WO2001063302A2 - Capteur de courant a effet de faraday presentant une reponse aux vibrations amelioree - Google Patents

Capteur de courant a effet de faraday presentant une reponse aux vibrations amelioree Download PDF

Info

Publication number
WO2001063302A2
WO2001063302A2 PCT/US2001/006404 US0106404W WO0163302A2 WO 2001063302 A2 WO2001063302 A2 WO 2001063302A2 US 0106404 W US0106404 W US 0106404W WO 0163302 A2 WO0163302 A2 WO 0163302A2
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
coil section
coil
bucking
sensor coil
Prior art date
Application number
PCT/US2001/006404
Other languages
English (en)
Other versions
WO2001063302A3 (fr
Inventor
Richard B. Dyott
Original Assignee
Kvh Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kvh Industries, Inc. filed Critical Kvh Industries, Inc.
Priority to AU2001255167A priority Critical patent/AU2001255167A1/en
Priority to AT01928293T priority patent/ATE265049T1/de
Priority to DE60102906T priority patent/DE60102906D1/de
Priority to EP01928293A priority patent/EP1261880B1/fr
Publication of WO2001063302A2 publication Critical patent/WO2001063302A2/fr
Publication of WO2001063302A3 publication Critical patent/WO2001063302A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect

Definitions

  • the invention relates to Faraday-effect type current sensors, and more particularly to a sensor coil with improved immunity to mechanical effects, in particular rotation and vibration of the coil.
  • Fiber-optic devices are attractive for sensing a magnetic field induced by an electric current, in particular if the electric current is carried by wires having a substantial electric potential with respect to ground.
  • Such fiber-optic current sensors can be made quite small and can be constructed to withstand considerable mechanical shock, temperature change, and other environmental extremes. Due to the absence of moving parts, they can be nearly maintenance free, and they have the potential of becoming economical in cost.
  • a fiber-optic current sensor has an optical fiber wound in the form of a coil which surrounds the current-carrying wire of which the current is to be sensed.
  • the coil may have one turn to several hundred turns, and is part of a closed optical path in which an electromagnetic wave, such as a light wave, is introduced.
  • the light is typically circularly polarized with opposite polarization directions, with the opposite polarization directions forming counter-propagating waves which traverse the coil in clockwise (cw) and counterclockwise (ccw) directions.
  • the counter-propagating waves are then recombined and impinge on a photodetector.
  • the optical rotation increases in one polarization direction (for example, cw) and decreases in the other polarization direction (in this example, ccw).
  • the opposite result occurs for current flow in the other direction.
  • the difference in the optical rotation between the counter-propagating waves introduces a phase shift between these waves, which is known as the Faraday effect.
  • the fiber-optic current sensor does not give the expected current sensing accuracy.
  • Vibrations can produce a phase shift via the rotational motion of the sensing coil (the Sagnac effect).
  • the sensor is, in effect, both a gyro and a current sensor; responding to angular rotation as well as to magnetic field.
  • a sensing coil having a diameter of 137 mm and 4 turns of fiber has a Verdet constant of 2.5 xlO "6 radians/Ampere-turn, the optical phase shift produced by an angular rotation of the coil of 1 sec is equivalent to that produced by a current of 100 Amps.
  • Such a rotation would be produced by an azimuth displacement of 240 ⁇ m at the outer diameter of the coil at a vibrational frequency of 50Hz.
  • the effect arising from sensing coil vibrations and rotation can be substantially reduced or even eliminated by forming a fiberoptic current sensor coil of a fiber sensing coil section made of a first fiber that has substantially no birefringence and is wound in a first winding direction about an axis; and at least one "bucking" coil made of a second fiber that has a large birefringence and is wound in a second winding direction about the same axis.
  • the first fiber and the second fiber of the at least one fiber bucking coil section are connected to one another so that optical radiation, when viewed along the axis, propagates through the first fiber in a direction opposite to the direction of the light propagating through the second fiber.
  • the at least one fiber bucking coil section is insensitive to the Faraday effect and has substantially the same effective total area as the current sensing coil section.
  • the bucking coil is advantageously placed adjacent to the current sensing coil and is bonded to it so that both coils experience substantially identical rotation, acceleration or vibration.
  • the first and second fiber can also be placed next to each other during the winding operation or bonded to one another before the winding operation.
  • the bucking coil can be a highly birefringent fiber, such as an elliptically cored fiber, which is insensitive to the Faraday effect.
  • At least one first quarter wave plate can be disposed in a region where the first fiber of the current sensing coil section and the second fiber of the at least one fiber bucking coil section are connected to one another.
  • FIG. 1 is a schematic diagram of a first embodiment of a fiber sensing coil arrangement according to the invention
  • Fig. 2 is a schematic diagram of a second embodiment of a fiber sensing coil arrangement according to the invention
  • Fig. 3 is a schematic diagram of a third embodiment of a fiber sensing coil arrangement according to the invention
  • Fig. 4 is a schematic diagram of a current sensor configuration using the fiber sensing coil arrangement of Fig. 3; and Fig. 5 is a schematic diagram of a conventional current sensor configuration.
  • a conventional fiberoptic sensor 10 includes a light source 18, which may be a broad-spectrum superluminescent source (SLS) exhibiting superluminescence or superfluorescence, as has been observed in high-gain laser materials which are operated below lasing threshold or as an essentially single-pass amplifier of spontaneous photons without the use of an optical resonator.
  • SLS broad-spectrum superluminescent source
  • SLD superluminescent diode
  • a superluminescent fiber source may be employed which has an improved the temperature stability over that of a semiconductor SLS.
  • the available power in an SFS is significantly higher than that of a SLD.
  • the light source may be polarized or unpolarized.
  • a laser diode operating below lasing threshold can also be used.
  • the light source 18 is coupled to an input coupler 20 which is implemented as a directional coupler.
  • a first portion of the light emerging from the input coupler 20 is transmitted through a polarizer 28 which produces linearly polarized light.
  • a second coupler 23 launches two counter-propagating light beams into the respective ends of the fiber sensing coil 22.
  • ⁇ /4 wave plates 26, 27 are inserted between the source and the fiber sensing coil to convert the linearly polarized light into circularly polarized light.
  • the phase of these counter-propagating light beams is modulated by phase modulator 25 when the respective counter-propagating light beams enter or exit the fiber sensing coil 22 at the respective coil ends.
  • a detector 12 is coupled to a return tap of fiber coupler 20 and measures the optical power of the interference light produced by an interference of the counter-propagating light beams combined in fiber coupler 23.
  • each of the counter-propagating light beams experiences a Faraday rotation by the magnetic field produced by the electric current flowing through wire 24, so that the optical power of the interference light is in first approximation proportional to the electric current.
  • the interference light also includes, in addition to the desired current signal, components arising from a rotation or vibration of the FO sensing coil 22, since in the Sagnac configuration the sensing coil 22 operates not only as a current sensor, but also as a gyroscope.
  • the ⁇ /4 wave plates 26, 27 can be implemented, for example, as a polarization transformers of the type disclosed in the commonly assigned US patent application No. 09/337,223 to Dyott. It will further be appreciated by those skilled in the art that the fiber sensing coil 22 is only representative of an optical waveguide configuration and that other optical waveguides, such as integrated waveguide structures, for example, thin film waveguides formed on a suitable substrate, may be used instead of or in addition to the optical fiber of the fiber sensing coil 22.
  • a FO current sensing coil 30 which is less susceptive to vibrations and may be substituted for the fiber sensing coil 22 of Fig. 5, includes a first coil section 32 forming the current sensing coil and a second coil section 34 optically connected to the first coil section 32 and forming a compensation or "bucking" coil.
  • the first coil section 32 is formed of a first optical fiber, preferably a fiber having a low birefringence, which is wound in the form of a coil about a coil axis 39 with a first winding direction.
  • the group velocity of the propagated radiation is independent of the polarization direction of the radiation. For this reason, coils made of low- or zero-birefringence fiber are commonly used for FO current sensors where the polarization state of the radiation is altered by the current-induced magnetic field.
  • the second coil section 34 is formed of a second optical fiber, preferably a fiber having a large birefringence, sometimes also referred to as polarization-maintaining (PM) fiber, which is wound in the form of a coil about essentially the same coil axis 39, and encircling the current carrying conductor with a second winding direction opposite to the first winding direction.
  • PM polarization-maintaining
  • the first optical fiber of the first coil section 32 is connected in series to the second optical fiber of the second coil section 34 in such a way that, as viewed along the axis 36, the optical radiation propagates, for example, through the first coil section 32 clockwise and then through the second coil section 34 counterclockwise.
  • a ⁇ /4 waveplate also referred to as a "polarization transformer” is inserted between the sections 32 and 34 in a current- sensing configuration.
  • the coil 30 formed of the two coil sections 32, 34 rotates or is subjected to vibrations, a phase shift induced in the first coil section 32 is compensated by a corresponding opposite phase change in the second coil, and vice versa, if both coil sections experience identical rotation/vibration characteristics. For this reason, the coil sections 32, 34 are preferably intimately coupled to one another, as discussed below.
  • Fig. 2 depicts a second embodiment of the invention in which the bucking coil 34 is subdivided into two bucking coil sections 34a and 34b which can be arranged symmetrically with respect to the current sensing coil 32 to reduce asymmetric effects in the coil assembly 30 caused by the rotation or vibrations.
  • the two bucking coil sections 34a and 34b are wound in the same direction, which is opposite to the winding direction of the current sensing coil 32.
  • ⁇ /4 wave plates 36, 38 are disposed proximate to the end sections of the current sensing coil 32 between the current sensing coil 32 and the bucking coil 34 (Fig. 1) or the respective bucking coil sections 34a, 34b (Fig. 2) to convert linearly polarized radiation to circularly polarized radiation, and vice versa, as discussed above.
  • the coil 32 and the respective coil(s) 34, 34a, 34b do not have to be actually physically wound in opposite direction, but only have to be connected in such a way that the propagation direction of the radiation in those coils with respect to the axis 39 is reversed, as schematically shown in Fig. 1.
  • the coil section 32 and the respective coil(s) 34, 34a, 34b can be co- wound as a single strand coming from separate fiber stock, as indicated in Fig. 3. In this way, the radiation experiences almost identical vibrational effects when traversing the coil 30.
  • Fiber loop 40 may be replaced with a fused fiber reflector or with a directional 3 dB coupler, which are known in the art and will not be further described at this point
  • a current sensor with reduced susceptibility to vibrations and sensor rotation includes, like the current sensor of Fig. 5, a radiation source 18, an input coupler 20, and a polarizer 28.
  • a second coupler 23 launches two counter-propagating light beams into the respective ends of the fiber sensing coil 30 having a reduced susceptibility to vibrations.
  • Fig. 4 shows the embodiment of coil 30 according to Fig. 3, although any of the current sensor coils illustrated in Figs. 1-3 can be employed.
  • the current sensor can also be a reduced minimum configuration (RMC) current sensor of the type disclosed, for example, in commonly assigned U.S. patent application Serial No. 09/615,166 to S. Bennett and R. Dyott, which is incorporated herein by reference. While the invention has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention is to be limited only by the following claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

L'invention concerne un capteur de courant de type Faraday moins sensible aux effets de rotation, d'accélération et de vibration de la bobine de capteur. La bobine de capteur de l'invention comprend une première partie de bobine formant la bobine de captage de courant ainsi qu'une seconde partie de bobine connectée par voie optique à la première partie de bobine et formant une bobine dite de compensation. La fibre optique de la première partie de bobine présente de préférence une biréfringence quasi nulle; elle est connectée en série à la fibre optique de la seconde partie de bobine, qui présente de préférence une biréfringence élevée. Le rayonnement d'éclairage se propage à travers la bobine de capteur. Ainsi, tel qu'on l'observe le long de l'axe de la bobine, le sens de propagation dudit rayonnement dans la première partie de bobine par rapport à l'axe de la bobine est opposé au sens de propagation dans la seconde partie de bobine.
PCT/US2001/006404 2000-02-28 2001-02-28 Capteur de courant a effet de faraday presentant une reponse aux vibrations amelioree WO2001063302A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2001255167A AU2001255167A1 (en) 2000-02-28 2001-02-28 Faraday-effect current sensor with improved vibration response
AT01928293T ATE265049T1 (de) 2000-02-28 2001-02-28 Faraday-effekt-stromsonde mit verbesserter schwingungsreaktion
DE60102906T DE60102906D1 (de) 2000-02-28 2001-02-28 Faraday-effekt-stromsonde mit verbesserter schwingungsreaktion
EP01928293A EP1261880B1 (fr) 2000-02-28 2001-02-28 Capteur de courant a effet de faraday presentant une reponse aux vibrations amelioree

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18567500P 2000-02-28 2000-02-28
US60/185,675 2000-02-28

Publications (2)

Publication Number Publication Date
WO2001063302A2 true WO2001063302A2 (fr) 2001-08-30
WO2001063302A3 WO2001063302A3 (fr) 2002-02-28

Family

ID=22681982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/006404 WO2001063302A2 (fr) 2000-02-28 2001-02-28 Capteur de courant a effet de faraday presentant une reponse aux vibrations amelioree

Country Status (6)

Country Link
US (1) US6703821B2 (fr)
EP (1) EP1261880B1 (fr)
AT (1) ATE265049T1 (fr)
AU (1) AU2001255167A1 (fr)
DE (1) DE60102906D1 (fr)
WO (1) WO2001063302A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2245426A1 (fr) * 2008-02-22 2010-11-03 Smart Digital Optics Pty Limited Enroulement de détection et unité de détection pour capteur de courant à fibre optique de sagnac
CN103207301A (zh) * 2012-01-16 2013-07-17 中国科学院西安光学精密机械研究所 一种光纤电流传感器线圈及基于该线圈的光纤电流传感器
US10481182B2 (en) 2014-08-19 2019-11-19 Abb Schweiz Ag Optical sensor with spun birefringent sensing fiber

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891622B2 (en) 1999-02-11 2005-05-10 Kvh Industries, Inc. Current sensor
AU2001279310A1 (en) * 2000-08-02 2002-02-13 Kvh Industries, Inc. Reduction of linear birefringence in circular-core single-mode fiber
TWI278638B (en) * 2005-09-20 2007-04-11 Hermann Lin Fiber-optics multiplexed interferometric current sensor
EP2002267A1 (fr) * 2006-04-04 2008-12-17 Abb Research Ltd. Capteur de courant de fibre optique avec detection de somme
US20100309473A1 (en) * 2007-12-21 2010-12-09 Honeywell International Inc. Fiber optic current sensor and method for sensing current using the same
CN102113189B (zh) 2008-07-30 2014-10-29 Abb研究有限公司 带有光纤电流传感器的高电压ac/dc或dc/ac变流器站
WO2010012301A1 (fr) * 2008-07-30 2010-02-04 Abb Research Ltd Disjoncteur de générateur équipé d’un capteur de courant à fibre optique
US20110052115A1 (en) * 2009-08-27 2011-03-03 General Electric Company System and method for temperature control and compensation for fiber optic current sensing systems
CN102608380B (zh) * 2012-02-29 2013-12-11 曲阜师范大学 自感应光电混合式电流互感器
CN103453899A (zh) * 2012-06-03 2013-12-18 李卫 光纤陀螺无源相位调制器
CN106154010B (zh) * 2015-03-30 2019-01-01 北京自动化控制设备研究所 一种无骨架光纤电流传感环圈及其制作方法
CN111220881A (zh) * 2019-11-18 2020-06-02 南京航空航天大学 用于高压套管放电故障检测的光纤检测装置
US11371843B2 (en) * 2020-07-02 2022-06-28 Anello Photonics, Inc. Integration of photonics optical gyroscopes with micro-electro-mechanical sensors
CN114577245B (zh) * 2022-03-22 2022-11-11 华中科技大学 一种同时测量电流和振动的光纤传感系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500909A (en) * 1993-02-17 1996-03-19 Abb Research Ltd. Sensor head for a fiber-optic current measuring device

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4372685A (en) * 1979-01-15 1983-02-08 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and arrangement for the measurement of rotations
FR2555739B1 (fr) 1980-11-07 1986-04-04 Thomson Csf Dispositif de mesure d'un dephasage non reciproque engendre dans un interferometre en anneau
US4615582A (en) 1981-11-09 1986-10-07 The Board Of Trustees Of The Leland Stanford Junior University Magneto-optic rotator for providing additive Faraday rotations in a loop of optical fiber
US4733938A (en) 1981-11-09 1988-03-29 The Board Of Trustees Of The Leland Stanford Junior University Magneto-optic rotator
BE892241A (fr) 1982-02-23 1982-06-16 Dev Et D Industrialisation Des Circuit de calcul rapide de la transformee de fourier discrete d'un signal, destine notamment a un appareil de controle par courants de foucault.
US4669814A (en) 1982-08-02 1987-06-02 Andrew Corporation Single mode, single polarization optical fiber with accessible guiding region and method of forming directional coupler using same
US4668264A (en) 1982-08-02 1987-05-26 Andrew Corporation Method for making self-aligning optical fiber with accessible guiding region
US4755021A (en) 1982-08-02 1988-07-05 Andrew Corporation Self-aligning optical fiber directional coupler and fiber-ring optical rotation sensor using same
JPS5945646A (ja) 1982-09-07 1984-03-14 Hitachi Ltd 光学的情報再生装置
FR2535463A1 (fr) 1982-10-28 1984-05-04 Commissariat Energie Atomique Dispositif de mesure d'intensite electrique a effet faraday
DE3305104A1 (de) 1983-02-15 1984-08-16 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Faseroptischer polarisator
US4697876A (en) 1983-02-25 1987-10-06 Andrew Corporation Fiber-optic rotation sensor
US4637722A (en) 1983-04-25 1987-01-20 The Board Of Trustees Of The Leland Stanford Junior University Fiber optical rotation sensor with extended dynamic range
US4630890A (en) 1983-06-22 1986-12-23 At&T Bell Laboratories Exposed core optical fibers, and method of making same
FR2566133B1 (fr) 1984-06-14 1986-08-29 Thomson Csf Dispositif de mesure d'un dephasage non reciproque engendre dans un interferometre en anneau
US4603931A (en) 1984-12-14 1986-08-05 Ruffman Samuel H Anti-theft device for appliances with electrical AC power cords
FR2582800B1 (fr) 1985-05-30 1987-07-17 Thomson Csf Dispositif interferometrique en anneau a fibre optique monomode
DE3615305A1 (de) 1985-09-28 1987-11-12 Licentia Gmbh Verfahren zum herstellen eines faseroptischen polarisators
JPH0680405B2 (ja) 1985-11-06 1994-10-12 株式会社東芝 光フアイバジヤイロ
US4740085A (en) 1986-02-18 1988-04-26 Northrop Corporation Scale factor stability control
US4712866A (en) 1986-07-24 1987-12-15 Andrew Corporation Indium-clad fiber-optic polarizer
US4887900A (en) 1987-02-20 1989-12-19 Litton Systems, Inc. Polarization maintaining fiber interferometer and method for source stabilization
US4796993A (en) 1987-04-13 1989-01-10 Hitachi, Ltd. Phase modulation type fiber optic gyroscope
FR2616538B1 (fr) 1987-06-11 1989-09-01 Alsthom Systeme interferometrique a fibre optique de type sagnac
US4883358A (en) 1987-09-02 1989-11-28 Japan Aviation Electronics Industry Limited Fiber optic gyro stabilized by harmonic components of detected signal
US4776700A (en) 1987-09-30 1988-10-11 The United States Of America As Represented By The Secretary Of The Navy Switched state fiber optic gyroscope
DE3742201C2 (de) 1987-12-12 1998-01-29 Teldix Gmbh Faserkreisel
US4815817A (en) 1988-04-06 1989-03-28 Raynet Corporation D-shaped fiber
CN1018955B (zh) 1988-10-23 1992-11-04 黄宏嘉 用无源光纤控制偏振态的方法及其器件
US5080489A (en) 1989-03-29 1992-01-14 Kubota, Ltd. Fiber optic gyroscope for detecting angular velocity of rotation using equivalent time sampling
JP2587104B2 (ja) 1989-05-15 1997-03-05 三菱プレシジョン株式会社 光ファイバジャイロ用信号処理装置
EP0400197B1 (fr) 1989-06-02 1993-10-06 LITEF GmbH Procédé et dispositif pour la démodulation du signal de la vitesse angulaire d'un gyroscope à fibre optique
US5033854A (en) 1989-12-06 1991-07-23 Litton Systems, Inc. Multiplexed fiberoptic gyro control
US5135555A (en) 1989-12-21 1992-08-04 At&T Bell Laboratories Apparatus for fabrication of optical couplers
US5074665A (en) * 1989-12-21 1991-12-24 Andrew Corporation Fiber optic gyroscope using dual-section counter-wound coil
US5218419A (en) 1990-03-19 1993-06-08 Eli Lilly And Company Fiberoptic interferometric sensor
US5148236A (en) 1990-06-18 1992-09-15 Honeywell Inc. Demodulation reference signal source
US5106193A (en) 1990-08-09 1992-04-21 The Board Of Trustees Of The Leland Stanford Junior University Optical waveguide amplifier source gyroscope
US5063290A (en) * 1990-09-14 1991-11-05 The United States Of America As Represented By The Secretary Of The Navy All-optical fiber faraday rotation current sensor with heterodyne detection technique
US5412471A (en) 1991-03-12 1995-05-02 Mitsubishi Precision Co., Ltd. Optical gyro with expanded detectable range of input rotation angular velocity and optical waveguide-type phase modulator used in the same
US5289257A (en) 1991-05-17 1994-02-22 Mitsubishi Precision Co., Ltd. Signal processing apparatus for optical gyro
US5365338A (en) 1991-05-28 1994-11-15 The United States Of America As Represented By The Secretary Of The Navy Wavelength sensor for fiber optic gyroscope
EP0551537B1 (fr) 1992-01-13 1995-03-22 LITEF GmbH Méthode et dispositif pour mesurer vitesse de rotation par un interféromètre à fibre optique du type sagnac
US5359413A (en) 1992-01-13 1994-10-25 Kearfott Guidance And Navigation Corporation System for substantially eleminating lock-in in a ring laser gyroscope
US5289258A (en) 1992-01-15 1994-02-22 Honeywell Inc. Fiber optic gyroscope modulation error reduction
EP0551874A3 (en) 1992-01-16 1993-09-08 Japan Aviation Electronics Industry, Limited Fiber optic gyro
JPH06129859A (ja) 1992-09-02 1994-05-13 Sumitomo Electric Ind Ltd 光源から信号を取り出す光ファイバジャイロ
US5331404A (en) 1992-11-30 1994-07-19 The United States Of America As Represented By The Secretary Of The Navy Low noise fiber gyroscope system which includes excess noise subtraction
US5406370A (en) * 1993-02-26 1995-04-11 The Board Of Trustees Of The Leland Stanford University Winding technique for decreasing the pump power requirement of a brillouin fiber optic gyroscope
GB2276000B (en) 1993-02-27 1996-10-09 British Aerospace Laser gyroscopes
US5471301A (en) 1993-08-23 1995-11-28 Hitachi Cable, Ltd. Optical fiber gyro
JP3011592B2 (ja) 1993-11-16 2000-02-21 日立電線株式会社 光ファイバジャイロの故障検出方法及び故障診断装置
US5469257A (en) 1993-11-24 1995-11-21 Honeywell Inc. Fiber optic gyroscope output noise reducer
US5493396A (en) 1993-11-30 1996-02-20 Honeywell Inc. High resolution ring laser gyroscope readout
US5504684A (en) 1993-12-10 1996-04-02 Trimble Navigation Limited Single-chip GPS receiver digital signal processing and microcomputer
JP2953290B2 (ja) * 1994-01-24 1999-09-27 日新電機株式会社 ファラデー効果型光ファイバセンサおよび変流器
US5469267A (en) 1994-04-08 1995-11-21 The University Of Rochester Halftone correction system
US5457532A (en) 1994-05-31 1995-10-10 Honeywell Inc. Harmonic phase modulation error reducer
US5475772A (en) 1994-06-02 1995-12-12 Honeywell Inc. Spatial filter for improving polarization extinction ratio in a proton exchange wave guide device
US5513003A (en) 1994-06-06 1996-04-30 Honeywell Inc. Fiber optic gyro digital control with rate extension
US5479542A (en) 1994-06-09 1995-12-26 Ceramoptec Industries Inc. All-fiber in line optical isolator
US5644397A (en) 1994-10-07 1997-07-01 The Texas A&M University System Fiber optic interferometric circuit and magnetic field sensor
US5552887A (en) 1995-04-07 1996-09-03 Andrew Corporation Fiber optic rotation sensor or gyroscope with improved sensing coil
US5602642A (en) * 1995-06-07 1997-02-11 Honeywell Inc. Magnetically insensitive fiber optic rotation sensor
US5654906A (en) 1995-07-06 1997-08-05 Youngquist; John S. Rate gyro error correction and use as heading source
JP3860237B2 (ja) 1995-07-26 2006-12-20 富士通株式会社 偏波分散の抑圧特性を持つ光ファイバ及びその製造方法
WO1997007067A1 (fr) 1995-08-16 1997-02-27 Plasma Optical Fibre B.V. Fibre optique avec faible dispersion des modes de polarisation
US5655035A (en) 1995-11-16 1997-08-05 Alliedsignal Inc. Differential fiber optic angular rate sensor for minimizing common mode noise in the sensor output
US5682241A (en) 1996-03-11 1997-10-28 Litton Systems, Inc. Method and apparatus for overcoming cross-coupling in a fiber optic gyroscope employing overmodulation
KR19980077130A (ko) 1996-04-19 1998-11-16 마틴 키츠 반 하이닝겐 단순화된 신호 처리 장치를 구비한 축소된 최소 구성의 간섭계측용 광섬유 자이로스코프
US5854864A (en) 1996-07-16 1998-12-29 The Regents Of The University Of California In-line polymeric construct for modulators, filters, switches and other electro-optic devices
US5696858A (en) 1996-08-01 1997-12-09 The Texas A&M University System Fiber Optics apparatus and method for accurate current sensing
US5987195A (en) 1996-08-01 1999-11-16 The Texas A&M University System Fiber optics apparatus and method for accurate current sensing
US5767509A (en) 1996-12-24 1998-06-16 Litton Systems, Inc. Fiber optic sensor coil including buffer regions
DE19703128A1 (de) * 1997-01-29 1998-08-06 Abb Research Ltd Magnetooptischer Stromsensor
US5898496A (en) 1997-02-14 1999-04-27 Allied Signal Inc Optical signal noise reduction for fiber optic gyroscopses
US5781675A (en) 1997-03-14 1998-07-14 National Science Council Method for preparing fiber-optic polarizer
ATE277361T1 (de) 1997-03-29 2004-10-15 Deutsche Telekom Ag Faser-integrierte photonenkristalle und -systeme
EP0872756A1 (fr) 1997-04-14 1998-10-21 BRITISH TELECOMMUNICATIONS public limited company Modulateur optique
KR100241660B1 (ko) 1997-05-22 2000-03-02 서원석 광섬유 편광 조절장치
US6023331A (en) 1997-06-19 2000-02-08 The Texas A&M University System Fiber optic interferometric sensor and method by adding controlled amounts of circular birefringence in the sensing fiber
GB2329482B (en) 1997-09-23 1999-08-11 Bookham Technology Ltd An optical circuit
US5946097A (en) 1997-12-31 1999-08-31 Honeywell Inc. Vibration rectification error reducer for fiber optic gyroscope
FR2776784A1 (fr) 1998-03-30 1999-10-01 France Telecom Modulateur electro-optique integre hybride du type a effet pockels
US6025915A (en) 1998-06-25 2000-02-15 Litton Systems, Inc. Scale factor stabilization of a broadband fiber source used in fiber optic gyroscopes in radiation environments
US6188811B1 (en) 1998-10-31 2001-02-13 The Texas A&M Universtiy System Fiber optic current sensor
US6301400B1 (en) 1998-11-12 2001-10-09 Nxtphase Technologies Srl Fiber optic current sensor having rotation immunity
US6535654B1 (en) 1998-12-29 2003-03-18 Nxtphase Technologies, Srl Method for fabrication of an all fiber polarization retardation device
US6434285B1 (en) 1998-12-31 2002-08-13 Nxtphase Technologies Srl Fiber optic difference current sensor
US6307632B1 (en) 1999-03-24 2001-10-23 The Texas A&M University System Magnetic field integrated fiber optic sensor with improved sensitivity
US6370289B1 (en) 2000-01-12 2002-04-09 Kvh Industries, Inc. Apparatus and method for electronic RIN reduction in fiber-optic sensors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500909A (en) * 1993-02-17 1996-03-19 Abb Research Ltd. Sensor head for a fiber-optic current measuring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 11, 26 December 1995 (1995-12-26) & JP 07 209398 A (NISSIN ELECTRIC CO LTD), 11 August 1995 (1995-08-11) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2245426A1 (fr) * 2008-02-22 2010-11-03 Smart Digital Optics Pty Limited Enroulement de détection et unité de détection pour capteur de courant à fibre optique de sagnac
EP2245426A4 (fr) * 2008-02-22 2012-10-31 Smart Digital Optics Pty Ltd Enroulement de détection et unité de détection pour capteur de courant à fibre optique de sagnac
US8542366B2 (en) 2008-02-22 2013-09-24 Smart Digital Optics Pty Limited Sensing coil and sensing unit for sagnac optical fibre current sensor
CN103207301A (zh) * 2012-01-16 2013-07-17 中国科学院西安光学精密机械研究所 一种光纤电流传感器线圈及基于该线圈的光纤电流传感器
US10481182B2 (en) 2014-08-19 2019-11-19 Abb Schweiz Ag Optical sensor with spun birefringent sensing fiber

Also Published As

Publication number Publication date
ATE265049T1 (de) 2004-05-15
WO2001063302A3 (fr) 2002-02-28
US20020180416A1 (en) 2002-12-05
US6703821B2 (en) 2004-03-09
EP1261880B1 (fr) 2004-04-21
AU2001255167A1 (en) 2001-09-03
EP1261880A2 (fr) 2002-12-04
DE60102906D1 (de) 2004-05-27

Similar Documents

Publication Publication Date Title
US6703821B2 (en) Faraday-effect current sensor with improved vibration response
KR101408556B1 (ko) 파이버 옵틱 전류 센서
US6636321B2 (en) Fiber-optic current sensor
US5953121A (en) Magneto-optic current sensor having a mechanically stress-free λ/4 element
CN107003343B (zh) 具有旋转的双折射感测光纤的光学传感器
US6734657B2 (en) Temperature-compensated fiber optic current sensor
US6801319B2 (en) Symmetrical depolarized fiber optic gyroscope
JP4234885B2 (ja) サニヤック干渉計型電流センサ
CN106030318A (zh) 光纤传感器和方法
US6891622B2 (en) Current sensor
EP0783701B1 (fr) Detecteur d'intensite electrique par interferometrie optique et procede de mesure d'intensite electrique
US6211963B1 (en) Low drift depolarizer for fiber optic gyroscope having legs wound in a winding pattern
EP2230484A1 (fr) Dépolarisateur pour gyroscope à fibres optiques (FOG) utilisant des fibres à cristal photonique à biréfringence élevée
JP2002534667A (ja) 光ファイバ・ジャイロスコープのための強化構造
Blake Current sensors based on the Sagnac interferometer
JP2002054933A (ja) 光ファイバジャイロ
JP2006030007A (ja) 光ファイバ電流センサ
JP2627134B2 (ja) 光ファイバジャイロ
JP2514482B2 (ja) 光ファイバジャイロ
Blake et al. All-fiber in-line Sagnac interferometer current sensor
US6222633B1 (en) Gyros having an optical fiber loop and a dual phase-conjugate mirror
JPH08145696A (ja) 光ファイバジャイロスコープ
Tantaswadi et al. All-fiber in-line Sagnac magnetometer
JPH05322590A (ja) 光ファイバジャイロ
JPH0510770A (ja) 光回転検出装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001928293

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001928293

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001928293

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP