CN111220881A - 用于高压套管放电故障检测的光纤检测装置 - Google Patents

用于高压套管放电故障检测的光纤检测装置 Download PDF

Info

Publication number
CN111220881A
CN111220881A CN201911130059.1A CN201911130059A CN111220881A CN 111220881 A CN111220881 A CN 111220881A CN 201911130059 A CN201911130059 A CN 201911130059A CN 111220881 A CN111220881 A CN 111220881A
Authority
CN
China
Prior art keywords
optical fiber
voltage bushing
sensing
coupler
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911130059.1A
Other languages
English (en)
Inventor
江军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201911130059.1A priority Critical patent/CN111220881A/zh
Priority to US16/744,087 priority patent/US11073414B2/en
Publication of CN111220881A publication Critical patent/CN111220881A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35322Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with one loop with several directions of circulation of the light, e.g. Sagnac interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35325Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in reflection, e.g. Mickelson interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35374Particular layout of the fiber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1209Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using acoustic measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1218Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using optical methods; using charged particle, e.g. electron, beams or X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1245Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of line insulators or spacers, e.g. ceramic overhead line cap insulators; of insulators in HV bushings

Abstract

本发明涉及一种用于高压套管放电故障检测的光纤检测装置,包括:光纤传感单元、光纤延迟单元、光电转换单元和信号采集处理单元;光纤传感单元包括传感光纤;光纤延迟单元包括延迟光纤、光源、耦合器;光电转换单元包括光电探测器;信号采集处理单元包括高通滤波器;延迟光纤连接耦合器;光源的输出端连接分光耦合器;光电探测器的输入端连接分光耦合器,输出端连接信号采集处理单元;合光耦合器连接传感光纤。在本发明中,通过在高压套管安装光纤传感探头,经由光纤延迟单元和光电转换单元采集到高压套管内由于放电故障引起的振动信息,判别高压套管发生放电故障与否并进行放电故障的检测和诊断,解决了传统高压套管中放电故障不易检测的难题。

Description

用于高压套管放电故障检测的光纤检测装置
技术领域
本发明涉及高压套管光学传感检测领域,尤其涉及一种用于高压套管放电故障检测的光纤检测装置。
背景技术
高压套管包括换流变压器套管、穿墙套管、变压器套管以及电抗器套管等,是高压与特高压输配电网络中的重要绝缘设备。高压韬光长时间工作于电-热耦合的复杂环境,易受到电、热以及机械应力的影响发生局部放电,威胁电网的安全稳定运行。
局部放电的检测方法依据检测量类型的区别可分为电检测与非电检测。其中电检测包括脉冲电流法,超高频检测法,特高频检测法以及无线电干扰电压方法等等,采用电气量对局部放电进行检测灵敏度高,测量结果较为精确,但由于现场高压套管结构通常较为复杂,导致电磁波传播时出现大量不必要折返射现象,同时造成较大干扰;而非电检测包括红外测温法,超声波法以及电化学方法等等。其中超声检测法由于所检测特征参量为超声信号,检测过程中信号免受电磁干扰,且能够实现局部放电的带电检测与放电源定位,在局部放电检测中具有明显优势。但超声检测法使用声发射探头接收局部放电所发出超声信号,由于声发射探头属于金属器件,无法安装至供电系统内部进行局部放电信号检测,同时由于套管内部结构紧凑,容易发生严重的超声信号衰减,借助声发射探头的超声检测法难以确保局部放电检测的灵敏度与准确性。
采用光学干涉结构能对电力变压器局部放电中的微弱振动进行监测,同时光纤不属于金属元器件,能够放置于变压器内部避免检测到的超声信号受变压器壳体影响衰减严重,且不影响变压器正常运行,实现设备绝缘状态的带电检测和在线监测。因此,基于干涉型光学结构的局部放电超声信号检测对变压器绝缘状态判别具有有效性。
传统光学传感探头分为有骨架与无骨架两种。有骨架传感探头不具有方向性,可靠性高,但由于骨架通常为金属材料,无法安装至套管内部进行检测。有骨架传感探头灵敏度高但由于不同角度的局部放电检测幅值不同,其检测可靠性差。因此在实际应用中光学检测仍存在弊端。
发明内容
本发明的目的在于解决上述问题,提供一种用于高压套管放电故障检测的光纤检测装置。
为实现上述发明目的,本发明提供一种用于高压套管放电故障检测的光纤检测装置,包括:光纤传感单元、光纤延迟单元、光电转换单元和信号采集处理单元;
所述光纤传感单元包括用于绕制在高压套管上的传感光纤;
所述光纤延迟单元包括延迟光纤、光源、分光耦合器和合光耦合器;
所述光电转换单元包括光电探测器;
所述信号采集处理单元包括用以削弱低频背景噪声以及消除直流偏置的高通滤波器;
所述延迟光纤连接所述分光耦合器和所述合光耦合器;
所述分光耦合器连接所述合光耦合器;
所述光源的输出端连接所述分光耦合器;
所述光电探测器的输入端连接所述分光耦合器,输出端连接所述信号采集处理单元;
所述合光耦合器连接所述传感光纤。
根据本发明的一个方面,还包括用于反射所述传感光纤中传导的光信号的反射结构。
根据本发明的一个方面,所述反射结构为单程旋光45°的法拉第电磁旋镜。
根据本发明的一个方面,所述信号采集处理单元还包括示波器或者采集卡以及小波降噪与批处理程序。
根据本发明的一个方面,所述光纤检测装置为Michelson、Mach–Zehnder或者Sagnac型干涉结构,所述Michelson、所述Mach–Zehnder或者所述Sagnac型干涉结构为直线型结构、环型结构或者双环型结构;
其中,所述双环型结构为其中一种所述干涉结构的重复组合或者两种干涉结构的相互组合。
根据本发明的一个方面,所述传感光纤绕制在高压套管的平滑外表面上,并且沿着平滑表面的单一方向绕制;
所述传感光纤整体呈单螺旋状分布在高压套管的外表面,并且单螺旋状的所述传感光纤的两端在高压套管上固定。
根据本发明的一个方面,所述传感光纤绕制时光纤之间以及与高压套管之间紧密贴合。、光纤与待测设备之间均需紧密贴合。
根据本发明的一个方面,所述传感光纤绕制于高压套管芯子与导杆处用于检测高压套管内部微弱局部放电;
所述传感光纤绕制在高压套管外壳上用于检测高压套管中高能放电现象。
根据本发明的用于高压套管放电故障检测的光纤检测装置的具体方案,实际能够取得以下现有技术所取得不了的技术效果:
(1)抗电磁干扰:传统电气量传感器容易受到霍尔效应的影响,被高压套管工作环境中的强电磁场干扰,导致检测失效。本发明所采用的干涉型光学结构为光路拓扑,光电转换单元存在电信号但远离现场高压套管,因此整体检测不易受到电磁干扰,有效降低检测误差;
(2)安装位置不受限制:本发明所使用的光学检测技术由于靠近高压套管处的检测装置为非金属元器件,在其附近布置施加高电压时不会影响套管的正常运行,因此与其他检测方法相比,光学干涉结构的布置位置相对随意,不受到传感装置自身材料属性的限制;
(3)可靠性与灵敏度高:与传统干涉型光学结构中传感探头相比,本发明将光纤直接绕制于高压套管外壳或任意部位,排除了金属骨架对设备运行所造成的影响以及角度所引起的检测误差等因素,有助于提高系统的可靠性与检测精度。
根据本发明的用于高压套管放电故障检测的光纤检测装置的具体方案,通过在高压套管合理安装光纤传感探头,经由光纤延迟单元和光电转换单元采集到高压套管内由于放电故障引起的振动信息,进一步判别高压套管发生放电故障与否并进行放电故障的检测和诊断,解决了传统高压套管中放电故障不易检测的难题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性表示根据本发明的用于高压套管放电故障检测的光纤检测装置的结构框图;
图2示意性表示根据本发明的用于高压套管放电故障检测的光纤检测装置检测高压套管的结构图。
具体实施方式
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
在针对本发明的实施方式进行描述时,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”所表达的方位或位置关系是基于相关附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
下面结合附图和具体实施方式对本发明作详细地描述,实施方式不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施方式。
图1示意性表示根据本发明的用于高压套管放电故障检测的光纤检测装置的结构框图;如图1所示,根据本发明的用于高压套管放电故障检测的光纤检测装置包括光纤传感单元1、光纤延迟单元2、光电转换单元3和信号采集处理单元4。在本发明中,光纤传感单元1包括传感光纤101。光纤延迟单元2包括延迟光纤201、光源202、分光耦合器203和合光耦合器204。光电转换单元3包括光电探测器301。信号采集处理单元4包括用以削弱低频背景噪声以及消除直流偏置的高通滤波器以及示波器或者采集卡和小波降噪与批处理程序。
在本发明中,传感光纤101绕制在高压套管的平滑外表面(即平滑的外轮廓表面)上,并且沿着平滑表面的单一方向绕制。由此可知,传感光纤101整体是呈单螺旋状分布在高压套管的外表面上的,并且在本发明中,单螺旋状的传感光纤101的两端在高压套管上固定,而螺旋状的传感光纤101的中间部分可以不必固定,因为由固定的两端的挤压以及紧密绕制方式可以使其位置稳定牢靠。
在本发明中,传感光纤101绕制时各段光纤之间以及与高压套管之间紧密贴合。
此外,在本发明中,传感光纤101绕制于高压套管芯子与导杆处用于检测高压套管内部微弱局部放电,绕制在高压套管外壳上用于检测高压套管中高能放电现象,如严重局部放电或电弧放电。
以下以一种具体实施方式说明本发明。
图2示意性表示根据本发明的一种实施方式的用于高压套管放电故障检测的光纤检测装置检测高压套管的结构图。如图2所示,在本实施方式中,光纤传感单元1包括用于绕制在高压套管上的传感光纤101,如图1所示,传感光纤101绕制在高压套管的上端外表面,在本实施方式中,同时采用紫外胶将传感光纤101固定在高压套管的外表面上,套管正常运行发热以及故障发热时,不会对紫外胶的工作性能产生影响。这样一来,使得绕制了传感光纤101的高压套管的端部成为了光纤传探头。
如图1所示,在本实施方式中,光纤延迟单元2包括延迟光纤201、光源202、分光耦合器203和合光耦合器204。分光耦合器203连接合光耦合器204,延迟光纤201分别连接分光耦合器203和合光耦合器204。同时,光源202的输出端连接分光耦合器203,合光耦合器204连接传感光纤101。
在本实施方式中,光电转换单元3包括光电探测器301,其用于探测光信号强度并将其转化为电信号进行输出,在本发明的检测装置中,其输入端一般与耦合器连接,输出端连接信号采集处理单元4。
在本实施方式中,信号采集处理单元4包括用以削弱低频背景噪声的滤波器,以及示波器或者采集卡和小波降噪与批处理程序。在本实施方式中,小波降噪对光电探测器301中的干扰和噪声信号进行滤除,批处理程序建立特定频段内振动信号幅值与放电故障程度的对应数值关系。
进一步地,如图1所示,在本发明中,还包括反射结构5,反射结构5主要用于反射传感光纤101中传导的单路光信号,以构成光学回路,形成干涉现象。在本实施方式中,所述反射结构5为单程旋光45°的法拉第电磁旋镜501。其可防止光路中由于各种原因产生的背向传输光对光源以及光路系统产生的不良影响,还可消除光纤固有的双折射现象,以提高相干信噪比,实现对局部放电超声信号引发的振动的高精度测量。
在本发明中,光纤检测装置为Michelson、Mach–Zehnder或者Sagnac型干涉结构,Michelson、Mach–Zehnder或者Sagnac型干涉结构为图1中所示的直线型结构,当然还可以是本领域公知的环型结构或者双环型结构。其中,双环型结构为其中一种干涉结构的重复组合或者两种干涉结构的相互组合。Sagnac干涉结构可以使用宽带光源,其成本较低,同时具有短的相干长度,有助于抑制光路中瑞利散射,克尔效应等光路噪声对光纤陀螺的影响。
此外,延迟光纤201在不同干涉结构中作用不同,需分别讨论,在环型干涉结构中主要通过增加光纤长度以提高检测灵敏度,而在上述直线型干涉结构中光的干涉现象发生于2×2耦合器处,延迟光纤主要起到相位调制作用。
根据本发明的上述实施方式,具体应用时,由于本发明引例采用Sagnac干涉结构,对光源要求较低,因此可以使用宽带光源,该光源在节约检测成本的同时能够抑制瑞利散射、克尔效应及偏振交叉耦合引起的相干误差和噪声。宽带光源发出的光经过2×2耦合器被分成两束光,一束光经1500m延迟光纤传输至1×2耦合器,另一束光直接传输至1×2耦合器。1×2耦合器另一端即为光纤传感探头部分。将长度为3m的光纤紧密绕制于高压套管芯子处并进行固定,即构成用于接收或感应微弱振动所引起的超声波信号的光纤传感探头。与传统探头相比,采用高压套管芯子作为传输骨架,具有可靠性与检测精度高等优势。传感光纤与延迟光纤都为弯曲不敏感单模光纤,该光纤的工作波长为1260nm–1625nm,具有光的色散小,传输距离只受光纤衰减的影响等特点。传感光纤另一端为法拉第旋转镜,可消除光纤固有的双折射现象,以提高相干信噪比,实现对局部放电超声信号引发的振动的高精度测量。2×2耦合器所发出的顺逆2束光耦合器中发生干涉,由于两束光所经过的光路途径相同,在干涉仪不受外力作用时,顺逆时针传播的两束光程差为零。当Sagnac干涉结构外部存在振动引发的超声信号时,沿光纤传感探头的法向方向存在角速度,由于顺逆两束光到达扰动位置的时间不同,两束光之间形成相位差,进一步导致相应的干涉信号强度发生改变,通过光电二极管解调,检测干涉信号强度即可获知角速度大小,从而达到对超声信号进行检测的目的。
根据本发明的上述设置,考虑到随光纤长度增加,检测结构灵敏度更好以及资源的合理配置将光纤截取合适长度,紧密螺旋绕制于高压套管表面,对所绕制的光纤环进行固定,搭建基于干涉型光学原理的局部放电超声信号检测平台,对各类高压套管中的微弱局部放电进行检测,由于检测信号中存在背景噪声,为对局部放电进行精确分析,采用小波等程序对其进行降噪。本发明的提出能够提高光学方法检测局部放电的可靠性与检测精度。
同时,根据本发明的上述设置,能够取得以下现有技术所取得不了的技术效果:
(1)抗电磁干扰:传统电气量传感器容易受到霍尔效应的影响,被高压套管工作环境中的强电磁场干扰,导致检测失效。本发明所采用的干涉型光学结构为光路拓扑,光电转换单元存在电信号但远离现场高压套管,因此整体检测不易受到电磁干扰,有效降低检测误差;
(2)安装位置不受限制:本发明所使用的光学检测技术由于靠近高压套管处的检测装置为非金属元器件,在其附近布置施加高电压时不会影响套管的正常运行,因此与其他检测方法相比,光学干涉结构的布置位置相对随意,不受到传感装置自身材料属性的限制;
(3)可靠性与灵敏度高:与传统干涉型光学结构中传感探头相比,本发明将光纤直接绕制于高压套管外壳或任意部位,排除了金属骨架对设备运行所造成的影响以及角度所引起的检测误差等因素,有助于提高系统的可靠性与检测精度。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种用于高压套管放电故障检测的光纤检测装置,其特征在于,包括:光纤传感单元(1)、光纤延迟单元(2)、光电转换单元(3)和信号采集处理单元(4);
所述光纤传感单元(1)包括用于绕制在高压套管上的传感光纤(101);
所述光纤延迟单元(2)包括延迟光纤(201)、光源(202)、分光耦合器(203)和合光耦合器(204);
所述光电转换单元(3)包括光电探测器(301);
所述信号采集处理单元(4)包括用以削弱低频背景噪声以及消除直流偏置的高通滤波器;
所述延迟光纤(201)连接所述分光耦合器(203)和所述合光耦合器(204);
所述分光耦合器(203)连接所述合光耦合器(204);
所述光源(202)的输出端连接所述分光耦合器(203);
所述光电探测器(301)的输入端连接所述分光耦合器(203),输出端连接所述信号采集处理单元(4);
所述合光耦合器(204)连接所述传感光纤(101)。
2.根据权利要求1所述的用于高压套管放电故障检测的光纤检测装置,其特征在于,还包括用于反射所述传感光纤(101)中传导的光信号的反射结构(5)。
3.根据权利要求2所述的用于高压套管放电故障检测的光纤检测装置,其特征在于,所述反射结构(5)为单程旋光45°的法拉第电磁旋镜(501)。
4.根据权利要求1至3中任一项所述的用于高压套管放电故障检测的光纤检测装置,其特征在于,所述信号采集处理单元(4)还包括示波器或者采集卡以及小波降噪与批处理程序。
5.根据权利要求1至3中任一项所述的用于高压套管放电故障检测的光纤检测装置,其特征在于,所述光纤检测装置为Michelson、Mach–Zehnder或者Sagnac型干涉结构,所述Michelson、所述Mach–Zehnder或者所述Sagnac型干涉结构为直线型结构、环型结构或者双环型结构;
其中,所述双环型结构为其中一种所述干涉结构的重复组合或者两种干涉结构的相互组合。
6.根据权利要求1至3中任一项所述的用于高压套管放电故障检测的光纤检测装置,其特征在于,所述传感光纤(101)绕制在高压套管的平滑外表面上,并且沿着平滑表面的单一方向绕制;
所述传感光纤(101)整体呈单螺旋状分布在高压套管的外表面,并且单螺旋状的所述传感光纤(101)的两端在高压套管上固定。
7.根据权利要求6所述的用于高压套管放电故障检测的光纤检测装置,其特征在于,所述传感光纤(101)绕制时光纤之间以及与高压套管之间紧密贴合。
8.根据权利要求7所述的用于高压套管放电故障检测的光纤检测装置,其特征在于,所述传感光纤(101)绕制于高压套管芯子与导杆处用于检测高压套管内部微弱局部放电;
所述传感光纤(101)绕制在高压套管外壳上用于检测高压套管中高能放电现象。
CN201911130059.1A 2019-11-18 2019-11-18 用于高压套管放电故障检测的光纤检测装置 Pending CN111220881A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911130059.1A CN111220881A (zh) 2019-11-18 2019-11-18 用于高压套管放电故障检测的光纤检测装置
US16/744,087 US11073414B2 (en) 2019-11-18 2020-01-15 Optical fiber detection device for detecting discharge fault of high-voltage bushing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911130059.1A CN111220881A (zh) 2019-11-18 2019-11-18 用于高压套管放电故障检测的光纤检测装置

Publications (1)

Publication Number Publication Date
CN111220881A true CN111220881A (zh) 2020-06-02

Family

ID=70829021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911130059.1A Pending CN111220881A (zh) 2019-11-18 2019-11-18 用于高压套管放电故障检测的光纤检测装置

Country Status (2)

Country Link
US (1) US11073414B2 (zh)
CN (1) CN111220881A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946401B (zh) * 2021-03-11 2022-09-16 南京工业大学 一种阴燃氛围下高压输电线路跳闸特性实验装置及其方法
US11796584B2 (en) * 2022-01-03 2023-10-24 Xerox Corporation Partial discharge detection system and method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1614455A (zh) * 2004-12-02 2005-05-11 复旦大学 一种光纤相位调制新方法及反馈式白光干涉系统
CN101813742A (zh) * 2010-04-01 2010-08-25 复旦大学 利用光纤对电网高压局部放电进行探测及定位的方法
CN101871809A (zh) * 2010-06-25 2010-10-27 北京奥普科达科技有限公司 防区式光纤分布式振动传感器及采用该传感器的周界报警系统
CN102299470A (zh) * 2011-07-15 2011-12-28 武汉光迅科技股份有限公司 一种掺铒光纤超荧光光源泵浦激光器的温度补偿方法及其装置
CN102519492A (zh) * 2011-12-26 2012-06-27 复旦大学 具有低背景光的分布式单芯反馈干涉光路结构
CN103399262A (zh) * 2013-07-20 2013-11-20 北京航空航天大学 基于光纤马赫曾德干涉仪的电力变压器局部放电检测系统及检测方法
CN106706822A (zh) * 2016-12-27 2017-05-24 中国西电电气股份有限公司 测量高浓度溶解气体含量判断电容型套管故障类型的方法
CN207528861U (zh) * 2017-11-15 2018-06-22 武汉大学 一种适用于高压开关柜内部气体检测的状态预警装置
CN108268888A (zh) * 2017-12-18 2018-07-10 重庆大学 一种基于关联规则的故障诊断参量选取的优化方法
CN108445362A (zh) * 2018-03-29 2018-08-24 国网上海市电力公司 基于光纤传感技术的局部放电超声信号检测系统及方法
CN108594086A (zh) * 2018-04-13 2018-09-28 国网上海市电力公司 全光纤Michelson变压器内部局部放电超声信号检测系统及方法
CN110208668A (zh) * 2019-07-10 2019-09-06 国网上海市电力公司 一种光纤声发射振动传感器及局部放电传感系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2613839B1 (fr) * 1987-04-10 1990-11-16 Alsthom Procede de mise a jour du facteur d'echelle d'un appareil de mesure d'intensite d'un courant electrique alternatif par effet faraday
DE59004896D1 (de) * 1989-12-01 1994-04-14 Asea Brown Boveri Faseroptischer Stromwandler.
US6163265A (en) * 1999-04-01 2000-12-19 S&C Electric Company Voltage sensing arrangement
EP1261880B1 (en) * 2000-02-28 2004-04-21 KVH Industries, Inc. Faraday-effect current sensor with improved vibration response
DE10021669A1 (de) * 2000-05-05 2001-11-08 Abb Research Ltd Faseroptischer Stromsensor
DE50308498D1 (de) * 2003-09-03 2007-12-13 Abb Research Ltd Temperaturstabilisierte Sensorspule und Stromsensor
EP1745300B1 (de) * 2004-05-13 2017-05-31 ABB Research Ltd. Faseroptische sensorspule und strom- oder magnetfeldsensor
WO2006095619A1 (ja) * 2005-03-08 2006-09-14 The Tokyo Electric Power Company, Incorporated 強度変調型光センサおよび光電流・電圧センサ
KR20110050437A (ko) * 2008-07-30 2011-05-13 에이비비 리써치 리미티드 광섬유 전류 센서를 갖는 고전압 ac/dc 또는 dc/ac 변환기 스테이션
CN101581586B (zh) 2009-06-23 2010-11-10 中国科学院安徽光学精密机械研究所 一种抑制传感器死区的分布式光纤sagnac定位传感器
CN107589343A (zh) 2017-09-08 2018-01-16 武汉伊莱维特电力科技有限公司 一种光传感线路外破的监测装置
CN109282839B (zh) 2018-11-23 2020-11-24 徐少峥 基于多脉冲多波长的分布式光纤传感系统及方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1614455A (zh) * 2004-12-02 2005-05-11 复旦大学 一种光纤相位调制新方法及反馈式白光干涉系统
CN101813742A (zh) * 2010-04-01 2010-08-25 复旦大学 利用光纤对电网高压局部放电进行探测及定位的方法
CN101871809A (zh) * 2010-06-25 2010-10-27 北京奥普科达科技有限公司 防区式光纤分布式振动传感器及采用该传感器的周界报警系统
CN102299470A (zh) * 2011-07-15 2011-12-28 武汉光迅科技股份有限公司 一种掺铒光纤超荧光光源泵浦激光器的温度补偿方法及其装置
CN102519492A (zh) * 2011-12-26 2012-06-27 复旦大学 具有低背景光的分布式单芯反馈干涉光路结构
CN103399262A (zh) * 2013-07-20 2013-11-20 北京航空航天大学 基于光纤马赫曾德干涉仪的电力变压器局部放电检测系统及检测方法
CN106706822A (zh) * 2016-12-27 2017-05-24 中国西电电气股份有限公司 测量高浓度溶解气体含量判断电容型套管故障类型的方法
CN207528861U (zh) * 2017-11-15 2018-06-22 武汉大学 一种适用于高压开关柜内部气体检测的状态预警装置
CN108268888A (zh) * 2017-12-18 2018-07-10 重庆大学 一种基于关联规则的故障诊断参量选取的优化方法
CN108445362A (zh) * 2018-03-29 2018-08-24 国网上海市电力公司 基于光纤传感技术的局部放电超声信号检测系统及方法
CN108594086A (zh) * 2018-04-13 2018-09-28 国网上海市电力公司 全光纤Michelson变压器内部局部放电超声信号检测系统及方法
CN110208668A (zh) * 2019-07-10 2019-09-06 国网上海市电力公司 一种光纤声发射振动传感器及局部放电传感系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOAO P.V. FRACAROLLI,ET AL: "Fiber Optic Interferometric Method for Acoustic Emissions Detection on Power Transformer"s Bushing", 《2013 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE & OPTOELECTRONICS CONFERENCE(IMOC)》 *

Also Published As

Publication number Publication date
US20210148735A1 (en) 2021-05-20
US11073414B2 (en) 2021-07-27

Similar Documents

Publication Publication Date Title
CN103399262B (zh) 基于光纤马赫曾德干涉仪的电力变压器局部放电检测系统及检测方法
EP3029474B1 (en) Fiber aligned and motionally coupled with electric cable
CN110208668B (zh) 一种光纤声发射振动传感器及局部放电传感系统
CN101634571B (zh) 光纤脉栅分布传感装置
BRPI1010668B1 (pt) Aparelho interferômetro e método de monitoramento de perturbações acústicas
WO2014146676A1 (en) Brillouin optical distributed sensing device and method with improved tolerance to sensor failure
CN109186647B (zh) 消除光纤端面反射的装置及方法
CN111220881A (zh) 用于高压套管放电故障检测的光纤检测装置
Tong et al. High-speed Mach-Zehnder-OTDR distributed optical fiber vibration sensor using medium-coherence laser
JP7086335B2 (ja) 偏波保持光ファイバ主軸差分時間遅延の測定装置
CN111307270B (zh) 一种提高振动测量灵敏度的分布式光纤传感系统
CN110726468B (zh) 一种基于直波导相位调制器的分布式光纤声波传感系统
Handerek et al. Improved optical power budget in distributed acoustic sensing using enhanced scattering optical fibre
CN108957209B (zh) 一种通信光纤光缆生产用的断线自动检测装置
Blackburn et al. Optical fibre sensor for partial discharge detection and location in high-voltage power transformer
CN110319940A (zh) 高密度等离子体密度测量的激光光纤干涉仪诊断系统
CN110967107A (zh) 一种干涉式光纤布拉格光栅声发射信号传感系统
CN115128411A (zh) 一种共路径光纤超声传感系统频率响应校验方法和系统
CN210533395U (zh) 一种能够对伴生调幅进行消除的光纤干涉装置
Zhu et al. Disturbed PD Detection System Based on Improved φ-OTDR Assisted by wFBG Array
CN113533345A (zh) 一种基于光纤的物体表面断裂位置实时监测系统和方法
CN201993214U (zh) 一种用于结构振动检测的分布式光纤振动传感器
CN107687939B (zh) 一种干涉型光纤水听器传感臂光纤检测装置及方法
CN110608761A (zh) 一种能够对伴生调幅进行消除的光纤干涉装置及方法
Wang et al. Method of EFPI fiber sensor in partial discharge detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Jiang Jun

Inventor after: Wang Kai

Inventor after: Chen Judong

Inventor after: Li Wei

Inventor after: Bie Yifan

Inventor after: Zhang Chaohai

Inventor before: Jiang Jun

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200602