WO2001059413A2 - Procede et systeme pour mesurer des longueurs d'ondes optiques - Google Patents

Procede et systeme pour mesurer des longueurs d'ondes optiques Download PDF

Info

Publication number
WO2001059413A2
WO2001059413A2 PCT/DE2001/000284 DE0100284W WO0159413A2 WO 2001059413 A2 WO2001059413 A2 WO 2001059413A2 DE 0100284 W DE0100284 W DE 0100284W WO 0159413 A2 WO0159413 A2 WO 0159413A2
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
waveguides
output
phased array
optical
Prior art date
Application number
PCT/DE2001/000284
Other languages
German (de)
English (en)
Other versions
WO2001059413A3 (fr
Inventor
Gerhard Heise
Reinhard Maerz
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2001059413A2 publication Critical patent/WO2001059413A2/fr
Publication of WO2001059413A3 publication Critical patent/WO2001059413A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan

Definitions

  • the present invention relates to an arrangement and a method for measuring or checking wavelengths of optical signals, in particular on WDM transmission links or in spectroscopy.
  • wavelengths of signals e.g. channel positions on WDM transmission links or emission wavelengths in spectroscopy
  • small and robust filters without moving parts offer great advantages.
  • the tuning characteristics of the filter must be very well known, as well as stable over the long term and insensitive to fluctuating ambient conditions.
  • Fabry-Perot filters are generally used for this purpose; Regular calibration of the arrangement is usually required.
  • EP 0 786 879 A2 describes a phased array as an optical filter, with which in particular a method for frequency stabilization of a WDM multiplexer / demultiplexer (wavelength division multiplex) can be carried out.
  • the optoelectrically converted output reference signals of two single-channel-side reference signal channels are subtracted and a control signal is thus obtained.
  • the arrangement has two reference waveguide outputs on the single-channel side, ie at the output, for which the transmission behavior of the phased array is selected in such a way that the filter curves associated with the two outputs intersect at a frequency which is the frequency of a multiplex side corresponds to the fed-in reference signal.
  • the two waveguide outputs formed double gate is formed by two waveguide connections, the directions of the wave guide are at a small angle to each other.
  • a double gate can be implemented, for example, by connecting two glass fibers on the end face to two coupling-out surfaces present at the output of the phased array, these coupling-out surfaces preferably being flat, but forming an angle to one another.
  • EP 0 915 353 A1 describes an arrangement of optical waveguides which form a phased array, in which means are provided with which the optical lengths of the waveguides can be changed.
  • electrodes are given which are attached to the top of the arrangement in such a way that the waveguides made of thermoplastic material, whose refractive index can be changed by changing the temperature, can be heated with a current flowing through the electrodes.
  • the object of the present invention is to provide a possibility for measuring or checking wavelengths of optical signals, which does not require any moving parts and can measure in parallel in several optical bands.
  • a precisely calibratable phased array is coupled as an optical filter to the transmission medium in which the optical signal to be measured or checked propagates, which serves to determine the wavelengths.
  • the coupling to the transmission medium of the optical signal can take place, for example, by means of a lens system.
  • the coupling into the phased array can be done, for example, via a directional coupler.
  • the phased array has an input-side waveguide, an input-side free field area, in which a waveguide caused by the waveguide is at least partially canceled, a plurality of parallel waveguides and different lengths, an output-side free field area and output-side waveguides.
  • the phased array is set up for a predetermined selection of wavelengths.
  • the phased array is calibrated, i. H. matched to a reference wavelength fed in via the transmission medium or another device, so that the position and the course of the filter curves of the individual wavelengths of the phased array are very precisely defined.
  • An output-side double gate with two output waveguides, preferably arranged at an angle to one another, as reference channels, as described in EP 0 786 677 A1 cited at the beginning, allows the reference wavelength to be set very precisely, and in particular the method for frequency stabilization according to EP 0 786 879 A2 apply.
  • This means that the phased array can be calibrated very precisely, as is required for wavelength measurement.
  • a frequency drift can be compensated for by the phased array e.g. is tuned to the reference wavelength by regulating the operating temperature (as described in EP 0 915 353 AI cited at the beginning).
  • the phased array can be tuned, the interval of wavelengths to be measured is completely covered on the one hand and on the other hand the use of measurement methods based on the continuous sweeping of the filter is made possible.
  • the channel of the phased array provided for the reference wavelength is continuously tuned.
  • the wavelengths of the other channels change accordingly.
  • the amplitudes of the associated wavelengths in the measurement signal can be determined by determining the outputs and changes in the outputs in the individual channels during tuning, for example by means of photodiodes attached therein, and comparing the determined values with the course of the filter curves become.
  • a method according to the invention for determining the wavelength by means of a precisely calibrated phased array can also be seen in this procedure.
  • An alternative exemplary embodiment of the arrangement has a double gate on a group of output waveguide connections provided for this purpose or on each output waveguide connection, with which wavelength determination of the individual channels is possible with comparatively little effort and in particular without tuning the reference frequency.
  • FIG. 1 shows a diagram of the arrangement according to the invention.
  • FIG. 2 shows a phased array coupled to a transmission link in accordance with the invention
  • FIG. 3 shows a section marked in Figure 2.
  • FIG. 4 shows a preferred embodiment of the waveguide outputs provided for the reference channels.
  • the transmission medium of the optical signals is drawn in the diagram as a transmission path 8, in which in principle any optical signals that are to be measured or checked are transmitted.
  • An optical phased array 5 is coupled to this transmission link 8 by means of a coupling arrangement 9 as an optical filter, which, in accordance with the arrow direction shown, has waveguide 6 on the output side and waveguide 60 on the output side.
  • FIG. 2 gives a more precise illustration of the optical phased array.
  • the signals carried on the transmission link are coupled into the input-side waveguide 6 of the phased array, for example by means of a directional coupler 90 as a so-called tap (wire tap).
  • a free-field region 7 adjoins the input-side waveguide 6, in which the lateral waveguide is at least partially canceled.
  • Another such free field area 3 is provided on the output side. Between the free field areas 3, 7 there is an arrangement of several waveguides 5 ⁇ , 5 2 , 5 3 , 5 4 , 5 5 , 5 6 , 5 7 , 5 8 and 5 0 which are guided parallel to one another and of different lengths.
  • the fact that the waveguides are guided parallel to one another here means that the waveguides are arranged next to one another with respect to the distance to be bridged between the free field areas, but do not necessarily run geometrically parallel.
  • the optical signals of the wavelengths ⁇ lt ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 and ⁇ 8 are coupled in on the input side.
  • a reference wavelength ⁇ is coupled out into the two output-side waveguides 1, 2, which are provided as reference channels, by means of the waveguide 5 0 which is matched thereto.
  • the remaining wavelengths are distributed to the output channels 51, 52, 53, 54, 55, 56, 57 and 58.
  • the use of a double gate on the output side made of the two designated waveguides 1, 2 enables the use of the preferred method for frequency stabilization.
  • FIG. 3 shows on the basis of the detail marked A in FIG. 2 how the waveguides are coupled to an end face 30, for example of a layer waveguide forming the free field region on the output side. It also shows how the different wavelengths on the output side into the waveguides assigned to the individual channels be coupled.
  • the transmission behavior is preferably selected such that the two filter curves associated with the two outputs intersect at a frequency which corresponds to the frequency of an optical reference signal fed in on the input side.
  • a further input-side waveguide can be provided, which is provided for coupling the reference signal into the arrangement of the phased array in such a way that the reference signal is coupled out exactly at the intersection of the two filter curves in the two waveguides provided for this purpose at the output.
  • the two output channels formed by these waveguides 1, 2 each lead via an opto-electrical converter to the two inputs of a subtraction circuit, which in turn leads to the monitoring input of a control circuit for temperature control of the phased array.
  • a control signal obtained by these circuits which is generated in accordance with the difference between the optoelectrically converted reference output signals, the temperature of the phased array is regulated to match its frequency response to a target temperature value.
  • the transmission properties of the two outputs and the connected circuit components are ideally selected so that when the filter is optimally matched to the reference frequency, the same optical levels result at the two waveguide outputs, so that the same electrical signals are present at and on the inputs of the subtraction circuit How the control signal is adjusted to zero.
  • FIG. 1 A preferred arrangement of the output-side waveguides 1, 2, with which the double gate provided for the reference wavelength is formed, is shown in FIG.
  • the ends 10, 20 of these waveguides 1, 2 are coupled to an end face 30 of a layer waveguide, which in this example forms the free-field region on the output side.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

Selon l'invention, une antenne réseau à commande de phase optique (5) est couplée à un support de transmission (8) et est ajustée en continu, par ex. par modification de la température, de sorte à pouvoir déterminer, avec les courbes de filtrage de l'antenne réseau à commande de phase, les longueurs d'ondes de signaux sur la base d'une comparaison entre les variations des puissances optiques des signaux dans les guides d'ondes (60) situés côté sortie. Deux guides d'ondes du même canal, situés côté sortie, sont couplés en un angle différant de zéro (porte double), de manière à obtenir une longueur d'ondes de référence pour étalonner l'antenne réseau à commande de phase, sur la base des différentes propriétés de transmission.
PCT/DE2001/000284 2000-02-09 2001-01-25 Procede et systeme pour mesurer des longueurs d'ondes optiques WO2001059413A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10005610 2000-02-09
DE10005610.5 2000-02-09

Publications (2)

Publication Number Publication Date
WO2001059413A2 true WO2001059413A2 (fr) 2001-08-16
WO2001059413A3 WO2001059413A3 (fr) 2002-03-14

Family

ID=7630283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000284 WO2001059413A2 (fr) 2000-02-09 2001-01-25 Procede et systeme pour mesurer des longueurs d'ondes optiques

Country Status (1)

Country Link
WO (1) WO2001059413A2 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703679A2 (fr) * 1994-09-26 1996-03-27 Nippon Telegraph And Telephone Corporation Circuit de surveillance simultanée de plusieurs longueurs d'ondes utilisant un réseau de guides d'ondes groupés
EP0786879A2 (fr) * 1996-01-25 1997-07-30 Siemens Aktiengesellschaft Méthode et circuit pour la stabilisation de fréquence d'un multiplexeur/démultiplexeur d'ondes
WO1999057834A1 (fr) * 1998-05-01 1999-11-11 University Of Maryland Baltimore County Circuit de surveillance de longueur d'onde en temps reel
EP1113595A1 (fr) * 1999-12-28 2001-07-04 Alcatel Dispositif de comparaison de longueur d'onde et de multiplexage et système de réglage de sources monochromatiques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703679A2 (fr) * 1994-09-26 1996-03-27 Nippon Telegraph And Telephone Corporation Circuit de surveillance simultanée de plusieurs longueurs d'ondes utilisant un réseau de guides d'ondes groupés
EP0786879A2 (fr) * 1996-01-25 1997-07-30 Siemens Aktiengesellschaft Méthode et circuit pour la stabilisation de fréquence d'un multiplexeur/démultiplexeur d'ondes
WO1999057834A1 (fr) * 1998-05-01 1999-11-11 University Of Maryland Baltimore County Circuit de surveillance de longueur d'onde en temps reel
EP1113595A1 (fr) * 1999-12-28 2001-07-04 Alcatel Dispositif de comparaison de longueur d'onde et de multiplexage et système de réglage de sources monochromatiques

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DIECKROEGER J ET AL: "THERMOOPTICALLY TUNABLE OPTICAL PHASED ARRAY IN SIO2-SI" IEEE PHOTONICS TECHNOLOGY LETTERS, IEEE INC. NEW YORK, US, Bd. 11, Nr. 2, Februar 1999 (1999-02), Seiten 248-250, XP000803440 ISSN: 1041-1135 *
JOYNER C H ET AL: "Optical N*N demultiplexer with continuous wavelength tuning by thin film heater" ELECTRONICS LETTERS, IEE STEVENAGE, GB, Bd. 33, Nr. 11, 22. Mai 1997 (1997-05-22), Seiten 933-934, XP002122397 ISSN: 0013-5194 *
TESHIMA M ET AL: "MULTIWAVELENGTH SIMULTANEOUS MONITORING CIRCUIT EMPLOYING WAVELENGTH CROSSOVER PROPERTIES OF ARRAYED-WAVEGUIDE GRATING" ELECTRONICS LETTERS, IEE STEVENAGE, GB, Bd. 31, Nr. 18, 31. August 1995 (1995-08-31), Seiten 1595-1597, XP000530976 ISSN: 0013-5194 *
TESHIMA M ET AL: "PERFORMANCE OF MULTIWAVELENGTH SIMULTANEOUS MONITORING CIRCUIT EMPLOYING ARRAYED-WAVEGUIDE GRATING" JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE. NEW YORK, US, Bd. 14, Nr. 10, 1. Oktober 1996 (1996-10-01), Seiten 2277-2285, XP000631529 ISSN: 0733-8724 *

Also Published As

Publication number Publication date
WO2001059413A3 (fr) 2002-03-14

Similar Documents

Publication Publication Date Title
DE69826104T2 (de) Frequenznachlauf in abstimmbaren optischen Systemen
DE19754910C2 (de) Wellenlängendetektion an Faser-Bragg-Gitter-Sensoren
DE3874199T2 (de) Einrichtung zur polarisationssteuerung.
DE69001560T2 (de) Faser-optischer Kreisel.
DE3609507A1 (de) Faseroptisches interferometer
DE3888606T2 (de) Optischer Multiplexer/Demultiplexer vom Wellenleiter-Typ.
DE10030476B4 (de) Wellenlängen-Multiplexer und Wellenleitergitter in Array-Form mit Justierwellenleitern und Vorrichtung zur Justierung
DE60116958T2 (de) Optisches Übertragungsmodul und optisches Kommunikationssystem, bei dem dieses verwendet wird
DE69104114T2 (de) System zur Auswertung der optischen Dispersion.
DE3500633C2 (fr)
DE3630163A1 (de) Zentriervorrichung zum zentrieren von lichtleiter-fasern waehrend des schweissens
DE19716477A1 (de) Verfahren und Einrichtung zur Messung einer elektrischen Spannung
DE60127060T2 (de) Messung der polarisationsabhängigen Eigenschaft optischer Einheiten
DE69014493T2 (de) Faseroptischer Kuppler.
DE102009014478B4 (de) Vorrichtung zum Umsetzen eines optischen Eingangssignals in ein elektrisches Ausgangssignal und Verfahren zur Herstellung der Vorrichtung
EP3682204B1 (fr) Dispositif et procédé de détermination de l'état de polarisation d'une onde électromagnétique
EP0675351A2 (fr) Procédé de détermination dans un fibre optique la longeur d'ondes pour laquelle il y n'a pas de dispersion
WO2001059413A2 (fr) Procede et systeme pour mesurer des longueurs d'ondes optiques
DE112014003851B4 (de) Sensorbaueinheit
DE60218325T2 (de) Optischer filter
EP0786092B1 (fr) Procede et dispositif de mesure optiques pour mesurer une tension alternative electrique ou un champ alternatif electrique avec compensation thermique
DE60203578T2 (de) Auswertungsverfahren eines optischen Halbleiterverstärker und Instrument zur Auswertung
DE69836380T2 (de) Wellenlängenmesssystem
DE102012223089B4 (de) Verfahren und Vorrichtung zur Messung elektrischer Spannung
DE3534990A1 (de) Verfahren zur wellenlaengenselektiven messung der in einem optischen uebertragungssystem hervorgerufenen abschwaechung der intensitaet einer optischen strahlung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP