JP2010201394A - Nitrous acid type nitrification reaction sludge, method and apparatus for manufacturing the same, and method and apparatus of wastewater treatment - Google Patents

Nitrous acid type nitrification reaction sludge, method and apparatus for manufacturing the same, and method and apparatus of wastewater treatment Download PDF

Info

Publication number
JP2010201394A
JP2010201394A JP2009052222A JP2009052222A JP2010201394A JP 2010201394 A JP2010201394 A JP 2010201394A JP 2009052222 A JP2009052222 A JP 2009052222A JP 2009052222 A JP2009052222 A JP 2009052222A JP 2010201394 A JP2010201394 A JP 2010201394A
Authority
JP
Japan
Prior art keywords
treatment
sludge
activated sludge
wastewater
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009052222A
Other languages
Japanese (ja)
Inventor
So Ikuta
創 生田
Tatsuo Sumino
立夫 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2009052222A priority Critical patent/JP2010201394A/en
Publication of JP2010201394A publication Critical patent/JP2010201394A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitrous acid type nitrification reaction sludge that has low energy cost and that facilitates stable wastewater treatment over a long period, to provide a method and apparatus for manufacturing the same, and to provide a method and apparatus of wastewater treatment. <P>SOLUTION: In order to control pH of an activated sludge 12 containing ammonia-oxidizing bacteria and nitrite-oxidizing bacteria into 6 or less, acid liquid is added to the activated sludge 12 from an acid liquid tank 18. As a result, nitrite-oxidizing bacteria in the activated sludge 12 is deactivated to make the ammonia-oxidizing bacteria accumulate with priority. Consequently, with nitrification reaction of ammonia nitrogen stopped in the stage of nitrous acid, the supply quantity of oxygen during the nitrification reaction and the supply quantity of a hydrogen donor during the reduction reaction are reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、亜硝酸型硝化反応汚泥並びにその製造方法及び製造装置、並びに廃水処理方法及び廃水処理装置に係る。ここで亜硝酸型硝化反応汚泥とは、アンモニア性窒素を亜硝酸に酸化するアンモニア酸化細菌を優占的に集積させた活性汚泥をいう。   The present invention relates to a nitrite type nitrification reaction sludge, a production method and a production apparatus thereof, and a wastewater treatment method and a wastewater treatment apparatus. Here, the nitrite-type nitrification sludge is activated sludge in which ammonia-oxidizing bacteria that oxidize ammoniacal nitrogen to nitrous acid are preferentially accumulated.

アンモニア性窒素を含む廃水の処理方法として、硝化細菌によりアンモニア性窒素を硝酸に硝化(酸化)した後、この硝酸を脱窒細菌により窒素ガスに還元することで、アンモニア性窒素を除去する硝化脱窒方法が知られている。   As a treatment method of wastewater containing ammonia nitrogen, nitrification and denitrification removes ammonia nitrogen by nitrifying (oxidizing) ammonia nitrogen to nitric acid by nitrifying bacteria and then reducing this nitric acid to nitrogen gas by denitrifying bacteria. Nitrogen methods are known.

しかし、上記硝化脱窒方法では、廃水中のアンモニア性窒素(NH)を、亜硝酸(NO)を経由して硝酸(NO)まで硝化するため、硝化反応の際に多量の酸素を供給する必要がある。また硝酸から窒素ガスへの脱窒反応の際に多量の水素供与体(例えばメタノール)を供給する必要がある。 However, in the above nitrification denitrification method, ammonia nitrogen (NH 4 ) in waste water is nitrified to nitric acid (NO 3 ) via nitrous acid (NO 2 ), so that a large amount of oxygen is used during the nitrification reaction. It is necessary to supply. Further, it is necessary to supply a large amount of hydrogen donor (for example, methanol) in the denitrification reaction from nitric acid to nitrogen gas.

そこで、アンモニア性窒素の硝化反応を亜硝酸の段階で止めて、この亜硝酸を窒素ガスに脱窒することで、硝化反応時の酸素の供給量と、脱窒反応時の水素供与体の供給量とを低減することが考えられる。   Therefore, by stopping the nitrification reaction of ammonia nitrogen at the nitrous acid stage and denitrifying this nitrous acid into nitrogen gas, the supply amount of oxygen during the nitrification reaction and the supply of hydrogen donor during the denitrification reaction It is conceivable to reduce the amount.

一方、従来の硝化脱窒方法に代わる廃水処理方法として、嫌気性アンモニア酸化細菌による脱窒処理を伴う廃水処理方法が注目を集めている。この方法は、廃水中のアンモニア性窒素を亜硝酸に硝化した後、当該亜硝酸と、廃水中のアンモニア性窒素とを嫌気性アンモニア酸化細菌により同時脱窒するものであり、硝化反応時の酸素の供給量を低減することができるだけでなく、脱窒反応時に水素供与体を供給する必要がない点で従来の硝化脱窒方法よりも有利である。しかし、嫌気性アンモニア酸化細菌を用いて廃水処理を行うためには、廃水中のアンモニア性窒素の硝化反応を亜硝酸の段階で止める必要がある。   On the other hand, as a wastewater treatment method that replaces the conventional nitrification denitrification method, a wastewater treatment method involving denitrification treatment with anaerobic ammonia-oxidizing bacteria is attracting attention. In this method, ammonia nitrogen in wastewater is nitrified to nitrous acid, and then the nitrous acid and ammonia nitrogen in the waste water are simultaneously denitrified by anaerobic ammonia oxidizing bacteria. This is advantageous over the conventional nitrification denitrification method in that not only can the supply amount of hydrogen be reduced but also it is not necessary to supply a hydrogen donor during the denitrification reaction. However, in order to perform wastewater treatment using anaerobic ammonia oxidizing bacteria, it is necessary to stop the nitrification reaction of ammoniacal nitrogen in the wastewater at the nitrous acid stage.

このような理由から、廃水中のアンモニア性窒素を亜硝酸に硝化する亜硝酸型の硝化反応を提供する微生物担体の作製方法がいくつか提案されている。   For this reason, several methods for producing a microbial carrier that provide a nitrite-type nitrification reaction in which ammonia nitrogen in wastewater is nitrified to nitrite have been proposed.

例えば特許文献1には、加熱処理により、亜硝酸型の硝化反応に適した硝化細菌だけを集積させることで、アンモニア性窒素の硝化反応を亜硝酸の段階で止める方法が記載されている。この方法では、アンモニア性窒素を亜硝酸に酸化するアンモニア酸化細菌と、亜硝酸を硝酸に硝化する亜硝酸酸化細菌とを含む担体に対して加熱処理を施すことで、亜硝酸酸化細菌を失活させて、アンモニア酸化細菌を担体中に優占的に集積させる。この担体を用いれば、廃水中のアンモニア性窒素の硝化反応を亜硝酸の段階で止めることができる。   For example, Patent Document 1 describes a method of stopping the nitrification reaction of ammoniacal nitrogen at the nitrite stage by accumulating only nitrifying bacteria suitable for the nitrite type nitrification reaction by heat treatment. In this method, heat treatment is applied to a carrier containing ammonia-oxidizing bacteria that oxidize ammonia nitrogen to nitrite and nitrite-oxidizing bacteria that nitrify nitrite to nitric acid, thereby inactivating the nitrite-oxidizing bacteria. Thus, ammonia-oxidizing bacteria are preferentially accumulated in the carrier. If this carrier is used, the nitrification reaction of ammoniacal nitrogen in wastewater can be stopped at the nitrous acid stage.

しかし特許文献1に記載された方法では、担体の加熱処理時に多量の熱エネルギーを供給する必要がある。このため、エネルギーコストを低減する観点から、担体の加熱処理を伴わない方法が提案されている。   However, in the method described in Patent Document 1, it is necessary to supply a large amount of heat energy during the heat treatment of the carrier. For this reason, from the viewpoint of reducing energy costs, a method that does not involve heat treatment of the carrier has been proposed.

例えば特許文献2は、アンモニア酸化細菌と亜硝酸酸化細菌とを含む活性汚泥を包括固定した担体に対して酸処理を施すことにより、アンモニア酸化細菌を優占的に集積させた担体を作製して、当該担体を用いて廃水処理を行う方法を開示している。   For example, Patent Document 2 discloses that a carrier in which ammonia-oxidizing bacteria are preferentially accumulated is produced by performing acid treatment on a carrier in which activated sludge containing ammonia-oxidizing bacteria and nitrite-oxidizing bacteria is immobilized. Discloses a method of performing wastewater treatment using the carrier.

特許3788601号公報Japanese Patent No. 3788601 特開2008−272610号公報JP 2008-272610 A

しかしながら、特許文献2に記載された方法では、廃水等により外部から持ち込まれる亜硝酸酸化細菌を失活させるため担体を定期的に酸処理する必要があり、この酸処理の条件によっては、担体の機械的強度が徐々に劣化して、担体内部の硝化細菌が流出してしまう場合がある。   However, in the method described in Patent Document 2, it is necessary to periodically acid-treat the carrier in order to inactivate nitrite-oxidizing bacteria brought in from the outside due to waste water or the like. Depending on the conditions of this acid treatment, The mechanical strength may gradually deteriorate, and nitrifying bacteria inside the carrier may flow out.

また担体を定期的に酸処理するには、硝化反応槽中の廃水と担体とを分離して、担体だけを回収しなければならず、担体回収のための複雑な工程が必要となる。   Further, in order to periodically acid-treat the carrier, it is necessary to separate the waste water and the carrier in the nitrification reaction tank and collect only the carrier, which requires a complicated process for collecting the carrier.

本発明は上述の事情に鑑みてなされたものであり、エネルギーコストが低く、長期間にわたって安定した廃水処理を簡便に行うことができる亜硝酸型硝化反応汚泥並びにその製造方法及び製造装置、並びに廃水処理方法及び廃水処理装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a low energy cost and can easily perform stable wastewater treatment over a long period of time, a nitrite-type nitrification reaction sludge, a manufacturing method and a manufacturing apparatus thereof, and wastewater. An object is to provide a treatment method and a wastewater treatment apparatus.

本発明に係る亜硝酸型硝化反応汚泥の製造方法は、アンモニア酸化細菌を優占的に集積させた亜硝酸型硝化反応汚泥の製造方法であって、少なくともアンモニア酸化細菌と亜硝酸酸化細菌とを含む活性汚泥のpHが6以下になるように、前記活性汚泥に対して酸処理を施す工程を含むことを特徴とする。   The method for producing a nitrite-type nitrifying sludge according to the present invention is a method for producing a nitrite-type nitrifying sludge in which ammonia-oxidizing bacteria are preferentially accumulated, and at least ammonia-oxidizing bacteria and nitrite-oxidizing bacteria It includes a step of subjecting the activated sludge to an acid treatment so that the pH of the contained activated sludge is 6 or less.

ここで、「pHが6以下」とは、pHが0以上6以下の場合だけでなく、pHメーターによる実測が困難なpHが0未満の場合をも含む。なお本明細書において「pH」は、25℃、1atmの状態における−log10[H]を意味する(ただし、[H]は水素イオン濃度(mol/L)である)。 Here, “pH is 6 or less” includes not only the case where the pH is 0 or more and 6 or less, but also the case where the pH is less than 0, which is difficult to actually measure with a pH meter. In the present specification, “pH” means −log 10 [H + ] at 25 ° C. and 1 atm (where [H + ] is a hydrogen ion concentration (mol / L)).

本願発明者が鋭意検討した結果、アンモニア酸化細菌が酸に対し高い耐性を持つ一方で、亜硝酸酸化細菌は酸に対して耐性が低いことが明らかになった。上記製造方法は、このようなアンモニア酸化細菌と亜硝酸酸化細菌との酸耐性の違いを利用したものであり、活性汚泥に対して酸処理を施すことにより、亜硝酸酸化細菌を失活させて、アンモニア酸化細菌を優占的に集積させることができる。   As a result of intensive studies by the inventor of the present application, it has been clarified that ammonia oxidizing bacteria have high resistance to acids, while nitrite oxidizing bacteria have low resistance to acids. The above production method utilizes such a difference in acid resistance between ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, and by applying acid treatment to activated sludge, the nitrite-oxidizing bacteria are inactivated. Ammonia-oxidizing bacteria can preferentially accumulate.

また酸処理は、担体の加熱処理に比べて低コストで行うことができるため、エネルギーコストを削減することができる。   In addition, since the acid treatment can be performed at a lower cost than the heat treatment of the carrier, the energy cost can be reduced.

さらにアンモニア酸化細菌を担体ではなく活性汚泥に集積させることにより、担体の破損に起因する硝化反応速度の低下を防止することができるとともに、担体回収のための複雑な工程を省略することができる。   Further, by accumulating ammonia oxidizing bacteria in activated sludge instead of the carrier, it is possible to prevent a decrease in the nitrification reaction rate due to the breakage of the carrier and to omit a complicated process for collecting the carrier.

上記亜硝酸型硝化反応汚泥の製造方法において、前記酸処理を施す工程では、前記活性汚泥に酸液を添加することで、前記活性汚泥のpHを0.5以上6.0以下(さらに好ましくは0.5以上5.0以下)の範囲で保持することが好ましい。   In the method for producing nitrite-type nitrification reaction sludge, in the step of performing the acid treatment, an acid solution is added to the activated sludge so that the pH of the activated sludge is 0.5 or more and 6.0 or less (more preferably It is preferable to hold in the range of 0.5 to 5.0.

活性汚泥のpHを上記範囲に調節することで、アンモニア酸化細菌を失活させることなく、亜硝酸酸化細菌を選択的に失活させることができる。   By adjusting the pH of the activated sludge to the above range, the nitrite oxidizing bacteria can be selectively deactivated without deactivating the ammonia oxidizing bacteria.

上記亜硝酸型硝化反応汚泥の製造方法において、前記酸処理は、下記(1)〜(3)のうち少なくとも一つの条件で行うことが好ましい。   In the method for producing a nitrite-type nitrification reaction sludge, the acid treatment is preferably performed under at least one of the following conditions (1) to (3).

(1)前記活性汚泥のpHを2.0未満の範囲で30秒以上保持する。     (1) Hold the pH of the activated sludge for 30 seconds or more in the range of less than 2.0.

(2)前記活性汚泥のpHを2.0以上4.0未満の範囲で3分以上保持する。     (2) Maintaining the pH of the activated sludge in the range of 2.0 or more and less than 4.0 for 3 minutes or more.

(3)前記活性汚泥のpHを4.0以上6.0以下の範囲で15分以上保持する。     (3) Maintaining the pH of the activated sludge in the range of 4.0 or more and 6.0 or less for 15 minutes or more.

これにより、亜硝酸酸化細菌を確実に失活させて、アンモニア酸化細菌がより選択的に集積した活性汚泥を製造することができる。   This makes it possible to produce activated sludge in which nitrite-oxidizing bacteria are reliably inactivated and ammonia-oxidizing bacteria are more selectively accumulated.

本発明にかかる亜硝酸型硝化反応汚泥は、上記亜硝酸型硝化反応汚泥の製造方法により製造することができる。   The nitrite type nitrification reaction sludge according to the present invention can be manufactured by the above-described method for manufacturing a nitrite type nitrification reaction sludge.

本発明に係る亜硝酸型硝化反応汚泥の製造装置は、アンモニア酸化細菌を優占的に集積させた亜硝酸型硝化反応汚泥の製造装置であって、少なくともアンモニア酸化細菌と亜硝酸酸化細菌とを含む活性汚泥のpHが6以下になるように、前記活性汚泥に対して酸処理を施す酸処理装置を含むことを特徴とする。   A nitrite-type nitrification reaction sludge production apparatus according to the present invention is a nitrite-type nitrification reaction sludge production apparatus in which ammonia-oxidizing bacteria are preferentially accumulated, and at least ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. It includes an acid treatment device that performs acid treatment on the activated sludge so that the pH of the activated sludge is 6 or less.

酸処理装置により、pH6以下の酸処理を活性汚泥に施すことで、活性汚泥中の亜硝酸酸化細菌を失活させて、アンモニア酸化細菌を優占的に集積させることができる。   By applying acid treatment at pH 6 or lower to the activated sludge with the acid treatment apparatus, the nitrite oxidizing bacteria in the activated sludge can be deactivated, and ammonia oxidizing bacteria can be preferentially accumulated.

本発明に係る廃水処理方法は、アンモニア性窒素を含む廃水を処理する廃水処理方法であって、少なくともアンモニア酸化細菌と亜硝酸酸化細菌とを含む活性汚泥のpHが6以下になるように、前記活性汚泥に対して酸処理を施す工程と、前記酸処理が施された前記活性汚泥により、前記廃水に含まれる前記アンモニア性窒素を亜硝酸に酸化する工程と、前記亜硝酸に対して脱窒処理を施す工程とを含むことを特徴とする。   The wastewater treatment method according to the present invention is a wastewater treatment method for treating wastewater containing ammoniacal nitrogen, wherein the activated sludge containing at least ammonia oxidizing bacteria and nitrite oxidizing bacteria has a pH of 6 or less. A step of subjecting the activated sludge to acid treatment; a step of oxidizing the ammoniacal nitrogen contained in the wastewater into nitrous acid by the activated sludge subjected to the acid treatment; and denitrification of the nitrite. And a process of performing a process.

上記廃水処理方法によれば、活性汚泥に対してpH6以下の酸処理を施すことにより、アンモニア酸化細菌を活性汚泥中に優占的に集積させて、アンモニア性窒素の硝化反応を亜硝酸の段階で止めることができる。これにより、硝化反応時の酸素の供給量と、還元反応時の水素供与体の供給量とを低減することができる。   According to the above wastewater treatment method, the ammonia-oxidizing bacteria are preferentially accumulated in the activated sludge by subjecting the activated sludge to an acid treatment at a pH of 6 or less, and the nitrification stage of ammonia nitrogen is performed in the nitrous acid stage. You can stop at. Thereby, the supply amount of oxygen during the nitrification reaction and the supply amount of hydrogen donor during the reduction reaction can be reduced.

上記廃水処理方法において、前記脱窒処理を施す工程では、嫌気性アンモニア酸化細菌によって、前記廃水に含まれる前記アンモニア性窒素を水素供与体とし、前記アンモニア性窒素を酸化する工程で生成した前記亜硝酸を脱窒してもよい。   In the wastewater treatment method, in the step of performing the denitrification treatment, the subnitrogen generated in the step of oxidizing the ammoniacal nitrogen by anaerobic ammonia oxidizing bacteria using the ammoniacal nitrogen contained in the wastewater as a hydrogen donor. Nitric acid may be denitrified.

上記廃水処理方法において、前記脱窒処理を施す工程では、脱窒細菌によって、前記アンモニア性窒素を酸化する工程で生成した前記亜硝酸を脱窒してもよい。   In the wastewater treatment method, in the step of performing the denitrification treatment, the nitrous acid generated in the step of oxidizing the ammoniacal nitrogen may be denitrified by a denitrification bacterium.

上記廃水処理方法において、前記アンモニア性窒素を前記亜硝酸に酸化する工程で用いた前記活性汚泥を回収する工程と、回収された前記活性汚泥に対して前記酸処理を施す工程とを含むことが好ましい。   The wastewater treatment method may include a step of recovering the activated sludge used in the step of oxidizing the ammonia nitrogen to the nitrous acid and a step of performing the acid treatment on the recovered activated sludge. preferable.

これにより、外部から亜硝酸酸化細菌が持ち込まれる場合であっても、亜硝酸型の硝化性能を長期にわたって維持することができる。   Thereby, even if nitrite-oxidizing bacteria are brought in from the outside, the nitrite-type nitrification performance can be maintained over a long period of time.

上記廃水処理方法において、前記酸処理が施された前記活性汚泥にアルカリ剤を添加して、前記活性汚泥のpHを調整する工程を含むことが好ましい。   The wastewater treatment method preferably includes a step of adjusting the pH of the activated sludge by adding an alkaline agent to the activated sludge subjected to the acid treatment.

このように、アルカリ剤の添加により酸処理後の活性汚泥のpHを調節することで、廃水処理の効率が低下してしまうことを防止することができる。   Thus, by adjusting the pH of the activated sludge after acid treatment by adding an alkali agent, it is possible to prevent the efficiency of wastewater treatment from being reduced.

本発明の廃水処理装置は、アンモニア性窒素を含む廃水を処理する廃水処理装置であって、少なくともアンモニア酸化細菌と亜硝酸酸化細菌とを含む活性汚泥のpHが6以下になるように、前記活性汚泥に対して酸処理を施す酸処理装置と、前記酸処理が施された前記活性汚泥により、前記廃水に含まれる前記アンモニア性窒素を亜硝酸に酸化する亜硝酸生成槽と、前記亜硝酸に対して脱窒処理を行う脱窒槽とを含むことを特徴とする。   The wastewater treatment apparatus of the present invention is a wastewater treatment apparatus for treating wastewater containing ammonia nitrogen, wherein the activated sludge containing at least ammonia oxidizing bacteria and nitrite oxidizing bacteria has a pH of 6 or less. An acid treatment device that performs acid treatment on sludge, a nitrous acid generation tank that oxidizes the ammoniacal nitrogen contained in the wastewater to nitrous acid by the activated sludge that has been subjected to the acid treatment, and nitrous acid. And a denitrification tank that performs a denitrification process.

上記廃水処理装置において、前記脱窒槽は、嫌気性アンモニア酸化細菌によって、前記廃水に含まれる前記アンモニア性窒素を水素供与体とし、前記亜硝酸生成槽において生成した前記亜硝酸を脱窒してもよい。   In the wastewater treatment apparatus, the denitrification tank may denitrify the nitrous acid generated in the nitrous acid generation tank by anaerobic ammonia oxidizing bacteria using the ammoniacal nitrogen contained in the wastewater as a hydrogen donor. Good.

上記廃水処理装置において、前記脱窒槽は、脱窒細菌によって、前記亜硝酸生成槽において生成した前記亜硝酸を脱窒してもよい。   In the wastewater treatment apparatus, the denitrification tank may denitrify the nitrous acid generated in the nitrous acid generation tank by denitrifying bacteria.

上記廃水処理装置において、前記亜硝酸生成槽から前記活性汚泥を回収する回収装置と、前記回収装置により回収された前記活性汚泥に対して前記酸処理を施して、前記活性汚泥を再生する再生装置とを含むことが好ましい。   In the wastewater treatment device, a recovery device that recovers the activated sludge from the nitrous acid production tank, and a regeneration device that regenerates the activated sludge by performing the acid treatment on the activated sludge recovered by the recovery device. Are preferably included.

上記廃水処理装置において、前記酸処理が施された前記活性汚泥にアルカリ剤を添加して、前記活性汚泥のpHを調整するpH調整装置を含むことが好ましい。   The wastewater treatment apparatus preferably includes a pH adjuster that adjusts the pH of the activated sludge by adding an alkaline agent to the activated sludge subjected to the acid treatment.

本発明によれば、活性汚泥に対してpH6以下の酸処理を施すことにより、亜硝酸酸化細菌を失活させて、アンモニア酸化細菌を優占的に集積させることができる。これにより、廃水中のアンモニア性窒素の硝化反応を亜硝酸の段階で止めて、硝化反応時の酸素の供給量と、還元反応時の水素供与体の供給量とを低減することができる。   According to the present invention, by subjecting activated sludge to an acid treatment at pH 6 or lower, nitrite-oxidizing bacteria can be inactivated and ammonia-oxidizing bacteria can be preferentially accumulated. Thereby, the nitrification reaction of ammonia nitrogen in the wastewater can be stopped at the nitrous acid stage, and the supply amount of oxygen during the nitrification reaction and the supply amount of hydrogen donor during the reduction reaction can be reduced.

酸処理は、担体の加熱処理に比べて低コストで行うことができるため、エネルギーコストを削減することができる。   Since the acid treatment can be performed at a lower cost than the heat treatment of the carrier, the energy cost can be reduced.

またアンモニア酸化細菌を担体ではなく活性汚泥に集積させることにより、担体の破損に起因する硝化反応速度の低下を防止することができるとともに、担体回収のための複雑な工程を省略することができる。   Further, by accumulating ammonia oxidizing bacteria in activated sludge instead of the carrier, it is possible to prevent a decrease in the nitrification reaction rate due to the breakage of the carrier and to omit a complicated process for collecting the carrier.

本発明に係る亜硝酸型硝化反応汚泥の製造装置(反応汚泥製造装置)の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus (reactive sludge manufacturing apparatus) of the nitrite type nitrification reaction sludge which concerns on this invention. 亜硝酸型硝化反応汚泥を用いた硝化処理装置の一例を示す構成図である。It is a block diagram which shows an example of the nitrification processing apparatus using a nitrite type nitrification reaction sludge. 第1の廃水処理実験に用いた合成廃水の水質を示す表である。It is a table | surface which shows the quality of the synthetic wastewater used for the 1st wastewater treatment experiment. 第1の廃水処理実験の条件下における処理水中の窒素濃度を示すグラフであり、(a)〜(c)それぞれ本発明汚泥A〜Cを用いた場合の窒素濃度を示し、(d)は比較汚泥を用いた場合の窒素濃度を示す。It is a graph which shows the nitrogen concentration in the treated water on the conditions of a 1st wastewater treatment experiment, (a)-(c) shows the nitrogen concentration at the time of using this invention sludge AC, respectively, (d) is a comparison The nitrogen concentration when sludge is used is shown. 第2の廃水処理実験に用いた合成廃水の水質を示す表である。(a)は亜硝酸性窒素を44mg/L含有する合成廃水の水質を示す表であり、(b)はアンモニア性窒素を44mg/L含有する合成廃水の水質を示す表である。It is a table | surface which shows the quality of the synthetic wastewater used for the 2nd wastewater treatment experiment. (A) is a table | surface which shows the quality of the synthetic wastewater which contains 44 mg / L of nitrite nitrogen, (b) is a table | surface which shows the quality of the synthetic wastewater which contains 44 mg / L of ammonia nitrogen. 第2の廃水処理実験に用いた好気反応槽を示す構成図である。It is a block diagram which shows the aerobic reaction tank used for the 2nd wastewater treatment experiment. (a)は、亜硝酸性窒素を44mg/L含有する合成廃水(図5(a)参照)を1ヶ月間連続曝気処理して得られた上澄み液の硝酸性窒素濃度を示すグラフである。(b)はアンモニア性窒素を44mg/L含有する合成廃水(図5(b)参照)を1ヶ月間連続曝気処理して得られた上澄み液の亜硝酸性窒素濃度を示すグラフである。(A) is a graph which shows the nitrate nitrogen density | concentration of the supernatant liquid obtained by carrying out the continuous aeration process of the synthetic waste water (refer FIG. 5 (a)) containing 44 mg / L of nitrite nitrogen for one month. (B) is a graph showing the concentration of nitrite nitrogen in the supernatant obtained by continuous aeration treatment of synthetic wastewater containing 44 mg / L of ammoniacal nitrogen (see FIG. 5B) for one month. 反応汚泥の酸処理を定期的に行う硝化処理装置の一例を示す構成図である。It is a block diagram which shows an example of the nitrification processing apparatus which performs the acid treatment of reaction sludge regularly. 第3の廃水処理実験に用いた廃水の平均水質を示す表である。It is a table | surface which shows the average water quality of the wastewater used for the 3rd wastewater treatment experiment. 第3の廃水処理実験の条件下における処理水中の窒素濃度を示すグラフである。It is a graph which shows the nitrogen concentration in the treated water under the conditions of the third wastewater treatment experiment. (a)は脱窒菌による脱窒処理を伴う廃水処理方法を示す工程図であり、(b)は嫌気性アンモニア酸化細菌による脱窒処理を伴う廃水処理方法を示す工程図である。(A) is a flowchart showing a wastewater treatment method involving denitrification treatment by denitrifying bacteria, and (b) is a flowchart showing a wastewater treatment method involving denitrification treatment by anaerobic ammonia oxidizing bacteria. 本発明に係る廃水処理方法を実施するための廃水処理装置の一例を示す構成図である。It is a block diagram which shows an example of the waste water treatment apparatus for enforcing the waste water treatment method which concerns on this invention. 図12に示す廃水処理装置の変形例を示す構成図である。It is a block diagram which shows the modification of the waste water treatment apparatus shown in FIG. 図12に示す廃水処理装置の他の変形例を示す構成図である。It is a block diagram which shows the other modification of the waste water treatment apparatus shown in FIG. 図12に示す廃水処理装置の他の変形例を示す構成図である。It is a block diagram which shows the other modification of the waste water treatment apparatus shown in FIG. 図15に示す廃水処理装置の変形例を示す構成図である。It is a block diagram which shows the modification of the waste water treatment apparatus shown in FIG.

以下、添付図面に従って本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本発明に係る亜硝酸型硝化反応汚泥は、アンモニア性窒素を亜硝酸に酸化するアンモニア酸化細菌を優占的に集積させた活性汚泥である。   The nitrite-type nitrification sludge according to the present invention is an activated sludge in which ammonia-oxidizing bacteria that oxidize ammoniacal nitrogen to nitrous acid are preferentially accumulated.

図1は亜硝酸型硝化反応汚泥の製造装置(反応汚泥製造装置)の一例を示す構成図である。同図に示すように、反応汚泥製造装置10は、活性汚泥12が溜められた酸処理槽14と、活性汚泥12のpHを測定するpH測定機16と、pH測定機16の測定結果に基づいて酸液タンク18に溜められた酸液を酸処理槽14に供給するポンプPとにより構成される。   FIG. 1 is a configuration diagram showing an example of a nitrite-type nitrifying reaction sludge production apparatus (reaction sludge production apparatus). As shown in the figure, the reaction sludge production apparatus 10 is based on an acid treatment tank 14 in which activated sludge 12 is stored, a pH measuring device 16 that measures the pH of the activated sludge 12, and a measurement result of the pH measuring device 16. And a pump P for supplying the acid solution stored in the acid solution tank 18 to the acid treatment tank 14.

活性汚泥12は、少なくともアンモニア酸化細菌と亜硝酸酸化細菌とを含む複合微生物系の汚泥であり、例えば、下水や工場廃水を処理する処理場の活性汚泥、湖沼や河川や海の底泥、地表の土壌等を使用することができる。   The activated sludge 12 is a complex microbial sludge containing at least ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. For example, activated sludge in a treatment plant that treats sewage and factory wastewater, lakes, rivers, sea bottom mud, surface Can be used.

活性汚泥12のpHは、pH測定機16により常に測定されており、このpH測定機16の測定結果に基づいて、ポンプPによる酸処理槽14への酸液の供給量が調節される。これにより、活性汚泥12に対して、pH6以下の酸処理が施される。ここで、「pHが6以下」とは、pHが0以上6以下の場合だけでなく、一般的なpHメーターによる実測が困難なpHが0未満の場合をも含む。例えば、理論上pHが負の値になる2規定の硫酸に活性汚泥12を投入する場合であっても、酸処理後の活性汚泥12を中和して、一定時間放置することで、活性汚泥12中のアンモニア酸化細菌を再活性化することができる。   The pH of the activated sludge 12 is constantly measured by the pH measuring device 16, and the supply amount of the acid solution to the acid treatment tank 14 by the pump P is adjusted based on the measurement result of the pH measuring device 16. Thereby, the acid treatment of pH 6 or less is performed on the activated sludge 12. Here, “pH is 6 or less” includes not only the case where the pH is 0 or more and 6 or less, but also the case where the pH is less than 0, which is difficult to measure with a general pH meter. For example, even when the activated sludge 12 is charged into 2N sulfuric acid having a negative pH value in theory, the activated sludge 12 after neutralizing the acid-treated sludge 12 and leaving it for a certain period of time can be used. The ammonia oxidizing bacteria in 12 can be reactivated.

本願発明者が鋭意検討した結果、アンモニア酸化細菌が酸に対し高い耐性を持つ一方で、亜硝酸酸化細菌は酸に対して耐性が低いことが明らかになった。上記構成の反応汚泥製造装置10は、このようなアンモニア酸化細菌と亜硝酸酸化細菌との酸耐性の違いを利用したものであり、活性汚泥12に対してpH6以下の酸処理を施すことにより、亜硝酸酸化細菌を失活させて、アンモニア酸化細菌が優占的に集積した反応汚泥を製造することができる。   As a result of intensive studies by the inventor of the present application, it has been clarified that ammonia oxidizing bacteria have high resistance to acids, while nitrite oxidizing bacteria have low resistance to acids. The reaction sludge production apparatus 10 having the above configuration utilizes the difference in acid resistance between such ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, and by subjecting the activated sludge 12 to an acid treatment of pH 6 or less, By reacting with nitrite-oxidizing bacteria, a reaction sludge in which ammonia-oxidizing bacteria preferentially accumulate can be produced.

活性汚泥12の酸処理は、pHが0.5以上6.0以下の範囲であることが好ましく、pHが0.5以上5.0以下の範囲であることがさらに好ましい。これにより、アンモニア酸化細菌を失活させることなく、亜硝酸酸化細菌を迅速に殺菌することができる。   In the acid treatment of the activated sludge 12, the pH is preferably in the range of 0.5 to 6.0, and more preferably in the range of 0.5 to 5.0. Thereby, it is possible to quickly sterilize the nitrite oxidizing bacteria without inactivating the ammonia oxidizing bacteria.

また活性汚泥12の酸処理は、下記(1)〜(3)のうち少なくとも一つの条件で行うことが好ましい。   In addition, the acid treatment of the activated sludge 12 is preferably performed under at least one of the following conditions (1) to (3).

(1)前記活性汚泥のpHを2.0未満の範囲で30秒以上保持する。     (1) Hold the pH of the activated sludge for 30 seconds or more in the range of less than 2.0.

(2)前記活性汚泥のpHを2.0以上4.0未満の範囲で3分以上保持する。     (2) Maintaining the pH of the activated sludge in the range of 2.0 or more and less than 4.0 for 3 minutes or more.

(3)前記活性汚泥のpHを4.0以上6.0以下の範囲で15分以上保持する。     (3) Maintaining the pH of the activated sludge in the range of 4.0 or more and 6.0 or less for 15 minutes or more.

これにより、活性汚泥12中の亜硝酸酸化細菌を確実に失活させて、アンモニア酸化細菌をより選択的に集積させることができる。   Thereby, the nitrite oxidizing bacteria in the activated sludge 12 can be reliably deactivated, and the ammonia oxidizing bacteria can be more selectively accumulated.

また酸処理後の活性汚泥12に対してアルカリ剤を添加して、活性汚泥12のpHを調整することが好ましい。これにより、廃水処理の効率が低下してしまうことを防止することができる。   Moreover, it is preferable to adjust the pH of the activated sludge 12 by adding an alkali agent to the activated sludge 12 after the acid treatment. Thereby, it can prevent that the efficiency of wastewater treatment falls.

なお図1には、所定量の活性汚泥12に対してバッチ方式で酸処理を行う例を示したが、一定の流量で酸処理槽14を通過する活性汚泥12に対して連続方式で酸処理を行ってもよい。連続方式で酸処理を行う場合、上記(1)〜(3)の条件における酸処理時間(pH保持時間)を、酸処理槽14における活性汚泥12の平均滞留時間に読み替えて適用することができる。   Although FIG. 1 shows an example in which a predetermined amount of activated sludge 12 is subjected to acid treatment in a batch mode, the activated sludge 12 passing through the acid treatment tank 14 at a constant flow rate is acid-treated in a continuous manner. May be performed. When acid treatment is performed in a continuous manner, the acid treatment time (pH retention time) under the conditions (1) to (3) above can be read as the average residence time of the activated sludge 12 in the acid treatment tank 14 and applied. .

また図1には、反応汚泥製造装置10が独立した例について説明したが、反応汚泥製造装置10を廃水処理装置に組み込んで、廃水処理装置の一部として使用してもよい。   Moreover, although FIG. 1 demonstrated the example in which the reaction sludge production apparatus 10 became independent, you may incorporate the reaction sludge production apparatus 10 in a wastewater treatment apparatus, and may be used as a part of wastewater treatment apparatus.

次に、上記構成の反応汚泥製造装置10により製造した亜硝酸型硝化反応汚泥を用いて、廃水中のアンモニア性窒素を亜硝酸に酸化(硝化)する硝化処理装置の構成について説明する。   Next, the configuration of a nitrification treatment apparatus that oxidizes (nitrifies) ammonia nitrogen in wastewater to nitrous acid using the nitrite type nitrification reaction sludge produced by the reaction sludge production apparatus 10 having the above configuration will be described.

図2は亜硝酸型硝化反応汚泥を用いる硝化処理装置の一例を示す構成図である。硝化処理装置20は、主として、廃水原水を貯蔵する原水タンク22と、原水タンク22から流入する廃水原水の硝化処理が行われる好気反応槽(亜硝酸生成槽)24と、硝化処理が施された廃水(処理水30)と反応汚泥(亜硝酸型硝化反応汚泥)28とを分離する沈殿槽26とにより構成される。   FIG. 2 is a configuration diagram showing an example of a nitrification processing apparatus using nitrite type nitrification reaction sludge. The nitrification apparatus 20 mainly includes a raw water tank 22 for storing wastewater raw water, an aerobic reaction tank (nitrite production tank) 24 in which nitrification of wastewater raw water flowing from the raw water tank 22 is performed, and nitrification treatment is performed. The waste water (treated water 30) and the reaction sludge (nitrite-type nitrification reaction sludge) 28 are separated from each other.

原水タンク22と好気反応槽24との間には、廃水原水を好気反応槽24に送るポンプP1(原水ポンプ)が設けられており、沈殿槽26と好気反応槽24との間には、反応汚泥28を好気反応槽24に返送するポンプP2(返送汚泥ポンプ)が設けられている。   Between the raw water tank 22 and the aerobic reaction tank 24, a pump P <b> 1 (raw water pump) that sends raw waste water to the aerobic reaction tank 24 is provided, and between the precipitation tank 26 and the aerobic reaction tank 24. Is provided with a pump P2 (return sludge pump) for returning the reaction sludge 28 to the aerobic reaction tank 24.

好気反応槽24には、ポンプP1により原水タンク22から送られた原水廃水と、ポンプP2により沈殿槽26から返送された反応汚泥28との混合液32が溜まっており、この混合液32は好気反応槽24内に設けられた散気装置34により曝気攪拌される。この散気装置34は、例えば、円筒状のパイプに設けられた複数の穴からエアを噴出する構成を有し、混合液32を均一に攪拌するとともに、硝化処理に必要な酸素を好気反応槽24に供給する。   In the aerobic reaction tank 24, a mixed liquid 32 of raw water wastewater sent from the raw water tank 22 by the pump P1 and reaction sludge 28 returned from the settling tank 26 by the pump P2 is accumulated. The aeration apparatus 34 provided in the aerobic reaction tank 24 is aerated and stirred. For example, the air diffuser 34 has a configuration in which air is ejected from a plurality of holes provided in a cylindrical pipe, and the liquid mixture 32 is uniformly stirred and oxygen necessary for nitrification is aerobically reacted. Supply to tank 24.

好気反応槽24内の混合液32のpHは、pH測定機16により常に(又は定期的に)測定されており、pH測定機16の測定値に基づいて、ポンプP3により、酸液タンク18から好気反応槽24に酸液が供給される。これにより、混合液32のpHを所定の範囲内に調節することができる。   The pH of the mixed solution 32 in the aerobic reaction tank 24 is constantly (or periodically) measured by the pH measuring device 16, and based on the measured value of the pH measuring device 16, the acid solution tank 18 is pumped by the pump P 3. To the aerobic reaction tank 24. Thereby, the pH of the liquid mixture 32 can be adjusted within a predetermined range.

上記構成の好気反応槽24において、混合液32中のアンモニア性窒素は、反応汚泥28により持ち込まれたアンモニア酸化細菌により、亜硝酸に酸化(硝化)される。   In the aerobic reaction tank 24 configured as described above, the ammoniacal nitrogen in the mixed solution 32 is oxidized (nitrified) into nitrous acid by ammonia oxidizing bacteria brought in by the reaction sludge 28.

好気反応槽24における硝化処理が施された混合液32は、沈殿槽26に送られて、反応汚泥28と処理水30とに分離される。沈殿槽26における反応汚泥28と処理水30との分離は任意の手法で行うことができる。図2には、反応汚泥28と処理水30の比重差を利用して分離する例を示している。   The liquid mixture 32 that has been subjected to nitrification in the aerobic reaction tank 24 is sent to a precipitation tank 26 and separated into reaction sludge 28 and treated water 30. Separation of the reaction sludge 28 and the treated water 30 in the settling tank 26 can be performed by any method. In FIG. 2, the example which isolate | separates using the specific gravity difference of the reaction sludge 28 and the treated water 30 is shown.

沈殿槽26において重力沈殿した反応汚泥28は、沈殿槽26の下方から抜き取られ、上澄み液である処理水30は沈殿槽26から排出される。   The reaction sludge 28 that has been gravity-precipitated in the settling tank 26 is extracted from below the settling tank 26, and the treated water 30 that is a supernatant is discharged from the settling tank 26.

この後、反応汚泥28は、返送汚泥弁V1を開いた状態で、ポンプP2を稼動することで、再び好気反応槽24に返送される。また硝化処理装置20内の反応汚泥28の全体量は、汚泥引抜弁V2の開閉により調節することができる。   Thereafter, the reaction sludge 28 is returned again to the aerobic reaction tank 24 by operating the pump P2 with the return sludge valve V1 opened. The total amount of the reaction sludge 28 in the nitrification apparatus 20 can be adjusted by opening and closing the sludge extraction valve V2.

上記構成の硝化処理装置20を用いて、反応汚泥製造装置10により製造した亜硝酸型硝化反応汚泥の亜硝酸型の硝化性能を確認するために、下記の方法による第1の廃水処理実験を行った。   In order to confirm the nitrite type nitrification performance of the nitrite type nitrification reaction sludge produced by the reaction sludge production apparatus 10 using the nitrification treatment apparatus 20 having the above configuration, a first wastewater treatment experiment by the following method was performed. It was.

硝化処理の対象である廃水として、アンモニア性窒素濃度が40mg/Lになるように調整された合成廃水を用いた。図3は硝化処理の対象である合成廃水の水質を示す表である。   As waste water to be subjected to nitrification treatment, synthetic waste water adjusted to have an ammoniacal nitrogen concentration of 40 mg / L was used. FIG. 3 is a table showing the quality of the synthetic wastewater that is the object of nitrification treatment.

反応汚泥28には、下水処理場で採取した返送汚泥(活性汚泥浮遊物質濃度(MLSS濃度:Mixed Liquor Suspended Solid)=6,000mg/L)に対して、下記条件で酸処理および中和処理した反応汚泥(本発明汚泥A〜Cと、比較汚泥)を用いた。   The reaction sludge 28 was subjected to an acid treatment and a neutralization treatment under the following conditions with respect to a return sludge collected at a sewage treatment plant (activated sludge suspended solids concentration (MLSS concentration: Mixed Liquor Suspended Solid) = 6,000 mg / L). Reaction sludge (the present invention sludge AC and comparative sludge) was used.

本発明汚泥Aは、上記返送汚泥のpHを0.4〜0.6で5分間維持した後、アルカリ剤を添加してpH7.5に中和して作製した。   The sludge A of the present invention was prepared by maintaining the pH of the returned sludge at 0.4 to 0.6 for 5 minutes, and then neutralizing to pH 7.5 by adding an alkaline agent.

本発明汚泥Bは、上記返送汚泥のpHを1.9〜2.1で15分間維持した後、アルカリ剤を添加してpH7.5に中和して作製した。   The sludge B of the present invention was prepared by maintaining the pH of the returned sludge at 1.9 to 2.1 for 15 minutes and then neutralizing to pH 7.5 by adding an alkaline agent.

本発明汚泥Cは、上記返送汚泥のpHを3.9〜4.1で60分間維持した後、アルカリ剤を添加してpH7.5に中和して作製した。   The sludge C of the present invention was prepared by maintaining the pH of the returned sludge at 3.9 to 4.1 for 60 minutes, and then adding an alkali agent to neutralize to pH 7.5.

比較汚泥は、上記返送汚泥のpHを7.4〜7.6で60分間維持することで作製した。   The comparative sludge was produced by maintaining the pH of the returned sludge at 7.4 to 7.6 for 60 minutes.

酸処理及び中和処理には、1mol/Lの硫酸と、2mol/Lの水酸化ナトリウムとを用いた。   For the acid treatment and neutralization treatment, 1 mol / L sulfuric acid and 2 mol / L sodium hydroxide were used.

好気反応槽24の反応容積は2Lであり、好気反応槽24内のMLSS濃度が2,500〜3,500mg/Lになるように運転した。また好気反応槽24内の水温を18〜22℃(平均20℃)に調節した。好気反応槽24における廃水の水理学的滞留時間は3時間とした。   The reaction volume of the aerobic reaction tank 24 was 2 L, and the MLSS concentration in the aerobic reaction tank 24 was operated to be 2500 to 3,500 mg / L. Moreover, the water temperature in the aerobic reaction tank 24 was adjusted to 18-22 degreeC (average 20 degreeC). The hydraulic residence time of the wastewater in the aerobic reaction tank 24 was 3 hours.

好気反応槽24内の溶存酸素(DO:Dissolved Oxygen)濃度は、亜硝酸型の硝化性能を評価しやすくするため、あえて硝酸型硝化反応が起こりやすい4.0mg/L以上になるように、散気装置34のエア噴出量を調節した。   The dissolved oxygen (DO: Dissolved Oxygen) concentration in the aerobic reaction tank 24 is set to 4.0 mg / L or more so that the nitric acid type nitrification reaction is likely to occur in order to easily evaluate the nitrite type nitrification performance. The amount of air ejected from the air diffuser 34 was adjusted.

好気反応槽24内のpHは、亜硝酸型の硝化性能を評価しやすくするため、あえて硝酸型硝化反応が起こりやすい7.0以上7.5以下になるように、ポンプP3による酸液の添加量を調節した。   The pH in the aerobic reaction tank 24 is 7.0 to 7.5 so that the nitric acid type nitrification reaction is likely to occur, so that the nitrite type nitrification performance can be easily evaluated. The amount added was adjusted.

図4は上述の条件下における処理水30中の窒素濃度を示すグラフであり、図4(a)〜(c)はそれぞれ本発明汚泥A〜Cを用いた場合の窒素濃度を示し、図4(d)は比較汚泥を用いた場合の窒素濃度を示す。図4(a)〜(d)において、○は廃水原水のアンモニア性窒素濃度を示し、●は処理水30のアンモニア性窒素濃度を示し、▲は処理水30の亜硝酸性窒素濃度を示し、■は処理水30の硝酸性窒素濃度を示す。   FIG. 4 is a graph showing the nitrogen concentration in the treated water 30 under the above-mentioned conditions. FIGS. 4 (a) to 4 (c) show the nitrogen concentration when the sludges A to C of the present invention are used, respectively. (D) shows the nitrogen concentration when comparative sludge is used. 4 (a) to (d), ◯ indicates the ammonia nitrogen concentration of the wastewater raw water, ● indicates the ammonia nitrogen concentration of the treated water 30, and ▲ indicates the nitrite nitrogen concentration of the treated water 30, (2) indicates the nitrate nitrogen concentration of the treated water 30.

図4(a)〜(c)に示すように、本発明汚泥A〜Cを用いた廃水処理では開始から1週間目からアンモニア酸化活性が上昇し、3週間目には亜硝酸生成率90%以上の亜硝酸生成能が確認された。その後、2ヶ月以上にわたって合成廃水の硝化処理を継続したが、硝酸生成能が上昇することはなかった。このように、本発明の製造方法により製造した反応汚泥28を用いれば、好気反応槽24において亜硝酸型の硝化反応が起こることが分かった。   As shown in FIGS. 4 (a) to (c), in the wastewater treatment using the sludges A to C of the present invention, the ammonia oxidation activity increased from the first week from the start, and the nitrite production rate was 90% at the third week. The above nitrous acid production ability was confirmed. Thereafter, nitrification of synthetic wastewater was continued for 2 months or more, but the nitric acid production ability did not increase. Thus, it has been found that when the reaction sludge 28 produced by the production method of the present invention is used, a nitrite type nitrification reaction occurs in the aerobic reaction tank 24.

一方、図4(d)に示すように、比較汚泥を用いた廃水処理では、運転開始直後の2週間は亜硝酸の生成能のみが上昇したが、その後、硝酸生成能が上昇し、3週間目以降には硝酸生成率90%以上の硝酸生成能が確認された。その後、2ヶ月以上廃水処理を行ったが、硝酸生成能の抑制は確認されなかった。   On the other hand, as shown in FIG. 4 (d), in the wastewater treatment using the comparative sludge, only the ability to produce nitrous acid increased for 2 weeks immediately after the start of operation, but thereafter, the ability to produce nitric acid increased, and 3 weeks From the first time, the ability to produce nitric acid with a nitric acid production rate of 90% or more was confirmed. Thereafter, wastewater treatment was performed for 2 months or more, but suppression of nitric acid production ability was not confirmed.

以上から、少なくともアンモニア酸化細菌と亜硝酸酸化細菌とを含む活性汚泥に対して、pH6以下の酸処理を施すことにより、亜硝酸型の硝化性能を有する反応汚泥28を製造可能であることが確認された。   From the above, it is confirmed that the reaction sludge 28 having nitrite type nitrification performance can be produced by subjecting activated sludge containing at least ammonia oxidizing bacteria and nitrite oxidizing bacteria to acid treatment at pH 6 or lower. It was done.

次に、反応汚泥28を製造する際の酸処理条件と、反応汚泥28の亜硝酸型の硝化性能との関係について検討するために、下記の方法による第2の廃水処理実験を行った。   Next, in order to examine the relationship between the acid treatment conditions for producing the reaction sludge 28 and the nitrite-type nitrification performance of the reaction sludge 28, a second wastewater treatment experiment was performed by the following method.

亜硝酸型硝化反応汚泥として、第1の廃水処理実験と同様に、酸処理及び中和処理が施されたMLSS濃度が6,000mg/Lの汚泥(下水処理場にて採取)を用いた。汚泥の酸処理は、pHが0、0.5、2、3、4、5、6又は7であり、処理時間(分)が0.1、0.5、1、3、9、15、30又は60の条件下で行った。その後、酸処理後の汚泥を、直ちにアルカリ液でpH7.5に中和した。   As the nitrite-type nitrification reaction sludge, as in the first wastewater treatment experiment, sludge having a MLSS concentration of 6,000 mg / L (collected at a sewage treatment plant) subjected to acid treatment and neutralization treatment was used. The acid treatment of sludge has a pH of 0, 0.5, 2, 3, 4, 5, 6 or 7, and a treatment time (minute) of 0.1, 0.5, 1, 3, 9, 15, The test was performed under 30 or 60 conditions. Thereafter, the sludge after acid treatment was immediately neutralized to pH 7.5 with an alkaline solution.

硝化処理の対象である合成廃水は、亜硝酸性窒素を44mg/L含有する合成廃水と、アンモニア性窒素を44mg/L含有する合成廃水とを使用した。図5(a)は亜硝酸性窒素を44mg/L含有する合成廃水の水質を示す表であり、図5(b)はアンモニア性窒素を44mg/L含有する合成廃水の水質を示す表である。   The synthetic wastewater that is the target of nitrification treatment was synthetic wastewater containing 44 mg / L of nitrite nitrogen and synthetic wastewater containing 44 mg / L of ammoniacal nitrogen. FIG. 5A is a table showing the quality of synthetic wastewater containing 44 mg / L of nitrite nitrogen, and FIG. 5B is a table showing the quality of synthetic wastewater containing 44 mg / L of ammonia nitrogen. .

これらの合成廃水450mLと、上述の亜硝酸型硝化反応汚泥50mLとをそれぞれ図6に示す好気反応槽24に投入して、水温20℃、曝気風量300mL/分の条件で、連続曝気処理を行った。好気反応槽24内の反応液の蒸発を考慮して、1日1回曝気を停止して活性汚泥を沈殿させ、上澄み液400mLをそれぞれの培地と交換する半回分培養を行った。   These synthetic waste water 450mL and the above-mentioned nitrite type nitrification sludge 50mL are put into the aerobic reaction tank 24 shown in FIG. 6, respectively, and a continuous aeration process is performed under the conditions of a water temperature of 20 ° C. and an aeration air volume of 300 mL / min. went. In consideration of evaporation of the reaction solution in the aerobic reaction tank 24, aeration was stopped once a day to precipitate activated sludge, and semi-batch culture was performed in which 400 mL of the supernatant was replaced with each medium.

図7(a)は、亜硝酸性窒素を44mg/L含有する合成廃水(図5(a)参照)を1ヶ月間連続曝気処理して得られた上澄み液の硝酸性窒素濃度を示すグラフであり、図7(b)はアンモニア性窒素を44mg/L含有する合成廃水(図5(b)参照)を1ヶ月間連続曝気処理して得られた上澄み液の亜硝酸性窒素濃度を示すグラフである。   FIG. 7 (a) is a graph showing the nitrate nitrogen concentration of the supernatant obtained by continuous aeration treatment of synthetic wastewater containing 44 mg / L of nitrite nitrogen (see FIG. 5 (a)) for one month. FIG. 7 (b) is a graph showing the concentration of nitrite nitrogen in the supernatant obtained by continuous aeration treatment of synthetic wastewater containing 44 mg / L of ammoniacal nitrogen (see FIG. 5 (b)) for one month. It is.

図7(a)及び(b)から、下記(1)〜(3)の条件下で、活性汚泥の酸処理を行うことで、硝酸の生成を抑制しつつ、亜硝酸の生成を促進することが可能な反応汚泥を製造可能であることが分かった。   From FIG. 7 (a) and (b), by performing the acid treatment of activated sludge under the following conditions (1) to (3), the production of nitrous acid is promoted while the production of nitric acid is suppressed. It was found that it is possible to produce reactive sludge that can be.

(1)前記活性汚泥のpHを2.0未満の範囲で30秒以上保持する。     (1) Hold the pH of the activated sludge for 30 seconds or more in the range of less than 2.0.

(2)前記活性汚泥のpHを2.0以上4.0未満の範囲で3分以上保持する。     (2) Maintaining the pH of the activated sludge in the range of 2.0 or more and less than 4.0 for 3 minutes or more.

(3)前記活性汚泥のpHを4.0以上6.0以下の範囲で15分以上保持する。     (3) Maintaining the pH of the activated sludge in the range of 4.0 or more and 6.0 or less for 15 minutes or more.

次に、亜硝酸型硝化反応汚泥の亜硝酸型の硝化性能を長期にわたって安定的に維持するための硝化処理装置の構成について説明する。   Next, the configuration of a nitrification apparatus for stably maintaining the nitrite type nitrification performance of the nitrite type nitrification reaction sludge over a long period of time will be described.

上述の第1の廃水処理実験および第2の廃水処理実験では、硝化処理対象として合成廃水を用いたため外部から亜硝酸酸化細菌が持ち込まれることはなかったが、実際の廃水には亜硝酸酸化細菌が含まれている。このため、硝化処理を長期にわたって継続すると、廃水とともに好気反応槽に流入した亜硝酸酸化細菌が増殖して、好気反応槽における硝化反応が亜硝酸型硝化から硝酸型硝化に移行してしまう場合がある。   In the first wastewater treatment experiment and the second wastewater treatment experiment, since synthetic wastewater was used as a nitrification target, nitrite-oxidizing bacteria were not brought in from the outside. It is included. For this reason, if nitrification treatment is continued for a long period of time, nitrite-oxidizing bacteria that flow into the aerobic reaction tank along with the wastewater grow, and the nitrification reaction in the aerobic reaction tank shifts from nitrite-type nitrification to nitrate-type nitrification. There is a case.

このため、亜硝酸型の硝化性能を長期にわたって維持する観点から、反応汚泥(亜硝酸型硝化反応汚泥)に対して、定期的にpH6以下(好ましくはpH0.5以上6.0以下、さらに好ましくは0.5以上5.0以下)の酸処理を施すことが好ましい。   For this reason, from the viewpoint of maintaining the nitrite type nitrification performance over a long period of time, the pH of the reaction sludge (nitrite type nitrification reaction sludge) is regularly 6 or less (preferably pH 0.5 or more and 6.0 or less, more preferably Is preferably 0.5 to 5.0).

この場合、全ての反応汚泥に対して一度に酸処理をするのではなく、沈殿槽から好気反応槽に返送される返送汚泥の一部を回収して、定期的に酸処理することが好ましい。これにより、好気反応槽における亜硝酸酸化活性を長期的に抑制するとともに、好気反応槽におけるアンモニア酸化細菌の不足に起因するアンモニア酸化活性の低下を防止することができる。また返送汚泥に対して酸処理を施すことで、酸液の添加量を少なくすることができる。   In this case, it is preferable not to perform the acid treatment on all the reaction sludges at once, but to collect a part of the returned sludge returned from the sedimentation tank to the aerobic reaction tank and to periodically perform the acid treatment. . Thereby, while suppressing the nitrite oxidation activity in an aerobic reaction tank for a long term, the fall of the ammonia oxidation activity resulting from the lack of the ammonia oxidation bacteria in an aerobic reaction tank can be prevented. Moreover, the amount of acid solution added can be reduced by subjecting the returned sludge to acid treatment.

図8は、反応汚泥の酸処理を定期的に行う硝化処理装置の一例を示す構成図である。同図に示すように、硝化処理装置40は、主として、沈殿槽26から好気反応槽24に返送される反応汚泥28の一部に対して酸処理を行う再生処理槽36を備える点で、図2に示す硝化処理装置20と異なる。なお、硝化処理装置40の構成要素のうち硝化処理装置20と共通するものについては、共通の符号を付して、その説明を省略する。   FIG. 8 is a configuration diagram showing an example of a nitrification apparatus that periodically performs acid treatment of the reaction sludge. As shown in the figure, the nitrification apparatus 40 is mainly provided with a regeneration treatment tank 36 that performs acid treatment on a part of the reaction sludge 28 returned from the precipitation tank 26 to the aerobic reaction tank 24. It differs from the nitrification apparatus 20 shown in FIG. In addition, about the component which is common in the nitrification processing apparatus 20 among the components of the nitrification processing apparatus 40, a common code | symbol is attached | subjected and the description is abbreviate | omitted.

硝化処理装置40の沈殿槽26において分離した反応汚泥28は、返送汚泥弁V1を開いた状態で、ポンプP2の動力により、好気反応槽24に返送される。このとき、沈殿槽26から返送される反応汚泥28の一部は、回収汚泥弁V3が開かれることにより、再生処理槽36に送られる。   The reaction sludge 28 separated in the sedimentation tank 26 of the nitrification apparatus 40 is returned to the aerobic reaction tank 24 by the power of the pump P2 with the return sludge valve V1 opened. At this time, a part of the reaction sludge 28 returned from the sedimentation tank 26 is sent to the regeneration treatment tank 36 by opening the recovered sludge valve V3.

回収汚泥弁V3の開閉は、再生処理槽36内における反応汚泥28の水位が一定になるように調節されることが好ましい。例えば、再生処理槽36に取り付けられた水位センサーSにより反応汚泥28の水位を検出して、この水位センサーSの検出結果に基づいて、回収汚泥弁V3の開閉を切り替えることで、反応汚泥28の水位を一定に調節することができる。   The opening and closing of the recovery sludge valve V3 is preferably adjusted so that the water level of the reaction sludge 28 in the regeneration treatment tank 36 is constant. For example, the water level of the reaction sludge 28 is detected by the water level sensor S attached to the regeneration treatment tank 36, and the opening / closing of the recovered sludge valve V3 is switched based on the detection result of the water level sensor S. The water level can be adjusted to a certain level.

再生処理槽36内の反応汚泥28のpHは、pH測定機16により常に(又は定期的に)測定されており、pH測定機16の測定値に基づいて反応汚泥28のpHが調節される。具体的には、pH測定機16の測定結果に基づいて、ポンプP3が酸液タンク18Aから酸液を再生処理槽36に添加するか、あるいはポンプP4がアルカリ液タンク18Bからアルカリ液を添加することで、反応汚泥28のpHを所望の範囲に調節することができる。なお反応汚泥28のpH調整時は、pH調整を正確に行う観点から、例えば、再生処理槽36に取り付けられた攪拌機Mにより反応汚泥28を攪拌することが好ましい。   The pH of the reaction sludge 28 in the regeneration treatment tank 36 is constantly (or periodically) measured by the pH measuring device 16, and the pH of the reaction sludge 28 is adjusted based on the measured value of the pH measuring device 16. Specifically, based on the measurement result of the pH measuring device 16, the pump P3 adds the acid solution from the acid solution tank 18A to the regeneration treatment tank 36, or the pump P4 adds the alkali solution from the alkali solution tank 18B. Thus, the pH of the reaction sludge 28 can be adjusted to a desired range. In addition, at the time of pH adjustment of the reaction sludge 28, it is preferable to stir the reaction sludge 28 with the stirrer M attached to the reproduction | regeneration processing tank 36 from a viewpoint of performing pH adjustment correctly, for example.

上記構成の再生処理槽36により、回収された反応汚泥28にpH6以下(好ましくはpH0.5以上6.0以下、さらに好ましくは0.5以上5.0以下)の酸処理(再生処理)を施して、反応汚泥28の亜硝酸型の硝化性能を回復することができる。   The recovered reaction sludge 28 is subjected to acid treatment (regeneration treatment) of pH 6 or less (preferably pH 0.5 or more and 6.0 or less, more preferably 0.5 or more and 5.0 or less) by the regeneration treatment tank 36 having the above configuration. As a result, the nitrite type nitrification performance of the reaction sludge 28 can be recovered.

このとき、回収された反応汚泥28の酸処理(再生処理)は、下記(1)〜(3)のうち少なくとも一つの条件で行うことが好ましい。   At this time, the acid treatment (regeneration treatment) of the recovered reaction sludge 28 is preferably performed under at least one of the following conditions (1) to (3).

(1)前記活性汚泥のpHを2.0未満の範囲で30秒以上保持する。     (1) Hold the pH of the activated sludge for 30 seconds or more in the range of less than 2.0.

(2)前記活性汚泥のpHを2.0以上4.0未満の範囲で3分以上保持する。     (2) Maintaining the pH of the activated sludge in the range of 2.0 or more and less than 4.0 for 3 minutes or more.

(3)前記活性汚泥のpHを4.0以上6.0以下の範囲で15分以上保持する。     (3) Maintaining the pH of the activated sludge in the range of 4.0 or more and 6.0 or less for 15 minutes or more.

反応汚泥28は、再生処理槽36による酸処理(再生処理)が行われた後、アルカリ液タンク18Bからのアルカリ液添加によって中和されることが好ましい。反応汚泥28は、この後、ポンプP5(再生汚泥返送ポンプ)の動力により、好気反応槽24に返送される。   The reaction sludge 28 is preferably neutralized by adding an alkaline solution from the alkaline solution tank 18B after acid treatment (regeneration treatment) is performed in the regeneration treatment tank 36. Thereafter, the reaction sludge 28 is returned to the aerobic reaction tank 24 by the power of the pump P5 (regenerated sludge return pump).

なお図8には、所定量の反応汚泥28を再生処理槽36に溜めてから、この反応汚泥28に対して酸処理を施す例(バッチ方式)について説明したが、反応汚泥28の酸処理は連続方式で行ってもよい。連続方式で酸処理を行う場合、上記(1)〜(3)の条件における処理時間(保持時間)を、再生処理槽36における反応汚泥28の平均滞留時間に読み替えて適用することができる。   FIG. 8 illustrates an example (batch method) in which a predetermined amount of the reaction sludge 28 is accumulated in the regeneration treatment tank 36 and then the reaction sludge 28 is subjected to an acid treatment (batch method). You may carry out by a continuous system. When acid treatment is performed in a continuous manner, the treatment time (holding time) under the conditions (1) to (3) above can be read as the average residence time of the reaction sludge 28 in the regeneration treatment tank 36 and applied.

次に、上記構成の硝化処理装置40による亜硝酸型の硝化性能の長期安定性を確認するために行った第3の廃水処理実験について説明する。   Next, a third wastewater treatment experiment conducted to confirm the long-term stability of the nitrite type nitrification performance by the nitrification apparatus 40 having the above-described configuration will be described.

まず、図3に示す水質の合成廃水に対して、第1の廃水処理実験で用いた本発明汚泥Aによる硝化処理を定常状態に達するまで行った。   First, the water quality synthetic waste water shown in FIG. 3 was subjected to nitrification treatment with the sludge A of the present invention used in the first waste water treatment experiment until it reached a steady state.

この後、処理対象の廃水を、下水処理水にNHClを添加して、アンモニア性窒素濃度が40mg/Lになるように調整した下水調整廃水に切り替えた。図9は硝化処理の対象である下水調整廃水の平均水質を示す表である。 Thereafter, the wastewater to be treated was switched to sewage-adjusted wastewater adjusted to have an ammoniacal nitrogen concentration of 40 mg / L by adding NH 4 Cl to the sewage treated water. FIG. 9 is a table showing the average water quality of sewage adjustment wastewater that is the object of nitrification treatment.

硝化処理対象の廃水を合成廃水から下水調整廃水に切り替えると、下水調整廃水とともに好気反応槽24に流れ込んだ亜硝酸酸化細菌が増殖して、好気反応槽24における硝化反応が亜硝酸型硝化から硝酸型硝化に移行する。   When the wastewater subject to nitrification is switched from synthetic wastewater to sewage adjustment wastewater, the nitrite-oxidizing bacteria that flow into the aerobic reaction tank 24 together with the sewage adjustment wastewater proliferate, and the nitrification reaction in the aerobic reaction tank 24 is converted to nitrite type nitrification. Shift to nitric acid type nitrification.

本廃水処理実験では、あえて、好気反応槽24における硝化反応を亜硝酸型硝化から硝酸型硝化に移行させた後、返送汚泥の一部を定期的に酸処理する運転に切り替えて、再生処理槽36による反応汚泥28の酸処理(再生処理)の効果を確認した。   In this wastewater treatment experiment, after the nitrification reaction in the aerobic reaction tank 24 was shifted from nitrite type nitrification to nitric acid type nitrification, a part of the returned sludge was switched to an operation in which acid treatment was performed periodically, and then regenerated. The effect of the acid treatment (regeneration treatment) of the reaction sludge 28 by the tank 36 was confirmed.

また反応汚泥28の酸処理(再生処理)条件としては、30mLの反応汚泥28を12時間に1回の頻度で再生処理槽36に引き込み、攪拌しながら酸液を添加して、pH0.4〜0.6で5分間維持した。この後、酸処理された反応汚泥28にアルカリ液を添加、攪拌して、pH7.5に中和して、好気反応槽24に返送した。酸処理および中和処理には、1mol/Lの硫酸と、2mol/Lの水酸化ナトリウムとを用いた。   As the acid treatment (regeneration treatment) conditions for the reaction sludge 28, 30 mL of the reaction sludge 28 is drawn into the regeneration treatment tank 36 once every 12 hours, and an acid solution is added while stirring, so that the pH is 0.4 to Maintained at 0.6 for 5 minutes. Thereafter, an alkaline solution was added to the acid-treated reaction sludge 28, stirred, neutralized to pH 7.5, and returned to the aerobic reaction tank 24. For the acid treatment and neutralization treatment, 1 mol / L sulfuric acid and 2 mol / L sodium hydroxide were used.

好気反応槽24の反応容積は2Lであり、好気反応槽24内のMLSS濃度が2,500〜3,500mg/Lになるように運転した。また好気反応槽24内の水温を18〜22℃(平均20℃)に調節した。好気反応槽24における廃水の水理学的滞留時間は3時間とした。   The reaction volume of the aerobic reaction tank 24 was 2 L, and the MLSS concentration in the aerobic reaction tank 24 was operated to be 2500 to 3,500 mg / L. Moreover, the water temperature in the aerobic reaction tank 24 was adjusted to 18-22 degreeC (average 20 degreeC). The hydraulic residence time of the wastewater in the aerobic reaction tank 24 was 3 hours.

好気反応槽24内の溶存酸素(DO:Dissolved Oxygen)濃度は、4.0mg/L以上に調節した。また好気反応槽24内のpHは、7.0以上7.5以下の範囲内で調節した。   The dissolved oxygen (DO: Dissolved Oxygen) concentration in the aerobic reaction tank 24 was adjusted to 4.0 mg / L or more. Moreover, the pH in the aerobic reaction tank 24 was adjusted within the range of 7.0 or more and 7.5 or less.

図10は上述の条件下における処理水30中の窒素濃度を示すグラフである。図10において、○は廃水原水のアンモニア性窒素濃度を示し、●は処理水30のアンモニア性窒素濃度を示し、▲は処理水30の亜硝酸性窒素濃度を示し、■は処理水30の硝酸性窒素濃度を示す。また図10の横軸は、処理対象の廃水を合成廃水から下水調整廃水に切り替えた時点(廃水切替時点)からの経過日数を示す。   FIG. 10 is a graph showing the nitrogen concentration in the treated water 30 under the above conditions. In FIG. 10, ○ indicates the ammoniacal nitrogen concentration of the wastewater raw water, ● indicates the ammoniacal nitrogen concentration of the treated water 30, ▲ indicates the nitrite nitrogen concentration of the treated water 30, and ■ indicates the nitric acid concentration of the treated water 30 The nitrogen concentration is shown. In addition, the horizontal axis of FIG. 10 indicates the number of days that have elapsed since the wastewater to be treated was switched from the synthetic wastewater to the sewage adjustment wastewater (the wastewater switching point).

図10から分かるように、廃水切替時点から約2週間は亜硝酸型の硝化反応が維持されたが、その後処理水中の硝酸濃度が増加し、硝酸型の硝化反応に移行した。廃水切替時点から79日目に定期的引込酸処理(再生処理)を開始したが、105日目までは顕著な硝酸生成抑制効果が確認されなかった。しかしながら、117日目頃から処理水中の硝酸濃度が減少し始め、175日目には処理水中硝酸濃度が5mg/L以下になり、その後は安定した亜硝酸型の硝化反応が約200日以上継続した。   As can be seen from FIG. 10, the nitrite type nitrification reaction was maintained for about two weeks from the point of time when the wastewater was switched, but thereafter, the concentration of nitric acid in the treated water increased and the nitrite type nitrification reaction was shifted to. Periodic drawing acid treatment (regeneration treatment) was started on the 79th day from the time of switching to the wastewater, but no significant nitric acid production suppressing effect was confirmed until the 105th day. However, the concentration of nitric acid in the treated water began to decrease from around day 117. On day 175, the nitric acid concentration in the treated water fell below 5 mg / L, and thereafter a stable nitrite-type nitrification reaction continued for about 200 days or more. did.

以上から、回収された反応汚泥28に定期的引込酸処理(再生処理)を施すことで、反応汚泥28の亜硝酸型の硝化性能を維持できることが分かった。   From the above, it was found that the nitrite-type nitrification performance of the reaction sludge 28 can be maintained by subjecting the recovered reaction sludge 28 to a periodic drawing acid treatment (regeneration treatment).

次に、本発明に係るアンモニア性窒素を含む廃水を処理する廃水処理方法について説明する。   Next, a wastewater treatment method for treating wastewater containing ammoniacal nitrogen according to the present invention will be described.

本発明に係る廃水処理方法では、廃水中のアンモニア性窒素を亜硝酸型硝化反応汚泥により亜硝酸に酸化(硝化)した後、生成した亜硝酸に対して脱窒処理を施して、窒素ガスに分解する。亜硝酸の脱窒処理として、例えば、脱窒菌を用いる方法や、嫌気性アンモニア酸化細菌を用いる方法を用いることができる。   In the wastewater treatment method according to the present invention, ammonia nitrogen in wastewater is oxidized (nitrified) to nitrous acid by nitrite-type nitrification reaction sludge, and then the produced nitrous acid is subjected to denitrification treatment to produce nitrogen gas. Decompose. As the denitrification treatment of nitrous acid, for example, a method using denitrifying bacteria or a method using anaerobic ammonia oxidizing bacteria can be used.

図11(a)は脱窒菌による脱窒処理を伴う廃水処理方法を示す工程図であり、図11(b)は嫌気性アンモニア酸化細菌による脱窒処理を伴う廃水処理方法を示す工程図である。   FIG. 11A is a process diagram showing a wastewater treatment method involving denitrification treatment by denitrifying bacteria, and FIG. 11B is a process diagram showing a wastewater treatment method involving denitrification treatment by anaerobic ammonia oxidizing bacteria. .

脱窒菌による脱窒処理を伴う廃水処理方法(図11(a)参照)では、廃水中のアンモニア性窒素を亜硝酸に酸化した後、当該亜硝酸を脱窒菌により窒素ガスに分解する。これに対し、嫌気性アンモニア酸化細菌による脱窒処理を伴う廃水処理方法(図11(b)参照)では、廃水中のアンモニア性窒素を亜硝酸に酸化した後、当該亜硝酸を嫌気性アンモニア酸化細菌により脱窒する。このとき、廃水中のアンモニア性窒素が脱窒処理時の水素供与体として用いられる。   In a wastewater treatment method involving denitrification by denitrifying bacteria (see FIG. 11A), ammonia nitrogen in wastewater is oxidized to nitrous acid, and then the nitrous acid is decomposed into nitrogen gas by denitrifying bacteria. In contrast, in a wastewater treatment method involving denitrification treatment by anaerobic ammonia oxidizing bacteria (see FIG. 11B), ammonia nitrogen in wastewater is oxidized to nitrous acid, and then the nitrous acid is oxidized by anaerobic ammonia. Denitrify by bacteria. At this time, ammonia nitrogen in the wastewater is used as a hydrogen donor during the denitrification treatment.

図12は本発明に係る廃水処理方法を実施するための廃水処理装置の一例を示す構成図である。図12に示すように、廃水処理装置50は、主として、廃水原水に含まれる有機体の窒素を脱アミノ化する嫌気槽42と、亜硝酸を脱窒する無酸素槽44と、アンモニア性窒素を亜硝酸に酸化する好気反応槽24と、処理水30と反応汚泥28とを分離する沈殿槽26と、反応汚泥28に対して酸処理を施す再生処理槽36とにより構成される。   FIG. 12 is a block diagram showing an example of a wastewater treatment apparatus for carrying out the wastewater treatment method according to the present invention. As shown in FIG. 12, the wastewater treatment apparatus 50 mainly includes an anaerobic tank 42 for deaminating organic nitrogen contained in raw wastewater, an anaerobic tank 44 for denitrifying nitrous acid, and ammonia nitrogen. An aerobic reaction tank 24 that oxidizes to nitrous acid, a sedimentation tank 26 that separates the treated water 30 and the reaction sludge 28, and a regeneration treatment tank 36 that performs acid treatment on the reaction sludge 28.

嫌気槽42は、廃水原水に含まれる有機体の窒素を脱アミノ化して、アンモニア性窒素を生成する。嫌気槽42において生成したアンモニア性窒素は、直後の無酸素槽44を通過して、好気反応槽24において亜硝酸に硝化される。   The anaerobic tank 42 deaminates organic nitrogen contained in the wastewater raw water to generate ammoniacal nitrogen. The ammoniacal nitrogen produced in the anaerobic tank 42 passes through the anoxic tank 44 immediately after it and is nitrified to nitrous acid in the aerobic reaction tank 24.

この後、好気反応槽24と無酸素槽44との間に設けられた廃水返送管52により、好気反応槽24による硝化処理が施された廃水が無酸素槽44に返送される。これにより、無酸素槽44に返送された廃水中の亜硝酸が、無酸素槽44において脱窒されて、窒素ガスに分解される。   Thereafter, waste water that has been subjected to nitrification in the aerobic reaction tank 24 is returned to the anaerobic tank 44 by a waste water return pipe 52 provided between the aerobic reaction tank 24 and the anaerobic tank 44. Thereby, the nitrous acid in the wastewater returned to the oxygen-free tank 44 is denitrified in the oxygen-free tank 44 and decomposed into nitrogen gas.

また嫌気槽42において原水廃水中の溶存酸素が消費されるため、無酸素槽44の溶存酸素量を低い状態に維持して、無酸素槽44における脱窒処理を効率的に行うことができる。   Moreover, since the dissolved oxygen in raw | natural water wastewater is consumed in the anaerobic tank 42, the deoxygenation process in the anaerobic tank 44 can be performed efficiently, maintaining the amount of dissolved oxygen of the anoxic tank 44 low.

沈殿槽26において分離された反応汚泥28の一部は、再生処理槽36において酸処理(再生処理)が施された後、好気反応槽24よりも前段に返送される。例えば、酸処理後の反応汚泥28を、好気反応槽24の直前に返送してもよいし、嫌気槽42又は無酸素槽44の直前に返送してもよい。図12には、返送汚泥弁V3、V4、V5の開閉により、酸処理後の反応汚泥28の返送先を、嫌気槽42の直前、無酸素槽44の直前および好気反応槽24の直前のうちいずれかに選択できる例を示した。   A part of the reaction sludge 28 separated in the settling tank 26 is subjected to an acid treatment (regeneration process) in the regeneration treatment tank 36, and then returned to the front stage from the aerobic reaction tank 24. For example, the reaction sludge 28 after acid treatment may be returned immediately before the aerobic reaction tank 24 or may be returned immediately before the anaerobic tank 42 or the anaerobic tank 44. In FIG. 12, the return destination of the reaction sludge 28 after the acid treatment is set immediately before the anaerobic tank 42, immediately before the anaerobic tank 44 and immediately before the aerobic reaction tank 24 by opening and closing the return sludge valves V3, V4 and V5. The example which can choose to either was shown.

図13は、図12に示す廃水処理装置50の変形例を示す構成図である。図13に示すように、廃水処理装置60は、沈殿槽26において分離された反応汚泥28の一部を酸処理する再生処理(酸処理)槽36Aに加えて、反応汚泥28の一部をアルカリ処理する再生処理(アルカリ処理)槽36Bを備える点で、図12に示す廃水処理装置50と異なる。   FIG. 13 is a configuration diagram showing a modification of the wastewater treatment apparatus 50 shown in FIG. As shown in FIG. 13, the wastewater treatment device 60 adds a part of the reaction sludge 28 to the regeneration treatment (acid treatment) tank 36 </ b> A that acid-treats a part of the reaction sludge 28 separated in the sedimentation tank 26. 12 is different from the wastewater treatment apparatus 50 shown in FIG. 12 in that it includes a regeneration treatment (alkali treatment) tank 36B.

再生処理(アルカリ処理)槽36Bは、アンモニア酸化細菌がアルカリに対し高い耐性を持つ一方で、亜硝酸酸化細菌がアルカリに対して耐性が低いという細菌のアルカリ耐性の違いを利用したものであり、反応汚泥28に対してアルカリ処理を施すことにより、亜硝酸型の硝化性能を回復することができる。また再生処理槽36Aの酸処理により再生される反応汚泥28と、再生処理槽36Bのアルカリ処理により再生される反応汚泥28とは、互いに中和しあう関係にあるため、再生処理後の中和に必要な薬剤量を低減する(又は薬剤を不要にする)ことができる。   The regeneration treatment (alkaline treatment) tank 36B utilizes the difference in bacterial alkali resistance that ammonia oxidizing bacteria have high resistance to alkali while nitrite oxidizing bacteria have low resistance to alkali. By subjecting the reaction sludge 28 to alkali treatment, the nitrite type nitrification performance can be recovered. Moreover, since the reaction sludge 28 regenerated by the acid treatment in the regeneration treatment tank 36A and the reaction sludge 28 regenerated by the alkali treatment in the regeneration treatment tank 36B are in a mutually neutralizing relationship, neutralization after the regeneration treatment is performed. It is possible to reduce the amount of drug required for the drug (or eliminate the need for the drug).

再生処理槽36Bにおけるアルカリ処理は、pHが10以上14以下の範囲であることが好ましく、pHが11以上14以下の範囲であることがさらに好ましい。これにより、アンモニア酸化細菌を失活させることなく、亜硝酸酸化細菌を迅速に殺菌することができる。   In the alkali treatment in the regeneration treatment tank 36B, the pH is preferably in the range of 10 to 14, more preferably in the range of 11 to 14. Thereby, it is possible to quickly sterilize the nitrite oxidizing bacteria without inactivating the ammonia oxidizing bacteria.

また再生処理槽36Bにおけるアルカリ処理は、下記(1)〜(3)のうち少なくとも一つの条件で行うことが好ましい。   The alkali treatment in the regeneration treatment tank 36B is preferably performed under at least one of the following conditions (1) to (3).

(1)反応汚泥28のpHを13以上の範囲で5分以上保持する。     (1) Hold the pH of the reaction sludge 28 in the range of 13 or more for 5 minutes or more.

(2)反応汚泥28のpHを12以上13未満の範囲で10分以上保持する。     (2) The reaction sludge 28 is kept at a pH of 12 or more and less than 13 for 10 minutes or more.

(3)反応汚泥28のpHを10以上12未満の範囲で60分以上保持する。     (3) The reaction sludge 28 is kept at a pH of 10 or more and less than 12 for 60 minutes or more.

これにより、反応汚泥28中の亜硝酸酸化細菌を確実に失活させて、アンモニア酸化細菌をより選択的に集積させることができる。   Thereby, the nitrite oxidizing bacteria in the reaction sludge 28 can be reliably deactivated, and the ammonia oxidizing bacteria can be more selectively accumulated.

さらに再生処理槽36Aから返送される酸処理後の反応汚泥28の流量V1(L/h)と、再生処理槽36Bから返送されるアルカリ処理後の反応汚泥28の流量V2(L/h)とは以下の関係を満たすことが好ましい。   Furthermore, the flow rate V1 (L / h) of the reaction sludge 28 after acid treatment returned from the regeneration treatment tank 36A, and the flow rate V2 (L / h) of the reaction sludge 28 after alkali treatment returned from the regeneration treatment tank 36B. Preferably satisfies the following relationship.

V1×X1=V2×X2
(ただし、X1は再生処理槽36Aにおける水素イオン濃度[H](mol/L)であり、X2は再生処理槽36Bにおける水酸化物イオン濃度[OH](mol/L)である)。
V1 × X1 = V2 × X2
(However, X1 is the hydrogen ion concentration [H + ] (mol / L) in the regeneration treatment tank 36A, and X2 is the hydroxide ion concentration [OH ] (mol / L) in the regeneration treatment tank 36B).

これにより、再生処理槽36A及び再生処理槽36Bにおける再生処理後の反応汚泥28に対して中和処理を施す必要がなくなるため、ランニングコストを低減することができる。   Thereby, since it is not necessary to neutralize the reaction sludge 28 after the regeneration treatment in the regeneration treatment tank 36A and the regeneration treatment tank 36B, the running cost can be reduced.

図14は、図12に示す廃水処理装置50の他の変形例を示す構成図である。図14に示すように、廃水処理装置70は、アンモニア酸化細菌が優占的に集積した担体54を好気反応槽24に充填している点と、担体54に対して再生処理を行う担体再生処理槽56が設けられている点とにおいて図12に示す廃水処理装置50と異なる。   FIG. 14 is a configuration diagram showing another modification of the wastewater treatment apparatus 50 shown in FIG. As shown in FIG. 14, the wastewater treatment apparatus 70 is filled with a carrier 54 in which ammonia-oxidizing bacteria are preferentially accumulated in the aerobic reaction tank 24, and carrier regeneration for performing a regeneration treatment on the carrier 54. It differs from the wastewater treatment apparatus 50 shown in FIG. 12 in that a treatment tank 56 is provided.

廃水処理装置70の担体54は、例えば、アンモニア酸化細菌と亜硝酸酸化細菌とを含む複合微生物系の汚泥に対して、加熱処理、酸処理または酸処理を施すことにより作製することができる。具体的には、上記複合微生物系の汚泥に対して、40℃以上100℃以下の加熱処理、pH10以上(好ましくはpH10以上14以下、さらに好ましくはpH11以上14以下)の酸処理、またはpH6以下(好ましくは、pH0.5以上5以下の酸処理)の酸処理を施すことにより、担体54を作製することができる。   The carrier 54 of the wastewater treatment apparatus 70 can be produced, for example, by subjecting a complex microbial sludge containing ammonia oxidizing bacteria and nitrite oxidizing bacteria to heat treatment, acid treatment, or acid treatment. Specifically, heat treatment at 40 ° C. or more and 100 ° C. or less, acid treatment at pH 10 or more (preferably pH 10 or more and 14 or less, more preferably pH 11 or more and 14 or less), or pH 6 or less with respect to the complex microbial sludge. The carrier 54 can be produced by performing an acid treatment (preferably an acid treatment with a pH of 0.5 or more and 5 or less).

また担体54の亜硝酸型の硝化性能は、長期間の使用により劣化してしまうため、担体再生処理槽56による再生処理(酸処理又はアルカリ処理)を定期的に行うことが好ましい。   Further, since the nitrite type nitrification performance of the carrier 54 is deteriorated by long-term use, it is preferable to periodically perform a regeneration treatment (acid treatment or alkali treatment) by the carrier regeneration treatment tank 56.

担体再生処理槽56は、定期的に、好気反応槽24内の担体54をポンプP8により抜き取って、担体54の再生処理を行う。担体54の再生処理は、pH測定機16の測定結果に基づいて酸液タンク18Aから酸液を担体再生処理槽56に添加することで行うことができる。この酸処理条件は、既に説明した再生処理槽36における反応汚泥28の酸処理と同様の条件を用いることができる。また、担体54の再生処理は、酸処理に限定されず、pH測定機16の測定結果に基づいてアルカリ液タンク18Bからアルカリ液を担体再生処理槽56に添加することで行ってもよい。   The carrier regeneration treatment tank 56 periodically regenerates the carrier 54 by extracting the carrier 54 in the aerobic reaction tank 24 with the pump P8. The regeneration treatment of the carrier 54 can be performed by adding an acid solution from the acid solution tank 18 </ b> A to the carrier regeneration treatment tank 56 based on the measurement result of the pH measuring device 16. As the acid treatment conditions, the same conditions as the acid treatment of the reaction sludge 28 in the regeneration treatment tank 36 already described can be used. The regeneration treatment of the carrier 54 is not limited to the acid treatment, and may be performed by adding an alkaline liquid from the alkaline liquid tank 18B to the carrier regeneration treatment tank 56 based on the measurement result of the pH measuring device 16.

上記構成の廃水処理装置70では、反応汚泥28と担体54とを併用して、好気反応槽24における硝化処理を行うため、廃水中のアンモニア性窒素を効率的に亜硝酸に酸化(硝化)することができる。   In the wastewater treatment apparatus 70 having the above-described configuration, the reaction sludge 28 and the carrier 54 are used in combination to perform nitrification in the aerobic reaction tank 24. Therefore, ammonia nitrogen in the wastewater is efficiently oxidized (nitrification) into nitrous acid. can do.

図15は、図12に示す廃水処理装置50の他の変形例を示す構成図である。図14に示すように、廃水処理装置80は、複数の嫌気槽42と好気反応槽24とを直列に並べた多段式の処理方法を採用している点と、再生処理槽36により酸処理(再生処理)が施された反応汚泥28を分配して、各槽の直前に返送する分配器58が設けられている点において、図12に示す廃水処理装置50と異なる。   FIG. 15 is a configuration diagram illustrating another modified example of the wastewater treatment apparatus 50 illustrated in FIG. 12. As shown in FIG. 14, the wastewater treatment apparatus 80 employs a multistage treatment method in which a plurality of anaerobic tanks 42 and aerobic reaction tanks 24 are arranged in series, and acid treatment is performed by the regeneration treatment tank 36. 12 differs from the wastewater treatment apparatus 50 shown in FIG. 12 in that a distributor 58 for distributing the reaction sludge 28 that has been subjected to (regeneration processing) and returning it immediately before each tank is provided.

廃水処理装置80では、複数の嫌気槽42と好気反応槽24とを並べることにより、廃水処理装置全体としてのサイズを縮小することができる。   In the wastewater treatment apparatus 80, the overall size of the wastewater treatment apparatus can be reduced by arranging the plurality of anaerobic tanks 42 and the aerobic reaction tank 24.

廃水処理装置80では、好気反応槽24における亜硝酸型の酸化(硝化)を効率的に行う観点から、アンモニア酸化細菌が優占的に集積された担体54を好気反応槽24に充填している。   In the wastewater treatment apparatus 80, from the viewpoint of efficiently performing nitrite oxidation (nitrification) in the aerobic reaction tank 24, the carrier 54 in which ammonia-oxidizing bacteria are preferentially accumulated is packed in the aerobic reaction tank 24. ing.

なお廃水処理装置80では、担体54の酸処理(再生処理)を行っていないが、図16に示すように、既に説明した担体再生処理槽56により、担体54の酸処理(再生処理)を定期的に行ってもよい。   The wastewater treatment apparatus 80 does not perform the acid treatment (regeneration treatment) of the carrier 54. However, as shown in FIG. 16, the carrier 54 is acid-treated (regeneration treatment) periodically by the carrier regeneration treatment tank 56 described above. It may be done automatically.

以上、本発明の一実施形態に係る廃水処理方法について説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。例えば、図12〜16に示す各廃水処理装置の構成要素を適宜組み合わせた廃水処理装置を用いて、廃水処理を行ってもよい。   As mentioned above, although the wastewater treatment method concerning one embodiment of the present invention was explained, the present invention is not limited to this, and of course, various improvements and modifications may be made without departing from the gist of the present invention. It is. For example, wastewater treatment may be performed using a wastewater treatment device in which the components of each wastewater treatment device shown in FIGS.

10…反応汚泥製造装置、12…活性汚泥、14…酸処理槽、16…pH測定機、18…酸液タンク、20…硝化処理装置、22…原水タンク、24…好気反応槽、26…沈殿槽、28…反応汚泥、30…処理水、32…混合液、34…散気装置、36…再生処理槽、40…硝化処理装置、42…嫌気槽、44…無酸素槽、50…廃水処理装置、52…廃水返送管、54…担体、56…担体再生処理槽、58…分配器、60…廃水処理装置、80…廃水処理装置、90…廃水処理装置 DESCRIPTION OF SYMBOLS 10 ... Reaction sludge manufacturing apparatus, 12 ... Activated sludge, 14 ... Acid treatment tank, 16 ... pH measuring machine, 18 ... Acid solution tank, 20 ... Nitrification apparatus, 22 ... Raw water tank, 24 ... Aerobic reaction tank, 26 ... Precipitation tank, 28 ... reactive sludge, 30 ... treated water, 32 ... mixed solution, 34 ... aeration device, 36 ... regeneration treatment tank, 40 ... nitrification treatment device, 42 ... anaerobic tank, 44 ... anoxic tank, 50 ... waste water Treatment device 52 ... Waste water return pipe 54 ... Carrier 56 ... Carrier regeneration treatment tank 58 ... Distributor 60 ... Waste water treatment device 80 ... Waste water treatment device 90 ... Waste water treatment device

Claims (15)

アンモニア酸化細菌を優占的に集積させた亜硝酸型硝化反応汚泥の製造方法であって、
少なくともアンモニア酸化細菌と亜硝酸酸化細菌とを含む活性汚泥のpHが6以下になるように、前記活性汚泥に対して酸処理を施す工程を含むことを特徴とする亜硝酸型硝化反応汚泥の製造方法。
A method for producing nitrite-type nitrification sludge in which ammonia-oxidizing bacteria are preferentially accumulated,
Production of nitrite-type nitrification reaction sludge characterized by comprising a step of subjecting said activated sludge to acid treatment so that the pH of activated sludge containing at least ammonia oxidizing bacteria and nitrite oxidizing bacteria is 6 or less Method.
前記酸処理を施す工程では、前記活性汚泥に酸液を添加することで、前記活性汚泥のpHを0.5以上6.0以下の範囲で保持することを特徴とする請求項1に記載の亜硝酸型硝化反応汚泥の製造方法。   2. The step of performing the acid treatment, wherein the pH of the activated sludge is maintained in a range of 0.5 or more and 6.0 or less by adding an acid solution to the activated sludge. A method for producing nitrite-type nitrifying sludge. 前記酸処理は、下記(1)〜(3)のうち少なくとも一つの条件で行うことを特徴とする請求項1又は2に記載の亜硝酸型硝化反応汚泥の製造方法。
(1)前記活性汚泥のpHを2.0未満の範囲で30秒以上保持する。
(2)前記活性汚泥のpHを2.0以上4.0未満の範囲で3分以上保持する。
(3)前記活性汚泥のpHを4.0以上6.0以下の範囲で15分以上保持する。
The method for producing nitrite-type nitrification reaction sludge according to claim 1 or 2, wherein the acid treatment is performed under at least one of the following conditions (1) to (3).
(1) Hold the pH of the activated sludge for 30 seconds or more in the range of less than 2.0.
(2) Maintaining the pH of the activated sludge within a range of 2.0 or more and less than 4.0 for 3 minutes or more.
(3) The pH of the activated sludge is maintained for 15 minutes or more in the range of 4.0 or more and 6.0 or less.
請求項1乃至3のいずれか一項に記載の製造方法により製造される亜硝酸型硝化反応汚泥。   A nitrite-type nitrification sludge produced by the production method according to any one of claims 1 to 3. アンモニア酸化細菌を優占的に集積させた亜硝酸型硝化反応汚泥の製造装置であって、
少なくともアンモニア酸化細菌と亜硝酸酸化細菌とを含む活性汚泥のpHが6以下になるように、前記活性汚泥に対して酸処理を施す酸処理装置を含むことを特徴とする亜硝酸型硝化反応汚泥の製造装置。
An apparatus for producing nitrite-type nitrifying sludge that preferentially accumulates ammonia-oxidizing bacteria,
A nitrite-type nitrification sludge characterized by comprising an acid treatment device that performs acid treatment on the activated sludge so that the pH of the activated sludge containing at least ammonia-oxidizing bacteria and nitrite-oxidizing bacteria is 6 or less. Manufacturing equipment.
アンモニア性窒素を含む廃水を処理する廃水処理方法であって、
少なくともアンモニア酸化細菌と亜硝酸酸化細菌とを含む活性汚泥のpHが6以下になるように、前記活性汚泥に対して酸処理を施す工程と、
前記酸処理が施された前記活性汚泥により、前記廃水に含まれる前記アンモニア性窒素を亜硝酸に酸化する工程と、
前記亜硝酸に対して脱窒処理を施す工程とを含むことを特徴とする廃水処理方法。
A wastewater treatment method for treating wastewater containing ammonia nitrogen,
A step of subjecting the activated sludge to acid treatment so that the pH of the activated sludge containing at least ammonia oxidizing bacteria and nitrite oxidizing bacteria is 6 or less;
Oxidizing the ammonia nitrogen contained in the wastewater into nitrous acid by the activated sludge subjected to the acid treatment;
And a step of denitrifying the nitrous acid.
前記脱窒処理を施す工程では、嫌気性アンモニア酸化細菌によって、前記廃水に含まれる前記アンモニア性窒素を水素供与体とし、前記アンモニア性窒素を酸化する工程で生成した前記亜硝酸を脱窒することを特徴とする請求項6に記載の廃水処理方法。   In the step of performing the denitrification treatment, anaerobic ammonia oxidizing bacteria denitrify the nitrous acid generated in the step of oxidizing the ammoniacal nitrogen using the ammoniacal nitrogen contained in the wastewater as a hydrogen donor. The wastewater treatment method according to claim 6. 前記脱窒処理を施す工程では、脱窒細菌によって、前記アンモニア性窒素を酸化する工程で生成した前記亜硝酸を脱窒することを特徴とする請求項6に記載の廃水処理方法。   The wastewater treatment method according to claim 6, wherein in the step of performing the denitrification treatment, the nitrous acid generated in the step of oxidizing the ammoniacal nitrogen is denitrified by a denitrification bacterium. 前記アンモニア性窒素を前記亜硝酸に酸化する工程で用いた前記活性汚泥を回収する工程と、
回収された前記活性汚泥に対して前記酸処理を施す工程とを含むことを特徴とする請求項6乃至8のいずれか一項に記載の廃水処理方法。
Recovering the activated sludge used in the step of oxidizing the ammoniacal nitrogen to the nitrous acid;
The wastewater treatment method according to any one of claims 6 to 8, further comprising a step of performing the acid treatment on the recovered activated sludge.
前記酸処理が施された前記活性汚泥にアルカリ剤を添加して、前記活性汚泥のpHを調整する工程を含むことを特徴とする請求項6乃至9のいずれか一項に記載の廃水処理方法。   The wastewater treatment method according to any one of claims 6 to 9, further comprising a step of adjusting the pH of the activated sludge by adding an alkaline agent to the activated sludge subjected to the acid treatment. . アンモニア性窒素を含む廃水を処理する廃水処理装置であって、
少なくともアンモニア酸化細菌と亜硝酸酸化細菌とを含む活性汚泥のpHが6以下になるように、前記活性汚泥に対して酸処理を施す酸処理装置と、
前記酸処理が施された前記活性汚泥により、前記廃水に含まれる前記アンモニア性窒素を亜硝酸に酸化する亜硝酸生成槽と、
前記亜硝酸に対して脱窒処理を行う脱窒槽とを含むことを特徴とする廃水処理装置。
A wastewater treatment apparatus for treating wastewater containing ammonia nitrogen,
An acid treatment device that performs acid treatment on the activated sludge so that the pH of the activated sludge containing at least ammonia oxidizing bacteria and nitrite oxidizing bacteria is 6 or less;
A nitrous acid production tank that oxidizes the ammoniacal nitrogen contained in the wastewater into nitrous acid by the activated sludge subjected to the acid treatment;
A wastewater treatment apparatus comprising: a denitrification tank that performs a denitrification process on the nitrous acid.
前記脱窒槽は、嫌気性アンモニア酸化細菌によって、前記廃水に含まれる前記アンモニア性窒素を水素供与体とし、前記亜硝酸生成槽において生成した前記亜硝酸を脱窒することを特徴とする請求項11に記載の廃水処理装置。   The denitrification tank uses anaerobic ammonia oxidizing bacteria to denitrify the nitrous acid generated in the nitrous acid generation tank using the ammoniacal nitrogen contained in the wastewater as a hydrogen donor. The wastewater treatment apparatus described in 1. 前記脱窒槽は、脱窒細菌によって、前記亜硝酸生成槽において生成した前記亜硝酸を脱窒することを特徴とする請求項11に記載の廃水処理装置。   The waste water treatment apparatus according to claim 11, wherein the denitrification tank denitrifies the nitrous acid generated in the nitrous acid generation tank by denitrifying bacteria. 前記亜硝酸生成槽から前記活性汚泥を回収する回収装置と、
前記回収装置により回収された前記活性汚泥に対して前記酸処理を施して、前記活性汚泥を再生する再生装置とを含むことを特徴とする請求項11乃至13のいずれか一項に記載の廃水処理装置。
A recovery device for recovering the activated sludge from the nitrous acid production tank;
The wastewater according to any one of claims 11 to 13, further comprising a regeneration device that performs the acid treatment on the activated sludge collected by the collecting device to regenerate the activated sludge. Processing equipment.
前記酸処理が施された前記活性汚泥にアルカリ剤を添加して、前記活性汚泥のpHを調整するpH調整装置を含むことを特徴とする請求項11乃至14のいずれか一項に記載の廃水処理装置。   The wastewater according to any one of claims 11 to 14, further comprising a pH adjusting device that adjusts the pH of the activated sludge by adding an alkaline agent to the activated sludge subjected to the acid treatment. Processing equipment.
JP2009052222A 2009-03-05 2009-03-05 Nitrous acid type nitrification reaction sludge, method and apparatus for manufacturing the same, and method and apparatus of wastewater treatment Withdrawn JP2010201394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052222A JP2010201394A (en) 2009-03-05 2009-03-05 Nitrous acid type nitrification reaction sludge, method and apparatus for manufacturing the same, and method and apparatus of wastewater treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052222A JP2010201394A (en) 2009-03-05 2009-03-05 Nitrous acid type nitrification reaction sludge, method and apparatus for manufacturing the same, and method and apparatus of wastewater treatment

Publications (1)

Publication Number Publication Date
JP2010201394A true JP2010201394A (en) 2010-09-16

Family

ID=42963428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052222A Withdrawn JP2010201394A (en) 2009-03-05 2009-03-05 Nitrous acid type nitrification reaction sludge, method and apparatus for manufacturing the same, and method and apparatus of wastewater treatment

Country Status (1)

Country Link
JP (1) JP2010201394A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017018861A (en) * 2015-07-07 2017-01-26 水ing株式会社 Method for removing nitrogen and nitrogen removal device
WO2020237283A1 (en) * 2019-05-24 2020-12-03 The University Of Queensland Method for treating wastewater or sludge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211177A (en) * 2002-01-25 2003-07-29 Hitachi Plant Eng & Constr Co Ltd Nitrous acid type nitrification carrier, method for manufacturing the same and denitrification method and apparatus using the same
JP2008272610A (en) * 2007-04-25 2008-11-13 Hitachi Plant Technologies Ltd Nitrous acid type nitrification carrier and its manufacturing method, and wastewater treatment method and apparatus using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211177A (en) * 2002-01-25 2003-07-29 Hitachi Plant Eng & Constr Co Ltd Nitrous acid type nitrification carrier, method for manufacturing the same and denitrification method and apparatus using the same
JP2008272610A (en) * 2007-04-25 2008-11-13 Hitachi Plant Technologies Ltd Nitrous acid type nitrification carrier and its manufacturing method, and wastewater treatment method and apparatus using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017018861A (en) * 2015-07-07 2017-01-26 水ing株式会社 Method for removing nitrogen and nitrogen removal device
WO2020237283A1 (en) * 2019-05-24 2020-12-03 The University Of Queensland Method for treating wastewater or sludge

Similar Documents

Publication Publication Date Title
JP5170446B2 (en) Method and apparatus for producing nitrite-type nitrification reaction sludge, and wastewater treatment method and wastewater treatment apparatus
KR20130111919A (en) Simultaneous anoxic biological phosphorus and nitrogen removal
KR100719434B1 (en) Method for removing high concentration of nitrogen from anaerobict-treated wastewater and apparatus for implementing the method
JP5814392B2 (en) Waste liquid treatment method and waste liquid treatment apparatus
JP5791359B2 (en) Wastewater treatment method
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
US10556816B2 (en) Wastewater treatment apparatus
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP4106203B2 (en) How to remove nitrogen from water
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP5391010B2 (en) Operation method of denitrification reactor
KR100425652B1 (en) Method Removing Nitrogen and Phosphorus from Waste Water
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP2013081881A (en) Apparatus for treating ammonia nitrogen content wastewater
JP4529277B2 (en) Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal
KR100783789B1 (en) Apparatus for wastewater treatment and method for wastewater treatment using the same
JP6880894B2 (en) Wastewater treatment method with ANAMMOX process
JP2010201394A (en) Nitrous acid type nitrification reaction sludge, method and apparatus for manufacturing the same, and method and apparatus of wastewater treatment
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP5325124B2 (en) Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
JP5631090B2 (en) Waste water treatment apparatus and waste water treatment method
JP3270652B2 (en) Wastewater nitrogen removal method
KR100783790B1 (en) Apparatus for wastewater treatment with multi-stage denitification-filtration and method for wastewater treatment using the same
KR100513429B1 (en) Treatment system and Nutrient Removal of Wastewater using Media Separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110815

A977 Report on retrieval

Effective date: 20120112

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120116

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120305