素を硝化菌により亜硝酸や硝酸とし、脱窒工程において亜硝酸や硝酸を脱窒菌で窒素ガスにすることにより廃水中の窒素成分を除去していた。この脱窒工程では水素供与体が必要であり、廃水や下水中の有機物を用いるか、メタノールを添加していた。水素供与体の供給が不足すると、亜硝酸や硝酸が十分に脱窒されずに、処理水中に残存して放流されてしまうので、湖沼、河川等が、富栄養化を起こし環境汚染の原因になる。
【0005】
この水素供与体の不足を解消するための従来技術としては、特開平8−323381号公報に開示されるように固定化担体内部に有機物、例えばデンプン、セルロースなどをポリマにコーティングした粒子を固定化材料に包括固定化する方法、或いは特開2000−153293号公報に開示されるように処理槽に生分解性プラスチックを添加する方法がある。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平8−323381号公報の方法は、拡散及び分解抵抗があり脱窒速度が遅くなるという欠点がある。一方、特開2000−153293号公報の方法は、脱窒反応の持続性(寿命)が極めて短く、脱窒に必要な理論炭素量以上の生分解性プラスチックを処理槽に添加しなくてはならず、ランニングコストがかかるという欠点がある。
【0007】
本発明はこのような事情に鑑みてなされたもので、脱窒速度が速く、且つ脱窒反応の持続性が極めて長いので、脱窒に必要な炭素量を少なくできる固定化微生物担体及びそれを用いた環境浄化方法を提供する。
【0008】
【課題を解決するための手段】
本発明の請求項1は前記目的を達成するために、微生物が分解する生分解性有機物である高級脂肪酸と、微生物とを、固定化材料で包括固定化したことを特徴とする
【0009】
脱窒処理における水素供与体として、分解し易い有機物にポリマコーティングして徐放性をもたせると、拡散及び分解抵抗が生じて脱窒速度が遅くなってしまい、そうかといって、生分解性プラスチックのように徐放性のあるものであっても、廃水中にそのまま投入して活性汚泥で処理すると、脱窒以外の酸化分解反応で生分解性プラスチックが分解されてしまい、脱窒反応に利用されにくく、脱窒反応の持続性(寿命)が極めて短くなってしまう。しかし、比較的分解しにくい有機物である高級脂肪酸、ポリ乳酸、ポリカプロラクタムのうちの少なくとも1つの生分解性有機物を、固定化材料で包括固定化すると、拡散及び分解抵抗がないように徐放性を確保すことができ、しかも脱窒以外の酸化分解反応で分解されてしまうことがないとの知見を得た。
【0010】
本発明はかかる知見に基づいてなされたもので、本発明によれば、微生物が分解する高級脂肪酸と、微生物とを、固定化材料で包括固定化するようにしたので、脱窒速度が速く、且つ脱窒反応の持続性が極めて長いので、脱窒に必要な炭素量を少なくできる固定化微生物担体を得ることができる。
【0011】
本発明の請求項は、請求項1において、生分解性有機物の粒径が5mm以下にしたもので、これにより脱窒速度を一層大きくできる。
【0012】
本発明の請求項は、生分解性有機物は、固定化微生物担体に対して2〜50重量%含有されているので、脱窒率を大きくすることができる。
【0013】
本発明の請求項は前記目的を達成するために、請求項1〜の何れか1の固定化微生物担体と、窒素成分を含有する水又は気体と接触させることにより、前記水又は気体から前記窒素成分の除去を行うことを特徴とする。
【0014】
本発明によれば、微生物が分解する脂肪酸と、微生物とを、固定化材料で包括固定化した固定化微生物担体を使用して、窒素成分を含有する水又は気体と接触させることにより、前記水又は気体から前記窒素成分の除去を行うようにしたので、脱窒に必要な炭素量を少なくできる。
【0015】
【発明の実施の形態】
以下添付図面に従って、本発明に係る固定化微生物担体及びそれを用いた環境浄化方法の好ましい実施の形態について詳説する。
【0016】
本発明の固定化微生物担体の製造は、高級脂肪酸と、微生物とを混合した混合物を形成し、この混合物に、さらに固定化材料を混合して良く攪拌する。この場合、固定化材料には、水や反応調整剤としての希硫酸が加えられる。次に、過硫酸カリウム等の重合開始剤により重合反応を起させて固定化材料をゲル化し、微生物を固定化材料がゲル化したゲル担体内に包括固定化する。これにより、従来の固定化微生物担体よりも脱窒速度が速く、且つ脱窒反応の持続性が長い固定化微生物担体を得ることができる。この場合、高級脂肪酸と、ポリ乳酸、ポリカプロラクタムのうちの少なくとも1つの生分解性有機物とを固定化材料に包括固定してもよい。また、固定化材料をゲル化する方法は、上記した重合法の他に、ポリビニルアルコール(PVA)を固定化材料として用いる場合には、PVAと微生物を混合させた後、凍結と解凍を繰り返すことによりゲル化反応させてPVA内に微生物を包括固定化するPVA冷凍法、あるいはPVAと微生物を混合させた後、ホウ酸と混合させてゲル化反応させてPVA内に微生物を包括固定化するPVAホウ酸法の何れでも良い。
【0017】
ここで、固定化材料に包括固定化する微生物には、下水処理場の活性汚泥、湖沼、河川や海の汚泥、土壌などの各種の微生物を含む複合微生物含有物の他に、培養等により濃縮分離された窒素除去を目的とした微生物、例えば脱窒菌や硝化菌が含まれる。特に、硝化菌と脱窒菌とを共存させた状態で、生分解性有機物と共に包括固定した固定化微生物担体や、脱窒菌のみを生分解性有機物と共に包括固定した固定化微生物担体が、窒素除去の固定化微生物担体として有効である。
【0018】
包括固定化担体の固定化材料としては、ポリエチレングリコール系のプレポリマとしてはモノメタクリレート類、モノアクリレート類、ジメタクリレート類、ジアクリレート類、トリメタクリレート類、トリアクリレート類、テトラアクリレート類などを使用することができる。また、ウレタンアクリレート類、エポキシアクリレート類、その他、ポリビニルアルコール、アクリルアミド、光硬化性ポリビニルアルコール、光硬化性ポリエチレングリコール、光硬化性ポリエチレングリコールポリプロピレングリコールプレポリマ等を使用することができる。
【0019】
固定化微生物担体の大きさは、10μm〜50cmまで幅広く作製でき、さらには1m以上の大きさのものも利用できる。固定化微生物担体の形状としては、球形、角形、円柱状などを用いることができる。また、ブロック状にしたものに蜂の巣状に穴を開けて被処理水や被処理ガスとの接触効率をあげるとよく、ハニカム状の型枠を利用して製造するとよい。
【0020】
図1は、以上の如く製造された固定化微生物担体において、固定化微生物担体に含有される生分解性有機物の濃度と脱窒率の関係を調べたものである。図1の横軸は、固定化微生物担体に含有される生分解性有機物の濃度(重量%)を示し、縦軸は脱窒率(%)を示す。生分解性有機物は、高級脂肪酸、ポリ乳酸、ポリポリカプロラクタムのそれぞれについて調べた。
【0021】
実験条件は、容積が2Lの反応槽に固定化微生物担体を200mL添加し、60rpmで攪拌する完全混合型の装置を用いた。反応槽には、硝酸性窒素濃度40mg/Lの原水を供給し、反応時間3時間後の脱窒率で評価した。
【0022】
【数1】

Figure 0004006750
その結果、図1に示すように、何れの生分解性有機物の場合にも、生分解性有機物の濃度が0から2%になる間で、脱窒率が急激に増加する。生分解性有機物の濃度が2%での脱窒率は、ポリ乳酸で60%、ポリカプロラクタムで70%、高級脂肪酸で80%になる。生分解性有機物の濃度を大きくしていくと、脱窒率はゆるやかに増加して濃度10%近傍で脱窒率が最大になる。生分解性有機物の濃度が10%での脱窒率は、ポリ乳酸で64%、ポリカプロラクタムで80%、高級脂肪酸で98%になる。生分解性有機物の濃度が30%まで最大の脱窒率を維持し、その後、脱窒率は次第に低下する。生分解性有機物の濃度が40%での脱窒率は、ポリ乳酸で40%、ポリカプロラクタムで55%、高級脂肪酸で80%になり、生分解性有機物の濃度が50%での脱窒率は、ポリ乳酸で25%、ポリカプロラクタムで30%、高級脂肪酸で55%になる。生分解性有機物の濃度が60%での脱窒率は、ポリ乳酸及びポリカプロラクタムで5%、高級脂肪酸で20%まで低下する。そして、実用上、使用可能な脱窒率としては20%以上が好ましいことから、固定化微生物担体に含有される生分解性有機物の好適な濃度としては、2〜50重量%の範囲であることが好ましく、更に好ましくは5〜30重量%の範囲である。
【0023】
また、高級脂肪酸、ポリ乳酸、ポリカプロラクタムの含有濃度と脱窒率の関係を個別に見た場合、高級脂肪酸の脱窒率が最も高く、固定化微生物担体に含有される生分解性有機物が10〜30%の範囲では、略100%の脱窒率になる。
【0024】
表1は、固定化微生物担体に含有される生分解性有機物の粒子径と固定化微生物担体の脱窒速度(mg-N/h/L-担体)との関係を調べたものである。
【0025】
生分解性有機物として高級脂肪酸を用い、千葉県のA下水処理場から採取した活性汚泥と、高級脂肪酸とを、ポリエチレングリコール系のプレポリマで包括固定化した固定化微生物担体(20mm角型担体)を製造した。そして、固定化微生物担体に含有される高級脂肪酸の粒子径が、100μ、1mm、2mm、5mm、10mmの5種類の固定化微生物担体を調製した。
【0026】
固定化微生物担体の組成は、表2に示す。
【0027】
固定化微生物担体の脱窒速度の測定は、容積が2Lの反応槽に、固定化微生物担体を200mL添加して充填率が10%になるようにし、60rpmで攪拌する完全混合型の装置を用いた。曝気槽には、硝酸性窒素濃度が40mg/Lの廃水を張り込み、5種類の粒子径の高級脂肪酸ごとに回分試験を行った。
【0028】
【表1】
Figure 0004006750
【0029】
【表2】
Figure 0004006750
【0030】
表1の結果から分かるように、固定化微生物担体に含有される高級脂肪酸の粒子径が、5mm以下で脱窒速度(mg-N/h/L-担体)が90〜110(mg-N/h/L-担体)の高い値を得ることができ、更には2mm以下で脱窒速度が105〜110(mg-N/h/L-担体)となり、極めて高く且つ安定した脱窒速度を得ることができる。尚、表1は、生分解性有機物が高級脂肪酸の例で説明したが、ポリ乳酸、ポリカプロラクタムの場合も同様の結果であった。このことから、固定化微生物担体に含有される生分解性有機物の粒子径は5mm以下が好ましく、更には2mm以下が好ましい。
【0031】
図1の固定化微生物担体に含有される生分解性有機物の濃度、及び表1の生分解性有機物の粒子径の、好ましい条件を全て勘案して窒素成分を除去するための固定化微生物担体を構成すると、硝化菌と脱窒菌、又は脱窒菌のみの微生物に、2mm以下の高級脂肪酸を含有濃度が10〜30重量%なるように包括固定化することが最も良く、脱窒速度が速く、脱窒反応の持続性が長く、脱窒に必要な炭素量を少なくできると共に、高い脱窒率を発揮することができ極めて有効な窒素成分除去用の固定化微生物担体を得ることができる。
【0032】
本発明の環境浄化方法は、上記説明した本発明の固定化微生物担体と、窒素成分を含有する水又は気体と接触させることにより、水又は気体から窒素成分の除去を行う方法である。ここで、水とは、下水処理場、湖沼、河川等を含み、気体とは工場排気ガス、大気等を含む。水や気体からの窒素除去を目的とした固定化微生物担体に包括固定する微生物としては、活性汚泥、純粋培養した硝化菌、脱窒菌を好適に用いることができる。
【0033】
図2〜図4は、本発明の環境浄化方法を適用する環境浄化装置の例を示したものであり、図2及び図3は水から窒素成分を除去する環境浄化装置であり、図4は気体から窒素成分を除去する環境浄化装置の場合である。
【0034】
図2の環境浄化装置10は、硝化・脱窒を単一槽で行う場合で、本発明の固定化微生物担体12が処理槽14に投入される。この場合、固定化微生物担体12の微生物としては、硝化菌と脱窒率とが共存した状態で包括固定される。処理槽14の底部には散気管16が設けられ、ブロア18からのエアが散気管16から処理槽14内に散気される。散気されることによる処理槽14内の溶存酸素濃度は0.2〜2mg/L、好ましくは0.5〜1.5mg/Lになるようにし、処理槽14内に弱い好気性条件が形成されるようにする。これにより、アンモニア窒素等の窒素成分を含有する被処理水は、処理槽14において硝化反応と脱窒反応の両方が同時に行われる。処理槽14で硝化・脱窒された液は、固液分離槽20にて上澄水と沈降汚泥とに分離され、上澄水が処理水として系外に引き抜かれると共に、沈降汚泥の一部が循環汚泥として処理槽14の入口側に戻される。
【0035】
図3の環境浄化装置30は、硝化槽32と脱窒槽34の2槽を設ける場合で、硝化槽32には、微生物として硝化菌を使用した本発明の固定化微生物担体36が投入され、脱窒槽34には、微生物として脱窒菌を包括固定した固定化微生物担体38が投入される。硝化槽32の底部には散気管40が設けられ、ブロア42からのエアが散気管40から硝化槽32内に散気される。散気されることによる硝化槽32内の好気性は、硝化槽32内の溶存酸素濃度が2mg/L以上になるようにして好気性条件を形成する。脱窒槽34には攪拌器44が設けられ、脱窒槽34内の被処理水が脱気されて嫌気性条件が形成される。また、硝化槽32の硝化液の一部は固液分離槽46に流入すると共に、残りは脱窒槽34に循環される。これにより、硝化槽と脱窒槽でそれぞれ硝化・脱窒を行い、硝化処理された硝化液の一部を脱窒槽34に循環することで被処理水中の窒素成分が除去される。硝化槽32と脱窒槽34で硝化・脱窒された液は、固液分離槽46にて上澄水と沈降汚泥とに分離され、上澄水が処理水として系外に引き抜かれると共に、沈降汚泥の一部が循環汚泥として脱窒槽34の入口側に戻される。
【0036】
図4の気体から窒素成分を除去する環境浄化装置50は、処理塔52の内部に、固定化微生物担体54によって形成された固定式ろ過層56が設けられる。固定化微生物担体54の微生物としては、硝化菌と脱窒率とが共存した状態で包括固定される。そして、窒素成分を含有したガスは、処理塔52の底部に繋がれた給気管58から処理塔52内に供給され、固定式ろ過層56を通過した後、処理塔52の上端に繋がれた排気管60から排出される。また、処理塔52内の上部位置には散水管62が設けられ、循環配管64を介して循環水ピット66に連結されると共に、循環配管64には循環ポンプ68が設けられる。一方、処理塔52の底部から排水管70が循環水ピット66に連結される。これにより、散水管62から散水された水は、循環水ピット66を介して散水管62に循環される。かかる環境浄化装置50では、窒素成分を含有するガスを固定式ろ過層56の下から上に流し、散水管62からの水を固定式ろ過層56の上から下に流すカウンターカレントによって、ガス中の窒素成分を除去する。
【0037】
【実施例】
(実施例1)
実施例1は、本発明の固定化微生物担体の窒素除去の寿命と処理性能を試験したものである。
【0038】
試験は、本発明の固定化微生物担体を使用した本発明法と、特開平8−323381号公報の方法をベースにした従来法1、特開2000−153293号公報の方法をベースにした従来法2とを対比した。
【0039】
本発明法の固定化微生物担体の組成は、表3の通りである。
【0040】
【表3】
Figure 0004006750
【0041】
表3の組成を有する20mm角の固定化微生物担体を、攪拌混合可能な2Lの処理槽に200mL投入して、担体充填率が10%になるようにした。従って、処理槽に投入された固定化微生物担体における高級脂肪酸の含有合計量は20gになる。そして、窒素成分を含有する被処理水を、槽上部から流入させ、槽側面に形成された担体流出防止網から槽外に流出することにより連続処理を行った。担体流出防止網は、目開き1mmの塩化ビニール製のものを使用した。
【0042】
従来法1は、2mm粒子径の高級脂肪酸をポリエチレンでコーティングした粒子を、活性汚泥と共にポリエチレングリコール系プレポリマに包括固定化して調製した固定化微生物担体を使用した以外は、本発明法と同様である。
【0043】
従来法2は、2mm粒子径の高級脂肪酸20gを先ず、本発明で使用したと同じ処理槽に投入し、更に活性汚泥のみを包括固定化した固定化微生物担体200mLを処理槽に投入して、本発明で使用したと同じ被処理水を連続処理した。
【0044】
これら、本発明法、従来法1、従来法2について、立ち上げ期間経過後の安定した脱窒性能を維持している期間である固定化微生物担体の寿命、及び寿命期間中に処理槽から排出される処理水の硝酸性窒素の濃度を調べた。試験結果を表4に示す。
【0045】
【表4】
Figure 0004006750
【0046】
表4に示すように、本発明の固定化微生物担体を使用した本発明法は、固定化微生物担体の寿命が6か月と一番長く、処理水の硝酸濃度も2mg/L以下で最も低く、寿命及び処理水質ともに良い結果であった。
【0047】
これに対し、従来法1は、寿命は5か月と本発明法と比べて1カ月短いだけであったが、処理水の硝酸性窒素濃度が5〜10mg/Lと高く、処理水質が悪かった。これは、高級脂肪酸をポリエチレンでコーティングすることにより、拡散及び分解抵抗があり脱窒速度が遅くなるためと考えられる。
【0048】
また、従来法2は、処理水の硝酸濃度が5mg/L以下であり、従来法1よりも良い結果であったが、寿命が1か月と極端に短くなった。これは、水素供与体である高級脂肪酸を廃水中にそのまま投入して活性汚泥のみを包括固定化した固定化微生物担体で処理すると、脱窒以外の酸化分解反応で高級脂肪酸が分解されてしまい、脱窒反応に利用されにくく、利用されない高級脂肪酸が処理水に同伴されて流出してしまうためと考えられる。
【0049】
尚、本比較実験で本発明と従来法について、ポリ乳酸、ポリカプロラクタムでも行ったが、同様の結果であった。
(実施例2)
実施例2は、本発明の環境浄化方法を用いて、化学工場から排出されるアンモニア性窒素含有排水(原水)について窒素除去性能を試験したものである。
【0050】
試験装置は、図2に示した環境浄化装置を使用し、本発明の生分解性有機物を含有する3mm球形の固定化微生物担体(表5)を担体充填率10%になるように処理槽に充填し、原水を流入させて固定化微生物担体と接触させた後、固液分離槽で上澄液と沈降汚泥に固液分離した。処理槽における滞留時間を4時間にすると共に、処理槽内の溶存酸素濃度(DO濃度)が1mg/Lになるようにした。
【0051】
従来法は、生分解性有機物を含有しない固定化微生物担体を使用した以外は、本発明法と同様である。
【0052】
そして、本発明法、従来法のそれぞれについて、固液分離槽から越流する処理水のアンモニア性窒素(NH4 -N)、亜硝酸性窒素(NO2 -N)、硝酸性窒素(NO3 -N)、全窒素、BOD、浮遊物質の各濃度を測定して比較した。
【0053】
【表5】
Figure 0004006750
【0054】
試験結果を表6に示す。
【0055】
【表6】
Figure 0004006750
【0056】
表6に示すように、本発明法の環境浄化方法は、全窒素濃度23〜44(mg/L)の原水が、5 〜10(mg/L)の処理水になり、大幅に低減することができた。また、処理水中の亜硝酸性窒素が1(mg/L)以下、硝酸性窒素が5〜9(mg/L)であり、硝化反応により生成された亜硝酸性窒素や硝酸性窒素の脱窒反応が十分に進行していた。このことは、固定化微生物担体にポリカプロラクタムを含有させて水素供与体を確保し、且つ処理槽内を溶存酸素濃度(DO濃度)が1mg/L程度の弱い好気性条件にすることで、単一の処理槽で硝化反応と脱窒反応とを同時に生じさせて原水を効率的に処理することができることを示している。
【0057】
これに対し、従来法の処理水は、原水の全窒素濃度23〜44(mg/L)に対して処理水の全窒素濃度が21〜42であり、残存した全窒素の種類の大部分は硝酸性窒素であった。このことは、固定化微生物担体に生分解性有機物を含有しないで、脱窒の際の水素供与体が欠乏している状態では、硝酸性窒素から窒素ガスへの脱窒反応が進行しないことが分かる。
(実施例3)
実施例3は、本発明の環境浄化方法により、大気中の悪臭成分であるアンモニアの除去を行った試験であり、固定化微生物担体は、表5と同じ組成のものを使用した。
【0058】
試験装置は、図3に示す環境浄化装置を試験用に縮尺したものを使用した。即ち、直径5cm、高さ100cmの約2Lのカラム(処理塔)に、本発明の固定化微生物担体を充填率70%になるように充填して固定式ろ過層を形成し、アンモニアガスを含有する空気をカラムの下から通気させ、固定式ろ過層を通過させてからカラムの上端から排気する一方、散水管から固定式ろ過層に常時散水すると共に、散水された水が再び散水管に循環するようにした。このときのカラム内での空気滞留時間は2分とした。そして、カラムの下部から流入される流入ガス中のアンモニア濃度とカラムの上端から排気される排気ガスのアンモニア濃度を測定して、アンモニア除去率を求めると共に、循環水ピットの水のアンモニア性窒素濃度を測定した。
【0059】
その結果、本発明の環境浄化方法を用いることにより、大気中のアンモニアを99%の除去率で除去することができた。このとき、散水した水を固定式ろ過層に循環することにより、アンモニア性窒素の約70%以上脱窒することができた。
【0060】
【発明の効果】
以上説明したように、本発明に係る固定化微生物担体及びそれを用いた環境浄化方法よれば、脱窒速度が速く、且つ脱窒反応の持続性が極めて長いので、脱窒に必要な炭素量を少なくできる。
【図面の簡単な説明】
【図1】固定化微生物担体に含有される生分解性有機物の濃度と脱窒率の関係を説明するグラフ
【図2】本発明の環境浄化方法を適用する装置の例で、水を対象とした環境浄化装置の概念図
【図3】本発明の環境浄化方法を適用する装置の例で、水を対象とした別の環境浄化装置の概念図
【図4】本発明の環境浄化方法を適用する装置の例で、ガスを対象とした環境浄化装置の概念図
【符号の説明】
10、30、50…環境浄化装置、12、36、38、54…固定化微生物担体、14…処理槽、16、40…散気管、18、42…ブロア、20、46…固液分離槽、52…処理塔、56…固定式ろ過層、58…給気管、60…排気管、62…散水管、64…循環配管、66…循環水ピット、68…循環ポンプ、70…排水管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an immobilized microbial carrier and an environmental purification method using the same, and more particularly to an immobilized microbial carrier for biologically removing nitrogen components in waste water or air and an environmental purification method using the same. About.
[0002]
[Prior art]
Biological treatments that treat wastewater and sewage with microorganisms are widely used because of their relatively low cost. However, some microorganisms have slow growth rates, are easily poisoned, or are difficult to grow in the environment, and may not always be an efficient method. Therefore, in order to actively form an environment in which microorganisms can easily propagate, biological treatment using an immobilized microbial carrier in which activated sludge and specific microorganisms are preliminarily immobilized in advance has already been put into practical use. ing.
[0003]
The immobilization material that comprehensively immobilizes activated sludge and microorganisms is required to be harmless to the natural environment, not to be altered or decomposed by microorganisms, to have high mechanical strength, and to be able to retain a large amount of microorganisms. Examples of immobilization materials that have been put into practical use include polyethylene glycol polymers and polyvinyl alcohol resins. As microorganisms to be comprehensively immobilized on the gel material, nitrifying bacteria that mainly oxidize ammonia nitrogen using activated sludge from a sewage treatment plant or purely cultured microorganisms as a microorganism source are used.
[0004]
Biological treatment of waste water and sewage containing ammonia nitrogen is achieved by converting ammonia nitrogen into nitrous acid and nitric acid by nitrifying bacteria in the nitrification process, and converting nitrous acid and nitric acid into nitrogen gas by denitrifying bacteria in the denitrification process. The nitrogen component in the wastewater was removed. In this denitrification process, a hydrogen donor is required, and organic substances in waste water and sewage are used or methanol is added. If the supply of hydrogen donors is insufficient, nitrous acid and nitric acid will not be sufficiently denitrified and will remain in the treated water and be discharged, causing lakes and rivers to become eutrophication and cause environmental pollution. Become.
[0005]
As a conventional technique for solving this shortage of hydrogen donors, as disclosed in Japanese Patent Application Laid-Open No. 8-323381, particles in which an organic substance such as starch or cellulose is coated with a polymer are immobilized inside the immobilization carrier. There are a method of entrapping and fixing to a material, or a method of adding biodegradable plastic to a treatment tank as disclosed in JP-A No. 2000-153293.
[0006]
[Problems to be solved by the invention]
However, the method of Japanese Patent Laid-Open No. 8-323381 has a drawback that it has diffusion and decomposition resistance and the denitrification rate becomes slow. On the other hand, the method of JP 2000-153293 A has a very short denitrification reaction (lifetime), and a biodegradable plastic having a theoretical carbon amount or more necessary for denitrification must be added to the treatment tank. However, there is a drawback that running cost is high.
[0007]
The present invention has been made in view of such circumstances. Since the denitrification rate is fast and the denitrification reaction has a very long duration, an immobilized microorganism carrier capable of reducing the amount of carbon necessary for denitrification and the Provide an environmental purification method used.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, claim 1 of the present invention is characterized in that a higher fatty acid, which is a biodegradable organic substance that microorganisms decompose, and microorganisms are comprehensively immobilized with an immobilizing material .
[0009]
As a hydrogen donor in the denitrification process, if a polymer coating is applied to an organic substance that is easily decomposed to give a sustained release property, diffusion and decomposition resistance occur, resulting in a slow denitrification rate. Even if it has a sustained release property, if it is put into wastewater and treated with activated sludge, the biodegradable plastic will be decomposed by oxidative decomposition reactions other than denitrification, and used for denitrification reactions. This makes it difficult to maintain the denitrification reaction (lifetime). However, when a biodegradable organic substance of at least one of higher fatty acids, polylactic acid, and polycaprolactam, which are organic substances that are relatively difficult to decompose, is comprehensively immobilized with an immobilizing material, it is controlled release so that there is no diffusion and degradation resistance. It was obtained that it can be ensured, and that it is not decomposed by an oxidative decomposition reaction other than denitrification.
[0010]
The present invention has been made on the basis of this finding, according to the present invention, a higher fatty acid by microorganisms to decompose, and microorganisms. Thus to entrapping immobilization in the immobilizing material, the denitrification rate is high In addition, since the denitrification reaction has a very long persistence, an immobilized microorganism carrier capable of reducing the amount of carbon necessary for denitrification can be obtained.
[0011]
Claim 2 of the present invention, Oite to claim 1, in which the particle size of the biodegradable organic matter was 5mm or less, thereby the denitrification rate can be further increased.
[0012]
According to the third aspect of the present invention, since the biodegradable organic substance is contained in an amount of 2 to 50% by weight based on the immobilized microorganism carrier, the denitrification rate can be increased.
[0013]
According to a fourth aspect of the present invention, in order to achieve the above object, by contacting the immobilized microbial carrier according to any one of the first to third aspects with water or gas containing a nitrogen component, the water or gas is brought into contact. The nitrogen component is removed.
[0014]
According to the present invention, the microorganism decomposed fatty acid, a microorganism, using an immobilized microorganism support the entrapping immobilization in the immobilizing material, by contact with water or gas containing nitrogen component, wherein Since the nitrogen component is removed from water or gas, the amount of carbon necessary for denitrification can be reduced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an immobilized microorganism carrier and an environmental purification method using the same according to the present invention will be described in detail with reference to the accompanying drawings.
[0016]
Production of immobilized microorganisms carrier of the present invention, a higher fatty acid, to form a mixture obtained by mixing a microorganism, the mixture is stirred well and further mixing the immobilizing material. In this case, water or dilute sulfuric acid as a reaction modifier is added to the immobilization material. Next, a polymerization reaction is caused by a polymerization initiator such as potassium persulfate to gel the immobilization material, and microorganisms are comprehensively immobilized in a gel carrier in which the immobilization material is gelled. As a result, it is possible to obtain an immobilized microbial carrier having a denitrification rate faster than that of a conventional immobilized microbial carrier and a longer denitrification reaction. In this case, higher fatty acid and at least one biodegradable organic substance of polylactic acid and polycaprolactam may be comprehensively fixed to the fixing material . In addition to the polymerization method described above, the method of gelling the immobilization material is to repeat freezing and thawing after mixing PVA and microorganisms when using polyvinyl alcohol (PVA) as the immobilization material. PVA freezing method in which microorganisms are entrapped and immobilized in PVA by mixing with PVA, or PVA and microorganisms are mixed and then mixed with boric acid to cause gelation reaction to entrapping and immobilize microorganisms in PVA Any of boric acid methods may be used.
[0017]
Here, the microorganisms to be comprehensively immobilized in the immobilization material include concentrated microorganisms containing various microorganisms such as activated sludge from sewage treatment plants, lakes, rivers, sea sludge, soil, etc. Included are microorganisms for the purpose of removing the separated nitrogen, such as denitrifying bacteria and nitrifying bacteria. In particular, an immobilized microbial carrier in which nitrifying bacteria and denitrifying bacteria coexist with a biodegradable organic substance and an immobilized microbial carrier in which only denitrifying bacteria are entrapped together with a biodegradable organic substance are used for nitrogen removal. It is effective as an immobilized microorganism carrier.
[0018]
As the immobilization material of the entrapping immobilization carrier, monomethacrylates, monoacrylates, dimethacrylates, diacrylates, trimethacrylates, triacrylates, tetraacrylates, etc. should be used as polyethylene glycol prepolymers. Can do. In addition, urethane acrylates, epoxy acrylates, polyvinyl alcohol, acrylamide, photocurable polyvinyl alcohol, photocurable polyethylene glycol, photocurable polyethylene glycol polypropylene glycol prepolymer, and the like can be used.
[0019]
The size of the immobilized microorganism carrier can be widely produced from 10 μm to 50 cm, and further, one having a size of 1 m or more can be used. As the shape of the immobilized microorganism carrier, a spherical shape, a square shape, a cylindrical shape, or the like can be used. Further, it is preferable to make a honeycomb-like hole in the block shape to increase the contact efficiency with the water to be treated or the gas to be treated, and it is preferable to manufacture using a honeycomb-shaped formwork.
[0020]
FIG. 1 shows the relationship between the concentration of the biodegradable organic substance contained in the immobilized microbial carrier and the denitrification rate in the immobilized microbial carrier produced as described above. The horizontal axis in FIG. 1 indicates the concentration (% by weight) of the biodegradable organic substance contained in the immobilized microorganism carrier, and the vertical axis indicates the denitrification rate (%). The biodegradable organic substances were examined for each of higher fatty acids, polylactic acid, and polypolycaprolactam.
[0021]
As experimental conditions, a completely mixed type apparatus in which 200 mL of an immobilized microorganism carrier was added to a reaction tank having a volume of 2 L and stirred at 60 rpm was used. Raw water having a nitrate nitrogen concentration of 40 mg / L was supplied to the reaction tank, and the denitrification rate after 3 hours of reaction time was evaluated.
[0022]
[Expression 1]
Figure 0004006750
As a result, as shown in FIG. 1, in any biodegradable organic substance, the denitrification rate increases rapidly while the concentration of the biodegradable organic substance becomes 0 to 2%. The denitrification rate at a biodegradable organic concentration of 2% is 60% for polylactic acid, 70% for polycaprolactam, and 80% for higher fatty acids. As the concentration of the biodegradable organic substance is increased, the denitrification rate gradually increases, and the denitrification rate is maximized around a concentration of 10%. The denitrification rate at a biodegradable organic concentration of 10% is 64% for polylactic acid, 80% for polycaprolactam, and 98% for higher fatty acids. The maximum denitrification rate is maintained until the concentration of biodegradable organic substances reaches 30%, and then the denitrification rate gradually decreases. The denitrification rate when the biodegradable organic substance concentration is 40% is 40% for polylactic acid, 55% for polycaprolactam, 80% for higher fatty acids, and the denitrification rate when the biodegradable organic substance concentration is 50%. Is 25% for polylactic acid, 30% for polycaprolactam and 55% for higher fatty acids. When the concentration of the biodegradable organic substance is 60%, the denitrification rate decreases to 5% for polylactic acid and polycaprolactam and to 20% for higher fatty acids. In practice, the denitrification rate that can be used is preferably 20% or more. Therefore, the preferred concentration of the biodegradable organic substance contained in the immobilized microorganism carrier is in the range of 2 to 50% by weight. Is more preferable, and the range of 5 to 30% by weight is more preferable.
[0023]
Further, when the relationship between the concentration of higher fatty acid, polylactic acid, and polycaprolactam and the denitrification rate are individually viewed, the denitrification rate of the higher fatty acid is the highest, and the biodegradable organic matter contained in the immobilized microbial carrier is 10 In the range of ˜30%, the denitrification rate is about 100%.
[0024]
Table 1 shows the relationship between the particle size of the biodegradable organic substance contained in the immobilized microbial carrier and the denitrification rate (mg-N / h / L-carrier) of the immobilized microbial carrier.
[0025]
An immobilized microorganism carrier (20 mm square carrier) in which high-grade fatty acids are used as biodegradable organic substances, and activated sludge collected from the A sewage treatment plant in Chiba Prefecture and high-grade fatty acids are comprehensively immobilized with a polyethylene glycol-based prepolymer. Manufactured. Then, five types of immobilized microbial carriers having a particle diameter of higher fatty acid contained in the immobilized microbial carrier of 100 μm, 1 mm, 2 mm, 5 mm, and 10 mm were prepared.
[0026]
The composition of the immobilized microbial carrier is shown in Table 2.
[0027]
The measurement of the denitrification rate of the immobilized microbial carrier was carried out using a fully mixed type device in which 200 mL of the immobilized microbial carrier was added to a reaction tank having a volume of 2 L so that the filling rate would be 10% and stirred at 60 rpm. It was. Waste water having a nitrate nitrogen concentration of 40 mg / L was filled in the aeration tank, and batch tests were conducted for each of the higher fatty acids having five particle sizes.
[0028]
[Table 1]
Figure 0004006750
[0029]
[Table 2]
Figure 0004006750
[0030]
As can be seen from the results in Table 1, the particle size of the higher fatty acid contained in the immobilized microorganism carrier is 5 mm or less, and the denitrification rate (mg-N / h / L-carrier) is 90 to 110 (mg-N / h / L-carrier) can be obtained at a high value, and the denitrification rate is 105 to 110 (mg-N / h / L-carrier) at 2 mm or less, and a very high and stable denitrification rate is obtained. be able to. In Table 1, the biodegradable organic substance is described as an example of a higher fatty acid, but the same result was obtained when polylactic acid and polycaprolactam were used. For this reason, the particle size of the biodegradable organic substance contained in the immobilized microorganism carrier is preferably 5 mm or less, and more preferably 2 mm or less.
[0031]
An immobilized microbial carrier for removing nitrogen components in consideration of all preferred conditions of the concentration of the biodegradable organic substance contained in the immobilized microbial carrier of FIG. 1 and the particle size of the biodegradable organic substance of Table 1 When configured, it is best to comprehensively immobilize nitrifying bacteria and denitrifying bacteria, or microorganisms containing only denitrifying bacteria so that the concentration of higher fatty acids of 2 mm or less is 10 to 30% by weight. Nitrogen reaction has a long persistence, the amount of carbon necessary for denitrification can be reduced, and a high denitrification rate can be exhibited, thereby obtaining an extremely effective immobilized microbial carrier for removing nitrogen components.
[0032]
The environmental purification method of the present invention is a method for removing nitrogen components from water or gas by bringing the immobilized microorganism carrier of the present invention described above into contact with water or gas containing nitrogen components. Here, water includes sewage treatment plants, lakes, rivers, and the like, and gas includes factory exhaust gas, atmosphere, and the like. As microorganisms to be comprehensively immobilized on an immobilized microorganism carrier for the purpose of removing nitrogen from water or gas, activated sludge, purely cultured nitrifying bacteria, and denitrifying bacteria can be suitably used.
[0033]
2 to 4 show examples of an environmental purification apparatus to which the environmental purification method of the present invention is applied. FIGS. 2 and 3 are environmental purification apparatuses that remove nitrogen components from water, and FIG. This is a case of an environmental purification device that removes a nitrogen component from a gas.
[0034]
The environment purification apparatus 10 of FIG. 2 is a case where nitrification / denitrification is performed in a single tank, and the immobilized microorganism carrier 12 of the present invention is put into the treatment tank 14. In this case, the microorganisms of the immobilized microorganism carrier 12 are comprehensively immobilized in a state where the nitrifying bacteria and the denitrification rate coexist. A diffuser pipe 16 is provided at the bottom of the treatment tank 14, and air from the blower 18 is diffused from the diffuser pipe 16 into the treatment tank 14. The dissolved oxygen concentration in the treatment tank 14 by being diffused is 0.2 to 2 mg / L, preferably 0.5 to 1.5 mg / L, and a weak aerobic condition is formed in the treatment tank 14. To be. Thereby, both the nitrification reaction and the denitrification reaction of the water to be treated containing nitrogen components such as ammonia nitrogen are simultaneously performed in the treatment tank 14. The liquid nitrified and denitrified in the treatment tank 14 is separated into the supernatant water and the settled sludge in the solid-liquid separation tank 20, and the supernatant water is drawn out as the treated water and a part of the settled sludge is circulated. It is returned to the inlet side of the treatment tank 14 as sludge.
[0035]
The environment purification apparatus 30 of FIG. 3 is provided with two nitrification tanks 32 and a denitrification tank 34. The nitrification tank 32 is charged with the immobilized microorganism carrier 36 of the present invention using nitrifying bacteria as microorganisms, and denitrified. In the nitrogen tank 34, an immobilized microorganism carrier 38 in which denitrifying bacteria are comprehensively immobilized as microorganisms is introduced. An air diffuser 40 is provided at the bottom of the nitrification tank 32, and air from the blower 42 is diffused into the nitrification tank 32 from the air diffuser 40. The aerobic condition in the nitrification tank 32 due to the aeration is formed such that the dissolved oxygen concentration in the nitrification tank 32 is 2 mg / L or more. The denitrification tank 34 is provided with a stirrer 44, and the water to be treated in the denitrification tank 34 is deaerated to form an anaerobic condition. A part of the nitrification liquid in the nitrification tank 32 flows into the solid-liquid separation tank 46 and the rest is circulated to the denitrification tank 34. Thus, nitrification and denitrification are respectively performed in the nitrification tank and the denitrification tank, and a part of the nitrification liquid subjected to nitrification treatment is circulated to the denitrification tank 34 to remove nitrogen components in the water to be treated. The liquid nitrified and denitrified in the nitrification tank 32 and the denitrification tank 34 is separated into supernatant water and sedimented sludge in a solid-liquid separation tank 46, and the supernatant water is drawn out of the system as treated water. A part is returned to the inlet side of the denitrification tank 34 as circulating sludge.
[0036]
In the environment purification apparatus 50 for removing nitrogen components from the gas of FIG. 4, a fixed filtration layer 56 formed by an immobilized microorganism carrier 54 is provided inside the processing tower 52. The microorganisms of the immobilized microorganism carrier 54 are comprehensively immobilized in a state where the nitrifying bacteria and the denitrification rate coexist. And the gas containing a nitrogen component was supplied into the processing tower 52 from the supply pipe 58 connected to the bottom of the processing tower 52, passed through the fixed filtration layer 56, and then connected to the upper end of the processing tower 52. It is discharged from the exhaust pipe 60. Further, a sprinkling pipe 62 is provided at an upper position in the processing tower 52 and is connected to a circulating water pit 66 through a circulation pipe 64, and a circulation pump 68 is provided in the circulation pipe 64. On the other hand, the drain pipe 70 is connected to the circulating water pit 66 from the bottom of the processing tower 52. Thereby, the water sprayed from the water spray pipe 62 is circulated through the water spray pit 66 to the water spray pipe 62. In such an environmental purification device 50, a gas containing a nitrogen component is caused to flow from below the fixed filtration layer 56, and water from the sprinkling pipe 62 is caused to flow into the gas by a counter current flowing from above the fixed filtration layer 56 to below. The nitrogen component of is removed.
[0037]
【Example】
Example 1
Example 1 is a test of the nitrogen removal lifetime and the treatment performance of the immobilized microorganism carrier of the present invention.
[0038]
The test was carried out using the method of the present invention using the immobilized microorganism carrier of the present invention, the conventional method 1 based on the method of JP-A-8-233381, and the conventional method based on the method of JP-A 2000-153293. 2 was contrasted.
[0039]
The composition of the immobilized microorganism carrier of the method of the present invention is as shown in Table 3.
[0040]
[Table 3]
Figure 0004006750
[0041]
200 mL of a 20 mm square immobilized microbial carrier having the composition shown in Table 3 was charged into a 2 L treatment tank capable of stirring and mixing so that the carrier filling rate was 10%. Therefore, the total content of higher fatty acids in the immobilized microbial carrier charged into the treatment tank is 20 g. And the to-be-processed water containing a nitrogen component was flowed in from the tank upper part, and the continuous process was performed by flowing out of the tank from the carrier outflow prevention net formed in the tank side surface. The carrier outflow prevention net made of vinyl chloride having an opening of 1 mm was used.
[0042]
Conventional method 1 is the same as the method of the present invention except that an immobilized microbial carrier prepared by comprehensively immobilizing particles coated with polyethylene of a higher fatty acid having a particle diameter of 2 mm in polyethylene glycol-based prepolymer together with activated sludge is used. .
[0043]
In the conventional method 2, 20 g of a higher fatty acid having a particle diameter of 2 mm is first put into the same treatment tank as used in the present invention, and 200 mL of an immobilized microbial carrier in which only activated sludge is comprehensively immobilized is put into the treatment tank. The same treated water as used in the present invention was continuously treated.
[0044]
Regarding the method of the present invention, the conventional method 1, and the conventional method 2, the lifetime of the immobilized microorganism carrier, which is a period in which stable denitrification performance is maintained after the start-up period, and the discharge from the treatment tank during the lifetime period The concentration of nitrate nitrogen in the treated water was investigated. The test results are shown in Table 4.
[0045]
[Table 4]
Figure 0004006750
[0046]
As shown in Table 4, according to the method of the present invention using the immobilized microbial carrier of the present invention, the lifetime of the immobilized microbial carrier is as long as 6 months, and the nitric acid concentration of treated water is the lowest at 2 mg / L or less. Both life and treated water quality were good results.
[0047]
In contrast, the conventional method 1 had a life of 5 months, which was only one month shorter than the method of the present invention, but the nitrate nitrogen concentration of the treated water was as high as 5 to 10 mg / L, and the treated water quality was poor. It was. This is thought to be due to the fact that coating higher fatty acids with polyethylene provides diffusion and decomposition resistance and slows the denitrification rate.
[0048]
Further, in the conventional method 2, the nitric acid concentration of the treated water is 5 mg / L or less, which is a better result than the conventional method 1, but the service life is extremely shortened to 1 month. This is because when a higher fatty acid, which is a hydrogen donor, is introduced into waste water as it is and treated with an immobilized microorganism carrier in which only activated sludge is comprehensively immobilized, the higher fatty acid is decomposed by an oxidative decomposition reaction other than denitrification, This is considered to be because higher fatty acids that are difficult to use in the denitrification reaction and are not used are accompanied by the treated water and flow out.
[0049]
In this comparative experiment, the present invention and the conventional method were carried out with polylactic acid and polycaprolactam.
(Example 2)
In Example 2, the nitrogen removal performance of the ammonia nitrogen-containing waste water (raw water) discharged from the chemical factory was tested using the environmental purification method of the present invention.
[0050]
The test apparatus uses the environmental purification apparatus shown in FIG. 2, and the 3 mm spherical immobilized microorganism carrier (Table 5) containing the biodegradable organic substance of the present invention is placed in the treatment tank so that the carrier filling rate becomes 10%. After filling, the raw water was introduced and contacted with the immobilized microorganism carrier, and then the solid and liquid were separated into a supernatant and a sedimented sludge in a solid-liquid separation tank. The residence time in the treatment tank was set to 4 hours, and the dissolved oxygen concentration (DO concentration) in the treatment tank was set to 1 mg / L.
[0051]
The conventional method is the same as the method of the present invention except that an immobilized microbial carrier containing no biodegradable organic substance is used.
[0052]
For each of the method of the present invention and the conventional method, ammonia nitrogen (NH 4 -N), nitrite nitrogen (NO 2 -N), nitrate nitrogen (NO 3) -N), total nitrogen, BOD, and suspended solid concentrations were measured and compared.
[0053]
[Table 5]
Figure 0004006750
[0054]
The test results are shown in Table 6.
[0055]
[Table 6]
Figure 0004006750
[0056]
As shown in Table 6, according to the environmental purification method of the present invention, the raw water having a total nitrogen concentration of 23 to 44 (mg / L) becomes treated water of 5 to 10 (mg / L) and is greatly reduced. I was able to. Nitrite nitrogen in the treated water is 1 (mg / L) or less and nitrate nitrogen is 5 to 9 (mg / L). Denitrification of nitrite nitrogen and nitrate nitrogen produced by nitrification reaction The reaction was progressing sufficiently. This is because the immobilized microbial carrier contains polycaprolactam to secure a hydrogen donor, and the treatment tank is made into a weak aerobic condition with a dissolved oxygen concentration (DO concentration) of about 1 mg / L. This shows that the raw water can be efficiently treated by simultaneously generating a nitrification reaction and a denitrification reaction in one treatment tank.
[0057]
In contrast, the treated water of the conventional method has a total nitrogen concentration of 21 to 42 with respect to the total nitrogen concentration of raw water 23 to 44 (mg / L), and most of the remaining nitrogen types are It was nitrate nitrogen. This means that the denitrification reaction from nitrate nitrogen to nitrogen gas does not proceed in the state where the immobilized microbial carrier does not contain biodegradable organic substances and the hydrogen donor during denitrification is deficient. I understand.
(Example 3)
Example 3 is a test in which ammonia, which is a malodorous component in the atmosphere, was removed by the environmental purification method of the present invention, and an immobilized microbial carrier having the same composition as in Table 5 was used.
[0058]
The test apparatus used was an environmental purification apparatus shown in FIG. 3 scaled for testing. That is, a fixed filtration layer is formed by packing the immobilized microorganism carrier of the present invention into a column (treatment tower) of about 2 L having a diameter of 5 cm and a height of 100 cm so that the filling rate becomes 70%, and contains ammonia gas. The air to be vented from the bottom of the column is allowed to pass through the fixed filtration layer and then exhausted from the upper end of the column. I tried to do it. The air residence time in the column at this time was 2 minutes. Then, the ammonia concentration in the inflow gas flowing from the lower part of the column and the ammonia concentration of the exhaust gas exhausted from the upper end of the column are measured to obtain the ammonia removal rate, and the ammonia nitrogen concentration of the water in the circulating water pit Was measured.
[0059]
As a result, it was possible to remove ammonia in the atmosphere with a removal rate of 99% by using the environmental purification method of the present invention. At this time, about 70% or more of ammoniacal nitrogen could be denitrified by circulating the sprinkled water to the stationary filtration layer.
[0060]
【The invention's effect】
As described above, according to the immobilized microbial carrier and the environmental purification method using the same according to the present invention, the denitrification rate is fast and the denitrification reaction is extremely long. Can be reduced.
[Brief description of the drawings]
FIG. 1 is a graph illustrating the relationship between the concentration of biodegradable organic substances contained in an immobilized microorganism carrier and the denitrification rate. FIG. 2 is an example of an apparatus to which the environmental purification method of the present invention is applied. Fig. 3 is a conceptual diagram of an environmental purification apparatus according to the present invention. Fig. 3 is an example of an apparatus to which the environmental purification method of the present invention is applied. Fig. 4 is a conceptual diagram of another environmental purification apparatus for water. Fig. 4 is an application of the environmental purification method of the present invention. Schematic diagram of an environmental purification device for gas as an example of the device
10, 30, 50 ... Environmental purification device, 12, 36, 38, 54 ... Immobilized microorganism carrier, 14 ... Treatment tank, 16, 40 ... Air diffuser, 18, 42 ... Blower, 20, 46 ... Solid-liquid separation tank, 52 ... Treatment tower, 56 ... Fixed filtration layer, 58 ... Air supply pipe, 60 ... Exhaust pipe, 62 ... Sprinkling pipe, 64 ... Circulation pipe, 66 ... Circulation water pit, 68 ... Circulation pump, 70 ... Drain pipe

Claims (4)

微生物が分解する生分解性有機物である高級脂肪酸と、微生物とを、固定化材料で包括固定化したことを特徴とする固定化微生物担体。  An immobilized microbial carrier characterized in that a higher fatty acid, which is a biodegradable organic substance that is decomposed by microorganisms, and microorganisms are comprehensively immobilized with an immobilizing material. 前記生分解性有機物の粒径が5mm以下であることを特徴とする請求項1に記載の固定化微生物担体。The immobilized microorganism carrier according to claim 1, wherein the biodegradable organic substance has a particle size of 5 mm or less. 前記生分解性有機物は、前記固定化微生物担体に対して2〜50重量%含有されていることを特徴とする請求項1又は2に記載の固定化微生物担体。The immobilized microbial carrier according to claim 1 or 2 , wherein the biodegradable organic substance is contained in an amount of 2 to 50% by weight based on the immobilized microbial carrier. 請求項1〜の何れか1の固定化微生物担体と、窒素成分を含有する水又は気体と接触させることにより、前記水又は気体から前記窒素成分の除去を行うことを特徴とする環境浄化方法。An environmental purification method comprising removing the nitrogen component from the water or gas by contacting the immobilized microorganism carrier according to any one of claims 1 to 3 with water or gas containing the nitrogen component. .
JP2002071501A 2002-03-15 2002-03-15 Immobilized microorganism carrier and environmental purification method using the same Expired - Fee Related JP4006750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071501A JP4006750B2 (en) 2002-03-15 2002-03-15 Immobilized microorganism carrier and environmental purification method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071501A JP4006750B2 (en) 2002-03-15 2002-03-15 Immobilized microorganism carrier and environmental purification method using the same

Publications (2)

Publication Number Publication Date
JP2003265170A JP2003265170A (en) 2003-09-24
JP4006750B2 true JP4006750B2 (en) 2007-11-14

Family

ID=29201763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071501A Expired - Fee Related JP4006750B2 (en) 2002-03-15 2002-03-15 Immobilized microorganism carrier and environmental purification method using the same

Country Status (1)

Country Link
JP (1) JP4006750B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578879B2 (en) * 2004-07-27 2010-11-10 荏原エンジニアリングサービス株式会社 Bisphenol A-degrading bacteria and uses thereof
JP4734182B2 (en) * 2005-06-15 2011-07-27 財団法人電力中央研究所 Bioreactor and method for decomposing and removing ammonia gas using the bioreactor
JP4235836B2 (en) 2006-03-23 2009-03-11 株式会社日立プラントテクノロジー Comprehensive immobilization carrier, method for producing the same, and wastewater treatment method and apparatus using the same
JP2009142810A (en) * 2007-11-21 2009-07-02 Kato Construction Co Ltd Water purifying treatment method
CN109205795A (en) * 2017-12-21 2019-01-15 向勇 A kind of compound nitrifier and its production method
CN114590886B (en) * 2022-02-21 2023-09-05 中国科学院合肥物质科学研究院 Self-degrading biological film filler and preparation method and application thereof

Also Published As

Publication number Publication date
JP2003265170A (en) 2003-09-24

Similar Documents

Publication Publication Date Title
JP5150993B2 (en) Denitrification method and apparatus
JP5098183B2 (en) Waste water treatment method and apparatus
JP4915036B2 (en) Denitrification method and denitrification apparatus
EP0864540B1 (en) Method for carrying out a biocatalyst reaction
JP3835314B2 (en) Carrier packing and water treatment method using the same
JP4006750B2 (en) Immobilized microorganism carrier and environmental purification method using the same
JP4788645B2 (en) Method of using nitrite type nitrification carrier, wastewater treatment method and wastewater treatment apparatus
JP3474476B2 (en) Sewage treatment method
JP3303665B2 (en) Nitrification / denitrification method and apparatus
JP3907004B2 (en) Wastewater treatment method and apparatus
JP2003000238A (en) Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier
JP2001246397A (en) Method for removing nitrogen in waste water
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
JP2005313152A (en) Anaerobic ammonia oxidation method an method and apparatus for treating waste water
JP2006061879A (en) Waste water treatment method and device
JP3136900B2 (en) Wastewater treatment method
JP2007268368A (en) Entrapping immobilization carrier and wastewater treatment system using it
JP2005319360A (en) Method and apparatus for anaerobic ammonia oxidation
CN101798158A (en) Advanced treatment method of refractory organic industrial sewage
JPH07241584A (en) Waste water treatment method and apparatus using composite activated sludge carrier
JP3858271B2 (en) Wastewater treatment method and apparatus
JP3465419B2 (en) Wastewater treatment agent and wastewater treatment method
JP6651298B2 (en) Wastewater treatment method and wastewater treatment device for wastewater containing high salt concentration
JP2003001284A (en) Method for cleaning water and device therefor
JP3019127B2 (en) Nitrogen removal equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees