JP4507173B2 - Nitrite-type nitrification method and apparatus, and wastewater treatment apparatus - Google Patents

Nitrite-type nitrification method and apparatus, and wastewater treatment apparatus Download PDF

Info

Publication number
JP4507173B2
JP4507173B2 JP2004137641A JP2004137641A JP4507173B2 JP 4507173 B2 JP4507173 B2 JP 4507173B2 JP 2004137641 A JP2004137641 A JP 2004137641A JP 2004137641 A JP2004137641 A JP 2004137641A JP 4507173 B2 JP4507173 B2 JP 4507173B2
Authority
JP
Japan
Prior art keywords
nitrite
nitrification
carrier
type nitrification
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004137641A
Other languages
Japanese (ja)
Other versions
JP2005319359A (en
Inventor
和一 井坂
立夫 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2004137641A priority Critical patent/JP4507173B2/en
Publication of JP2005319359A publication Critical patent/JP2005319359A/en
Application granted granted Critical
Publication of JP4507173B2 publication Critical patent/JP4507173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、亜硝酸型の硝化処理方法及び装置並びに廃水処理装置に係り、特にアンモニアを亜硝酸まで硝化するアンモニア酸化細菌を優先的に集積させた亜硝酸型硝化担体を使用した硝化技術に関する。   The present invention relates to a nitrite-type nitrification treatment method and apparatus and a wastewater treatment apparatus, and more particularly to a nitrification technique using a nitrite-type nitrification carrier that preferentially accumulates ammonia-oxidizing bacteria that nitrify ammonia to nitrite.

従来の硝化処理方法は、アンモニア性廃水中のアンモニアを硝化細菌の一種であるアンモニア酸化細菌により亜硝酸に硝化(酸化)し、更に硝化細菌の一種である亜硝酸酸化細菌により亜硝酸を硝酸にまで硝化していた。そして、硝化処理で生成された硝酸を脱窒処理で窒素ガスに還元することにより、アンモニア性廃水から窒素成分を除去していた。   In the conventional nitrification treatment method, ammonia in ammonia wastewater is nitrified (oxidized) to nitrite by ammonia-oxidizing bacteria, a kind of nitrifying bacteria, and nitrite is converted to nitric acid by nitrite-oxidizing bacteria, which is a kind of nitrifying bacteria. Until nitrification. The nitrogen component is removed from the ammoniacal wastewater by reducing the nitric acid produced by nitrification to nitrogen gas by denitrification.

このように、従来の硝化処理方法は、アンモニアを亜硝酸を経由して硝酸にまで硝化するが、亜硝酸の段階で硝化反応を停止させる亜硝酸型の硝化処理を行うことができれば、亜硝酸から硝酸にする際の酸素供給量を低減できるだけでなく、脱窒処理において硝酸を窒素ガスに還元するよりも亜硝酸を窒素ガスに還元した方が水素供与体(例えばメタノール)の使用量を削減できる。しかし、亜硝酸酸化細菌の方がアンモニア酸化細菌よりも増殖速度が速いため、亜硝酸型の硝化処理が困難であった。   Thus, the conventional nitrification method nitrifies ammonia to nitric acid via nitrous acid, but if nitrite type nitrification treatment that stops the nitrification reaction at the nitrous acid stage can be performed, nitrous acid In addition to reducing the amount of oxygen supplied when converting from nitric acid to nitric acid, the amount of hydrogen donor (eg, methanol) used is reduced by reducing nitrous acid to nitrogen gas rather than reducing nitric acid to nitrogen gas in the denitrification process. it can. However, since nitrite-oxidizing bacteria have a faster growth rate than ammonia-oxidizing bacteria, nitrite-type nitrification treatment has been difficult.

このような背景から、本出願人は、少なくともアンモニア酸化細菌と亜硝酸酸化細菌が生存する微生物群(例えば活性汚泥等)を適切な温度で加熱処理することにより、亜硝酸酸化細菌を失活させ、アンモニア酸化細菌を優先的に集積させた亜硝酸型硝化担体を発明し、この亜硝酸型硝化担体を使用することで亜硝酸型の硝化処理を行うことを提案した(例えば特許文献1)。   Against this background, the present applicant inactivates the nitrite-oxidizing bacteria by heat-treating at least a microorganism group (for example, activated sludge) in which ammonia-oxidizing bacteria and nitrite-oxidizing bacteria survive. The present inventors have invented a nitrite type nitrification carrier in which ammonia-oxidizing bacteria are preferentially accumulated, and proposed to use this nitrite type nitrification carrier to perform nitrite type nitrification treatment (for example, Patent Document 1).

しかし、この亜硝酸型硝化担体を使用した硝化処理装置を実際の廃水処理に適用した場合、アンモニア性廃水に混ざって亜硝酸酸化細菌が硝化処理装置に混入してくるため、混入した亜硝酸酸化細菌が担体に付着・増殖すると、亜硝酸型硝化担体としての硝化活性が低下してくる。従って、亜硝酸型硝化担体の硝化活性を回復するには、亜硝酸型硝化担体を定期的に加熱処理して付着・増殖した亜硝酸酸化細菌を失活する必要がある。このことから、特許文献1では3カ月から12カ月に一度の割合で亜硝酸型硝化担体を加熱処理することを提案している。
特開2003−211177号公報
However, when the nitrification treatment equipment using this nitrite type nitrification support is applied to actual wastewater treatment, nitrite oxidation bacteria are mixed in the ammoniacal wastewater and mixed into the nitrification treatment equipment. When bacteria adhere to and grow on the carrier, the nitrification activity as a nitrite-type nitrification carrier decreases. Therefore, in order to recover the nitrification activity of the nitrite-type nitrification carrier, it is necessary to deactivate the nitrite-oxidizing bacteria attached and grown by periodically heating the nitrite-type nitrification carrier. For this reason, Patent Document 1 proposes to heat-treat the nitrite type nitrification carrier once every 3 to 12 months.
JP 2003-2111177 A

しかしながら、亜硝酸型硝化担体を加熱処理すると、亜硝酸酸化細菌は失活するが、同時にアンモニア酸化細菌までもが若干ではあるが失活してしまう。従って、3カ月から12カ月に一度の割合で亜硝酸型硝化担体をまとめて加熱処理すると、硝化槽の亜硝酸型の硝化性能が一時的に急激に低下し、アンモニア酸化細菌が再び元の硝化活性まで回復するまでは亜硝酸型の硝化反応を十分に行えない期間が生じ、亜硝酸型の硝化処理を安定して行うことができないという欠点がある。   However, when the nitrite-type nitrification carrier is heat-treated, nitrite-oxidizing bacteria are inactivated, but at the same time, ammonia-oxidizing bacteria are inactivated to a small extent. Therefore, if the nitrite type nitrification carrier is heat-treated together at a rate of once every 3 to 12 months, the nitrite type nitrification performance of the nitrification tank will temporarily decline sharply, and the ammonia oxidizing bacteria will return to the original nitrification again. Until the activity is recovered, there is a period in which the nitrite type nitrification reaction cannot be sufficiently performed, and there is a disadvantage that the nitrite type nitrification treatment cannot be stably performed.

また、一度に多量の亜硝酸型硝化担体を加熱処理するためには、大容量の加熱装置や保温装置が必要になり、加熱装置が大がかりになってしまうという問題がある。   Moreover, in order to heat-treat a large amount of nitrite type nitrification supports at once, a large-capacity heating device and a heat retaining device are required, and there is a problem that the heating device becomes large.

ところで、最近、嫌気性アンモニア酸化法を利用した廃水処理方法が注目されている(例えば 特開2001−37467号公報)。この嫌気性アンモニア酸化法は、アンモニアを水素供与体とし、亜硝酸を水素受容体として、嫌気性アンモニア酸化細菌によりアンモニアと亜硝酸とを以下の反応式により同時脱窒する方法である。   Recently, a wastewater treatment method using an anaerobic ammonia oxidation method has attracted attention (for example, JP-A-2001-37467). This anaerobic ammonia oxidation method is a method in which ammonia is used as a hydrogen donor, nitrous acid is used as a hydrogen acceptor, and ammonia and nitrous acid are simultaneously denitrified by an anaerobic ammonia oxidizing bacterium according to the following reaction formula.

1.0 NH4 +1.32NO 2 +0.066HCO 3 +0.13H+ →1.02N 2 +0.26NO 3 +0.066CH2 O 0.5 N 0.15+2.03H2 O
この方法によれば、アンモニアを水素供与体とするため、脱窒で使用するメタノール等の使用量を大幅に削減できることや、汚泥の発生量を削減できる等のメリットがあり,今後の廃水処理方法として有効な方法であると考えられている。しかし、この方法は上記式からも分かるように、アンモニアと亜硝酸との比を1:1.32にする必要があり、この比を安定的に形成するには、亜硝酸型の硝化性能の変動が小さいことが必要である。従って、亜硝酸型の硝化性能の変動を小さくできる硝化処理方法や装置があれば、嫌気性アンモニア酸化法の廃水処理を行うための被処理水を得るのに好適である。
1.0 NH 4 + 1.32NO 2 + 0.066HCO 3 + 0.13H + → 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O
According to this method, since ammonia is used as a hydrogen donor, there are merits such as greatly reducing the amount of methanol used for denitrification and reducing the amount of sludge generated. It is considered to be an effective method. However, as can be seen from the above formula, this method requires that the ratio of ammonia and nitrous acid be 1: 1.32. In order to stably form this ratio, the nitrite type nitrification performance is It is necessary that the fluctuation is small. Therefore, if there is a nitrification treatment method and apparatus that can reduce the fluctuation of nitrite type nitrification performance, it is suitable for obtaining water to be treated for wastewater treatment of anaerobic ammonia oxidation.

また、亜硝酸型の硝化性能の変動を小さくできる硝化処理方法や装置があれば、通常の生物学的脱窒処理(又は独立栄養細菌による脱窒処理)においても有効である。通常の硝化・脱窒処理では、メタノール等の水素供与体を必要とし、亜硝酸から硝酸を経由して窒素ガスに変換していた。しかしながら、亜硝酸から脱窒することで、亜硝酸から硝酸を経由して還元するときに使用するメタノール量を削減でき、薬剤使用量を低減することが可能となる。   Further, if there is a nitrification treatment method or apparatus that can reduce the fluctuation of nitrite type nitrification performance, it is effective in normal biological denitrification treatment (or denitrification treatment by autotrophic bacteria). In normal nitrification / denitrification treatment, a hydrogen donor such as methanol is required, and nitrous acid is converted into nitrogen gas via nitric acid. However, by denitrifying from nitrous acid, the amount of methanol used when reducing from nitrous acid via nitric acid can be reduced, and the amount of drug used can be reduced.

本発明は、このような事情に鑑みてなされたもので、亜硝酸型硝化担体の硝化活性を回復するための加熱処理による硝化性能の変動を小さくできるので、安定な硝化処理を行うことができ嫌気性アンモニア酸化法の廃水処理を行うための被処理水を得るのに好適であると共に通常の生物学的脱窒処理にも好適であり、しかも加熱処理の装置もコンパクト化することができる亜硝酸型の硝化処理方法及び装置並びに廃水処理装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and the fluctuation in nitrification performance due to heat treatment for recovering the nitrification activity of the nitrite-type nitrification carrier can be reduced, so that stable nitrification treatment can be performed. It is suitable for obtaining water to be treated for wastewater treatment of anaerobic ammonia oxidation method, and is suitable for ordinary biological denitrification treatment, and the heat treatment apparatus can be made compact. An object of the present invention is to provide a nitric acid type nitrification method and apparatus and a wastewater treatment apparatus.

本発明の請求項1は、前記目的を達成するために、アンモニアを亜硝酸まで硝化するアンモニア酸化細菌を優先的に集積させた亜硝酸型硝化担体が多数投入された硝化槽内で、アンモニア性廃水中のアンモニアを亜硝酸に硝化処理する亜硝酸型の硝化処理方法において、前記亜硝酸型硝化担体が通過しない網状の容器が1つの槽である計量・加熱槽内に設けられ、前記硝化槽内の亜硝酸型硝化担体を前記容器が一杯になるように引き抜くことにより、引き抜き量が全担体量の0.5〜2.5%の範囲内になるように計量する計量工程と、前記計量・加熱槽内に温水を供給して前記容器内の亜硝酸型硝化担体を加熱処理することにより亜硝酸型硝化活性を回復させる加熱工程と、前記加熱処理した亜硝酸型硝化担体を前記硝化槽に戻す戻し工程と、を備えたことを特徴とする。 In order to achieve the above object, claim 1 of the present invention is an ammoniacal nitrification tank in which a large number of nitrite-type nitrification carriers in which ammonia-oxidizing bacteria that nitrify ammonia to nitrite are preferentially accumulated are introduced. In the nitrite type nitrification method for nitrifying ammonia in wastewater into nitrite, a net-like container through which the nitrite type nitrification carrier does not pass is provided in a metering / heating tank as one tank, and the nitrification tank A metering step of metering the nitrite-type nitrification carrier in such a manner that the withdrawal amount is within a range of 0.5 to 2.5% of the total carrier amount by pulling out the nitrite-type nitrification carrier so that the container is full; -A heating process for recovering nitrite type nitrification activity by supplying warm water into the heating tank and heating the nitrite type nitrification support in the container; and the nitrite type nitrification support treated with the heat treatment Returning process to , Characterized by comprising a.

請求項1によれば、硝化槽内における亜硝酸型硝化担体の全担体量の一部を定期的に引き抜いて加熱処理してから硝化槽に戻すことにより、加熱処理した亜硝酸型硝化担体の硝化活性を回復させる。このときに、硝化槽から引き抜く1日当たりの引き抜き量を全担体量の0.5〜2.5%の範囲内に制御することにより、亜硝酸型硝化担体の硝化活性を回復するための加熱処理による硝化性能の変動を小さくできるので、安定な硝化処理を行うことができる。これは、本発明者が、硝化槽から引き抜く1日当たりの引き抜き量の全担体量に占める比率が、硝化槽における亜硝酸型の処理性能を安定させる上で極めて重要な条件であることを見いだしたものである。即ち、硝化槽から引き抜く1日当たりの引き抜き量が全担体量の0.5%未満では、硝化槽全体からみたときに亜硝酸型硝化担体に付着した亜硝酸酸化細菌を十分に殺菌することができない。これにより、硝化槽の亜硝酸型の硝化性能が低下するので、処理水中に硝酸が生成してしまう。逆に、硝化槽から引き抜く1日当たりの引き抜き量を全担体量の2.5%を超えると、亜硝酸酸化細菌は十分に殺菌されるが、アンモニア酸化細菌の一部も殺菌されるために亜硝酸型硝化担体の硝化活性が低下し、硝化槽の硝化性能が大きく低下する。従って、活性の低下した亜硝酸型硝化担体が再び元の活性まで馴養される間は、硝化槽の硝化性能が大きく低下してしまう。   According to claim 1, a part of the total amount of the nitrite-type nitrification carrier in the nitrification tank is periodically withdrawn and subjected to heat treatment, and then returned to the nitrification tank. Restores nitrification activity. At this time, the heat treatment for recovering the nitrification activity of the nitrite type nitrification carrier by controlling the withdrawal amount per day drawn from the nitrification tank within the range of 0.5 to 2.5% of the total carrier amount. Therefore, stable nitrification treatment can be performed. The inventors found that the ratio of the amount of extraction per day withdrawn from the nitrification tank to the total amount of carrier is an extremely important condition for stabilizing the treatment performance of the nitrite type in the nitrification tank. Is. That is, when the amount of extraction per day extracted from the nitrification tank is less than 0.5% of the total amount of the carrier, the nitrite oxidizing bacteria attached to the nitrite type nitrification carrier cannot be sufficiently sterilized when viewed from the whole nitrification tank. . As a result, the nitrite-type nitrification performance of the nitrification tank is lowered, so that nitric acid is generated in the treated water. On the other hand, if the daily withdrawal amount from the nitrification tank exceeds 2.5% of the total carrier amount, nitrite-oxidizing bacteria are sufficiently sterilized, but some ammonia-oxidizing bacteria are also sterilized. The nitrification activity of the nitric acid type nitrification carrier is reduced, and the nitrification performance of the nitrification tank is greatly reduced. Therefore, the nitrification performance of the nitrification tank is greatly reduced while the nitrite-type nitrification carrier having reduced activity is acclimatized to the original activity again.

尚、本発明において、アンモニア性廃水とは、廃水中の窒素成分としてアンモニアが主体である廃水を言い、以下同様である。   In the present invention, the ammoniacal wastewater means wastewater mainly composed of ammonia as a nitrogen component in the wastewater, and the same applies hereinafter.

請求項2は請求項1において、前記亜硝酸型硝化担体を毎日引き抜くことを特徴とする。これは、硝化槽内における亜硝酸型硝化担体の全担体量の一部を定期的に引き抜いて加熱処理することで、従来のように全担体量を一度に加熱処理するような硝化活性の低下はないが、定期的な引き抜きの間隔が長くなると、硝化槽内において、硝化活性の回復した亜硝酸型硝化担体の比率が次第に少なくなり、硝化槽の硝化性能が徐々に低下してくるためである。従って、硝化槽からは毎日、0.5〜2.5%の範囲内で引き抜きを行って加熱処理することが好ましい。   A second aspect of the present invention is characterized in that in the first aspect, the nitrite-type nitrification carrier is withdrawn every day. This is because the nitrite type nitrification carrier in the nitrification tank is partly extracted and heat-treated periodically to reduce the nitrification activity as if the entire carrier amount was heat-treated at once. However, if the interval between periodic withdrawals becomes longer, the ratio of nitrite-type nitrification carriers that have recovered nitrification activity gradually decreases in the nitrification tank, and the nitrification performance of the nitrification tank gradually decreases. is there. Therefore, it is preferable to carry out the heat treatment by extracting from the nitrification tank within a range of 0.5 to 2.5% every day.

請求項3は請求項1又は2において、前記亜硝酸型硝化担体は包括固定化担体であることを特徴とする。固定化方法としては、付着固定と包括固定があるが、付着固定の場合には、亜硝酸型硝化担体を硝化槽から取り出す工程と、加熱処理する工程と、加熱処理した亜硝酸型硝化担体を硝化槽に戻す工程を経る間に付着した微生物が担体から剥離する虞がある。その点、包括固定は、微生物がゲル内部に包括されているので、上記工程を経ても微生物が担体から剥離する虞が無く、硝化活性を一層安定化することができる。   A third aspect is characterized in that, in the first or second aspect, the nitrite type nitrification carrier is a entrapping immobilization carrier. As fixing methods, there are adhesion fixation and entrapping fixation. In the case of adhesion fixation, a step of removing the nitrite type nitrification carrier from the nitrification tank, a step of heat treatment, a heat treatment of the nitrite type nitrification carrier There is a risk that microorganisms attached during the process of returning to the nitrification tank may be detached from the carrier. In that respect, since the entrapping immobilization includes the microorganisms in the gel, the nitrification activity can be further stabilized without the possibility that the microorganisms are detached from the carrier even after the above process.

請求項4は、前記目的を達成するために、アンモニアを亜硝酸まで硝化するアンモニア酸化細菌を優先的に集積させた亜硝酸型硝化担体が多数投入された硝化槽内で、アンモニア性廃水中のアンモニアを亜硝酸に硝化処理する亜硝酸型の硝化処理装置において、前記硝化槽から前記亜硝酸型硝化担体を引き抜く引き抜きラインと、前記亜硝酸型硝化担体が通過しない網状の容器が1つの槽である計量・加熱槽内に設けられ、前記引き抜きラインで引き抜かれた亜硝酸型硝化担体を前記容器が一杯になるように引き抜くことにより、引き抜き量が全担体量の0.5〜2.5%の範囲内になるように計量する計量手段と、前記計量・加熱槽内に温水を供給する温水供給手段を有し、前記容器内の亜硝酸型硝化担体を加熱処理する加熱手段と、加熱処理した亜硝酸型硝化担体を前記硝化槽に戻す戻しラインと、を備えたことを特徴とする。 According to a fourth aspect of the present invention, in order to achieve the above object, in a nitrification tank in which a large number of nitrite-type nitrification carriers that preferentially accumulate ammonia-oxidizing bacteria that nitrify ammonia to nitrite are introduced, In a nitrite-type nitrification apparatus for nitrifying ammonia into nitrite, a drawing line for drawing the nitrite-type nitrification carrier from the nitrification tank and a net-like container through which the nitrite-type nitrification carrier does not pass are in one tank. By pulling out the nitrite type nitrification carrier provided in a certain weighing / heating tank and drawn out by the drawing line so that the container is full, the drawing amount is 0.5 to 2.5% of the total carrier amount. a metering means for metering to be in the range of, has a hot water supply means for supplying hot water to said metering-heating chamber, heating means for heating the nitrite type nitrification carrier in the container, heated The physical and nitrite-type nitrification carrier is characterized in that and a return line back to the nitrification tank.

請求項4は、請求項1の方法を実施する装置として構成したものである。   Claim 4 is configured as an apparatus for carrying out the method of claim 1.

請求項5は請求項4において、前記計量手段は、前記容器内に前記亜硝酸型硝化担体が一杯になったことを検知する検知手段を備えることを特徴とする。 A fifth aspect of the present invention is characterized in that, in the fourth aspect, the measuring means includes a detecting means for detecting that the nitrite type nitrification carrier is full in the container.

このように、引き抜いた亜硝酸型硝化担体で容器が一杯になったら、硝化槽から引き抜く1日当たりの引き抜き量が全担体量の0.5〜2.5%の範囲内に入るようにすれば、亜硝酸型硝化担体の適切な引き抜き量を簡単な構成で自動化することができる。   Thus, when the container is filled with the extracted nitrite type nitrification carrier, the extraction amount per day withdrawn from the nitrification tank should be within the range of 0.5 to 2.5% of the total carrier amount. In addition, an appropriate amount of nitrite-type nitrification carrier can be automated with a simple configuration.

請求項6は請求項4又は5において、前記戻しラインに前記加熱した亜硝酸型硝化担体を冷却する冷却手段を設けたことを特徴とする。これは、亜硝酸型硝化担体は加熱処理直後に収縮し、体積が小さくなることに考慮したものである。即ち、硝化槽の処理水出口には通常、亜硝酸型硝化担体を分離するスクリーンが設けられるが、亜硝酸型硝化担体が収縮したまま硝化槽に戻すと、亜硝酸型硝化担体がスクリーンに目詰まりする等のトラブルを発生させる原因になる。   A sixth aspect is characterized in that in the fourth or fifth aspect, a cooling means for cooling the heated nitrite type nitrification carrier is provided in the return line. This is because the nitrite type nitrification carrier shrinks immediately after the heat treatment and the volume is reduced. That is, a screen for separating the nitrite-type nitrification carrier is usually provided at the treated water outlet of the nitrification tank. However, when the nitrite-type nitrification carrier is returned to the nitrification tank while being contracted, the nitrite-type nitrification carrier is visible on the screen. It may cause troubles such as clogging.

請求項7は、前記目的を達成するために、請求項4〜請求項6の何れか1の亜硝酸型の硝化処理装置の後段に、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化装置を設けたことを特徴とする。   According to a seventh aspect of the present invention, in order to achieve the object, ammonia and nitrous acid are simultaneously desorbed by anaerobic ammonia-oxidizing bacteria after the nitrite type nitrification treatment apparatus according to any one of the fourth to sixth aspects. An anaerobic ammonia oxidation apparatus for nitriding is provided.

このように、本発明の亜硝酸型の硝化処理装置の後段に嫌気性アンモニア酸化装置を設ければ、硝化処理装置において嫌気性アンモニア酸化法を行うのに好適なアンモニアと亜硝酸との比が1:1.32の被処理水を安定的に生成することができる。   As described above, if an anaerobic ammonia oxidation apparatus is provided after the nitrite type nitrification apparatus of the present invention, the ratio of ammonia and nitrous acid suitable for performing the anaerobic ammonia oxidation method in the nitrification apparatus is high. The water to be treated of 1: 1.32 can be stably generated.

以上説明したように本発明の亜硝酸型の硝化方法及び装置によれば、亜硝酸型硝化担体の活性を回復するための加熱処理による亜硝酸型の硝化性能の変動を小さくできるので、安定な硝化処理を行うことができる。   As described above, according to the nitrite type nitrification method and apparatus of the present invention, fluctuations in the nitrite type nitrification performance due to heat treatment for recovering the activity of the nitrite type nitrification carrier can be reduced, so that it is stable. Nitrification treatment can be performed.

また、本発明の廃水処理装置によれば、本発明の亜硝酸型の硝化装置の後段に嫌気性アンモニア酸化装置を配置するようにしたので、嫌気性アンモニア酸化法の廃水処理を行うための被処理水を適切に得ることができる。更には、本発明は通常の生物学的脱窒処理(又は独立栄養細菌による脱窒処理)においても、脱窒処理におけるメタノール等の水素供与体の添加量を削減できるので有効である。   In addition, according to the wastewater treatment apparatus of the present invention, the anaerobic ammonia oxidation apparatus is arranged after the nitrite type nitrification apparatus of the present invention, so that the wastewater treatment for the anaerobic ammonia oxidation method is performed. Treated water can be obtained appropriately. Furthermore, the present invention is effective in normal biological denitrification treatment (or denitrification treatment by autotrophic bacteria) because the amount of hydrogen donor such as methanol in the denitrification treatment can be reduced.

以下添付図面に従って本発明に係る亜硝酸型の硝化処理方法及び装置並びに廃水処理装置における好ましい実施の形態について詳説する。   Preferred embodiments of a nitrite type nitrification method and apparatus and a wastewater treatment apparatus according to the present invention will be described in detail below with reference to the accompanying drawings.

図1は本発明の亜硝酸型の硝化処理装置の概念図である。   FIG. 1 is a conceptual diagram of a nitrite type nitrification apparatus of the present invention.

図1に示すように、亜硝酸型の硝化処理装置10は、主として、亜硝酸型の硝化槽12と、該硝化槽12内の亜硝酸型硝化担体20を加熱処理する加熱処理装置14とで構成される。   As shown in FIG. 1, a nitrite type nitrification apparatus 10 is mainly composed of a nitrite type nitrification tank 12 and a heat treatment apparatus 14 that heat-treats the nitrite type nitrification carrier 20 in the nitrification tank 12. Composed.

硝化槽12には原水配管16を介して原水ポンプ18によりアンモニア性廃水(原水)が流入する。硝化槽12内には、アンモニアを亜硝酸まで硝化するアンモニア酸化細菌を優先的に集積させた亜硝酸型硝化担体20、20…が多数投入されており、アンモニア性廃水と亜硝酸型硝化担体とを好気性条件下で接触させることにより、アンモニア性廃水中のアンモニアが亜硝酸まで硝化される。硝化槽12で亜硝酸型の硝化処理が行われた硝化処理水は処理水配管22を介して系外に排出される。硝化槽12内における処理水配管22の入口位置にはスクリーン24が設けられ、これにより亜硝酸型硝化担体20が硝化処理水に同伴して流出するのを防止する。   Ammonia waste water (raw water) flows into the nitrification tank 12 by a raw water pump 18 through a raw water pipe 16. In the nitrification tank 12, a large number of nitrite-type nitrification carriers 20, 20... In which ammonia-oxidizing bacteria that nitrify ammonia to nitrite are preferentially accumulated are introduced. Ammonia waste water, nitrite-type nitrification carrier, Is contacted under aerobic conditions, and ammonia in the ammoniacal wastewater is nitrified to nitrous acid. The nitrification water that has been subjected to nitrite-type nitrification in the nitrification tank 12 is discharged out of the system through the treatment water pipe 22. A screen 24 is provided at the inlet position of the treated water pipe 22 in the nitrification tank 12, thereby preventing the nitrite type nitrification carrier 20 from flowing out along with the nitrification treated water.

硝化槽12に投入する亜硝酸型硝化担体20としては、微生物を担体内部に包括固定した包括固定化担体や、担体周囲に微生物を付着させた付着固定化担体の何れかを使用することもできる。しかし、加熱処理時に微生物の脱離しにくさから見た場合、付着固定化担体よりも包括固定化担体がより好ましい。   As the nitrite type nitrification carrier 20 to be introduced into the nitrification tank 12, either a entrapping immobilization carrier in which microorganisms are entrapped and immobilized inside the carrier or an adhesion immobilization carrier in which microorganisms are attached around the carrier can be used. . However, from the viewpoint of difficulty in detaching microorganisms during the heat treatment, the entrapping immobilization carrier is more preferable than the adhesion immobilization carrier.

包括固定化型の亜硝酸型硝化担体20の製造方法としては、少なくともアンモニア酸化細菌及び亜硝酸酸化細菌を含む硝化性能を有する複合微生物系の汚泥を、40〜100°Cの範囲で加熱処理した後、モノマー又はプレポリマーの何れかに包括固定する。加熱処理時間としては、加熱処理温度が40°C以上、60°C未満の範囲では60分以上、加熱処理温度が60°C以上、80°C未満の範囲では40分以上、加熱処理温度が80°C以上、100°C以下の範囲では20分以上であることが好ましい。モノマー材料としてはアクリルアミド、メチレンビスアクリルアミド、トリアクリルフォルマールなどがよい。プレポリマ材料としてはポリエチレングリコールジアクリレートやポリエチレングリコールメタアクリレートがよく、その誘導体を用いることができる。亜硝酸型硝化担体の形状は球状や筒状などの包括担体、ひも状包括担体、多孔質状や不織布状やハニカム状やスポンジ状など凹凸が多い包括担体が接触効率がよく硝化性能が向上する。また、汚泥をモノマー又はプレポリマーの何れかに包括固定してから加熱処理してもよく、この場合には30〜90°Cの範囲で1時間以上加熱処理することが好ましい。これにより、アンモニアを亜硝酸まで硝化するアンモニア酸化細菌を優先的に集積させた亜硝酸型硝化担体を製造することができる。複合微生物系の汚泥としては、例えば湖沼や河川や海の底泥、地表の土壌、下水処理廃水や工場廃水の汚泥を使用することができる。   As a method for producing the entrapped immobilization type nitrite-type nitrification carrier 20, sludge of a complex microbial system having nitrification performance containing at least ammonia-oxidizing bacteria and nitrite-oxidizing bacteria was heat-treated in a range of 40 to 100 ° C. Thereafter, it is comprehensively fixed to either the monomer or the prepolymer. The heat treatment time is 60 minutes or more when the heat treatment temperature is 40 ° C. or more and less than 60 ° C., and 40 minutes or more when the heat treatment temperature is 60 ° C. or more and less than 80 ° C. In the range of 80 ° C. or more and 100 ° C. or less, it is preferably 20 minutes or more. As the monomer material, acrylamide, methylenebisacrylamide, triacryl formal and the like are preferable. The prepolymer material is preferably polyethylene glycol diacrylate or polyethylene glycol methacrylate, and derivatives thereof can be used. The shape of the nitrite type nitrification carrier is spherical or cylindrical inclusion carrier, string inclusion carrier, porous inclusion, non-woven fabric, honeycomb, sponge, etc. inclusion carrier with many irregularities improves contact efficiency and improves nitrification performance . In addition, heat treatment may be performed after the sludge is comprehensively fixed to either the monomer or the prepolymer, and in this case, heat treatment is preferably performed in the range of 30 to 90 ° C for 1 hour or longer. Thereby, a nitrite-type nitrification carrier in which ammonia-oxidizing bacteria that nitrify ammonia to nitrite are preferentially accumulated can be produced. Examples of complex microbial sludge include sludge from lakes, rivers, and sea, soil from the surface, sewage treatment wastewater, and factory wastewater.

付着固定化型の亜硝酸型硝化担体の製造方法としては、複合微生物系の汚泥を40〜100°Cの範囲で加熱処理した後、付着固定化材料に付着固定することで製造する。付着固定では球状や筒状などの担体材料、ひも状材料、ゲル状担体、不織布状材料など凹凸が多い固定化材料が付着し易く硝化性能が向上する。更には、微生物の自己造立を利用したグラニュール型の亜硝酸型硝化担体でもよい。   As a method for producing an adhesion-immobilized nitrite-type nitrification carrier, the composite microorganism sludge is heat-treated in the range of 40 to 100 ° C. and then adhered and fixed to the adhesion-immobilizing material. In adhesion fixation, fixing materials having many irregularities such as spherical or cylindrical carrier materials, string-like materials, gel-like carriers, non-woven materials, and the like are easily adhered, and the nitrification performance is improved. Furthermore, a granule type nitrite type nitrification carrier utilizing self-organization of microorganisms may be used.

加熱処理装置14は、主として、硝化槽12から亜硝酸型硝化担体20を引き抜く引き抜き配管26と、亜硝酸型硝化担体20の引き抜き量を計量する計量槽28と、亜硝酸型硝化担体20を加熱処理する加熱槽30と、亜硝酸型硝化担体20を冷却する冷却槽32と、亜硝酸型硝化担体20を硝化槽12に戻す戻し配管34と、から構成される。また、計量槽28と加熱槽30、加熱槽30と冷却槽32はそれぞれ、第1送水管36、第2送水管38で連結される。そして、引き抜き配管26、第1送水管36、第2送水管38、戻し配管34にはそれぞれ、引き抜きポンプ40、第1送りポンプ42、第2送りポンプ44、戻しポンプ45がそれぞれ設けられる。   The heat treatment apparatus 14 mainly heats the extraction pipe 26 for extracting the nitrite type nitrification carrier 20 from the nitrification tank 12, the measuring tank 28 for measuring the extraction amount of the nitrite type nitrification carrier 20, and the nitrite type nitrification carrier 20. A heating tank 30 to be processed, a cooling tank 32 for cooling the nitrite type nitrification carrier 20, and a return pipe 34 for returning the nitrite type nitrification carrier 20 to the nitrification tank 12 are configured. In addition, the measuring tank 28 and the heating tank 30, and the heating tank 30 and the cooling tank 32 are connected by a first water pipe 36 and a second water pipe 38, respectively. The extraction pipe 26, the first water supply pipe 36, the second water supply pipe 38, and the return pipe 34 are provided with a drawing pump 40, a first feed pump 42, a second feed pump 44, and a return pump 45, respectively.

計量槽28内には、金網又はプラスチック製の網で形成された容器46が設けられ、この容器46は上面から引き抜き配管26の一端が挿入されると共に、下面が開閉駆動部48により開閉可能に形成される。この容器46の編み目のメッシュは亜硝酸型硝化担体20が通過しないことが必要である。そして、この容器46の容量は、亜硝酸型硝化担体20が容器46内に一杯になったときに、硝化槽12から引き抜く引き抜き量が全担体量の0.5〜2.5%の範囲内になるように形成される。また、容器46の上面位置に容器46内が亜硝酸型硝化担体20で一杯になったことを検知するセンサー50が設けられ、センサー50の検知信号が制御装置52に入力される。また、上記した引き抜きポンプ40、第1送りポンプ42、第2送りポンプ44、戻しポンプ45のON−OFF制御、及び開閉駆動部48の開閉制御も制御装置52によって行われる。   A container 46 formed of a metal mesh or a plastic mesh is provided in the measuring tank 28, and one end of the extraction pipe 26 is inserted into the container 46 from the upper surface, and the lower surface can be opened and closed by an opening / closing drive unit 48. It is formed. It is necessary for the mesh of the stitches of the container 46 not to pass the nitrite type nitrification carrier 20. The capacity of the container 46 is such that when the nitrite type nitrification carrier 20 is filled in the container 46, the withdrawal amount withdrawn from the nitrification tank 12 is in the range of 0.5 to 2.5% of the total carrier amount. It is formed to become. Further, a sensor 50 for detecting that the inside of the container 46 is filled with the nitrite type nitrification carrier 20 is provided at the upper surface position of the container 46, and a detection signal of the sensor 50 is input to the control device 52. Further, the control device 52 also performs the ON / OFF control of the drawing pump 40, the first feed pump 42, the second feed pump 44, and the return pump 45 and the opening / closing control of the opening / closing drive unit 48.

このように構成された加熱処理装置14によれば、制御装置52が引き抜きポンプ40をONにすると、硝化槽12内の亜硝酸型硝化担体20が引き抜き配管26を介して硝化槽12内の廃水と一緒に容器46内に流れ込み、亜硝酸型硝化担体20のみが容器46内に溜められる。亜硝酸型硝化担体20が容器内に一杯になったことをセンサー50が検知すると、検知信号が制御装置52に送られ、制御装置52は引き抜きポンプ40をOFFにする。これにより、硝化槽12から引き抜く1日当たりの引き抜き量を計量することができる。亜硝酸型硝化担体20の引き抜き量が計量されたら、制御装置52は開閉駆動部48を制御して容器46の下面を開けると共に、第1送りポンプ42をONにして容器46内の亜硝酸型硝化担体20を計量槽28内の廃水と一緒に加熱槽30に送る。送り終わったら第1送りポンプ42をOFFにする。尚、計量槽28での亜硝酸型硝化担体20の計量は上記した方法に限定されるものではなく、容器46を重量計りに吊るしておいて、所定の重量になったときに上記した引き抜き量が全担体量の0.5〜2.5%の範囲内になるようにしてもよい。要は、硝化槽12から引き抜く1日当たりの引き抜き量を自動計量することができる方法であればよい。   According to the heat treatment apparatus 14 configured as described above, when the control device 52 turns on the extraction pump 40, the nitrite type nitrification carrier 20 in the nitrification tank 12 is discharged from the nitrification tank 12 via the extraction pipe 26. And flows into the container 46 together, and only the nitrite type nitrification carrier 20 is stored in the container 46. When the sensor 50 detects that the nitrite-type nitrification carrier 20 is full in the container, a detection signal is sent to the control device 52, and the control device 52 turns off the extraction pump 40. Thereby, the extraction amount per day extracted from the nitrification tank 12 can be measured. When the extraction amount of the nitrite type nitrification carrier 20 is measured, the control device 52 controls the opening / closing drive unit 48 to open the lower surface of the container 46 and turn on the first feed pump 42 to turn on the nitrite type in the container 46. The nitrification carrier 20 is sent to the heating tank 30 together with the waste water in the measuring tank 28. When the feeding is completed, the first feed pump 42 is turned off. The metering of the nitrite type nitrification carrier 20 in the metering tank 28 is not limited to the above-described method, and the above-described withdrawal amount is obtained when the container 46 is hung on a weighing scale and reaches a predetermined weight. May be within the range of 0.5 to 2.5% of the total carrier amount. In short, any method can be used as long as it can automatically measure the amount of extraction from the nitrification tank 12 per day.

加熱槽30内には加熱ヒータ54が設けられ、計量槽28から送られた亜硝酸型硝化担体20を加熱処理する。このときの加熱処理条件は、上述した亜硝酸型硝化担体20の製造時における加熱処理条件と同様である。この加熱処理により、硝化槽12内に廃水と一緒に混入して亜硝酸型硝化担体20に付着した亜硝酸酸化細菌を殺菌する。加熱槽30での加熱処理が終了したら、制御装置52は、第2送りポンプ44をONにして、加熱槽30内の亜硝酸型硝化担体20を加熱槽30内の廃水と一緒に冷却槽32に送る。送り終わったら第2送りポンプ44をOFFにする。   A heater 54 is provided in the heating tank 30 to heat the nitrite type nitrification carrier 20 sent from the measuring tank 28. The heat treatment conditions at this time are the same as the heat treatment conditions at the time of manufacturing the nitrite type nitrification carrier 20 described above. By this heat treatment, the nitrite oxidizing bacteria adhering to the nitrite type nitrification carrier 20 mixed with the waste water in the nitrification tank 12 are sterilized. When the heat treatment in the heating tank 30 is completed, the control device 52 turns on the second feed pump 44 to cool the nitrite-type nitrification carrier 20 in the heating tank 30 together with the waste water in the heating tank 30 to the cooling tank 32. Send to. When the feeding is finished, the second feed pump 44 is turned off.

冷却槽32の上方には、冷水を供給する冷水供給配管56が延設され、冷却槽32に冷水が供給されることにより、加熱槽30で加熱された亜硝酸型硝化担体20が硝化槽12内での亜硝酸型硝化担体20の温度と同程度まで冷却される。この場合、冷却槽32の底部に、亜硝酸型硝化担体20は排出せずに、加熱槽30からの温かい廃水のみを排出するための排出管58を設けておくとよい。冷却槽32での亜硝酸型硝化担体20の冷却が終了したら、制御装置52は、戻しポンプ45をONにして、冷却槽32内で冷却された亜硝酸型硝化担体20を冷却槽32内の冷水と一緒に硝化槽12に送る。送り終わったら戻しポンプ45をOFFにする。   Above the cooling tank 32, a cold water supply pipe 56 for supplying cold water is extended, and the cold water is supplied to the cooling tank 32, whereby the nitrite type nitrification carrier 20 heated in the heating tank 30 is supplied to the nitrification tank 12. It is cooled to the same level as the temperature of the nitrite type nitrification carrier 20 inside. In this case, it is preferable to provide a discharge pipe 58 for discharging only the warm waste water from the heating tank 30 without discharging the nitrite type nitrification carrier 20 at the bottom of the cooling tank 32. When the cooling of the nitrite-type nitrification carrier 20 in the cooling tank 32 is completed, the control device 52 turns on the return pump 45 to put the nitrite-type nitrification carrier 20 cooled in the cooling tank 32 into the cooling tank 32. It is sent to the nitrification tank 12 together with cold water. When the feeding is completed, the return pump 45 is turned off.

尚、加熱頻度については、必ずしも1日1回行う必要はなく、例えば2日に1回行ってもよく、あるいは2日分の加熱処理をまとめて行うことも可能である。また、1日分の加熱すべき亜硝酸型硝化担体20を数回に分けて加熱処理してもよい。但し、加熱処理する間隔が余り長くなり過ぎると、硝化槽12内において、硝化活性の回復した亜硝酸型硝化担体20の比率が次第に少なくなり、硝化槽12の硝化性能が徐々に低下してくる。従って、硝化槽12からは毎日1回、0.5〜2.5%の範囲内で引き抜きを行って加熱処理することが好ましい。   Note that the heating frequency is not necessarily performed once a day. For example, the heating frequency may be performed once every two days, or the heat treatment for two days may be performed collectively. Further, the nitrite-type nitrification carrier 20 to be heated for one day may be heat-treated in several times. However, if the heat treatment interval is too long, the ratio of the nitrite-type nitrification carrier 20 whose nitrification activity has been recovered gradually decreases in the nitrification tank 12, and the nitrification performance of the nitrification tank 12 gradually decreases. . Therefore, it is preferable to carry out the heat treatment by extracting from the nitrification tank 12 once a day within a range of 0.5 to 2.5%.

このように、本発明によれば、硝化槽12内における亜硝酸型硝化担体20の全担体量の一部を定期的に引き抜いて加熱処理してから硝化槽12に戻すことにより、亜硝酸型硝化担体20の硝化活性を回復させると共に、該硝化槽12から引き抜く1日当たりの引き抜き量を全担体量の0.5〜2.5%の範囲内に制御するようにした。これにより、亜硝酸型硝化担体20の硝化活性を回復するための加熱処理による硝化槽12の硝化性能の変動を小さくできるので、安定な亜硝酸型の硝化処理を行うことができる。また、冷却槽32を設けて、加熱槽30での加熱処理で体積が収縮した亜硝酸型硝化担体20を元の体積まで戻すようにしたので、亜硝酸型硝化担体20が硝化槽12のスクリーン24に目詰まりする等のトラブルを発生させることもない。   As described above, according to the present invention, a part of the total amount of the nitrite type nitrification carrier 20 in the nitrification tank 12 is periodically extracted and subjected to heat treatment, and then returned to the nitrification tank 12 to thereby form the nitrite type. The nitrification activity of the nitrification carrier 20 was restored, and the extraction amount per day withdrawn from the nitrification tank 12 was controlled within the range of 0.5 to 2.5% of the total carrier amount. Thereby, since the fluctuation | variation of the nitrification performance of the nitrification tank 12 by the heat processing for recovering the nitrification activity of the nitrite type nitrification carrier 20 can be reduced, stable nitrite type nitrification treatment can be performed. Further, since the cooling tank 32 is provided so that the nitrite type nitrification carrier 20 whose volume is contracted by the heat treatment in the heating tank 30 is returned to the original volume, the nitrite type nitrification carrier 20 is a screen of the nitrification tank 12. No troubles such as clogging 24 occur.

図2は、亜硝酸型硝化担体20の計量と加熱とを同じ槽で出来るようにした計量・加熱槽60の説明図である。尚、図1の部材と同じ部材は同符号を付して説明する。   FIG. 2 is an explanatory view of a metering / heating tank 60 in which metering and heating of the nitrite type nitrification carrier 20 can be performed in the same tank. In addition, the same member as the member of FIG. 1 is attached | subjected and demonstrated.

図2に示すように、計量・加熱槽60内に硝化槽12から引き抜いた亜硝酸型硝化担体20を溜める容器46を設けることは同様であるが、計量・加熱槽60には、亜硝酸型硝化担体20を引き抜く引き抜き配管26と、温水を供給する温水供給配管62と、硝化槽12から亜硝酸型硝化担体20と共に流れ込む廃水を排出するバルブ64付きの排出管66とが設けられる。そして、亜硝酸型硝化担体20の加熱処理を行うときには、硝化槽12内の亜硝酸型硝化担体20を引き抜き配管26を介してポンプ40で容器46内が一杯になるまで引き抜く。引き抜きが終了したら排出管66のバルブ64を開けて計量・加熱槽60の廃水を硝化槽12に排出する。尚、排出先は硝化槽12以外でもよい。次に、温水供給配管62から計量・加熱槽60内に温水を供給し、容器46内に引き抜いた亜硝酸型硝化担体20を加熱処理する。これにより、亜硝酸型硝化担体20の計量と加熱とを同じ槽で行うことができ、加熱処理装置14のコンパクト化に寄与する。   As shown in FIG. 2, it is the same that a container 46 for storing the nitrite type nitrification carrier 20 drawn out from the nitrification tank 12 is provided in the measurement / heating tank 60. An extraction pipe 26 for extracting the nitrification carrier 20, a hot water supply pipe 62 for supplying hot water, and a discharge pipe 66 with a valve 64 for discharging waste water flowing together with the nitrite type nitrification carrier 20 from the nitrification tank 12 are provided. When the nitrite type nitrification carrier 20 is subjected to heat treatment, the nitrite type nitrification carrier 20 in the nitrification tank 12 is pulled out by the pump 40 through the extraction pipe 26 until the inside of the container 46 becomes full. When the drawing is completed, the valve 64 of the discharge pipe 66 is opened to discharge the waste water from the metering / heating tank 60 to the nitrification tank 12. The discharge destination may be other than the nitrification tank 12. Next, hot water is supplied from the hot water supply pipe 62 into the metering / heating tank 60, and the nitrite type nitrification carrier 20 drawn into the container 46 is heated. Thereby, the measurement and heating of the nitrite type nitrification support | carrier 20 can be performed in the same tank, and it contributes to size reduction of the heat processing apparatus 14. FIG.

図3は、本発明の廃水処理装置70の概念図であり、上記した亜硝酸型の硝化装置10の後段に、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化装置72を設けたものである。尚、亜硝酸型の硝化装置10で既に説明した部材には同符号を付して説明は省略する。尚、図3の加熱処理装置14には主な構成のみを図示したが、図1で説明した加熱処理装置14と同様である。   FIG. 3 is a conceptual diagram of the wastewater treatment apparatus 70 of the present invention, and anaerobic ammonia oxidation in which ammonia and nitrous acid are simultaneously denitrified by anaerobic ammonia oxidizing bacteria at the subsequent stage of the nitrite type nitrification apparatus 10 described above. A device 72 is provided. In addition, the same code | symbol is attached | subjected to the member already demonstrated with the nitrite type nitrification apparatus 10, and description is abbreviate | omitted. In addition, although only the main structure was illustrated in the heat processing apparatus 14 of FIG. 3, it is the same as that of the heat processing apparatus 14 demonstrated in FIG.

図3に示すように、硝化槽12の前段にアンモニア性廃水を硝化装置10と嫌気性アンモニア酸化装置72とに2つに分流する分流器74が設けられる。即ち、原水配管16は分流器74の出口で2つに分岐され、一方の分岐原水配管16aは硝化槽12に接続されると共に、他方の分岐原水配管16bは嫌気性アンモニア酸化装置72に至る上記処理水配管22の途中に接続される。   As shown in FIG. 3, a diverter 74 is provided in front of the nitrification tank 12 to divert ammonia waste water into two parts, the nitrification apparatus 10 and the anaerobic ammonia oxidation apparatus 72. That is, the raw water pipe 16 is branched into two at the outlet of the flow divider 74, one branched raw water pipe 16 a is connected to the nitrification tank 12, and the other branched raw water pipe 16 b reaches the anaerobic ammonia oxidizer 72. Connected in the middle of the treated water pipe 22.

かかる廃水処理装置70で嫌気性アンモニア酸化法によりアンモニア性廃水中の窒素成分を除去するには、分流器74によりアンモニア性廃水の57%を亜硝酸型の硝化装置10に分流し、残りの43%を嫌気性アンモニア酸化装置72に直接流入するように分流する。そして、硝化装置10でアンモニア性廃水中のアンモニアを亜硝酸に硝化することにより、嫌気性アンモニア酸化装置72に流入する被処理水のアンモニアと亜硝酸との比を1:1.32の嫌気性アンモニア酸化法の比にコントロールする。この場合、本発明の亜硝酸型の硝化装置10を使用することで、アンモニア性廃水中のアンモニアを亜硝酸に硝化する硝化性能を安定化することができるので、嫌気性アンモニア酸化装置72に流入する被処理水のアンモニアと亜硝酸との比を1:1.32の嫌気性アンモニア酸化法の比に安定してコントロールすることが可能となる。従って、嫌気性アンモニア酸化装置72による窒素除去性能が良くなる。   In order to remove the nitrogen component in the ammonia waste water by the anaerobic ammonia oxidation method in the waste water treatment apparatus 70, 57% of the ammonia waste water is diverted to the nitrite type nitrification apparatus 10 by the flow divider 74, and the remaining 43 % Is diverted to flow directly into the anaerobic ammonia oxidizer 72. Then, by nitrifying ammonia in the ammoniacal wastewater into nitrous acid by the nitrification apparatus 10, the ratio of the ammonia to the treated water flowing into the anaerobic ammonia oxidation apparatus 72 and nitrous acid is 1: 1.32. Control to the ratio of ammonia oxidation method. In this case, by using the nitrite type nitrification apparatus 10 of the present invention, the nitrification performance of nitrifying ammonia in ammonia wastewater to nitrite can be stabilized, so that it flows into the anaerobic ammonia oxidation apparatus 72. It is possible to stably control the ratio of ammonia and nitrous acid to be treated to the ratio of the anaerobic ammonia oxidation method of 1: 1.32. Therefore, the nitrogen removal performance by the anaerobic ammonia oxidation device 72 is improved.

以下に本発明の亜硝酸型の硝化装置の実施例を説明するが、これに限定されるものではない。   Examples of the nitrite type nitrification apparatus of the present invention will be described below, but the present invention is not limited thereto.

(比較例)
比較例は、図4に示すとおり、亜硝酸型硝化担体20の加熱処理をまとめて行う従来の硝化槽80で亜硝酸型の硝化処理試験を行った場合である。加熱処理した亜硝酸型硝化担体20(包括固定化担体)を硝化槽80に投入し、アンモニア性廃水を通水した。アンモニア性廃水(原水)は、産業廃水を用いた。亜硝酸型硝化担体は、1辺3mmの立方体形状に成形したものを予め湯浴で60°C1時間加熱処理したものを使用した。この産業廃水のアンモニア性窒素濃度(NH4 −N)は350〜440mg/Lであった。廃水のpHについては、pHコントローラーにより7.0〜8.0に制御し、溶存酸素濃度(DO)はDO制御装置により1.0〜2.0mg/Lに設定した。
(Comparative example)
As shown in FIG. 4, the comparative example is a case where a nitrite type nitrification test was conducted in a conventional nitrification tank 80 in which the heat treatment of the nitrite type nitrification carrier 20 is performed collectively. The heat-treated nitrite type nitrification carrier 20 (encapsulated immobilization carrier) was put into a nitrification tank 80, and ammonia waste water was passed through. Industrial wastewater was used as ammoniacal wastewater (raw water). As the nitrite type nitrification carrier, a nitrite-type nitrification carrier formed into a cube shape with a side of 3 mm was previously heated in a hot water bath at 60 ° C. for 1 hour. The ammonia nitrogen concentration (NH 4 —N) of this industrial wastewater was 350 to 440 mg / L. The pH of the wastewater was controlled to 7.0 to 8.0 by a pH controller, and the dissolved oxygen concentration (DO) was set to 1.0 to 2.0 mg / L by a DO controller.

比較例における処理水の水質結果を図5に示す。処理水のアンモニア性窒素濃度(NH4 −N)及び亜硝酸性窒素濃度(NO2 −N)から分かるように、運転開始約3〜4週間後に硝化活性が立上り、亜硝酸型の硝化反応を開始した。そして、運転開始後、約210日目までは安定した亜硝酸型の硝化反応を維持することが確認された。しかし、運転開始210日以後から、亜硝酸性窒素濃度(NO2 −N)が急激に減少した。これは、産業廃水と一緒に硝化槽80に流入した亜硝酸酸化細菌が亜硝酸型硝化担体に付着・増殖して亜硝酸酸化活性が立上ったためであり、処理水中には高濃度の硝酸が検出された。そこで、240日目に、硝化槽00内の亜硝酸型硝化担体をすべて回収し、再度加熱処理により、付着した亜硝酸酸化細菌の殺菌を行った。加熱処理条件は60°C1時間湯浴に潰すことにより行った。これにより、約258日目から性能を取り戻すことができ、亜硝酸型の硝化反応を行うことができた。 The water quality result of the treated water in the comparative example is shown in FIG. As can be seen from the ammonia nitrogen concentration (NH 4 -N) and nitrite nitrogen concentration (NO 2 -N) of the treated water, nitrification activity rises about 3 to 4 weeks after the start of operation, and nitrite type nitrification reaction Started. It was confirmed that a stable nitrite-type nitrification reaction was maintained until about 210 days after the start of operation. However, from 210 days after the start of operation, the concentration of nitrite nitrogen (NO 2 -N) decreased rapidly. This is because the nitrite-oxidizing bacteria that flowed into the nitrification tank 80 together with the industrial wastewater adhered to and propagated on the nitrite-type nitrification carrier, and the nitrite oxidation activity rose. Was detected. Therefore, on the 240th day, all of the nitrite-type nitrification carrier in the nitrification tank 00 was recovered, and the attached nitrite-oxidizing bacteria were sterilized by heat treatment again. The heat treatment conditions were performed by crushing in a hot water bath at 60 ° C for 1 hour. As a result, the performance could be recovered from about the 258th day, and a nitrite type nitrification reaction could be performed.

しかしながら、図5から明らかなように、運転開始後240日目から258日目までの間は、処理水中に多量のアンモニアが残留した。これは、亜硝酸型硝化担体の加熱処理によりアンモニア酸化細菌も若干影響をうけて亜硝酸型の硝化活性が低下した為である。この比較例の結果から、硝化槽80内の亜硝酸型硝化担体20を一度に引き抜いて加熱処理を行うと1次的に全く亜硝酸型の硝化が行えない期間が生じてしまうことが明らかとなった。   However, as apparent from FIG. 5, a large amount of ammonia remained in the treated water from the 240th day to the 258th day after the start of operation. This is because the heat treatment of the nitrite type nitrification carrier also slightly affected the ammonia oxidizing bacteria, and the nitrite type nitrification activity decreased. From the results of this comparative example, it is clear that when the nitrite type nitrification carrier 20 in the nitrification tank 80 is pulled out at a time and subjected to heat treatment, a period during which nitrite type nitrification cannot be performed at all will occur. became.

(実施例)
実施例は、図1の本発明の亜硝酸型の硝化装置10を使用して、比較例のときと同じ産業廃水及び亜硝酸型硝化担体20を使用して亜硝酸型の硝化試験を行ったものである。硝化槽12から亜硝酸型硝化担体20を、毎日1回の割合で定期的に引き抜いて加熱処理装置14で加熱処理し、硝化槽12に戻すと共に、1回の担体引抜量(%)は硝化槽12内の全担体量の0.1%〜4%として試験した。即ち、複数の硝化槽12を用意し、硝化槽ごとに0.1%〜4%の担体引抜量(%)の範囲内で担体引抜量(%)が異なるように設定した。
(Example)
In the example, a nitrite type nitrification test was performed using the same industrial wastewater and nitrite type nitrification carrier 20 as in the comparative example, using the nitrite type nitrification apparatus 10 of the present invention of FIG. Is. The nitrite-type nitrification carrier 20 is periodically withdrawn from the nitrification tank 12 at a rate of once a day, heat-treated with the heat treatment device 14 and returned to the nitrification tank 12, and the amount of carrier withdrawal (%) at one time is nitrification. Tested as 0.1% to 4% of the total amount of carrier in tank 12. That is, a plurality of nitrification tanks 12 were prepared, and the carrier withdrawal amount (%) was set differently within the range of 0.1% to 4% carrier withdrawal amount (%) for each nitrification tank.

図6は、亜硝酸型硝化率(%)と亜硝酸型硝化担体の引抜量(%)との関係を示したものである。   FIG. 6 shows the relationship between the nitrite type nitrification rate (%) and the extraction amount (%) of the nitrite type nitrification carrier.

ここで、横軸に示す担体引抜量(%)とは、硝化槽内全体の全担体量に対して1日当たり引き抜いた亜硝酸型硝化担体20の比率であり、縦軸に示す亜硝酸型硝化率(%)は次の式によって算出した。   Here, the amount of carrier withdrawal (%) shown on the horizontal axis is the ratio of the nitrite type nitrification carrier 20 drawn per day to the total amount of carrier in the entire nitrification tank, and the nitrite type nitrification shown on the vertical axis. The rate (%) was calculated by the following formula.

処理水の亜硝酸性窒素濃度(NO2 −N)
亜硝酸型硝化率(%)=─────────────────────×100
廃水のアンモニア性窒素濃度(NH4 −N)
図6から分かるように、硝化槽12からの担体引抜量(%)を大きくしていくと、亜硝酸型硝化率(%)が急激に大きくなり、担体引抜量(%)が0.5%のときに亜硝酸型硝化率(%)が約90%と最大になった。更に担体引抜量(%)を大きくしていくと、亜硝酸型硝化率(%)がゆるやかに下降し、担体引抜量(%)が2.5%のときに亜硝酸型硝化率(%)約75%となり、その後は急激に低下する。このように、硝化槽12から引き抜く1日当たりの引き抜き量が全担体量の0.5%未満では、硝化槽12全体からみたときに亜硝酸型硝化担体12に付着した亜硝酸酸化細菌を十分に殺菌することができない。これにより、硝化槽12の亜硝酸型の硝化性能が低下するので、処理水中に硝酸が生成してしまう。逆に、硝化槽12から引き抜く1日当たりの引き抜き量を全担体量の2.5%を超えると、亜硝酸酸化細菌は十分に殺菌されるが、アンモニア酸化細菌の一部も殺菌されるために硝化槽12内における馴養中の亜硝酸型硝化担体20の割合が多くなり、硝化槽12の硝化性能が低下する。即ち、担体引抜量(%)が0.5%未満で小さ過ぎても、2.5%を超えて大き過ぎても亜硝酸型硝化率(%)が低下し、硝化槽12の硝化性能が悪化することが分かる。
Nitrite nitrogen concentration in treated water (NO 2 -N)
Nitrite-type nitrification rate (%) = ───────────────────── × 100
Ammonia nitrogen concentration of wastewater (NH 4 -N)
As can be seen from FIG. 6, when the carrier withdrawal amount (%) from the nitrification tank 12 is increased, the nitrite type nitrification rate (%) increases rapidly, and the carrier withdrawal amount (%) is 0.5%. At that time, the nitrite type nitrification rate (%) reached a maximum of about 90%. When the carrier withdrawal amount (%) is further increased, the nitrite type nitrification rate (%) gradually decreases, and when the carrier withdrawal amount (%) is 2.5%, the nitrite type nitrification rate (%) It becomes about 75% and then decreases rapidly. Thus, when the amount of extraction per day extracted from the nitrification tank 12 is less than 0.5% of the total amount of the carrier, nitrite oxidizing bacteria adhering to the nitrite type nitrification carrier 12 when viewed from the entire nitrification tank 12 are sufficiently obtained. It cannot be sterilized. Thereby, since the nitrite type nitrification performance of the nitrification tank 12 is lowered, nitric acid is generated in the treated water. On the contrary, if the amount of extraction per day that is extracted from the nitrification tank 12 exceeds 2.5% of the total amount of the carrier, nitrite oxidizing bacteria are sufficiently sterilized, but part of ammonia oxidizing bacteria is also sterilized. The proportion of the nitrite-type nitrification carrier 20 that is being acclimatized in the nitrification tank 12 increases, and the nitrification performance of the nitrification tank 12 decreases. That is, even if the carrier withdrawal amount (%) is less than 0.5% and is too small or more than 2.5%, the nitrite type nitrification rate (%) is lowered and the nitrification performance of the nitrification tank 12 is reduced. It turns out that it gets worse.

この実施例の結果は、硝化槽12内における亜硝酸型硝化担体の全担体量の一部を定期的に引き抜いて加熱処理することで、比較例のように全担体量を一度に加熱処理するような硝化活性の低下はないが、1日当たりの引き抜き量を間違えると硝化槽12の硝化性能が低下することを意味する。従って、亜硝酸型硝化担体20を定期的に引き抜いて加熱処理し、加熱処理した亜硝酸型硝化担体20を硝化槽12に戻すことに加えて、引き抜く1日当たりの引き抜き量を硝化槽12内における全担体量の0.5〜2.5%の範囲内に制御することが重要であり、これにより高い亜硝酸硝化率を得ることができる。   As a result of this example, a part of the total carrier amount of the nitrite type nitrification carrier in the nitrification tank 12 is periodically extracted and heat-treated, so that the whole carrier amount is heat-treated at the same time as in the comparative example. Although there is no decrease in nitrification activity like this, it means that if the amount of extraction per day is wrong, the nitrification performance of the nitrification tank 12 decreases. Accordingly, the nitrite-type nitrification carrier 20 is periodically extracted and heat-treated, and the heat-treated nitrite-type nitrification carrier 20 is returned to the nitrification tank 12, and the extraction amount per day in the nitrification tank 12 is extracted. It is important to control the amount within the range of 0.5 to 2.5% of the total carrier amount, whereby a high nitrite nitrification rate can be obtained.

また、加熱処理時に使用する加熱槽30の湯量(熱量)については、担体引抜量(%)の最大値を2.5%とすることから、小型の加熱槽30でよく、設備の大幅な縮小が図れる。   In addition, as for the hot water amount (heat amount) of the heating tank 30 used during the heat treatment, the maximum value of the carrier withdrawal amount (%) is set to 2.5%, so a small heating tank 30 is sufficient, and the equipment is greatly reduced. Can be planned.

本発明の亜硝酸型の硝化装置の概念図Conceptual diagram of nitrite type nitrification apparatus of the present invention 亜硝酸型硝化担体の引き抜き計量と加熱処理とを1槽で行えるようにした計量・加熱槽の概念図Schematic diagram of a metering / heating tank that allows the nitrite-type nitrification carrier to be drawn and weighed in one tank. 本発明の廃水処理装置の概念図Conceptual diagram of the wastewater treatment apparatus of the present invention 従来の亜硝酸型の硝化装置の概念図Conceptual diagram of conventional nitrite type nitrification equipment 従来の亜硝酸型の硝化装置で亜硝酸型硝化担体をまとめて加熱処理した比較例の結果を示した図The figure which showed the result of the comparative example which heat-processed the nitrite type nitrification support | carrier collectively with the conventional nitrite type nitrification apparatus. 本発明の亜硝酸型の硝化装置で亜硝酸型硝化担体を定期的に加熱処理した場合の亜硝酸型硝化率(%)と亜硝酸型硝化担体の引抜量(%)との関係を示した図The relationship between the nitrite type nitrification rate (%) and the extraction amount (%) of the nitrite type nitrification carrier when the nitrite type nitrification carrier is periodically heat-treated with the nitrite type nitrification device of the present invention was shown. Figure

符号の説明Explanation of symbols

10…亜硝酸型の硝化装置、12…硝化槽、14…加熱処理装置、16…原水配管、18…原水ポンプ、20…亜硝酸型硝化担体、22…処理水配管、24…スクリーン、26…引き抜き配管、28…計量槽(計量手段)、30…加熱槽(加熱手段)、32…冷却槽(冷却手段)、34…戻し配管、36…第1送水管、38…第2送水管、40…引き抜きポンプ、42…第1送りポンプ、44…第2送りポンプ、45…戻しポンプ、46…容器、48…開閉駆動部、50…センサー、52…制御装置、54…ヒーター、56…冷水供給配管、58…排出管、60…計量・加熱槽、62…温水供給配管、64…バルブ、66…排出管、70…廃水処理装置、72…嫌気性アンモニア酸化装置、74…分流器
DESCRIPTION OF SYMBOLS 10 ... Nitrite type nitrification apparatus, 12 ... Nitrification tank, 14 ... Heat processing apparatus, 16 ... Raw water piping, 18 ... Raw water pump, 20 ... Nitrite type nitrification support, 22 ... Treatment water piping, 24 ... Screen, 26 ... Pull-out pipe, 28 ... measuring tank (measuring means), 30 ... heating tank (heating means), 32 ... cooling tank (cooling means), 34 ... return pipe, 36 ... first water pipe, 38 ... second water pipe, 40 DESCRIPTION OF SYMBOLS ... Extraction pump, 42 ... 1st feed pump, 44 ... 2nd feed pump, 45 ... Return pump, 46 ... Container, 48 ... Opening / closing drive part, 50 ... Sensor, 52 ... Control apparatus, 54 ... Heater, 56 ... Cold water supply Piping, 58 ... Discharge pipe, 60 ... Metering / heating tank, 62 ... Warm water supply pipe, 64 ... Valve, 66 ... Discharge pipe, 70 ... Waste water treatment device, 72 ... Anaerobic ammonia oxidation device, 74 ... Shunt

Claims (7)

アンモニアを亜硝酸まで硝化するアンモニア酸化細菌を優先的に集積させた亜硝酸型硝化担体が多数投入された硝化槽内で、アンモニア性廃水中のアンモニアを亜硝酸に硝化処理する亜硝酸型の硝化処理方法において、
前記亜硝酸型硝化担体が通過しない網状の容器が1つの槽である計量・加熱槽内に設けられ、前記硝化槽内の亜硝酸型硝化担体を前記容器が一杯になるように引き抜くことにより、引き抜き量が全担体量の0.5〜2.5%の範囲内になるように計量する計量工程と、
前記計量・加熱槽内に温水を供給して前記容器内の亜硝酸型硝化担体を加熱処理することにより亜硝酸型硝化活性を回復させる加熱工程と、
前記加熱処理した亜硝酸型硝化担体を前記硝化槽に戻す戻し工程と、を備えたことを特徴とする亜硝酸型の硝化処理方法。
Nitrite-type nitrification that nitrifies ammonia in ammonia wastewater to nitrite in a nitrification tank in which a large number of nitrite-type nitrification carriers that preferentially accumulate ammonia-oxidizing bacteria that nitrify ammonia to nitrite In the processing method,
A net-like container through which the nitrite-type nitrification carrier does not pass is provided in a weighing / heating tank which is one tank, and by pulling out the nitrite-type nitrification carrier in the nitrification tank so that the container is full, A metering step of weighing so that the withdrawal amount is in the range of 0.5 to 2.5% of the total carrier amount;
A heating step of recovering the nitrite type nitrification activity by supplying hot water into the metering / heating tank and heating the nitrite type nitrification carrier in the container;
And a step of returning the heat-treated nitrite-type nitrification carrier to the nitrification tank .
前記亜硝酸型硝化担体を毎日引き抜くことを特徴とする請求項1の亜硝酸型の硝化処理方法。 2. The nitrite type nitrification method according to claim 1, wherein the nitrite type nitrification carrier is withdrawn every day. 前記亜硝酸型硝化担体は包括固定化担体であることを特徴とする請求項1又は2の亜硝酸型の硝化処理方法。 3. The nitrite type nitrification treatment method according to claim 1, wherein the nitrite type nitrification carrier is a entrapping immobilization carrier. アンモニアを亜硝酸まで硝化するアンモニア酸化細菌を優先的に集積させた亜硝酸型硝化担体が多数投入された硝化槽内で、アンモニア性廃水中のアンモニアを亜硝酸に硝化処理する亜硝酸型の硝化処理装置において、
前記硝化槽から前記亜硝酸型硝化担体を引き抜く引き抜きラインと、
前記亜硝酸型硝化担体が通過しない網状の容器が1つの槽である計量・加熱槽内に設けられ、前記引き抜きラインで引き抜かれた亜硝酸型硝化担体を前記容器が一杯になるように引き抜くことにより、引き抜き量が全担体量の0.5〜2.5%の範囲内になるように計量する計量手段と、
前記計量・加熱槽内に温水を供給する温水供給手段を有し、前記容器内の亜硝酸型硝化担体を加熱処理する加熱手段と、
加熱処理した亜硝酸型硝化担体を前記硝化槽に戻す戻しラインと、を備えたことを特徴とする亜硝酸型の硝化処理装置。
Nitrite-type nitrification that nitrifies ammonia in ammonia wastewater to nitrite in a nitrification tank filled with a large number of nitrite-type nitrification carriers that preferentially accumulate ammonia-oxidizing bacteria that nitrify ammonia to nitrite In the processing device,
An extraction line for extracting the nitrite-type nitrification carrier from the nitrification tank;
A net-like container through which the nitrite-type nitrification carrier does not pass is provided in a weighing / heating tank, which is a single tank, and the nitrite-type nitrification carrier pulled out by the drawing line is pulled out so that the container is full. A weighing means for weighing so that the withdrawal amount is in the range of 0.5 to 2.5% of the total carrier amount,
A heating means for supplying hot water into the weighing / heating tank, and heating means for heat-treating the nitrite type nitrification carrier in the container;
A nitrite-type nitrification treatment apparatus, comprising: a return line for returning the heat-treated nitrite-type nitrification carrier to the nitrification tank.
前記計量手段は、
前記容器内に前記亜硝酸型硝化担体が一杯になったことを検知する検知手段を備えることを特徴とする請求項4の亜硝酸型の硝化処理装置。
The weighing means includes
5. The nitrite type nitrification apparatus according to claim 4, further comprising detection means for detecting that the nitrite type nitrification carrier is full in the container.
前記戻しラインに前記加熱した亜硝酸型硝化担体を冷却する冷却手段を設けたことを特徴とする請求項4又は5の亜硝酸型の硝化処理装置。 6. The nitrite type nitrification apparatus according to claim 4 or 5, wherein a cooling means for cooling the heated nitrite type nitrification carrier is provided in the return line. 請求項4〜請求項6の何れか1の亜硝酸型の硝化処理装置の後段に、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化装置を設けたことを特徴とする廃水処理装置。 An anaerobic ammonia oxidizing apparatus for simultaneously denitrifying ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria is provided downstream of the nitrite type nitrification treatment apparatus according to any one of claims 4 to 6. Wastewater treatment equipment.
JP2004137641A 2004-05-06 2004-05-06 Nitrite-type nitrification method and apparatus, and wastewater treatment apparatus Expired - Lifetime JP4507173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137641A JP4507173B2 (en) 2004-05-06 2004-05-06 Nitrite-type nitrification method and apparatus, and wastewater treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137641A JP4507173B2 (en) 2004-05-06 2004-05-06 Nitrite-type nitrification method and apparatus, and wastewater treatment apparatus

Publications (2)

Publication Number Publication Date
JP2005319359A JP2005319359A (en) 2005-11-17
JP4507173B2 true JP4507173B2 (en) 2010-07-21

Family

ID=35467038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137641A Expired - Lifetime JP4507173B2 (en) 2004-05-06 2004-05-06 Nitrite-type nitrification method and apparatus, and wastewater treatment apparatus

Country Status (1)

Country Link
JP (1) JP4507173B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4470169B2 (en) * 2004-11-01 2010-06-02 株式会社日立プラントテクノロジー Water treatment method and apparatus
JP4788645B2 (en) * 2007-04-25 2011-10-05 株式会社日立プラントテクノロジー Method of using nitrite type nitrification carrier, wastewater treatment method and wastewater treatment apparatus
JP5148642B2 (en) * 2010-01-15 2013-02-20 水ing株式会社 Wastewater nitrogen treatment method and equipment
CN103979678B (en) * 2014-03-14 2015-10-21 杭州师范大学 A kind of anaerobic ammonia oxidation reactor operation method processing high-salt wastewater
CN114230022B (en) * 2021-12-17 2023-07-18 湖北工业大学 Method for relieving inhibition effect of high salt on ammoxidation activity of nitromonas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037467A (en) * 1999-07-27 2001-02-13 Meidensha Corp Method and arrangement for treating wastewater containing both ammonia and phosphorus
JP2003211177A (en) * 2002-01-25 2003-07-29 Hitachi Plant Eng & Constr Co Ltd Nitrous acid type nitrification carrier, method for manufacturing the same and denitrification method and apparatus using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037467A (en) * 1999-07-27 2001-02-13 Meidensha Corp Method and arrangement for treating wastewater containing both ammonia and phosphorus
JP2003211177A (en) * 2002-01-25 2003-07-29 Hitachi Plant Eng & Constr Co Ltd Nitrous acid type nitrification carrier, method for manufacturing the same and denitrification method and apparatus using the same

Also Published As

Publication number Publication date
JP2005319359A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
Ghyoot et al. Nitrogen removal from sludge reject water with a membrane-assisted bioreactor
US20180230033A1 (en) Rapid startup of facilities and removal of organics and nutrients from wastewater
JP4224951B2 (en) Denitrification method
US8323487B2 (en) Waste water treatment apparatus
US7442539B2 (en) Method and equipment for cultivating anaerobic ammonium-oxidizing bacteria
JP2003047990A (en) Biological denitrifier
JP4671178B2 (en) Nitrogen removal method and apparatus
JP4507173B2 (en) Nitrite-type nitrification method and apparatus, and wastewater treatment apparatus
JP4923348B2 (en) Biological denitrification method
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
WO2006019256A1 (en) Biological wastewater treating apparatus and method for biologically treating wastewater using the apparatus
JP4678577B2 (en) Wastewater treatment system
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
JP2003024986A (en) Biological denitrification method and biological denitrification apparatus
JP4042718B2 (en) Anaerobic ammonia oxidation method and apparatus
JP4042719B2 (en) Nitrite-type nitrification method and apparatus, and wastewater treatment apparatus
JP2565431B2 (en) Method and apparatus for treating organic wastewater
JP2007237145A (en) Batch treatment process of nitrogen containing water
JP4817056B2 (en) Method and apparatus for treating nitrogen-containing water
JP2005218939A (en) Method for treating nitrogen-containing waste liquid
JP2006122865A (en) Water treatment and carrier acclimatization method and its device
JP2002172399A (en) Denitrification treatment method
JP4945891B2 (en) Operation method of anaerobic ammonia oxidation equipment
JP2003266096A (en) Wastewater treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350