JP4788645B2 - Method of using nitrite type nitrification carrier, wastewater treatment method and wastewater treatment apparatus - Google Patents
Method of using nitrite type nitrification carrier, wastewater treatment method and wastewater treatment apparatus Download PDFInfo
- Publication number
- JP4788645B2 JP4788645B2 JP2007115942A JP2007115942A JP4788645B2 JP 4788645 B2 JP4788645 B2 JP 4788645B2 JP 2007115942 A JP2007115942 A JP 2007115942A JP 2007115942 A JP2007115942 A JP 2007115942A JP 4788645 B2 JP4788645 B2 JP 4788645B2
- Authority
- JP
- Japan
- Prior art keywords
- nitrite
- type nitrification
- carrier
- ammonia
- oxidizing bacteria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
本発明は、亜硝酸型硝化担体の製造方法、亜硝酸型硝化担体、廃水処理方法並びに廃水処理装置に係り、特に嫌気性アンモニア酸化法における亜硝酸型硝化反応を安定して行える亜硝酸型硝化担体の製造方法,亜硝酸型硝化担体、廃水処理方法並びに廃水処理装置に関する。 The present invention relates to a method for producing a nitrite-type nitrification carrier, a nitrite-type nitrification carrier, a wastewater treatment method, and a wastewater treatment apparatus. The present invention relates to a carrier production method, a nitrite type nitrification carrier, a wastewater treatment method, and a wastewater treatment apparatus.
廃水や下水を微生物で処理する生物学的処理方法は、比較的低コストであることから多くの処理場で採用されている。しかし、微生物の種類によっては、増殖速度が遅いものや、被毒し易いもの、又はその環境下において増殖し難いものがある。特に、アンモニア性窒素を含有する廃水の処理を行う際に用いられる硝化細菌は増殖速度が遅いという問題があった。そこで、硝化細菌等の増殖し難い特定の微生物を固定化して処理を行う方法がすでに実用化されている。 Biological treatment methods for treating wastewater and sewage with microorganisms are used in many treatment plants because of their relatively low cost. However, some microorganisms have a slow growth rate, are easily poisoned, or are difficult to grow in the environment. In particular, the nitrifying bacteria used when treating wastewater containing ammoniacal nitrogen has a problem that the growth rate is slow. Therefore, a method for fixing and treating a specific microorganism that is difficult to grow, such as nitrifying bacteria, has already been put into practical use.
微生物を固定化する方法としては、例えば特許文献1のように、微生物をゲルの内部に固定化する包括固定化担体が用いられる。固定化する微生物としては、硝化菌が生息している活性汚泥や、湖沼や河川や海の底泥、地表の土壌等を微生物供給源とし、特に工場廃水や下水処理場の活性汚泥が使用される。また、特許文献2のように、微生物を担体材料の表面に付着させて固定化する付着固定化担体も用いられており、担体材料を活性汚泥処理内に投入して、自然に表面に付着させたものが使用される。さらに、特許文献3のように、硝化菌等粘性を有する微生物では微生物自体の自己造粒力によりグラニュールが形成できるので、そのグラニュールを担体として廃水処理に利用する例もある。
脱窒菌を使用した硝酸から窒素ガスへの変換は、メタノール等の有機物の添加が必要であり、ランニングコストが高くなるという欠点がある。このことから、有機物の添加が少量で済む窒素除去方法が要望されていた。 Conversion from nitric acid to nitrogen gas using denitrifying bacteria requires the addition of an organic substance such as methanol, which has the disadvantage of increasing running costs. For this reason, there has been a demand for a nitrogen removal method that requires only a small amount of organic matter.
この欠点を解決する窒素除去方法として、嫌気性アンモニア酸化法(Anaerobic ammonia oxidation)による窒素除去方法が注目されている。この嫌気性アンモニア酸化法は、アンモニアを水素供与体とし、亜硝酸を水素受容体として、嫌気性アンモニア酸化細菌によりアンモニアと亜硝酸とを以下の反応式により同時脱窒する方法である。 As a nitrogen removal method for solving this drawback, a nitrogen removal method by anaerobic ammonia oxidation has been attracting attention. This anaerobic ammonia oxidation method is a method in which ammonia is used as a hydrogen donor, nitrous acid is used as a hydrogen acceptor, and ammonia and nitrous acid are simultaneously denitrified by an anaerobic ammonia oxidizing bacterium according to the following reaction formula.
[化1]
NH4++ NO2−=N 2 +2H 2 O
この方法によれば、アンモニアを水素供与体とするため、脱窒で使用するメタノール等の使用量を大幅に削減できることや、汚泥の発生量を削減できる等のメリットがあり,今後の窒素除去方法として有効な方法であると考えられている。
[Chemical 1]
NH4 ++ NO2− = N2 + 2H2O
According to this method, since ammonia is used as a hydrogen donor, there are merits such as drastically reducing the amount of methanol used for denitrification and reducing the amount of sludge generated. It is considered to be an effective method.
この嫌気性アンモニア酸化法ではアンモニア性窒素の酸化を途中で止めて、亜硝酸とアンモニアとを約半分ずつ残して脱窒する必要がある。しかし、亜硝酸型硝化反応に使用される従来の包括固定化担体、付着固定化担体又は硝化グラニュール担体ではアンモニア酸化細菌と亜硝酸酸化細菌が混在しているため、アンモニア性窒素を処理する際に、亜硝酸から硝酸への反応を経由してしまう場合もあった。 In this anaerobic ammonia oxidation method, it is necessary to stop the oxidation of ammonia nitrogen in the middle and denitrify by leaving about half of nitrous acid and ammonia. However, the conventional entrapping immobilization carrier, adherent immobilization carrier or nitrification granule carrier used in the nitrite type nitrification reaction contains ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. In some cases, the reaction from nitrous acid to nitric acid is also passed.
本発明はこのような事情に鑑みてなされたもので、有機物の添加量を大幅に減少してランニングコストを下げることができる亜硝酸型硝化担体及びその製造方法並びにそれを用いた窒素除去方法及び装置を提供することを目的とする。 The present invention has been made in view of such circumstances, a nitrite-type nitrification carrier capable of greatly reducing the amount of organic matter added and lowering the running cost, a method for producing the same, a nitrogen removal method using the same, and An object is to provide an apparatus.
本発明は前記目的を達成するために、少なくともアンモニア酸化細菌及び亜硝酸酸化細菌を含む複合微生物の集積汚泥を固定化する付着固定化担体、包括固定化担体又は自己造粒物のグラニュール担体を、(1)pHが2.0未満の範囲では30秒以上、(2)pHが2.0以上、4.0未満の範囲では3分以上、(3)pHが4.0以上、6.0以下の範囲では15分以上、の(1)〜(3)のうちいずれかの1の条件で酸処理をして、アンモニア酸化細菌を優先的に集積させた亜硝酸型硝化担体とする。 For the onset bright, to attain the aforementioned object, attachment immobilization carrier for immobilizing integrated sludge composite microorganism containing ammonia oxidizing bacteria and nitrite oxidizing bacteria even without small, granules entrapping immobilization pellets or self granule Le responsible body, (1) pH is 30 seconds or more is in a range of less than 2.0, (2) pH of 2.0 or more, 3 minutes or more in a range of less than 4.0, (3) pH of 4.0 As described above, nitrite type nitrification in which ammonia oxidizing bacteria are preferentially accumulated by acid treatment under any one of the conditions (1) to (3) of 15 minutes or more in the range of 6.0 or less Use as a carrier.
ここで、少なくともアンモニア酸化細菌及び亜硝酸酸化細菌を含む硝化性能を有する複合微生物系の汚泥の具体例としては、下水や工場廃水を処理する処理場の活性汚泥、湖沼や河川や海の底泥、地表の土壌等がある。 Specific examples of complex microbial sludge having nitrification performance containing at least ammonia-oxidizing bacteria and nitrite-oxidizing bacteria include activated sludge from treatment plants that treat sewage and industrial wastewater, lakes, rivers, and sea bottom mud. There is soil on the surface.
本発明によれば、少なくともアンモニア酸化細菌及び亜硝酸酸化細菌を含む複合微生物の集積汚泥を付着固定化担体、包括固定化担体又は自己造粒物のグラニュール担体のいずれかの形態で保持させた担体をpH6.0以下の範囲で酸処理するようにした。(pHには0以下、つまりマイナス(−)の値がある。しかしながら、マイナスpHの測定技術がなため、ここではpH範囲の下限値を規定せず、pH6以下と記載する。)アンモニア酸化細菌が酸に対し高い耐性を持つ一方、亜硝酸型酸化細菌が酸に対し耐性が低い特性を利用して、亜硝酸酸化細菌を殺菌してアンモニア酸化細菌を優先的に集積させることができる。また、本発明では、酸処理に使用した酸液を担体と分離し繰り返し使用できるので、エネルギー的消失を減少させることができる。 According to the present invention, held in the form of either granules carrier ammonia oxidizing bacteria and attachment immobilization carrier integrated sludge complex microorganisms comprising nitrite-oxidizing bacteria, the entrapping immobilization pellets or self granules even without least The treated carrier was acid-treated within a pH range of 6.0 or lower. (The pH has a value of 0 or less, that is, minus (−). However, since there is no minus pH measurement technique, the lower limit value of the pH range is not defined here, and is described as pH 6 or less.) Ammonia-oxidizing bacteria Is highly resistant to acids, while nitrite-oxidizing bacteria have low resistance to acids, so that nitrite-oxidizing bacteria can be sterilized to preferentially accumulate ammonia-oxidizing bacteria. Further, in the present invention, the acid solution used for the acid treatment can be separated from the carrier and used repeatedly, so that energy loss can be reduced.
本発明によれば、酸処理を上記条件で行うことにより、亜硝酸酸化細菌を殺菌してアンモニア酸化細菌を集積でき、亜硝酸型の硝化を効率よく行う担体を製造することができる。 According to the present invention , by performing the acid treatment under the above-mentioned conditions, it is possible to sterilize nitrite-oxidizing bacteria and accumulate ammonia-oxidizing bacteria, and it is possible to produce a carrier that efficiently performs nitrite-type nitrification.
本発明の廃水処理装置は、アンモニアから亜硝酸を生成する亜硝酸型硝化担体が投入された亜硝酸生成槽と、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽とを備え、前記亜硝酸型硝化担体の亜硝酸型硝化が硝酸型硝化に移行したときに、酸処理を行って亜硝酸型の硝化能力を回復させる機能を備えたことを特徴とする。 Waste water treatment apparatus of the present invention, anaerobic ammonia simultaneously denitrifying nitrite generation vessel that generates a nitrous acid from ammonia nitrite type nitrification carrier is turned, the ammonia and anaerobic ammonium oxidizing bacteria and nitrite An oxidization tank, and when the nitrite-type nitrification of the nitrite-type nitrification carrier has shifted to nitrate-type nitrification, it has a function of performing an acid treatment to recover the nitrite-type nitrification ability .
亜硝酸型硝化担体の亜硝酸型硝化が硝酸型硝化へ移行したとき、本発明によれば、再度酸処理を行うことで亜硝酸酸化細菌を抑制でき亜硝酸型の硝化能力を回復させることができる。亜硝酸酸化細菌を酸により殺菌しても長期間使用すれば、亜硝酸酸化細菌が再増殖する場合がある。亜硝酸酸化細菌の増殖は、亜硝酸型硝化を硝酸型硝化に移行させる。かかる場合に亜硝酸酸化細菌を再度酸処理により殺菌することで亜硝酸型の硝化能力を回復することができる。 When nitrite-type nitrification of nitrite-type nitrification carrier has shifted to nitrate-type nitrification, according to the present invention , by performing acid treatment again, nitrite-oxidizing bacteria can be suppressed and nitrite-type nitrification ability can be recovered. it can. Even if nitrite-oxidizing bacteria are sterilized with an acid, if they are used for a long time, nitrite-oxidizing bacteria may re-grow. The growth of nitrite-oxidizing bacteria shifts nitrite-type nitrification to nitrate-type nitrification. In such a case, the nitrite-type nitrification ability can be recovered by sterilizing the nitrite-oxidizing bacteria again by acid treatment.
本発明のアンモニア性廃水を処理する廃水処理方法は、上述の方法により亜硝酸型硝化担体にアンモニア酸化細菌を優先的に集積させる工程と、アンモニア酸化細菌を優先的に集積させた前記亜硝酸型硝化担体により亜硝酸生成槽でアンモニアから亜硝酸を生成する工程と、嫌気性アンモニア酸化槽でアンモニアと前記亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する工程とを備えたことを特徴とする。 The wastewater treatment method for treating ammonia wastewater of the present invention includes a step of preferentially accumulating ammonia oxidizing bacteria on a nitrite type nitrification carrier by the above-described method, and the nitrite type preferentially accumulating ammonia oxidizing bacteria. It comprises a step of producing nitrous acid from ammonia in a nitrite production tank by a nitrification carrier, and a step of simultaneously denitrifying ammonia and the nitrous acid by anaerobic ammonia oxidizing bacteria in an anaerobic ammonia oxidation tank. To do.
本発明によれば、亜硝酸生成槽にアンモニア酸化細菌を優先的に集積させた亜硝酸型硝化担体が投入されるので、亜硝酸酸化細菌の活性を選択的に抑制でき亜硝酸型硝化反応を効率よく行うことができる廃水処理方法を実現することができる。 According to the present invention , since the nitrite-type nitrification carrier in which ammonia-oxidizing bacteria are preferentially accumulated in the nitrite production tank is introduced, the activity of the nitrite-oxidizing bacteria can be selectively suppressed and the nitrite-type nitrification reaction can be performed. A wastewater treatment method that can be performed efficiently can be realized.
本発明の廃水処理方法は、前記亜硝酸型硝化担体の亜硝酸型硝化が硝酸型硝化に移行したときに、前記酸処理を再度行って亜硝酸型硝化の能力を回復させることを特徴とするものである。 Waste water treatment method of the present invention, when the nitrite type nitrification of the nitrite-type nitrification carrier has moved to nitrate type nitrification, and characterized in that to restore the ability of the nitrite-type nitrification performing the acid treatment again To do.
本発明に係る亜硝酸型硝化担体とする方法、廃水処理装置及び廃水処理方法によれば、亜硝酸酸化細菌を殺菌してアンモニア酸化細菌を優先的に集積させることができる。従って、嫌気性アンモニア酸化法で必要とされる亜硝酸までの酸化反応でとどめることができるプロセスを提供できる。また、亜硝酸酸化細菌の殺菌に使用した酸液は繰り返し使用可能である。エネルギー消費量の少ない亜硝酸型硝化担体の製造が可能となる。 According to the nitrite-type nitrification carrier , the wastewater treatment apparatus, and the wastewater treatment method according to the present invention, ammonia-oxidizing bacteria can be preferentially accumulated by sterilizing nitrite-oxidizing bacteria. Therefore, it is possible to provide a process that can be stopped by the oxidation reaction up to nitrous acid required in the anaerobic ammonia oxidation method. The acid solution used for sterilization of nitrite-oxidizing bacteria can be used repeatedly. A nitrite type nitrification carrier with low energy consumption can be produced.
また、本発明で製造した亜硝酸型硝化担体を廃水処理装置及び処理方法を用いると、酸素供給と薬品添加量を大幅に減少して、処理時間を短縮することができる。 Further, when the nitrite-type nitrification carrier produced in the present invention is used with a wastewater treatment apparatus and treatment method, the oxygen supply and chemical addition amount can be greatly reduced, and the treatment time can be shortened.
また、本発明で製造した亜硝酸型硝化担体を用いた廃水処理装置及び処理方法を実施する際に、担体の酸処理を定期的に行えば、亜硝酸型の硝化能力を維持することができる。 Further, when carrying out the wastewater treatment apparatus and treatment method using the nitrite type nitrification carrier produced in the present invention, the nitrite type nitrification ability can be maintained by carrying out acid treatment of the carrier periodically. .
以下添付図面に従って本発明に係る亜硝酸型硝化担体及び廃水処理方法の好ましい実施の形態について詳説する。 The preferred embodiments of the nitrite type nitrification carrier and the wastewater treatment method according to the present invention will be described in detail below with reference to the accompanying drawings.
本発明の亜硝酸型硝化担体は、湖沼や河川や海の底泥、又は下水や工場廃水の処理場の活性汚泥のように、多数の微生物が混在する複合微生物系の汚泥を微生物供給源として製造される。特にアンモニア酸化細菌や亜硝酸酸化細菌等の硝化細菌を多く含む汚泥を微生物供給源とすることが好ましい。
微生物供給源を含む汚泥を保持・固定する方法として、付着固定、包括固定、自己造粒力によりグラニュールを形成する方法が知られている。本発明において、最初に(1)複合微生物系の汚泥中に担体材料を投入して付着固定するか、(2)複合微生物系の汚泥をモノマ又はプレポリマに包括固定するか、(3)複合微生物系の汚泥の自己造粒力によりグラニュールを形成する方法かの、いずれかの方法によって微生物供給源含む汚泥の保持・固定を行う。
The nitrite-type nitrification carrier of the present invention uses a complex microbial sludge mixed with a large number of microorganisms as a microbial supply source, such as sludge from lakes, rivers and seas, or activated sludge from sewage and factory wastewater treatment plants. Manufactured. In particular, it is preferable to use sludge containing a large amount of nitrifying bacteria such as ammonia oxidizing bacteria and nitrite oxidizing bacteria as a microorganism supply source.
As a method of holding and fixing sludge containing a microorganism supply source, a method of forming granules by adhesion fixation, comprehensive fixation, or self-granulating force is known. In the present invention, first, (1) the carrier material is put into the sludge of the complex microbial system and adhered and fixed, (2) the sludge of the complex microbial system is comprehensively fixed to the monomer or prepolymer, or (3) the complex microorganism The sludge containing the microorganism supply source is held and fixed by any one of the methods of forming granules by the self-granulating force of the sludge of the system.
次に、(1)〜(3)に製造された付着固定担体、包括固定担体又はグラニュール担体を、pH6.0以下、好ましくはpH0.5〜5.0の範囲で酸処理する。 Next, the attached fixed carrier, the entrapped fixed carrier or the granule carrier produced in (1) to (3) is acid-treated at a pH of 6.0 or less, preferably at a pH of 0.5 to 5.0.
また、複合微生物系の汚泥をpH6.0以下、好ましくはpH0.5〜5.0の範囲で酸処理した後に、(1)複合微生物系の汚泥中に担体材料を投入して付着固定するか、(2)複合微生物系の汚泥をモノマ又はプレポリマに包括固定するか、(3)複合微生物系の汚泥の自己造粒力によりグラニュールを形成する方法いずれかの方法で製造してもよい。 In addition, after complex microbial sludge is acid-treated at a pH of 6.0 or less, preferably in the range of pH 0.5 to 5.0, (1) Is the carrier material introduced into the microbial sludge to be adhered and fixed? (2) The composite microbial sludge may be comprehensively fixed to the monomer or prepolymer, or (3) the granule may be formed by the self-granulating force of the composite microbial sludge.
この酸処理方法は、酸液を担体に直接散液して処理してもよいし、酸液に担体を浸漬してもよいし、担体を酸液中で撹拌してもよい。いずれの酸処理方法の場合もpH6.0以下、好ましくはpH0.5〜5.0の範囲で酸処理することが必要である。酸処理することにより、複合微生物系の汚泥中に存在する複数種類の細菌のうち、亜硝酸を硝酸に硝化する酸耐性の低い亜硝酸酸化細菌が殺菌される。亜硝酸酸化細菌が殺菌されるので、アンモニアを亜硝酸まで硝化する、耐酸性の高いアンモニア酸化細菌が優占的に集積される。 In this acid treatment method, the acid solution may be directly sprayed on the carrier for treatment, the carrier may be immersed in the acid solution, or the carrier may be stirred in the acid solution. In any of the acid treatment methods, it is necessary to carry out acid treatment at pH 6.0 or less, preferably in the range of pH 0.5 to 5.0. By the acid treatment, among a plurality of types of bacteria present in the sludge of the complex microbial system, nitrite-oxidizing bacteria with low acid resistance that nitrify nitrite into nitric acid are sterilized. Since nitrite-oxidizing bacteria are sterilized, highly acid-resistant ammonia-oxidizing bacteria that nitrify ammonia to nitrite are predominantly accumulated.
また、酸処理を上述したようにpH6.0以下、好ましくはpH0.5〜5.0の範囲内としたのは、pH5.0以下とすれば亜硝酸酸化細菌の殺菌効果をより確実に発揮できるからである。また、pH0.5以上とすればアンモニア酸化細菌の活性が遅れることなく立ち上がる。 As described above, the acid treatment is set to pH 6.0 or less, preferably within the range of pH 0.5 to 5.0. When pH is 5.0 or less, the bactericidal effect of nitrite-oxidizing bacteria is more reliably exhibited. Because it can. If the pH is 0.5 or more, the activity of ammonia oxidizing bacteria will rise without delay.
本発明の亜硝酸型硝化担体の製造において、付着固定化に用いられる担体材料としては、ポリビニルアルコール、アルギン酸、エチレングリコール系のゲルや、セルロース、ポリエステル、ポリプロピレン、塩化ビニル等のプラスチック担体を好適に使用することができる。また、担体材料の形状としては、球形や円筒形、多孔形状、立方体形状、ハニカム形状等の整形を行ったものを好適に使用できる。 In the production of the nitrite-type nitrification carrier of the present invention, as a carrier material used for adhesion fixation, polyvinyl alcohol, alginic acid, ethylene glycol-based gels, and plastic carriers such as cellulose, polyester, polypropylene, and vinyl chloride are preferably used. Can be used. Further, as the shape of the carrier material, a shape obtained by shaping a spherical shape, a cylindrical shape, a porous shape, a cubic shape, a honeycomb shape, or the like can be suitably used.
本発明の亜硝酸型硝化担体の製造において、包括固定化に用いられる担体材料としては、モノメタクリレート類、モノアクリレート類、ジメタクリレート類、ジアクリレート類、トリメタクリレート類、トリアクリレート類、テトラアクリレート類、ウレタンアクリレート類、エポキシアクリレート類、その他、ポリビニルアルコール、アクリルアミド、光硬化性ポリビニルアルコール、光硬化性ポリエチレングリコール、光硬化性ポリエチレングリコールポリプロピレングリコールプレポリマ等を使用することができる。 In the production of the nitrite type nitrification carrier of the present invention, the carrier material used for comprehensive immobilization includes monomethacrylates, monoacrylates, dimethacrylates, diacrylates, trimethacrylates, triacrylates, tetraacrylates. In addition, urethane acrylates, epoxy acrylates, and the like, polyvinyl alcohol, acrylamide, photo-curable polyvinyl alcohol, photo-curable polyethylene glycol, photo-curable polyethylene glycol polypropylene glycol prepolymer, and the like can be used.
また、硝化細菌はその粘性により自己造粒し易いので、この自己造粒力によりグラニュールを形成させて担体として利用することができる。なお、グラニュールの形成は、自己造粒力のみで形成されるものの他に、他の細菌が形成したグラニュールの外周に付着する形で形成されたグラニュールも含まれる。 Further, since nitrifying bacteria are easy to self-granulate due to their viscosity, granules can be formed by this self-granulating force and used as a carrier. In addition, the formation of granules includes not only those formed by self-granulating force but also granules formed in the form of adhering to the outer periphery of granules formed by other bacteria.
本発明の製造方法で製造した亜硝酸型硝化担体の亜硝酸型の硝化性能を確認するために、下記の方法による第1の廃水処理実験を行った。 In order to confirm the nitrite-type nitrification performance of the nitrite-type nitrification carrier produced by the production method of the present invention, a first wastewater treatment experiment was conducted by the following method.
図1は、第1の廃水処理試験に使用される実験装置1の概略構成を示した説明図である。
FIG. 1 is an explanatory diagram showing a schematic configuration of an
実験装置1は、多数の担体11,11…が投入された反応槽10と、廃水原水が蓄えられた原水タンク13と、pH調整液が蓄えられたpH調整液タンク19と、pH調整機17とを備えている。反応槽10と原水タンク13及び反応槽10とpH調整液タンク19とが配管で接続されている。反応槽10にエアポンプ管12が配置されている。流出管15が、処理した廃水を流出するために反応槽10に設けられている。反応槽10のpHを測定するためpH電極16が配置され、pH電極16はpH調節器17に接続されている。
The
実験装置1において、原水ポンプ14の動力によって原水タンク13から廃水原水が反応槽10に流入される。エアポンプ管12からの供給されるエアによって、反応槽10内で廃水原水は、担体11,11・・・とともに曝気中で撹拌され処理される。処理された廃水は、反応槽10に設けられた流出管15から処理水として排出される。
In the
反応槽10に設けられたpH電極16を介して反応槽10のpH値がpH調節器17によって測定される。反応槽10のpH値が一定となるように、pH調整機17の指示に基づいて、pH調整ポンプ18が駆動される。pH調整ポンプ18の動力によりpH調整液タンク19からpH調整液が反応槽10に供給される。
The pH value of the
本実験で供試される亜硝酸型硝化の担体11、11・・・は、下水処理場の余剰汚泥をポリエチレングリコール系のプレポリマと混合し、重合開始剤として過硫化カリウムを添加して重合した後、3mmの立方体に整形し、pH2.0〜2.2の酸液に10分間浸漬することで製造された(以下本発明担体)。なお、汚泥の含有量は2W/V%とし、プレポリマ含有量は10V/V%になるように包括固定化したものを使用した。またpH調整に2mol/L硫酸が使用された。酸処理後の担体11、11・・・は、中和するため酸液から取り出され、水道水で流洗される。
The nitrite-
本実験で供試される比較例の亜硝酸型硝化の担体11、11・・・は、上述と同様の製法で製造された。但し、比較例においては担体11、11・・・は、3mmの立方体に整形した後、pH7.5〜7.7の溶液に10分間浸漬することで製造された(以下比較担体)。この点が本発明担体と製造方法において異なる点である。その後、比較担体は本発明担体と同様中和するため酸液から取り出され、水道水で流洗される。
The nitrite-
反応槽10の反応容積は2Lであり、この反応槽10に担体充填量が200mLになるように担体11を充填した。
The reaction volume of the
また、本実験で供試される廃水として下水を模擬した表1に示す合成廃水を使用した。合成廃水はアンモニア性窒素濃度が40mg/Lとなるように調整されている。 Moreover, the synthetic waste water shown in Table 1 which simulated sewage was used as the waste water used in this experiment. The synthetic wastewater is adjusted so that the ammoniacal nitrogen concentration is 40 mg / L.
第1の廃水処理実験の結果を図2に示す。図2(A)は本発明担体を使用した場合、図2(B)は比較担体を使用した場合の試験結果を示している。各グラフにおいて、○は原水のアンモニア性窒素濃度を、●は処理水のアンモニア性窒素濃度を、▲は処理水の亜硝酸性窒素濃度を、■は硝酸性窒素濃度を示している。 The result of the first wastewater treatment experiment is shown in FIG. FIG. 2A shows the test results when the carrier of the present invention is used, and FIG. 2B shows the test results when the comparative carrier is used. In each graph, ◯ indicates the ammonia nitrogen concentration of the raw water, ● indicates the ammonia nitrogen concentration of the treated water, ▲ indicates the nitrite nitrogen concentration of the treated water, and ■ indicates the nitrate nitrogen concentration.
図2(A)に示すように、本発明担体を用いた廃水処理では開始からアンモニア酸化細菌の活性が確認された。処理水のアンモニア性窒素濃度の下降が見られ、処理水の亜硝酸性窒素濃度の上昇が見られた。その一方で硝酸性窒素濃度の上昇は見られなかった。開始からアンモニア性窒素の硝化が始まり、亜硝酸型の硝化が行われていることが確認された。これは、酸処理により担体11,11・・・から亜硝酸酸化細菌が除去され、アンモニア酸化細菌による亜硝酸型の硝化のみが行われるようになったからである。
As shown in FIG. 2 (A), the activity of ammonia oxidizing bacteria was confirmed from the start in the wastewater treatment using the carrier of the present invention. A decrease in the ammonia nitrogen concentration of the treated water was observed, and an increase in the nitrite nitrogen concentration of the treated water was observed. On the other hand, no increase in nitrate nitrogen concentration was observed. From the start, nitrification of ammonia nitrogen started, and it was confirmed that nitrite type nitrification was performed. This is because nitrite-oxidizing bacteria are removed from the
その後、3週間目には完全な亜硝酸型硝化反応が確認された。3週間目以降、アンモニア性窒素濃度が5%以下、亜硝酸性窒素濃度が25%以上の安定した数値を示すことが確認された。実験開始から3週間目以降、硝酸性窒素濃度は5%以下の安定した数値が示され、濃度の上昇は見られなかった。 Thereafter, a complete nitrite type nitrification reaction was confirmed at 3 weeks. After the third week, it was confirmed that the ammonia nitrogen concentration was 5% or less and the nitrite nitrogen concentration was 25% or more. After 3 weeks from the start of the experiment, the nitrate nitrogen concentration showed a stable value of 5% or less, and no increase in concentration was observed.
一方、図2(B)に示すように、比較担体で廃水処理を行うと、2週間目から硝酸性窒素濃度の上昇が見られ、硝酸の生成が確認された。亜硝酸酸化細菌の存在も確認された。さらに5週間目には亜硝酸性窒素濃度と硝酸性窒素濃度が同一の値を示し、5週間目以降硝酸性窒素濃度が亜硝酸性窒素濃度を上回ることが確認された。亜硝酸酸化細菌の硝化能力がアンモニア酸化細菌の能力が上回ることが示された。 On the other hand, as shown in FIG. 2 (B), when wastewater treatment was performed with a comparative carrier, an increase in nitrate nitrogen concentration was observed from the second week, and formation of nitric acid was confirmed. The presence of nitrite-oxidizing bacteria was also confirmed. Furthermore, the nitrite nitrogen concentration and the nitrate nitrogen concentration showed the same value in the fifth week, and it was confirmed that the nitrate nitrogen concentration exceeded the nitrite nitrogen concentration after the fifth week. It was shown that the nitrification ability of nitrite-oxidizing bacteria exceeds that of ammonia-oxidizing bacteria.
図2に示されるように、担体形成後に酸処理を施した本発明担体は、安定した亜硝酸型の硝化を実現できることが示された。 As shown in FIG. 2, it was shown that the support of the present invention, which was subjected to acid treatment after the support formation, could realize stable nitrite type nitrification.
酸処理により、第1の廃水処理試験における担体11,11・・・よる亜硝酸型の硝化が約50日間維持することができた。しかし、その後亜硝酸が減少して硝酸が生成されることが確認された。これは、廃水を介して流入する亜硝酸酸化細菌が増殖したことや、酸処理で処理し切れなかった微量な亜硝酸酸化細菌が増殖したためと考えられる。
By the acid treatment, the nitrite type nitrification by the
そこで、担体11,11…を実験装置1から取り出して、担体11,11を・・・pH2.0〜2.2の酸液に10分間浸漬した後、実験装置1へ戻して廃水処理を継続したところ、亜硝酸型の硝化性能を回復できた。
Therefore, the
したがって、亜硝酸濃度の減少や硝酸の生成が見られたとき、もしくは一定の期間で担体を酸処理することにより、担体の亜硝酸型の硝化性能を維持することができることが判明した。 Therefore, it has been found that the nitrite-type nitrification performance of the carrier can be maintained when a decrease in nitrous acid concentration or generation of nitric acid is observed, or when the carrier is acid-treated for a certain period.
次に、本発明の亜硝酸型硝化担体の製造方法における酸液pHと酸処理時間との関係を調査するため第2の廃水処理試験を行った。 Next, a second wastewater treatment test was conducted in order to investigate the relationship between the acid solution pH and the acid treatment time in the method for producing a nitrite type nitrification carrier of the present invention.
供試される担体としては、第1の廃水処理試験で使用したものと同じ包括固定担体を使用した。得られた包括固定担体を、pH0、pH0.5、pH2.0、pH3.0、pH4.0、pH5.0、pH6.0、pH7.0で酸処理を行い、酸処理時間をそれぞれ6秒、30秒、1分、3分、9分、15分、30分、60分とした。中和するため酸液処理後の担体を、一度酸液から取り出し、水道水で流洗した。
As the carrier to be tested, the same entrapping fixed carrier used in the first wastewater treatment test was used. The resulting entrapping immobilization carrier was acid-treated at
また、供試される廃水として、亜硝酸窒素を40mg/Lを含有した合成廃水を使用した。廃水処理試験は、合成廃水450ml中に担体50mgを投入し、連続曝気にて廃水処理を行った。廃水を1日ごとに交換し、交換した処理水中の亜硝酸濃度と硝酸濃度を測定した。 Moreover, synthetic wastewater containing 40 mg / L of nitrogen nitrite was used as the wastewater to be tested. In the wastewater treatment test, 50 mg of carrier was put into 450 ml of synthetic wastewater, and wastewater treatment was performed by continuous aeration. The wastewater was changed every day, and the nitrous acid concentration and the nitric acid concentration in the changed treated water were measured.
その結果を図3に示す。図3(A)は、各酸液pH及びにおける実験開始1ヶ月後の処理水中の亜硝酸濃度を示したグラフである。一方図3(B)は、各酸液pH及びにおける実験開始1ヶ月後の処理水中の硝酸濃度を示したグラフである。 The result is shown in FIG. FIG. 3 (A) is a graph showing the concentration of nitrous acid in the treated water one month after the start of the experiment at each acid solution pH. On the other hand, FIG. 3 (B) is a graph showing the nitric acid concentration in the treated water one month after the start of the experiment at each acid solution pH.
図3(A)(B)から分かるように、pH2.0未満の範囲では30秒以上、pH2.0以上4.0未満の範囲では3分以上、pH4.0以上6.0以下の範囲では15分以上酸液処理を行うことにより、硝酸生成が抑制され、かつ亜硝酸生成が促進された亜硝酸型の硝化を行うことができることが確認できた。 As can be seen from FIGS. 3 (A) and 3 (B), when the pH is less than 2.0, it is 30 seconds or more, when the pH is 2.0 or more and less than 4.0, 3 minutes or more, and when the pH is 4.0 or more and 6.0 or less. It was confirmed that by performing the acid solution treatment for 15 minutes or more, nitrite type nitrification in which nitric acid production was suppressed and nitrous acid production was promoted could be performed.
図3(A)(B)から分かるように、pH2.0未満の範囲では30秒以上、pH2.0以上4.0未満の範囲では3分以上、pH4.0以上6.0以下の範囲では15分以上酸液処理を行うことにより、亜硝酸型の硝化を行う亜硝酸型硝化担体を製造できるとともに、その硝化能力を維持できることが分かった。 As can be seen from FIGS. 3 (A) and 3 (B), when the pH is less than 2.0, it is 30 seconds or more, when the pH is 2.0 or more and less than 4.0, 3 minutes or more, and when the pH is 4.0 or more and 6.0 or less. It was found that by performing the acid solution treatment for 15 minutes or more, a nitrite-type nitrification carrier that performs nitrite-type nitrification can be produced and its nitrification ability can be maintained.
図4は、本発明の廃水処理装置の全体構成の一例を示す概念図である。図4に示すように、廃水処理装置20は、原水配管21と、原水を分配する分配器22と、原水の一部が供給される亜硝酸生成槽23と、亜硝酸生成槽23の後段に設けられた嫌気性アンモニア酸化槽24と、嫌気性アンモニア酸化槽24の後段に設けられた再脱窒槽25と、再脱窒槽25にメタノールを供給するメタノール添加装置26と、再脱窒槽25の後段に設けられた固液分離槽27で構成されている。亜硝酸生成槽23には本発明の担体11が多数投入される。また、亜硝酸生成槽23には本発明の担体11を再酸液処理するための酸液処理槽28が配置されている。
FIG. 4 is a conceptual diagram showing an example of the overall configuration of the wastewater treatment apparatus of the present invention. As shown in FIG. 4, the
嫌気性アンモニア酸化槽24には亜硝酸生成槽23から処理液に加え、分配器22で分配された原水の一部が供給される構成となっている。
The anaerobic
廃水処理装置20では、原水配管21を流れるアンモニア性窒素を含む廃水が分配器22で分配され、廃水の一部が亜硝酸生成槽23に流入される。亜硝酸生成槽23に流入したアンモニア性廃水中のアンモニアは、本発明の担体と曝気撹拌されて亜硝酸に酸化される。
In the waste
亜硝酸生成槽23で処理された亜硝酸性処理水は、配管を通って嫌気性アンモニア酸化槽24へ供給される。さらに分配器22で分配されたアンモニア性廃水の一部も、嫌気性アンモニア酸化槽24に供給される。嫌気性アンモニア酸化槽24に流入したアンモニアと亜硝酸とは嫌気性アンモニア酸化細菌の脱窒反応により同時脱窒される。
The nitrite-treated water treated in the nitrous
嫌気性アンモニア酸化槽24で処理された処理水には、硝酸が僅かに残るため、再脱窒槽25にてメタノール添加装置26からメタノールを添加して脱窒反応を経て固液分離槽27で固液分離され、最終処理水として系外に排出される。
Since a slight amount of nitric acid remains in the treated water treated in the anaerobic
本発明の亜硝酸型硝化担体において、アンモニア性窒素を亜硝酸で反応停止させる能力は、使用の仕方によっても多少相違するが、期間の経過とともに硝化能力が小さくなることがある。従って、本発明による亜硝酸型硝化担体を製造後も、定期的、または亜硝酸性窒素濃度及び硝酸性窒素濃度を測定し亜硝酸硝化の能力を確認した後、再酸液処理することが好ましい。 In the nitrite-type nitrification carrier of the present invention, the ability to stop the reaction of ammonia nitrogen with nitrous acid is somewhat different depending on how it is used, but the nitrification ability may decrease with the passage of time. Accordingly, it is preferable that after the production of the nitrite-type nitrification carrier according to the present invention, the re-acid solution treatment is carried out periodically or after measuring the nitrite nitrogen concentration and nitrate nitrogen concentration to confirm the ability of nitrite nitrification. .
本発明の担体を廃水処理装置20に用いることにより、嫌気性アンモニア酸化法で必要とされる亜硝酸までの酸化反応でとどめることができる、安定した脱窒プロセスを得ることができる。また、亜硝酸酸化細菌の殺菌に使用し酸液は繰り返し用可能である。エネルギー消費量の少ない亜硝酸型硝化担体の製造が可能となる。
By using the carrier of the present invention for the
1・・・実験装置、10・・・反応槽、11・・・担体、13・・・原水タンク、17・・・調節器、19・・・pH調整液タンク、20廃水処理装置、23・・・亜硝酸生成槽、24・・・嫌気性アンモニア酸化槽、28・・・酸液処理槽
DESCRIPTION OF
Claims (4)
(1)pHが2.0未満の範囲では30秒以上、
(2)pHが2.0以上、4.0未満の範囲では3分以上、
(3)pHが4.0以上、6.0以下の範囲では15分以上、
の(1)〜(3)のうちいずれかの1の条件で酸処理をして、アンモニア酸化細菌を優先的に集積させた亜硝酸型硝化担体とする方法。 Even without least attachment immobilization carrier for immobilizing integrated sludge composite microorganism containing ammonia oxidizing bacteria and nitrite oxidizing bacteria, granules responsible of entrapping immobilization pellets or self granulated material,
(1) 30 seconds or more when the pH is less than 2.0,
(2) When the pH is in the range of 2.0 or more and less than 4.0, 3 minutes or more,
(3) When the pH is in the range of 4.0 or more and 6.0 or less, 15 minutes or more,
(1) to (3), wherein the nitrite type nitrification carrier is preferentially accumulated with ammonia oxidizing bacteria by acid treatment under any one of the conditions.
アンモニアから亜硝酸を生成する亜硝酸型硝化担体が投入された亜硝酸生成槽と、
アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽とを備え、
前記亜硝酸型硝化担体の亜硝酸型硝化が硝酸型硝化に移行したときに、酸処理を行って亜硝酸型の硝化能力を回復させる機能を備えたことを特徴とする廃水処理装置。 A wastewater treatment apparatus for treating ammonia wastewater,
Nitrite production tank nitrite type nitrification carrier that generates a nitrite is turned from ammonia,
An anaerobic ammonia oxidation tank that simultaneously denitrifies ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria ,
A wastewater treatment apparatus comprising a function of recovering nitrite-type nitrification ability by performing acid treatment when nitrite-type nitrification of the nitrite-type nitrification carrier shifts to nitrate-type nitrification .
請求項1記載の方法により亜硝酸型硝化担体にアンモニア酸化細菌を優先的に集積させる工程と、
アンモニア酸化細菌を優先的に集積させた前記亜硝酸型硝化担体により亜硝酸生成槽でアンモニアから亜硝酸を生成する工程と、
嫌気性アンモニア酸化槽でアンモニアと前記亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する工程とを備えたことを特徴とする廃水処理方法。 A wastewater treatment method for treating ammonia wastewater,
A step of preferentially accumulating ammonia oxidizing bacteria on a nitrite type nitrification carrier by the method according to claim 1;
Producing nitrite from ammonia in a nitrite production tank by the nitrite type nitrification carrier preferentially accumulating ammonia oxidizing bacteria ;
A wastewater treatment method comprising a step of simultaneously denitrifying ammonia and the nitrous acid with anaerobic ammonia oxidizing bacteria in an anaerobic ammonia oxidizing tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007115942A JP4788645B2 (en) | 2007-04-25 | 2007-04-25 | Method of using nitrite type nitrification carrier, wastewater treatment method and wastewater treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007115942A JP4788645B2 (en) | 2007-04-25 | 2007-04-25 | Method of using nitrite type nitrification carrier, wastewater treatment method and wastewater treatment apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008272610A JP2008272610A (en) | 2008-11-13 |
JP4788645B2 true JP4788645B2 (en) | 2011-10-05 |
Family
ID=40051279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007115942A Active JP4788645B2 (en) | 2007-04-25 | 2007-04-25 | Method of using nitrite type nitrification carrier, wastewater treatment method and wastewater treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4788645B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5170446B2 (en) | 2009-01-30 | 2013-03-27 | 株式会社日立プラントテクノロジー | Method and apparatus for producing nitrite-type nitrification reaction sludge, and wastewater treatment method and wastewater treatment apparatus |
JP2010201394A (en) * | 2009-03-05 | 2010-09-16 | Hitachi Plant Technologies Ltd | Nitrous acid type nitrification reaction sludge, method and apparatus for manufacturing the same, and method and apparatus of wastewater treatment |
JP6872921B2 (en) * | 2017-02-09 | 2021-05-19 | 学校法人 東洋大学 | Nitrogen-containing wastewater treatment equipment and treatment method |
JP2020039314A (en) * | 2018-09-12 | 2020-03-19 | 学校法人 東洋大学 | Method of culturing acid-tolerant nitrifying bacteria group, and nitrification apparatus and method using acid-tolerant nitrifying bacteria group |
EP3924306A4 (en) * | 2019-05-24 | 2023-08-09 | The University of Queensland | Method for treating wastewater or sludge |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6336898A (en) * | 1986-07-29 | 1988-02-17 | Takuma Sogo Kenkyusho:Kk | Immobilized bacteria capable of oxidizing nh4+ contained in sewage to nitrous acid and treatment using same |
JPH02198695A (en) * | 1989-01-25 | 1990-08-07 | Kurita Water Ind Ltd | Nitrite type nitrification method |
JP3937664B2 (en) * | 1999-10-12 | 2007-06-27 | 栗田工業株式会社 | Biological nitrogen removal method and apparatus |
JP4882175B2 (en) * | 2001-07-17 | 2012-02-22 | 栗田工業株式会社 | Nitrification method |
JP4320515B2 (en) * | 2001-07-26 | 2009-08-26 | 栗田工業株式会社 | Method for treating raw water containing phosphorus and ammonia nitrogen |
JP3788601B2 (en) * | 2002-01-25 | 2006-06-21 | 株式会社日立プラントテクノロジー | Nitrite-type nitrification carrier, production method thereof, and nitrogen removal method and apparatus using the same |
JP2003326297A (en) * | 2002-05-09 | 2003-11-18 | Hitachi Plant Eng & Constr Co Ltd | Nitrification method for waste water |
JP2005144308A (en) * | 2003-11-14 | 2005-06-09 | Hitachi Plant Eng & Constr Co Ltd | Method for manufacturing nitrous acid type nitrification carrier and waste water treatment method |
JP4910266B2 (en) * | 2004-03-01 | 2012-04-04 | 栗田工業株式会社 | Nitrification method and treatment method of ammonia-containing nitrogen water |
JP4507173B2 (en) * | 2004-05-06 | 2010-07-21 | 株式会社日立プラントテクノロジー | Nitrite-type nitrification method and apparatus, and wastewater treatment apparatus |
JP4042719B2 (en) * | 2004-05-11 | 2008-02-06 | 株式会社日立プラントテクノロジー | Nitrite-type nitrification method and apparatus, and wastewater treatment apparatus |
-
2007
- 2007-04-25 JP JP2007115942A patent/JP4788645B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008272610A (en) | 2008-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7897375B2 (en) | Method and apparatus for collecting and acclimatizing anaerobic ammonium oxidizing bacteria, and denitrifying water | |
Rostron et al. | Nitrification of high strength ammonia wastewaters: comparative study of immobilisation media | |
JP4284700B2 (en) | Nitrogen removal method and apparatus | |
JP4224951B2 (en) | Denitrification method | |
JP5324269B2 (en) | Waste water treatment method and waste water treatment apparatus | |
JP4632135B2 (en) | Method and apparatus for treating ammonia-containing liquid | |
JP5098183B2 (en) | Waste water treatment method and apparatus | |
JP4788645B2 (en) | Method of using nitrite type nitrification carrier, wastewater treatment method and wastewater treatment apparatus | |
JP4872392B2 (en) | Nitrogen removal method and wastewater treatment method | |
JP2004230225A (en) | Method for treating ammonia-containing water | |
JP2003047990A (en) | Biological denitrifier | |
JP4915036B2 (en) | Denitrification method and denitrification apparatus | |
JP4678577B2 (en) | Wastewater treatment system | |
JP2013169529A (en) | Wastewater treatment method and wastewater treatment apparatus | |
JP5039093B2 (en) | Manufacturing method of bioreactor element | |
JP2002001389A (en) | Production process of biological membrane and continuous treatment equipment for inorganic ammonate containing wastewater, using the same membrane | |
JP5240465B2 (en) | Storage system and storage method for anaerobic microorganism-immobilized carrier | |
JP2012020262A (en) | Nitritification treatment method of ammoniacal nitrogen | |
JP6651298B2 (en) | Wastewater treatment method and wastewater treatment device for wastewater containing high salt concentration | |
JP4006750B2 (en) | Immobilized microorganism carrier and environmental purification method using the same | |
JP2005319360A (en) | Method and apparatus for anaerobic ammonia oxidation | |
JP3858271B2 (en) | Wastewater treatment method and apparatus | |
JP4883493B2 (en) | Method of using nitrite-type nitrification reaction carrier, and waste water treatment method and apparatus | |
JP5631090B2 (en) | Waste water treatment apparatus and waste water treatment method | |
JP2005144308A (en) | Method for manufacturing nitrous acid type nitrification carrier and waste water treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110404 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110621 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110704 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4788645 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |