WO2001057879A1 - Method for mitigating stress corrosion cracking of structural member of atomic reactor plant - Google Patents

Method for mitigating stress corrosion cracking of structural member of atomic reactor plant Download PDF

Info

Publication number
WO2001057879A1
WO2001057879A1 PCT/JP2000/000563 JP0000563W WO0157879A1 WO 2001057879 A1 WO2001057879 A1 WO 2001057879A1 JP 0000563 W JP0000563 W JP 0000563W WO 0157879 A1 WO0157879 A1 WO 0157879A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
compound
reactor water
palladium
platinum
Prior art date
Application number
PCT/JP2000/000563
Other languages
French (fr)
Japanese (ja)
Inventor
Yoichi Wada
Masahiko Tachibana
Naohito Uetake
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2000/000563 priority Critical patent/WO2001057879A1/en
Priority to JP2001557046A priority patent/JP3941503B2/en
Priority to TW089117409A priority patent/TW498348B/en
Publication of WO2001057879A1 publication Critical patent/WO2001057879A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a method for alleviating stress corrosion cracking of a structural member of a nuclear reactor plant, and more particularly to a nuclear reactor plant suitable for application to a nuclear reactor plant having a boiling water reactor (hereinafter, referred to as BWR). It relates to a method for mitigating stress corrosion cracking of structural members.
  • BWR boiling water reactor
  • SCC stress corrosion cracking
  • Hydrogen injection is performed in BWR by injecting hydrogen into the water supply system under pressure by injecting hydrogen into the water supply system, and guiding the water containing hydrogen to the reactor.
  • the recombination reaction accompanying hydrogen implantation will be described.
  • the hydrogen When hydrogen is added to the reactor water in the reactor, the hydrogen recombines with oxygen and hydrogen peroxide in the downforce surrounding the core in the reactor.
  • This recombination reaction proceeds rapidly when reactive radical species such as OH generated by the action of radiation act like a catalyst. Due to this recombination reaction, the concentrations of oxygen and hydrogen peroxide in the reactor water decrease. As the concentration of oxygen and hydrogen peroxide decreases, the corrosion potential (E CP) of reactor structural materials also decreases.
  • E CP corrosion potential
  • the feature of the present invention that achieves the above object is a noble metal element of platinum and rhodium.
  • the noble metal element platinum and rhodium
  • the ECP of the structural member is reduced, and the occurrence and progress of SCC in the reactor plant structural member existing in the region where the flow rate of the reactor water is low are suppressed.
  • the region where the flow velocity of the reactor water is low is the region where the reactor water is not forcibly flowing and a convective flow is generated.
  • the thermal sleeve portion of the nozzle provided in the reactor pressure vessel, and a narrow portion formed between the core support plate and the core shell correspond to the region.
  • Fig. 1 is an explanatory diagram showing the principle of the reduction of the corrosion potential of SUS 304 with platinum
  • Fig. 1 (a) is an explanatory diagram showing the corrosion potential of SUS 304 without platinum
  • Fig. 1 (b) is an explanatory diagram showing the corrosion potential of SUS 304 with platinum
  • Fig. 2 shows the corrosion potential of SUS 304 at room temperature when platinum and rhodium are deposited on the surface of SUS 304 under various conditions.
  • Figure 3 shows the relationship between the deposition rate of palladium and temperature
  • Figure 4 shows the relationship between the molar ratio of hydrogen to oxygen and the corrosion potential of the specimen at room temperature.
  • FIG. 10 is a configuration diagram of a BWR plant to which the method of alleviating stress corrosion cracking of a reactor blunt structural member according to a third embodiment of the present invention is applied.
  • Fig. 11 is a system diagram of the primary cooling system of the BWR to which the reactor operating method of the third embodiment is applied, and
  • Fig. 12 is a description showing the injection timing of hydrogen and Al-Li solution in the third embodiment.
  • Fig. 1 (a) the ECP of stainless steel that is in contact with reactor water, which is one of the structural materials used as structural members for a reactor plant, shows the total oxidation current density and oxygen (or excess). It is defined as the potential at which the density of the current flowing into and out of the metal surface becomes zero, apparently in proportion to the reduction current density generated by the reduction reaction of (hydrogen oxide).
  • the total oxidation current density is determined by the sum of the current density generated by the oxidation reaction of hydrogen and the current density generated by corrosion elution of stainless steel.
  • noble metal elements such as platinum, rhodium, and palladium attached to the surface of stainless steel
  • the catalytic activity of the noble metal element on the reaction of hydrogen causes The exchange current density of the redox reaction is orders of magnitude higher than that of stainless steel surfaces.
  • the oxidation-reduction potential of the noble metal element is more noble than the oxygen generation potential, no oxidation elution reaction of the noble metal group element itself occurs. Therefore, as shown in Fig. 1 (b), elution of the noble metal (platinum in this example) is negligible, and its ECP on the platinum surface is determined by the redox reaction of hydrogen and oxygen.
  • the exchange current density of oxygen generated by the reduction reaction of oxygen is lower than the exchange current density of hydrogen generated by the oxidation reaction of hydrogen, and the overvoltage is higher than that of hydrogen. Therefore, if the amount of hydrogen is excessive, the reduction current density of oxygen becomes lower than the exchange current density of hydrogen, and the potential of the platinum surface matches the oxidation-reduction potential of hydrogen. Since the potential at this time drops to about -500 mV vs SHE in the BWR operation state, a potential equal to or lower than the threshold value of SCC generation of 230 mV vs SHE is achieved. The above phenomenon is caused by This also occurs when rhodium or palladium adheres to the surface. The above is the principle of promoting the hydrogen injection effect by the attachment of the noble metal element.
  • Platinum has long been known as a hydrogen electrode in the field of electrochemistry for its high hydrogen reaction efficiency. Rhodium is known to form a film with high hardness in the field of plating and is resistant to abrasion. Therefore, when applied to the surface of structural materials, it is expected that the catalytic effect will be persistent. Therefore, the inventors initially considered attaching these two noble metal elements to the surface of stainless 304 steel (SUS304).
  • the ECP of SUS304 with platinum and rhodium adhered to the surface is lower than that of SUS304 without adhesion treatment, as the molar ratio of hydrogen to oxygen increases. . Therefore, it was confirmed that platinum and rhodium were attached to the surface of SUS304. However, the decrease in potential was small compared to the ECP of the platinum plate, indicating that there is room for improvement in the adhesion of platinum and rhodium to SUS304.
  • the inventors examined a solution to increase the amount of platinum and rhodium attached to the reactor structural material existing in the region where the flow rate of the reactor water is low.
  • Figure 3 shows the experimental results. Palladium has a large deposition rate from a relatively low temperature. 1 5 0 e C around at deposition rate is maximized, the deposition rate is lowered and a high temperature.
  • Platinum, Logi And palladium compounds decompose in aqueous solution to release their respective precious metal ions.
  • Ionized platinum, rhodium and palladium adhere to the surface of the SUS304 specimen.
  • Platinum and rhodium compounds were selected from nitrate-soluble compounds in water so that the effects of nitrate ions do not occur when palladium is added in the form of nitrates.
  • FIG. 4 shows the results of measuring the ECP at room temperature of each test piece on which platinum, rhodium, etc. were adhered in the above test, together with the ECP of the platinum plate.
  • the ECP of SUS304 with platinum and rhodium is considerably higher than the ECP of a platinum plate. Platinum and attachment to SUS304 rhodium was done by dipping the above [P t (NH 3) J (N 0 3) 2 and R h (N 0 3) SUS304 3 to an aqueous solution containing.
  • the ECP of SUS304 to which platinum, rhodium and palladium are attached shows almost the same change as the ECP of the platinum plate, and falls to the level of platinum ECP when the molar ratio of hydrogen to oxygen is about 3 or more.
  • ECP of SUS304 treated with platinum and rhodium shows a higher value than the ECP of the platinum plate is that the amount of platinum and rhodium deposited on SUS304 is small. That is, rhodium by itself is less likely to adhere to SUS304 than platinum. Also, even if it adheres, it is difficult for the metal to be reduced to a state.
  • SUS304 is immersed in an aqueous solution containing a rhodium compound and a platinum compound, the amount of adhered platinum decreases. Rhodium deposits do not change, but are reduced to metal. This is because it is used to reduce rhodium with coexisting platinum. For the above reasons, it is difficult to cover SUS304 with sufficient platinum and rhodium in a low flow system.
  • metallic palladium reduces platinum and rhodium ions to the metallic state, and becomes itself an ion again and is released from the surface of SUS 304 into water.
  • the palladium ions released from the metal are combined with the decomposition products generated and accumulated near the metal surface due to the decomposition of platinum and rhodium compounds, and are carried away in water. This decomposition product is carried away by the stream where the flow is fast.
  • the inventors injected a compound of at least one of the noble metal elements of platinum and rhodium and a compound of palladium into the reactor water of the reactor, We noticed that the precious metal element compound and the palladium compound should be injected into the reactor water such that the molar number of palladium in the water is smaller than the molar number of the noble metal element in the reactor water.
  • the precious metal elements (platinum and rhodium) on the surface of the structural members (stainless steel) of the reactor plant that exist in the region where the flow rate of the reactor water is low are At least one of these metals) and palladium will increase for these reasons.
  • the amount of noble metal elements (at least one of platinum and rhodium) and palladium adhering to the structural members of the reactor plant that exist in the region where the flow rate of the reactor water is high will increase.
  • At least one of platinum and rhodium and palladium are deposited on the surface of the reactor plant components and the hydrogen injection required to reduce the temperature to -500 mV vs SHE during BWR operation
  • the amount should be at least 2: 1 (molar ratio) in stoichiometric ratio with the dissolved oxygen concentration in the reactor water.
  • the concentration of dissolved oxygen in a BWR reactor pressure vessel when hydrogen is not injected is 20 O ppb. Therefore, the hydrogen concentration at which the stoichiometric ratio is 2 is 15 ppb.
  • the hydrogen concentration in the feedwater rose to 0.4 ppm
  • the feedwater flow rate and the core flow rate ratio are about 15%, such as a BWR with a reactor power of 110 MW and an advanced BWR (ABWR)
  • ABWR advanced BWR
  • the hydrogen concentration in the reactor water is 60 ppb. Therefore, the hydrogen concentration in the reactor water should be in the range of 15 to 60 ppb. This is 0.1 to 0.4 ppm of hydrogen concentration in feed water.
  • This set value of hydrogen concentration can be covered by BWRs with different reactor power.
  • the inventors in a new operation cycle after injecting the selected compound of the noble metal element and the palladium compound into the reactor water, convert the hydrogen and the alkaline material into the reactor water.
  • FIG. 5 shows the method of this embodiment. Indicates the BWR plant to which is applied.
  • the BWR plant includes a reactor pressure vessel 3 and a turbine 6.
  • the reactor pressure vessel 3 is installed in a reactor containment vessel 35, and has a reactor core 13 inside.
  • core internal structures such as a core shroud 36 surrounding the core 13 and a shroud support (not shown) for supporting the core shroud 36 are installed.
  • a plurality of fuel assemblies (not shown) are loaded in core 13.
  • the reactor water supplied into the reactor core 13 is heated by the nuclear fission of the fissile material in the fuel assembly to become steam.
  • This steam is guided from the reactor pressure vessel 3 to the turbine 6 by the main steam pipe 5.
  • the turbine 6 drives and rotates a connected generator (not shown).
  • the steam discharged from the turbine 6 is condensed in the condenser 7 and supplied as water to the reactor pressure vessel 3 from the water supply pipe 2.
  • This water supply sequentially passes through a condensate pump 8, a condensate desalinator 9, a low-pressure feed water heater 10, a feed water pump 12, and a high-pressure feed water heater 11 provided in the water supply pipe 2.
  • the water supply becomes reactor water and is supplied to reactor core 13.
  • the reactor water is driven by the recirculation pump 1 to move down the downforce 14 located outside the core shroud 36, reaches the lower plenum 14 via the recirculation pipe 4, and is guided into the core 13. .
  • the reactor water in the reactor pressure vessel 3 is guided into the reactor water purification system pipe 17 connected to the recirculation system pipe 4 by driving the pump 17 c.
  • the regenerative heat exchanger 17a, pump 17c, non-regenerative heat exchanger 17b and desalinator 18ka are installed in the reactor water purification system piping 17.
  • the reactor water in the reactor water purification system pipe 17 passes through these devices, is purified in particular by the desalter 18, and is returned to the reactor pressure vessel 3 via the water supply pipe 2.
  • a water quality measuring device 20a for measuring the water quality of the reactor water is installed in the sampling piping 21 connected to the reactor water purification system piping 1 ⁇ . Is placed.
  • Part of the reactor water in the lower plenum 14 is led to the reactor water purification system piping 17 by the drain piping 16 connected to the bottom of the reactor pressure vessel 3, and is purified by the desalter 18 .
  • Corrosion potential (ECP) sensor for measuring the corrosion potential of reactor water 2 5 Force Installed on drain pipe 16.
  • a water quality measuring device 20 b for measuring the water quality of the reactor water is installed on a sampling pipe 22 connected to a drain pipe 16.
  • the water quality (dissolved oxygen concentration, dissolved hydrogen concentration, PH, conductivity, etc.) of the reactor water sampled from the sampling pipes 21 and 22 was measured using a water quality measurement device 20a after depressurizing and cooling the reactor water. And measured online by 2 Ob.
  • the ECP of the structural material in contact with the reactor water flowing in the drain pipe 16 is measured by the ECP sensor 25. Therefore, both the oxygen concentration and the hydrogen peroxide concentration of the reactor water can be measured.
  • the water quality (dissolved oxygen concentration, dissolved hydrogen concentration, pH, conductivity, etc.) collected from the water supply pipe 2 by the sampling pipe 19 is measured by the water quality measurement device 20c after depressurizing and cooling the water supply. Measured online.
  • the main steam pipe 5 is also connected to a water quality measuring device 20 d via a sampling pipe 23.
  • the water quality measuring device 20d condenses the steam extracted from the sampling pipe 23, decompresses and cools the condensed water, and measures the water quality of the condensed water online.
  • the main steam pipe 5 is provided with a dose rate monitor 26 for measuring the radiation dose rate of the main steam system.
  • the water quality measuring devices 20a to 20d measure the water quality from room temperature to about 50 ° (:, and 1 to about 5 atm by reducing and cooling the target water.
  • the measurement results such as the dissolved oxygen concentration, dissolved hydrogen concentration, PH, and conductivity by the water quality measurement device 20a to 20d are displayed and monitored on a display device (not shown). Is in the range of 5.3 to 8.6, and the conductivity of the reactor water is It is kept below 10 it s / cm.
  • the noble metal compound injector 31 is connected to the recirculation pipe 4.
  • a hydrogen injection device 24 is connected to the water supply pipe between the low pressure water heater 10 and the water pump 12.
  • the off-gas piping 28 is connected to the condenser 7.
  • the steam extractor 27 and the recombiner 30 are installed on the off-gas piping 28.
  • the oxygen injection device 29 is connected to the offgas piping 28 between the condenser 7 and the steam extractor 27.
  • one operation cycle is a period from the start of the reactor to the shutdown of the reactor for replacement of the fuel assembly.
  • the start operation of the reactor, the rated output operation of the reactor (rated operation), Includes reactor shutdown operation.
  • a portion of the fuel assemblies loaded in the core 13 are taken out of the core 13 and replaced with a new fuel assembly after one operation cycle.
  • the noble metal compound injection device 31 has a tank 40 filled with a solution of a palladium compound, a tank 44 filled with a solution of a platinum compound, and a tank 48 filled with a solution of a rhodium compound.
  • Each tank is connected to a pipe 52 connected to the recirculation pipe 4 by separate pipes 41, 45, and 49.
  • a valve 42 and a pump 43 are provided on a pipe 41, a valve 46 and a pump 47 are provided on a pipe 45, and a valve 50 and a pump 51 are provided on a pipe 49.
  • the injection amount of palladium compound, platinum compound and mouth compound can be adjusted individually.
  • each valve 42 , 46, 50 are controlled individually.
  • Such adjustment of the injection amount of each compound solution is very convenient because the deposition rate of each noble metal element on the surface of the structural member is different and the change rate of the concentration of each noble metal element in the reactor water is different. .
  • P d (N0 3) as a palladium compound 2 as a platinum compound [P t (NH 3) 4 ] (N0 3) 2
  • R h (N_ ⁇ 3) 3 used as the rhodium compound was done. These compounds are dissolved in the reactor water, and palladium, platinum and rhodium are present in the reactor water as ions. Adjust the valve opening corresponding to the amount of each compound injected into the reactor water so that the palladium concentration in the reactor water is 50 ppb, the platinum concentration is 100 ppb, and the rhodium concentration is 100 ppb.
  • the concentrations of palladium and platinum and the concentration of orifice are controlled to the above-mentioned set concentrations.
  • the concentrations of palladium, platinum and rhodium are measured by inductively coupled plasma mass spectrometers 37 and 38 described below. Based on these measurements, the corresponding valve is adjusted to control the respective concentration in the reactor water.
  • Palladium, platinum and rhodium ions in the reactor water adhere to the surface of the BWR plant structural members that come into contact with the reactor water. On the surface of the structural member, a film in which these metals are mixed is formed by adhesion of palladium, platinum and rhodium.
  • the addition of the palladium compound increases the amount of platinum and rhodium deposited on the surface of the structural member. Furthermore, the amount of platinum and rhodium adhering to the surface of the structural member existing in the region where the flow rate of the reactor water is low increases. In the reactor water temperature range of 80 to 150 ° C, the amount of platinum and rhodium adhering to reactor plant structural members increases.
  • P d (N0 2) 2 ( NH 3) 2 may be used.
  • [P d (NH 3) J (N0 3) to Ri replacement of 2 [P t (NH 3) 4] (OH) 2 may be used.
  • R h (N_ ⁇ 3) 3 instead [R h (NH 3) 5 (H 2 ⁇ )] (N0 3) 3 The use Ite also Yoi.
  • a compound was selected that produced ammonium ion and nitrate ion when each compound was decomposed. These two ions have a small effect on the corrosion of structural components of the reactor plant. Also, the pH of the reactor water is less likely to change significantly due to the buffering effect of ammonia.
  • Inductively coupled plasma mass spectrometers 37 and 38 are installed in sampling pipes 21 and 22.
  • the concentration of each noble metal element in the reactor water shall be measured periodically (or as necessary) by using the inductively coupled plasma mass spectrometer 37 and 38 on the reactor water collected by the sampling pipes 21 and 22. To Therefore, it can be confirmed.
  • a flameless atomic absorption spectrometer may be used instead of the inductively coupled plasma mass spectrometer.
  • the concentration of each precious metal element in the reactor water is monitored by installing a reactor water conductivity meter (or pH meter) on the sampling pipes 21 and 22 and using this reactor water conductivity meter (or PH meter). You can also do it. That is, the change in the reactor water conductivity (or pH) due to the change in precious metal concentration in the reactor water when the reactor water is not sampled is monitored by the reactor water conductivity meter (or pH meter).
  • the amounts of platinum, rhodium and palladium in the reactor water are reduced by the attachment to the surface of structural members and the removal of platinum, rhodium and palladium ions by the desalter 18 of the reactor water purification system.
  • the injection of each of the platinum, rhodium and palladium compounds from the noble metal compound injector 31 during the noble metal injection period is performed so as to compensate for the respective removal amounts by the desalter 18.
  • the concentration of platinum, rhodium and palladium in the reactor water decreases due to the removal action by the desalter 18.
  • the operation of the BWR plant is stopped. During the subsequent periodic inspection period, replacement of the fuel assemblies and periodic inspection of the plant will be carried out.
  • the periodic inspection when the BWR plant starts up, as shown in Fig. 7, the operation of pulling out the control rods from the reactor core is started. After the reactor water temperature reaches the rated temperature (about 280 ° C) and the reactor pressure reaches the set pressure (70 atm), the reactor power is increased to 100% output.
  • the valve (not shown) of the hydrogen injection device 24 is opened and injected into the water supply pipe 2.
  • the feedwater containing hydrogen is guided into the reactor pressure vessel 3.
  • the reactor water in the reactor pressure vessel 3 The hydrogen concentration in the medium is determined by setting the ECP to a sufficiently low value and examining the ECP response according to the amount of hydrogen injected. Its hydrogen concentration is preferably 20 to 60 ppb in reactor water. However, since the hydrogen concentration in the reactor water changes depending on the position in the reactor pressure vessel and the operating conditions of the reactor, the hydrogen concentration in the feedwater is 0.1 ⁇ !
  • the hydrogen injection amount is controlled to be in the range of ⁇ 0.4 ppm.
  • the hydrogen concentration in the reactor water is controlled to 25 ppb as shown in FIG. If the ECP force at the SCC protection target site can be measured directly or can be estimated by calculation, the ECP force at that site should be less than ⁇ 23 OmV vs SHE and the hydrogen injection device 24 should be used. The hydrogen injection amount may be controlled.
  • the palladium concentration in the reactor water is lower than the platinum concentration and the rhodium concentration because the platinum concentration and the rhodium concentration in the reactor water are equal.
  • a method of mitigating stress corrosion cracking of a reactor plant structural member according to another embodiment of the present invention will be described with reference to FIG.
  • the configuration of the BWR plant used in this embodiment is the same as the configuration of the BWR plant to which the first embodiment described with reference to FIG. 5 is applied.
  • a palladium compound P d (Nyu_ ⁇ 3) 2
  • platinum compounds [ P t (NH 3) J (N_ ⁇ 3) 2)
  • Logistics ⁇ beam compound R h (N 0 3)
  • palladium easily adheres to structural members even in a temperature range of 150-200, so that as shown in FIG. 9, the palladium compound is earlier than the platinum compound and the rhodium compound. Inject at high temperature.
  • the palladium concentration in the reactor water was 105 ppb, and the concentrations of platinum and rhodium were Is controlled to be 125 ppb.
  • the mole number of palladium in the reactor water is smaller than the mole numbers of platinum and rhodium.
  • palladium is first deposited on the reactor plant structural member, and then platinum and rhodium are deposited on the structural member.
  • This embodiment can provide the same effect as the first embodiment.
  • palladium since palladium is first attached to the structural member, palladium can be injected at a high concentration within a range that does not affect the conductivity and pH of the reactor water.
  • platinum and rhodium can be injected at a higher concentration as long as palladium does not coexist. For this reason, the amount of platinum and rhodium adhering to the structural members of the reactor plant can be increased as compared with the first embodiment.
  • the configuration of a BWR plant to which this embodiment is applied has a configuration in which an alkali injection device 32 is added to the configuration of FIG. 5, as shown in FIG.
  • the alkali injection device 32 is connected to the water supply pipe 2 on the downstream side of the low-pressure water heater 10.
  • a platinum compound, a rhodium compound and a palladium compound are injected, and platinum, rhodium and palladium are attached to the surface of the reactor plant structural member.
  • the method of alleviating stress corrosion cracking is to open the valve of the alkali injection device 32 and inject the alkali solution into the feed water in the next operation cycle after the work of depositing platinum, rhodium and palladium has been completed. As shown in Fig. 11, the injection of the alkaline solution is performed during the period from the start of control rod withdrawal when the BWR plant starts up to the shutdown of the reactor.
  • the pH of the reactor water is weakened throughout the operation cycle. It is maintained at about 8 which is Lucari.
  • the pH of the reactor water is measured using a water quality measuring device 20a or 20b. Based on the measured pH value, the opening of the valve of the alkali injection device 32 is adjusted to control the pH of the reactor water.
  • An Na ⁇ H solution is used as the alkaline solution.
  • Li ⁇ ⁇ ⁇ ⁇ H solution, aqueous ammonia, or a solution containing sodium hydrogen carbonate and sodium carbonate may be used as the alkaline solution.
  • the effects produced in the first embodiment can be obtained.
  • the reactor water is controlled to be weakly alkaline, the pH at the crack tip of the reactor plant structural member can be shifted to the alkaline side. For this reason, the propagation of cracks in the structural member can be effectively suppressed.
  • the hydrogen concentration in the reactor water can be reduced to about 17 ppb. For this reason, the amount of generated nitrogen 16 is smaller than in the first embodiment.
  • the room temperature pH of the reactor water is desirably controlled within the range of 7 to 8.5. It is also desirable to control the hydrogen concentration of the reactor water in the operation cycle within the range of 15 to 6 O ppb.
  • the pH adjustment of the reactor water of the present embodiment is performed by using a part of the H-type cation resin filled in the condensate desalter 9 or the desalter 18 without using the power injection device 32. It is also possible to change to an alkaline type cationic resin such as Na type. By using the Na-type cationic resin, Na ions flowing out of the Na-type cationic resin are injected into the reactor water, so that the pH of the reactor water can be controlled to a weak alkali. As the alkali type cationic resin, K type, Li type or NH type may be used in addition to Na type. Alkali-type cation tree The use of the fat eliminates the need for the alkali injection device 32, and simplifies the configuration of the BWR plant.
  • the platinum compound and the rhodium compound are injected so that the moles of platinum and rhodium in the reactor water are the same.
  • the platinum compound and the rhodium compound may be injected such that one mole number of platinum and rhodium in the reactor water is smaller than the other mole number.
  • the palladium compound is injected so that the number of moles of palladium in the reactor water is even smaller than the smaller number of moles of platinum and the orifice.
  • Palladium compound with either platinum compound or rhodium compound Injection into the reactor water is also conceivable.
  • the palladium compound is injected into the reactor water such that the number of moles of palladium is smaller than the number of moles of platinum (or rhodium). This promotes the adhesion of platinum (or rhodium).
  • Injecting two types of compounds, a platinum compound and a palladium compound (or an orifice compound and a palladium compound) also has an effect obtained when three types of compounds of a platinum compound, a rhodium compound and a palladium compound are injected.
  • the present invention is applicable not only to BWR plants but also to pressurized water reactor plants. Applicable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Catalysts (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

A method for mitigating stress corrosion cracking of a structural member of an atomic reactor plant which comprises injecting a platinum compound, a rhodium compound and a palladium compound into the reactor water in a pressure vessel of an atomic reactor, in a manner such that palladium is present in the reactor water in a less mole number than those of platinum and rhodium. The injection of the above compounds is preferably carried out during the lowering of the temperature of the reactor water from 150°C to 80°C upon the shutdown of a BWR plant. The platinum, rhodium and palladium in the form of ions in the reactor water are deposited on the surface of a structural member of an atomic reactor plant, thereby to significantly reduce the ECP of the structural member.

Description

明 細 書  Specification
原子炉ブラント構造部材の応力腐食割れを緩和する方法 技術分野  Method of mitigating stress corrosion cracking of reactor blunt structural members
本発明は、 原子炉プラント構造部材の応力腐食割れを緩和する方法に 係り、 特に沸騰水型原子炉 (以下、 B W Rという) を備えた原子炉ブラ ントに適用するのに好適な原子炉ブラン卜構造部材の応力腐食割れを緩 和する方法に関する。 背景技術  The present invention relates to a method for alleviating stress corrosion cracking of a structural member of a nuclear reactor plant, and more particularly to a nuclear reactor plant suitable for application to a nuclear reactor plant having a boiling water reactor (hereinafter, referred to as BWR). It relates to a method for mitigating stress corrosion cracking of structural members. Background art
B W Rの原子炉構造材料 (ステンレス鋼及びニッケル基合金等) にお ける応力腐食割れ (以下、 S C Cという) の発生は、 材料の改善により 以前に比べて抑制されている。 更に、 S C Cの発生及び進展を抑制する ために、 水素注入が行われている。  The occurrence of stress corrosion cracking (hereinafter referred to as SCC) in BWR reactor structural materials (stainless steel and nickel-based alloys, etc.) has been suppressed more than before due to improvements in materials. In addition, hydrogen injection is being performed to suppress the generation and progress of SCC.
水素注入は、 B W Rでは給水系に水素を加圧注入することで給水に水 素を溶存させ、 この水素を含む給水を原子炉内に導くことにより行われ る。 ここで、 水素注入に伴う再結合反応について説明する。 原子炉内の 炉水に水素が添加されると、 原子炉内の炉心を取囲むダウン力マ部で、 水素が酸素及び過酸化水素と再結合する。 この再結合反応は、 放射線照 射の作用により生成する O H等の反応性に富むラジカル種が、 触媒のよ うに作用することにより速やかに進行する。 この再結合反応により、 炉 水中での酸素及び過酸化水素の濃度は低下する。 酸素及び過酸化水素の 濃度が低下することにより、 原子炉構造材の腐食電位 (E C P ) も低下 する。  Hydrogen injection is performed in BWR by injecting hydrogen into the water supply system under pressure by injecting hydrogen into the water supply system, and guiding the water containing hydrogen to the reactor. Here, the recombination reaction accompanying hydrogen implantation will be described. When hydrogen is added to the reactor water in the reactor, the hydrogen recombines with oxygen and hydrogen peroxide in the downforce surrounding the core in the reactor. This recombination reaction proceeds rapidly when reactive radical species such as OH generated by the action of radiation act like a catalyst. Due to this recombination reaction, the concentrations of oxygen and hydrogen peroxide in the reactor water decrease. As the concentration of oxygen and hydrogen peroxide decreases, the corrosion potential (E CP) of reactor structural materials also decreases.
水素注入量の増加に伴って炉水中の溶存酸素濃度は低下する。 炉水中 の溶存酸素が 1 0 ppb 程度に低下すると、 S C Cの進展速度が約 1 1 0に低下する。 溶存酸素濃度の低下と共に E C Pがー 2 3 0 mVvs SHE (標準水素電極電位基準) 以下に低下すれば、 さらに S C Cの発 生までが抑制される。 ところが、 E C Pを大きく下げるために炉水への 水素注入量を多くすると、 炉水に溶けていた放射性窒素 1 6が還元され て主蒸気系へ移行し易くなるために、 主蒸気系線量率の増大が生じる。 給水中の水素濃度が 0.4ppm を超えたときに主蒸気系線量率の上昇が始 まり、 水素濃度が高濃度になるとその線量率は 4から 5倍に達する。 し たがって、 S C Cの発生を押さえるために、 主蒸気系線量率を上昇させ ないで、 E C Pを一 2 3 OmVvsS HE以下に下げる技術が、 水素注入 効果の増大の観点から望まれる。 As the amount of hydrogen injected increases, the concentration of dissolved oxygen in the reactor water decreases. Underwater When the dissolved oxygen of the SCC decreases to about 10 ppb, the progress rate of SCC decreases to about 110. If the ECP drops below -230 mVvs SHE (standard hydrogen electrode potential reference) with a decrease in dissolved oxygen concentration, the occurrence of SCC is further suppressed. However, if the amount of hydrogen injected into the reactor water is increased to greatly reduce the ECP, the radioactive nitrogen 16 dissolved in the reactor water is reduced and easily transferred to the main steam system. An increase occurs. When the hydrogen concentration in the feedwater exceeds 0.4 ppm, the dose rate of the main steam system starts to increase, and when the hydrogen concentration increases, the dose rate reaches 4 to 5 times. Therefore, in order to suppress the generation of SCC, a technology for lowering the ECP to less than 13 OmVvsS HE without increasing the main steam dose rate is desired from the viewpoint of increasing the hydrogen injection effect.
水素注入効果の向上に関する第 1の従来技術が、 特許第 2818943 号公 報及び特開平 10— 319181 号公報に記載されている。 この技術は、 炉水 に水素を添加し、 水素による酸化剤の還元作用を加速するための白金族 系貴金属元素を炉水に添加し構造材表面に触媒層を形成する。  The first prior art relating to the improvement of the hydrogen implantation effect is described in Japanese Patent No. 2818943 and Japanese Patent Application Laid-Open No. 10-319181. In this technology, hydrogen is added to the reactor water, and a platinum group noble metal element for accelerating the reduction of the oxidizing agent by the hydrogen is added to the reactor water to form a catalyst layer on the surface of the structural material.
水素注入効果の向上に関する第 2の従来技術が、 P CTZJ P 9 7 / 0 3 5 0 2に記載されている。 この技術は、 炉水に白金族貴金属の酸化 物または水酸化物を添加して触媒機能を構造材料表面に付与するもので ある。 発明の開示  A second prior art for improving the hydrogen implantation effect is described in PCTZJ97 / 0352. In this technology, an oxide or hydroxide of a platinum group noble metal is added to reactor water to impart a catalytic function to the surface of a structural material. Disclosure of the invention
本発明の目的は、 炉水の流速が小さい領域に存在する原子炉プラント 構造部材の腐食電位を低下させることができる原子炉ブラント構造部材 の応力腐食割れを緩和する方法を提供することにある。  An object of the present invention is to provide a method for alleviating stress corrosion cracking of a reactor blunt structural member capable of reducing the corrosion potential of a reactor plant structural member existing in a region where the flow rate of reactor water is low.
上記目的を達成する本発明の特徴は、 白金及びロジウムの貴金属元素 のうちの少なくとも 1つの貴金属元素の化合物、 及びパラジウムの化合 物を、 原子炉の炉水に注入する工程を含んでおり、 その炉水中のパラジ ゥムのモル数が炉水中の上記貴金属元素のモル数よりも小さくなるよう に貴金属元素化合物及びパラジウム化合物が炉水に注入されることにあ る。 このような上記貴金属元素及びパラジウムの各化合物の炉水への注 入によって、 炉水の流速が小さい領域に存在する原子炉プラン卜の構造 部材の表面への貴金属元素 (白金及びロジウムのうちの少なく とも 1つ の金属) の付着量が増大し、 パラジウムも付着する。 このため、 その構 造部材の E C Pが低下し、 炉水の流速が小さい領域に存在する原子炉プ ラント構造部材での S C Cの発生、 その進展が抑制される。 炉水の流速 が小さい領域とは、 炉水が強制的に流動していなく、 対流による流れが 発生している領域である。 具体的には、 原子炉圧力容器に設けられたノ ズルのサーマルスリーブ部、 及び炉心支持板と炉心シユラゥドとの間に 形成される狭隘部等がその領域に該当する。 図面の簡単な説明 The feature of the present invention that achieves the above object is a noble metal element of platinum and rhodium. Injecting a compound of at least one of the noble metal elements and a compound of palladium into the reactor water of the reactor, wherein the number of moles of palladium in the reactor water is such that The noble metal element compound and the palladium compound are to be injected into the reactor water so as to be smaller than the number of moles. By injecting such a compound of the noble metal element and palladium into the reactor water, the noble metal element (platinum and rhodium) on the surface of the structural member of the reactor plant existing in the region where the flow rate of the reactor water is low is reduced. At least one metal) is deposited and palladium is also deposited. As a result, the ECP of the structural member is reduced, and the occurrence and progress of SCC in the reactor plant structural member existing in the region where the flow rate of the reactor water is low are suppressed. The region where the flow velocity of the reactor water is low is the region where the reactor water is not forcibly flowing and a convective flow is generated. Specifically, the thermal sleeve portion of the nozzle provided in the reactor pressure vessel, and a narrow portion formed between the core support plate and the core shell correspond to the region. BRIEF DESCRIPTION OF THE FIGURES
第 1図は白金を付着した SUS 304 の腐食電位が低下する原理を示す説 明図であり、 第 1図 ( a ) は白金を付着していない SUS304 の腐食電位 を示す説明図であり、 第 1図 (b ) は白金を付着させた SUS 304 の腐食 電位を示す説明図、 第 2図は SUS304 の表面に白金及びロジウムを各種 の条件で付着させたときにおける SUS304 の室温での腐食電位を応答で 調べた結果を示す図、 第 3図はパラジウムの付着速度と温度との関係を 示す特性図、 第 4図は水素の酸素に対するモル比と試験片の室温での腐 食電位との関係を示す特性図、 第 5図は本発明の第 1実施例である原子 炉プラン卜構造部材の応力腐食割れを緩和する方法が適用される B W R プラントの構成図、 第 6図は第 5図の貴金属化合物注入装置の詳細構成 図、 第 7図は第 1実施例における白金, ロジウム及びパラジウムの各化 合物の注入時期を示す説明図、 第 8図は第 1実施例における水素注入時 期を示す説明図、 第 9図は本発明の第 2実施例である原子炉プラント構 造部材の応力腐食割れを緩和する方法における白金, ロジウム及びパラ ジゥムの各化合物の注入時期を示す説明図、 第 1 0図は本発明の第 3実 施例である原子炉ブラント構造部材の応力腐食割れを緩和する方法が適 用される B W Rプラントの構成図、 第 1 1図は第 3実施例の原子炉運転 方法を適用する B W Rの一次冷却系の系統図、 第 1 2図は第 3実施例に おける水素及びアル力リ溶液の注入時期を示す説明図である。 発明を実施するための最良の形態 Fig. 1 is an explanatory diagram showing the principle of the reduction of the corrosion potential of SUS 304 with platinum, and Fig. 1 (a) is an explanatory diagram showing the corrosion potential of SUS 304 without platinum. Fig. 1 (b) is an explanatory diagram showing the corrosion potential of SUS 304 with platinum, and Fig. 2 shows the corrosion potential of SUS 304 at room temperature when platinum and rhodium are deposited on the surface of SUS 304 under various conditions. Figure 3 shows the relationship between the deposition rate of palladium and temperature, and Figure 4 shows the relationship between the molar ratio of hydrogen to oxygen and the corrosion potential of the specimen at room temperature. FIG. 5 is a BWR to which a method of alleviating stress corrosion cracking of a reactor plant structural member according to a first embodiment of the present invention is applied. FIG. 6 is a detailed configuration diagram of the noble metal compound injection apparatus shown in FIG. 5, FIG. 7 is an explanatory view showing injection timings of platinum, rhodium, and palladium compounds in the first embodiment. FIG. 8 is an explanatory view showing a hydrogen injection time in the first embodiment, and FIG. 9 is a diagram showing platinum, rhodium and palladium in the method for mitigating stress corrosion cracking of a reactor plant structural member according to the second embodiment of the present invention. Explanatory diagram showing the injection timing of each compound in the dome.Fig. 10 is a configuration diagram of a BWR plant to which the method of alleviating stress corrosion cracking of a reactor blunt structural member according to a third embodiment of the present invention is applied. Fig. 11 is a system diagram of the primary cooling system of the BWR to which the reactor operating method of the third embodiment is applied, and Fig. 12 is a description showing the injection timing of hydrogen and Al-Li solution in the third embodiment. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
発明者等は、 原子炉ブラント構造部材の腐食電位の更なる低減を図る ために種々の検討を行った。 その検討結果を以下に詳細に説明する。 原子炉プラント構造部材として用いられる構造材の 1つである、 炉水 と接触しているステンレス鋼の E C Pは、 第 1図 ( a ) に示すように、 全酸化電流密度と、 酸素 (または過酸化水素) の還元反応によって生じ る還元電流密度とが釣り合って、 見かけ上金属表面を出入りする電流密 度が 0となるときの電位として定義される。 全酸化電流密度は、 水素の 酸化反応によって生じる電流密度と、 ステンレス鋼の腐食溶出によって 生じる電流密度との和によって決定される。  The inventors conducted various studies in order to further reduce the corrosion potential of a reactor blunt structural member. The results of the study will be described in detail below. As shown in Fig. 1 (a), the ECP of stainless steel that is in contact with reactor water, which is one of the structural materials used as structural members for a reactor plant, shows the total oxidation current density and oxygen (or excess). It is defined as the potential at which the density of the current flowing into and out of the metal surface becomes zero, apparently in proportion to the reduction current density generated by the reduction reaction of (hydrogen oxide). The total oxidation current density is determined by the sum of the current density generated by the oxidation reaction of hydrogen and the current density generated by corrosion elution of stainless steel.
炉水と接触しているステンレス鋼の表面では、 水素の酸化反応はあま り活性でないため、 ステンレス鋼の E C Pはほぼ酸素の還元反応によつ て生じる電流密度とステンレス鋼の腐食溶出によって生じる電流密度で 決まる。 したがって、 炉水中への水素注入は、 放射線照射下での水素と 酸素の再結合反応を利用して炉水中の酸素濃度を低減させる。 その結果、 酸素の還元電流密度が小さくなることによりステンレス鋼の E C Pが低 下する。 On the surface of stainless steel in contact with reactor water, the oxidation reaction of hydrogen is not very active, so the ECP of stainless steel is almost equal to the current density generated by the oxygen reduction reaction and the current generated by corrosion elution of stainless steel. Determined by density. Therefore, hydrogen injection into the reactor water is The oxygen concentration in the reactor water is reduced by utilizing the recombination reaction of oxygen. As a result, the ECP of stainless steel is reduced due to the reduced oxygen reduction current density.
炉水と接触しているステンレス鋼の表面では、 水素の酸化反応はあま り活性でないため、 ステンレス鋼の E C Pはほぼ酸素の還元反応によつ て生じる電流密度とステンレス鋼の腐食溶出によって生じる電流密度で 決まる。 したがって、 炉水中への水素注入は、 放射線照射下での水素と 酸素の再結合反応を利用して炉水中の酸素濃度を低減させる。 その結果、 酸素の還元電流密度が小さくなることによりステンレス鋼の E C Pが低 下する。  On the surface of stainless steel in contact with reactor water, the oxidation reaction of hydrogen is not very active, so the ECP of stainless steel is almost equal to the current density generated by the oxygen reduction reaction and the current generated by corrosion elution of stainless steel. Determined by density. Therefore, hydrogen injection into the reactor water reduces the oxygen concentration in the reactor water by utilizing the recombination reaction of hydrogen and oxygen under irradiation. As a result, the ECP of stainless steel decreases due to the reduction in the reduction current density of oxygen.
ところが、 ステンレス鋼の表面に付着した白金、 ロジウム及びパラジ ゥム等の白金族系貴金属元素 (以下、 貴金属元素という) の表面上では、 貴金属元素の有する水素の反応への触媒性により、 水素の酸化還元反応 の交換電流密度が、 ステンレス鋼の表面に比べ何桁も大きくなる。 ま.た、 貴金属元素の酸化還元電位は酸素発生電位より貴なので、 貴金属族元素 自体の酸化溶出反応は生じない。 したがって、 第 1図 (b ) に示すよう に、 貴金属 (本例では白金) の溶出は無視できるため、 白金表面ではそ の E C Pは、 水素及び酸素の酸化還元反応によって決定される。 このと き、 酸素の還元反応によって生じる酸素の交換電流密度は水素の酸化反 応によって生じる水素の交換電流密度より小さく、 また過電圧が水素よ り大きい。 そのために、 水素が過剰であれば酸素の還元電流密度は水素 の交換電流密度以下となるので、 白金表面の電位は水素の酸化還元電位 に一致する。 このときの電位は B W R運転状態では、 — 5 0 0 m V vs S H E程度まで低下するので、 S C C発生のしきい値である一 2 3 0 m V vs S H E以下の電位が達成される。 上記の現象は、 ステンレス鋼の 表面にロジウムまたはパラジウムが付着したときにも同様に生じる。 以 上に述べたことが貴金属元素の付着による水素注入効果の促進原理であ る。 However, on the surface of platinum group noble metal elements (hereinafter referred to as noble metal elements) such as platinum, rhodium, and palladium attached to the surface of stainless steel, the catalytic activity of the noble metal element on the reaction of hydrogen causes The exchange current density of the redox reaction is orders of magnitude higher than that of stainless steel surfaces. Also, since the oxidation-reduction potential of the noble metal element is more noble than the oxygen generation potential, no oxidation elution reaction of the noble metal group element itself occurs. Therefore, as shown in Fig. 1 (b), elution of the noble metal (platinum in this example) is negligible, and its ECP on the platinum surface is determined by the redox reaction of hydrogen and oxygen. At this time, the exchange current density of oxygen generated by the reduction reaction of oxygen is lower than the exchange current density of hydrogen generated by the oxidation reaction of hydrogen, and the overvoltage is higher than that of hydrogen. Therefore, if the amount of hydrogen is excessive, the reduction current density of oxygen becomes lower than the exchange current density of hydrogen, and the potential of the platinum surface matches the oxidation-reduction potential of hydrogen. Since the potential at this time drops to about -500 mV vs SHE in the BWR operation state, a potential equal to or lower than the threshold value of SCC generation of 230 mV vs SHE is achieved. The above phenomenon is caused by This also occurs when rhodium or palladium adheres to the surface. The above is the principle of promoting the hydrogen injection effect by the attachment of the noble metal element.
白金は、 水素電極として電気化学の分野では水素の反応効率が良いこ とが古くから知られている。 また、 ロジウムは、 メツキの分野で硬度が 高い皮膜を形成し摩耗に強いことが知られていることから、 構造材表面 に付与した場合、 触媒効果の持続性が期待される。 したがって、 発明者 等は、 これら 2つの貴金属元素をステンレス 3 0 4鋼 (SUS304) の表面 に付着させること当初考えた。  Platinum has long been known as a hydrogen electrode in the field of electrochemistry for its high hydrogen reaction efficiency. Rhodium is known to form a film with high hardness in the field of plating and is resistant to abrasion. Therefore, when applied to the surface of structural materials, it is expected that the catalytic effect will be persistent. Therefore, the inventors initially considered attaching these two noble metal elements to the surface of stainless 304 steel (SUS304).
そこで、 貴金属元素試薬としては貴金属化合物である Na2 [N (0H)6]及 び N a3[R h (N02)6]を用いて、 SUS304 の表面への白金及びロジウムの 付着試験を 1 2 0 °Cで 5時間実施した。 これら 2つの貴金属化合物がそ れぞれ 1 5 0 ppb含まれる水溶液に SUS304 を浸漬させて、 白金及びロジ ゥムを SUS304 の表面に付着させた。 第 1のケースは、 静止状態にある その水溶液中(こ SUS304 を浸漬させた。 第 2のケースは、 流動状態にあ るその水溶液中に SUS304 を浸漬させた。 第 1及び第 2ケースとも、 白 金及びロジウムを SUS304 の表面に付着させた後に、 室温で腐食電位を 水素の酸素に対するモル比の関数として調べた。 Therefore, using the noble metal element reagents Na 2 [N (0H) 6 ] and Na 3 [R h (N0 2 ) 6 ], which are noble metal compounds, we performed an adhesion test of platinum and rhodium on the surface of SUS304. The test was performed at 120 ° C for 5 hours. SUS304 was immersed in an aqueous solution containing 150 ppb of each of these two noble metal compounds, and platinum and rhodium were adhered to the surface of SUS304. In the first case, the SUS304 was immersed in the aqueous solution in a stationary state. In the second case, the SUS304 was immersed in the aqueous solution in a flowing state. After deposition of platinum and rhodium on the surface of SUS304, the corrosion potential at room temperature was investigated as a function of the molar ratio of hydrogen to oxygen.
第 2図に示したように、 第 1ケースでは、 白金及びロジウムを表面に 付着させた SUS304 の E C Pは、 水素の酸素に対するモル比の増加とと もに、 付着処理をしない SUS304 よりも低下する。 このため、 白金及び ロジウムが SUS304 の表面に付着していることが確認された。 しかし、 白金板の E C Pと比べると電位の低下は小さく、 白金及びロジウムの SUS304への付着性に改善の余地があることがわかった。  As shown in Fig. 2, in the first case, the ECP of SUS304 with platinum and rhodium adhered to the surface is lower than that of SUS304 without adhesion treatment, as the molar ratio of hydrogen to oxygen increases. . Therefore, it was confirmed that platinum and rhodium were attached to the surface of SUS304. However, the decrease in potential was small compared to the ECP of the platinum plate, indicating that there is room for improvement in the adhesion of platinum and rhodium to SUS304.
第 2ケースでは、 試験片である SUS304 の周りに、 上記の 2種類の貴 金属化合物を含む水溶液を 0 . 1 cmZ sの速さで流して実験を行った。 この第 2ケースでは、 白金及びロジウムが表面に付着された SUS304 の E C Pの挙動が白金板の場合に類似した結果となった。 この結果は、 SUS304 の表面への白金及びロジウムの供給速度が水溶液の流動によって 増加すること、 及び初期の貴金属の付着時に貴金属化合物の分解生成物 が金属表面近傍に存在することによって、 後続する貴金属元素の分解と 付着を阻害するような SUS304 の表面での不活性な状態が存在すること を示唆する。 したがって、 炉水が十分に流動している領域に存在する原 子炉構造部材には、 白金及びロジウムは十分に付着する。 In the second case, the above two types of precious metal were placed around the test piece SUS304. The experiment was performed by flowing an aqueous solution containing a metal compound at a speed of 0.1 cmZ s. In this second case, the behavior of ECP of SUS304 with platinum and rhodium attached to the surface was similar to that of the platinum plate. This result is due to the fact that the supply rates of platinum and rhodium to the surface of SUS304 are increased by the flow of the aqueous solution, and the decomposition products of the noble metal compounds are present near the metal surface during the initial deposition of the noble metal, and the subsequent noble metal This suggests that there is an inactive state on the surface of SUS304 that inhibits the decomposition and adhesion of elements. Therefore, platinum and rhodium sufficiently adhere to the reactor structural members located in the region where the reactor water is sufficiently flowing.
ところが、 原子炉内においては、 構造上、 炉水の流速が小さい領域が ある。 例えば、 原子炉に設けられた配管ノズルのサーマルスリーブ部、 炉心支持板と炉心シュラウドとの間、 および上部格子板と炉心シュラウ ドとの間に形成される狭隘部などがある。 これらの炉水の流速が小さい 領域では、 他の、 炉水の流速が大きい領域に比べ、 S C Cの発生確率が 大きくなつている。  However, in the reactor, there are regions where the flow rate of the reactor water is low due to its structure. For example, there is a thermal sleeve portion of a piping nozzle provided in a nuclear reactor, a narrow portion formed between a core support plate and a core shroud, and between an upper lattice plate and a core shroud. In these regions where the flow velocity of the reactor water is low, the probability of occurrence of SCC is higher than in other regions where the flow velocity of the reactor water is high.
そこで、 発明者等は、 炉水の流速が小さい領域に存在する原子炉構造 材に対する白金及びロジウムの付着量を増大させる解決案を検討した。 まず、 硝酸パラジウムで試験したパラジウムの SUS304 に対する付着特 性を試験によって確認した。 第 3図は、 その実験結果である。 パラジゥ ムは比較的低い温度から大きな付着速度を有している。 1 5 0 eC付近で 付着速度が最大になり、 高温になると付着速度が低下する。 Therefore, the inventors examined a solution to increase the amount of platinum and rhodium attached to the reactor structural material existing in the region where the flow rate of the reactor water is low. First, the adhesion characteristics of palladium tested on palladium nitrate to SUS304 were confirmed by tests. Figure 3 shows the experimental results. Palladium has a large deposition rate from a relatively low temperature. 1 5 0 e C around at deposition rate is maximized, the deposition rate is lowered and a high temperature.
これは、 SUS304 の表面皮膜の安定性に関係していると考えられる。 そ の金属表面が 1 5 0で付近で最も不安定になり、 金属の溶出が最大にな ることと、 パラジウムの金属表面への付着反応が温度上昇とともに増大 することが原因で、 約 1 5 0でにおいてパラジウムの付着速度が最大と なる。 更に温度が上昇した場合には、 付着したパラジウムの溶出速度が 増加するために相対的にパラジウムの付着速度は低下する。 したがって、 パラジウムは 8 0 から 1 5 0 °C付近で使用すると最も効果的に付着す る。 上記の温度依存性の試験から、 パラジウムは金属表面に付着しやす く、 また金属表面から脱離しやすい性質を有することが分かった。 This is considered to be related to the stability of the surface film of SUS304. The metal surface becomes most unstable around 150, and the elution of the metal is maximized, and the adhesion reaction of palladium to the metal surface increases with increasing temperature. At 0, the deposition rate of palladium is maximum. Become. When the temperature further rises, the rate of elution of the deposited palladium increases, and the rate of deposition of palladium relatively decreases. Therefore, palladium adheres most effectively when used around 80 to 150 ° C. From the temperature dependence test described above, it was found that palladium had the property of easily adhering to the metal surface and easily detaching from the metal surface.
次に、 発明者等は、 パラジウム, 白金及びロジウムのそれぞれの硝酸 化合物を添加した水溶液に SUS304 を浸漬させて、 パラジウム, 白金及 びロジウムの SUS304 への付着を確認する試験を行った。 白金及びロジ ゥムは、 N a 2 [P t (01^)6]及び1^ &3[1^ 11 (1^02)6]の組み合ゎせと、 [P t (NH3)4] (N〇3)2及び R h (N03)3の組み合わせとの二種類とし、 パラジウムとしては P d (N03)2を用いた。 試験は、 まず、 ' Next, the inventors conducted a test in which SUS304 was immersed in an aqueous solution to which a nitric acid compound of each of palladium, platinum and rhodium was added, to confirm the adhesion of palladium, platinum and rhodium to SUS304. Platinum and rhodium were obtained by combining Na 2 [P t (01 ^) 6 ] and 1 ^ & 3 [1 ^ 11 (1 ^ 0 2 ) 6 ] with [P t (NH 3 ) 4] (N_〇 3) 2 and the two kinds of the combination of R h (N0 3) 3, Examples of the palladium using P d (N0 3) 2. The exam first, '
N a 2 [P t (OH)6]及び N a3[R h (N02)6]を含む水溶液、 及び N a 2 aqueous solution containing [P t (OH) 6], and N a 3 [R h (N0 2) 6] and,
[P t (NH3)J (N 03)2及び R h (N03)3のを含む水溶液に SUS304 の試 験片をそれぞれ浸漬させ、 白金及びロジウムを各試験片に付着させた。 各水溶液は該当する白金化合物を 1 5 Oppb 及び該当するロジウム化合 物を 1 5 0 ppb 含んでいる。 各水溶液は静止状態であって温度が 150°C に保持され、 各試験片は該当する水溶液に 4 8時間浸漬させた。 両者の 水溶液においても、 SUS304 の試験片への白金及びロジウムの付着特性に 大きな違いが見られなかった。 これを確認した上で、 [Pt (ΝΗ3)4] (·03)2及 び R h (N〇3)3 を含む水溶液に P d (N〇3)2 を添加し、 この水溶液に SUS304 の試験片を浸漬させた。 この水溶液中には、 該当する白金化合物 が 1 0 0ppb、 該当するロジウム化合物が 1 5 0 ppb 及び該当するパラジ ゥム化合物が 5 0 ppb 含まれている。 P d (N03)2 を含むその水溶液は 静止状態であって、 その温度及び試験片の浸漬時間は、 上記の白金化合 物及びロジウム化合物を含む水溶液の場合と同じである。 白金、 ロジゥ ム及びパラジウムの化合物は、 水溶液中で分解してそれぞれの貴金属ィ オンを放出する。 イオン状態の白金, ロジウム及びパラジウムは、 SUS304 の試験片の表面に付着する。 なお、 パラジウムを硝酸塩の形で添 加するときに硝酸イオンの影響が出ないように、 白金及びロジウムの各 化合物は硝酸塩の形態で水に可溶なものを選んだ。 [P t (NH 3) J (N 0 3) 2 and R h (N0 3) 3 of an aqueous solution containing the SUS304 of test pieces were dipped respectively, were deposited platinum and rhodium in each specimen. Each aqueous solution contains 150 ppb of the corresponding platinum compound and 150 ppb of the corresponding rhodium compound. Each aqueous solution was stationary and the temperature was kept at 150 ° C, and each specimen was immersed in the corresponding aqueous solution for 48 hours. No significant difference was observed in the adhesion characteristics of platinum and rhodium to the SUS304 test piece in both aqueous solutions. After confirming this was added [Pt (ΝΗ 3) 4] (· 0 3) 2及Beauty R h (N_〇 3) 3 P d (N_〇 3) an aqueous solution containing 2, to the aqueous solution A test piece of SUS304 was immersed. This aqueous solution contains 100 ppb of the corresponding platinum compound, 150 ppb of the corresponding rhodium compound, and 50 ppb of the corresponding palladium compound. The aqueous solution containing P d (N0 3) 2 is a stationary state, the temperature and dipping time of the specimen is the same as that in the aqueous solution containing the above-described platinum compound and the rhodium compound. Platinum, Logi And palladium compounds decompose in aqueous solution to release their respective precious metal ions. Ionized platinum, rhodium and palladium adhere to the surface of the SUS304 specimen. Platinum and rhodium compounds were selected from nitrate-soluble compounds in water so that the effects of nitrate ions do not occur when palladium is added in the form of nitrates.
第 4図は、 上記の試験で白金及びロジウム等を付着させた各試験片の 室温における E C Pを測定した結果を、 白金板の E C Pと共に示してい る。 白金及びロジウムが付着した SUS304 の E C Pは、 白金板の E C P に比べてかなり高い値を示す。 白金及びロジウムの SUS304への付着は、 上記した [P t (N H3)J (N 03)2 及び R h (N 03)3 を含んだ水溶液に SUS304 を浸漬することに行われた。 白金, ロジウム及びパラジウムが付 着した SUS304 の E C Pは、 白金板の E C Pとほぼ同じ変化を示し、 水 素の酸素に対するモル比がおよそ 3以上で白金の E C Pのレベルまで低 下する。 FIG. 4 shows the results of measuring the ECP at room temperature of each test piece on which platinum, rhodium, etc. were adhered in the above test, together with the ECP of the platinum plate. The ECP of SUS304 with platinum and rhodium is considerably higher than the ECP of a platinum plate. Platinum and attachment to SUS304 rhodium was done by dipping the above [P t (NH 3) J (N 0 3) 2 and R h (N 0 3) SUS304 3 to an aqueous solution containing. The ECP of SUS304 to which platinum, rhodium and palladium are attached shows almost the same change as the ECP of the platinum plate, and falls to the level of platinum ECP when the molar ratio of hydrogen to oxygen is about 3 or more.
白金及びロジウムを用いて付着処理をした SUS304 の E C Pが白金板 の E C Pに比べて高い値を示している理由は、 SUS304 への白金及びロジ ゥムの付着量が少ないからである。 すなわち、 単体ではロジウムは白金 に比べて SUS304 に付着しずらい。また、 付着しても、 金属まで還元され た状態になりにくい。一方、 ロジウム化合物及び白金化合物を含む水溶 液に SUS304 を浸漬した場合は、 白金の付着量が減少する。 ロジウムの 付着量は変化しないが、 金属まで還元されている。これは、 共存する白 金が付着したロジウムの還元に使用されるためである。 以上の理由によ り SUS304 上を十分な白金 · ロジウムで被うことが流れの小さい系では 難しい。  The reason why the ECP of SUS304 treated with platinum and rhodium shows a higher value than the ECP of the platinum plate is that the amount of platinum and rhodium deposited on SUS304 is small. That is, rhodium by itself is less likely to adhere to SUS304 than platinum. Also, even if it adheres, it is difficult for the metal to be reduced to a state. On the other hand, when SUS304 is immersed in an aqueous solution containing a rhodium compound and a platinum compound, the amount of adhered platinum decreases. Rhodium deposits do not change, but are reduced to metal. This is because it is used to reduce rhodium with coexisting platinum. For the above reasons, it is difficult to cover SUS304 with sufficient platinum and rhodium in a low flow system.
パラジウム化合物, 口ジゥム化合物及び白金化合物を含む水溶液に SUS304 を浸潰した場合は、 白金に代わって、 パラジウムがロジウムの還 元に寄与する。 このため、 白金の SUS304 への付着性が回復する。ロジゥ ムは、 金属表面上で還元により R h 3 +から金属 R hに変化する。 パラジ ゥムは、 白金及びロジウムより SUS 304 の表面に付着しやすい。 このた め、 パラジウムイオンが最初に SUS304 の表面に付着し金属表面で還元 されて P d金属となる、 その後、 白金イオン及び R h 3 +がパラジウムと 置換されて SUS304 の表面に付着する。 金属パラジウムは置換により、 白金イオンおよびロジウムイオンを金属状態に還元し、 自身は再びィォ ンとなり SUS 304 の表面から水中に放出される。一部のパラジウムは、 白 金イオン及び R h 3 +と置換されずに、 SUS304の表面に付着されている。 金属から放出されたパラジウムイオンは、 白金およびロジウム化合物の 分解により金属表面近傍に生成 · 蓄積した分解生成物と結合して水中に 持ち去る。この分解生成物は流れの速いところでは、 流れにより持ち去 られる。以上の現象により、 SUS304 の表面に付着する白金およびロジゥ ムの量が増大し、 金属にまで還元されたロジウム量が増え、 またパラジ ゥムも少量付着するため、 パラジウム化合物, ロジウム化合物及び白金 化合物を含む水溶液に SUS 304 の試験片を浸漬した場合に、 試験片の E C Pが著しく低下するのである。 なお、 金属に還元されていない状態 のロジウムは、 金属表面にゆるく物理吸着している状態と推定され、 金 属表面から剥がれ易い。金属ロジウムに還元されると、 表面での安定性 が増し長期間にわたっての E C Pの低下に寄与する。 For aqueous solutions containing palladium compounds, mouth compounds and platinum compounds When SUS304 is immersed, palladium replaces platinum and contributes to the reduction of rhodium. Therefore, the adhesion of platinum to SUS304 is restored. The rhodium changes from Rh 3 + to metal Rh by reduction on the metal surface. Palladium adheres to the surface of SUS 304 more easily than platinum and rhodium. For this reason, the P d palladium metal ions are first reduced by adhering to the metal surface on the surface of the SUS304, then + platinum ion and R h 3 is attached to the surface of the SUS304 is replaced with palladium. By substitution, metallic palladium reduces platinum and rhodium ions to the metallic state, and becomes itself an ion again and is released from the surface of SUS 304 into water. Some of palladium, without being replaced with platinum ion and R h 3 +, is attached to the surface of SUS304. The palladium ions released from the metal are combined with the decomposition products generated and accumulated near the metal surface due to the decomposition of platinum and rhodium compounds, and are carried away in water. This decomposition product is carried away by the stream where the flow is fast. As a result of the above phenomena, the amount of platinum and rhodium adhering to the surface of SUS304 increases, the amount of rhodium reduced to metal increases, and a small amount of palladium also adheres, so that palladium compounds, rhodium compounds and platinum compounds When the test piece of SUS 304 is immersed in an aqueous solution containing, the ECP of the test piece drops significantly. Rhodium that has not been reduced to metal is presumed to be loosely physically adsorbed on the metal surface, and is easily peeled off from the metal surface. When reduced to metallic rhodium, it increases surface stability and contributes to lowering ECP over time.
白金化合物及びパラジウム化合物を含む水溶液に SUS304 の試験片を 浸漬した場合でも、 白金化合物を含む水溶液に SUS304 の試験片を浸漬 した場合に比べて、 パラジウムの作用によってその試験片への白金の付 着量が増大する。また、 ロジウム化合物及びパラジウム化合物を含む水 溶液に SUS304 の試験片を浸漬した場合でも、 ロジウム化合物を含む水 溶液に SUS 304 の試験片を浸潰した場合に比べて、 パラジウムの作用に よってその試験片へのロジウムの付着量が増大する。 Even when a SUS304 test piece is immersed in an aqueous solution containing a platinum compound and a palladium compound, platinum adheres to the test piece by the action of palladium compared to when a SUS304 test piece is immersed in an aqueous solution containing a platinum compound. The amount increases. In addition, water containing rhodium compounds and palladium compounds Even when the SUS304 test piece is immersed in the solution, the amount of rhodium adhering to the test piece increases due to the action of palladium compared to when the SUS304 test piece is immersed in an aqueous solution containing a rhodium compound. .
以上の実験結果から、 白金化合物及びロジウム化合物のうちの少なく とも 1つを含む水溶液を用いる場合には、 パラジウム化合物を添加する ことが該当する貴金属元素の付着効率を向上する上で必須である。  From the above experimental results, when an aqueous solution containing at least one of a platinum compound and a rhodium compound is used, it is essential to add a palladium compound in order to improve the adhesion efficiency of the corresponding noble metal element.
発明者等は、 上記の検討結果に基づいて、 白金及びロジウムの貴金属 元素のうちの少なくとも 1つの貴金属元素の化合物、 及びパラジウムの 化合物を、 原子炉の炉水に注入し、 その際、 その炉水中のパラジウムの モル数が炉水中の上記貴金属元素のモル数よりも小さくなるように貴金 属元素化合物及びパラジウム化合物を炉水に注入すればよいことに気付 いた。 このような上記貴金属元素及びパラジウムの炉水中への注入によ つて、 炉水の流速が小さい領域に存在する原子炉プラントの構造部材 (ステンレス鋼製) の表面への貴金属元素 (白金及びロジウムのうちの 少なくとも 1つの金属) 及びパラジウムの付着量が、 前述の理由により 増大する。 なお、 炉水の流速が大きい領域に存在する原子炉プラントの 構造部材への貴金属元素 (白金及びロジウムのうちの少なく とも 1つの 金属) 及びパラジウムの付着量は、 当然のことながら増加する。  Based on the above study results, the inventors injected a compound of at least one of the noble metal elements of platinum and rhodium and a compound of palladium into the reactor water of the reactor, We noticed that the precious metal element compound and the palladium compound should be injected into the reactor water such that the molar number of palladium in the water is smaller than the molar number of the noble metal element in the reactor water. By injecting such precious metal elements and palladium into the reactor water, the precious metal elements (platinum and rhodium) on the surface of the structural members (stainless steel) of the reactor plant that exist in the region where the flow rate of the reactor water is low are At least one of these metals) and palladium will increase for these reasons. Naturally, the amount of noble metal elements (at least one of platinum and rhodium) and palladium adhering to the structural members of the reactor plant that exist in the region where the flow rate of the reactor water is high will increase.
白金及びロジウムのうちの少なくとも 1つ、 及びパラジウムを、 原子 炉プラント構造部材の表面に付着させた後の B W Rの運転において、 - 5 0 0 m V vs S H Eにまで低下するのに必要な水素注入量は、 少なく とも、 炉水の溶存酸素濃度と化学量論比で 2 : 1 (モル比) となればよ い。 通常、 水素を注入しないときの B W Rの原子炉圧力容器内での溶存 酸素濃度は 2 0 O ppb である。 このため、 化学量論比で 2 となる水素濃 度は 1 5 ppb である。 一方、 給水中の水素濃度が 0 . 4 ppm まで上昇した とき主蒸気系の放射線量率が上昇し始めるので、 原子炉出力 1 1 0万 kW級の BWR、 及びアドバンス ド BWR (ABWR) のように給水流 量ノ炉心流量比が 1 5 %程度のケースを考えた場合、 炉水での水素濃度 は 6 0 ppb となる。 したがって、 炉水中の水素濃度は 1 5〜 6 0 ppb の 範囲にすればよい。 これは、 給水中の水素濃度で 0. 1〜 0.4ppm であ る。 この水素濃度の設定値は、 原子炉出力の異なる BWRでもカバーで さる。 At least one of platinum and rhodium and palladium are deposited on the surface of the reactor plant components and the hydrogen injection required to reduce the temperature to -500 mV vs SHE during BWR operation The amount should be at least 2: 1 (molar ratio) in stoichiometric ratio with the dissolved oxygen concentration in the reactor water. Normally, the concentration of dissolved oxygen in a BWR reactor pressure vessel when hydrogen is not injected is 20 O ppb. Therefore, the hydrogen concentration at which the stoichiometric ratio is 2 is 15 ppb. On the other hand, the hydrogen concentration in the feedwater rose to 0.4 ppm When the radiation dose rate of the main steam system starts to rise, the case where the feedwater flow rate and the core flow rate ratio are about 15%, such as a BWR with a reactor power of 110 MW and an advanced BWR (ABWR), is used. Considering that, the hydrogen concentration in the reactor water is 60 ppb. Therefore, the hydrogen concentration in the reactor water should be in the range of 15 to 60 ppb. This is 0.1 to 0.4 ppm of hydrogen concentration in feed water. This set value of hydrogen concentration can be covered by BWRs with different reactor power.
あるいは、 炉水に接する原子炉ブラント構造部材の E C Pを測定しな がら、 その E C Pが— 2 3 OmVvsS HE以下となるように水素注入量 を制御してもよい。 通常は、 水素注入量に対する原子炉プラント構造部 材の E C Pの変化を事前に測定し、 この測定値及び解析結果により炉水 中で必要な水素濃度を決定する。 決定された水素濃度になるように、 給 水流量に応じて水素の注入量を制御する。  Alternatively, the hydrogen injection amount may be controlled such that the ECP is equal to or less than −23 OmVvsS HE while measuring the ECP of the reactor blunt structural member in contact with the reactor water. Normally, the change in ECP of the reactor plant structural components with respect to the hydrogen injection amount is measured in advance, and the required hydrogen concentration in the reactor water is determined based on the measured values and the analysis results. The amount of hydrogen injected is controlled according to the feedwater flow rate so that the determined hydrogen concentration is reached.
次に、 E C Pに対する炉水の p Hの影響を検討する。 これまで考えて きた酸素及び過酸化水素の還元反応は、 具体的には以下の ( 1 ), 及び Next, the effect of the reactor water pH on the ECP will be examined. The reduction reactions of oxygen and hydrogen peroxide that have been considered up to now are specifically described in the following (1), and
( 2 ) 式で示される。 ( 1 ) 及び ( 2 ) 式の反応は、 左辺にプロ トンIt is shown by equation (2). The reactions in equations (1) and (2) are represented by the
(H + ) が関与 (H +) involved
02 + 4 H + + 4 e - → 2H20 ·■· ( 1 )0 2 + 4 H + + 4 e-→ 2H 2 0
H22 + 2 H + + 2 e - → 2 H20 … ( 2 ) しているので、 炉水の p Hに依存する。 炉水の p Hが高くなるとプロ ト ン濃度が減少するので、 左辺から右辺への反応は抑制される。 また、 水 素の酸化反応は、 ( 3 ) 式で表される。 しかし、 貴金属上で水素は可逆 性を示すので、 H 22 + 2 H + + 2 e-→ 2 H 2 0… (2) and depends on the reactor water pH. The reaction from the left side to the right side is suppressed because the proton concentration decreases as the reactor water pH increases. The hydrogen oxidation reaction is expressed by equation (3). However, hydrogen is reversible on precious metals,
H2 → 2 H + + 2 e - ··· (3)H 2 → 2 H + + 2 e-(3)
(4) 式の反応も同じに生じる。 これらの反応は、 平衡系となるが、 p Hが The reaction of equation (4) occurs similarly. These reactions become equilibrium systems, pH is
2 H + + 2 e - → H, … (4) 上昇するとプロ トン濃度が減少するので (4) 式の反応は抑制され、2 H + + 2 e-→ H, ... (4) As the concentration increases, the concentration of the proton decreases, and the reaction of equation (4) is suppressed.
( 3) 式の反応が優勢に進行する。 このため、 貴金属を付着させた原子 炉プラント構造部材の表面が水素注入運転時にアル力リ環境に置かれる と、 酸素の還元電流密度がより減少し、 水素の酸化電流密度はより増大 する。 このため、 第 1図に示す関係により、 原子炉プラント構造部材の 腐食電位の低下に必要な水素の量は、 中性のときょりも少なくてよい。 水素を注入しない場合の炉水の溶存酸素濃度は約 2 0 O pb である。 この時、 化学量論的に必要な水素量は 1 5ppb となる。 水素注入しない ときの炉水水素濃度は約 1 Oppb 程度測定されているので、 pH制御に より貴金属付着した表面での酸素及び過酸化水素の還元電流密度が 2 Z 3程度に抑制されれば、 すでに存在している水素のみで電位が一 5 0 0 mVvsS HE程度に低下する。 原理的には高温水中のプロ トン濃度が 1 X I 0— 6molZリツ トル以下に低下すればよいので p H 8程度に制御す ればよい。 同様に酸素 ·過酸化水素の還元反応についてのみ作用する元 素を添加して還元反応を小さくしても同様の効果が得られる。 The reaction of equation (3) proceeds predominantly. For this reason, if the surface of a reactor plant structural member to which noble metals are attached is placed in an environment where hydrogen is injected during hydrogen injection operation, the reduction current density of oxygen is further reduced and the oxidation current density of hydrogen is further increased. Therefore, according to the relationship shown in Fig. 1, the amount of hydrogen required to lower the corrosion potential of the structural members of the nuclear reactor plant may be less neutral and sometimes less. The concentration of dissolved oxygen in the reactor water without hydrogen injection is about 20 Opb. At this time, the stoichiometrically required amount of hydrogen is 15 ppb. Since the reactor water hydrogen concentration without hydrogen injection was measured at about 1 Oppb, if the reduction current density of oxygen and hydrogen peroxide on the surface with noble metal attached was suppressed to about 2Z3 by pH control, The potential drops to about 500 mVvsS HE only with hydrogen that is already present. Since the principle pro ton concentrations of high temperature water may be reduced to below 1 XI 0- 6 molZ rate Torr may Re be controlled to about p H 8. Similarly, the same effect can be obtained by adding an element acting only on the reduction reaction of oxygen and hydrogen peroxide to reduce the reduction reaction.
この結果に基づいて、 発明者等は、 前述の選ばれた貴金属元素の化合 物、 及びパラジウム化合物を炉水に注入した後の新たな運転サイクルに おいて、 水素及びアル力リ物質を炉水に供給すればよいとの発想を持つ た。 水素注入効果及び弱アルカリ水質の効果が相乗して、 原子炉プラン ト構造部材の E C Pが更に低下する。  Based on this result, the inventors, in a new operation cycle after injecting the selected compound of the noble metal element and the palladium compound into the reactor water, convert the hydrogen and the alkaline material into the reactor water. Has the idea that it can be supplied to The hydrogen injection effect and the effect of weak alkaline water synergize to further reduce the ECP of the reactor plant structural members.
(第 1実施例)  (First embodiment)
本発明の好適な一実施例である原子炉プラント構造部材の応力腐食割 れを緩和する方法を図面を用いて説明する。 第 5図は、 本実施例の方法 が適用される B W Rプラントを示している。 A method for alleviating stress corrosion cracking of a reactor plant structural member according to a preferred embodiment of the present invention will be described with reference to the drawings. Fig. 5 shows the method of this embodiment. Indicates the BWR plant to which is applied.
B W Rプラントは、 原子炉圧力容器 3及びタービン 6を備える。 原子 炉圧力容器 3は、 原子炉格納容器 3 5内に設置され、 内部に炉心 1 3を 備える。 原子炉圧力容器 3内には、 炉心 1 3を取囲む炉心シュラウド 3 6、 及び炉心シュラウド 3 6を支持するシユラウドサポート (図示せ ず) 等の炉内構造物が設置される。 複数の燃料集合体 (図示せず) が、 炉心 1 3内に装荷されている。  The BWR plant includes a reactor pressure vessel 3 and a turbine 6. The reactor pressure vessel 3 is installed in a reactor containment vessel 35, and has a reactor core 13 inside. In the reactor pressure vessel 3, core internal structures such as a core shroud 36 surrounding the core 13 and a shroud support (not shown) for supporting the core shroud 36 are installed. A plurality of fuel assemblies (not shown) are loaded in core 13.
炉心 1 3内に供給される炉水は、 燃料集合体内の核分裂性物質の核分 裂によって加熱されて蒸気になる。 この蒸気は、 主蒸気配管 5によって 原子炉圧力容器 3からタービン 6に導かれる。 タービン 6は、 駆動され て連結された発電機 (図示せず) を回転させる。 タービン 6から排出さ れた蒸気は、 復水器 7で凝縮され、 給水として給水配管 2より原子炉圧 力容器 3内に供給される。 この給水は、 給水配管 2に設けられた、 復水 ポンプ 8, 復水脱塩器 9 , 低圧給水加熱器 1 0 , 給水ポンプ 1 2及び高 圧給水加熱器 1 1 を順次通過する。 給水は、 炉水となって、 炉心 1 3に 供給される。 炉水は、 再循環ポンプ 1の駆動によって炉心シュラウド 3 6の外側に位置するダウン力マ 1 4を下降し、 再循環系配管 4を経て 下部プレナム 1 4に達して炉心 1 3内に導かれる。  The reactor water supplied into the reactor core 13 is heated by the nuclear fission of the fissile material in the fuel assembly to become steam. This steam is guided from the reactor pressure vessel 3 to the turbine 6 by the main steam pipe 5. The turbine 6 drives and rotates a connected generator (not shown). The steam discharged from the turbine 6 is condensed in the condenser 7 and supplied as water to the reactor pressure vessel 3 from the water supply pipe 2. This water supply sequentially passes through a condensate pump 8, a condensate desalinator 9, a low-pressure feed water heater 10, a feed water pump 12, and a high-pressure feed water heater 11 provided in the water supply pipe 2. The water supply becomes reactor water and is supplied to reactor core 13. The reactor water is driven by the recirculation pump 1 to move down the downforce 14 located outside the core shroud 36, reaches the lower plenum 14 via the recirculation pipe 4, and is guided into the core 13. .
原子炉圧力容器 3内の炉水は、 ポンプ 1 7 cの駆動によって再循環系 配管 4に接続された炉水浄化系配管 1 7内に導かれる。 再生熱交換器 1 7 a , ポンプ 1 7 c, 非再生熱交換器 1 7 b及び脱塩器 1 8カ^ 炉水 浄化系配管 1 7に設置されている。 炉水浄化系配管 1 7内の炉水は、 こ れらの機器を通り、 特に脱塩器 1 8で浄化されて給水配管 2を経て原子 炉圧力容器 3内に戻される。 炉水の水質を測定するための水質測定装置 2 0 aが、 炉水浄化系配管 1 Ίに接続されたサンプリング配管 2 1に設 置される。 下部プレナム 1 4内の炉水の一部は、 原子炉圧力容器 3の底 部に接続されたドレン配管 1 6によって炉水浄化系配管 1 7に導かれ、 脱塩器 1 8によって浄化される。 炉水の腐食電位を測定するための腐食 電位 (E C P ) センサ 2 5力 ドレン配管 1 6に設置される。 炉水の水 質を測定するための水質測定装置 2 0 bが、 ドレン配管 1 6に接続され たサンプリング配管 2 2に設置される。 The reactor water in the reactor pressure vessel 3 is guided into the reactor water purification system pipe 17 connected to the recirculation system pipe 4 by driving the pump 17 c. The regenerative heat exchanger 17a, pump 17c, non-regenerative heat exchanger 17b and desalinator 18ka are installed in the reactor water purification system piping 17. The reactor water in the reactor water purification system pipe 17 passes through these devices, is purified in particular by the desalter 18, and is returned to the reactor pressure vessel 3 via the water supply pipe 2. A water quality measuring device 20a for measuring the water quality of the reactor water is installed in the sampling piping 21 connected to the reactor water purification system piping 1Ί. Is placed. Part of the reactor water in the lower plenum 14 is led to the reactor water purification system piping 17 by the drain piping 16 connected to the bottom of the reactor pressure vessel 3, and is purified by the desalter 18 . Corrosion potential (ECP) sensor for measuring the corrosion potential of reactor water 2 5 Force Installed on drain pipe 16. A water quality measuring device 20 b for measuring the water quality of the reactor water is installed on a sampling pipe 22 connected to a drain pipe 16.
サンプリング配管 2 1及び 2 2から採取した炉水の水質 (溶存酸素濃 度, 溶存水素濃度, P H, 導電率など) は、 その炉水を減圧及び冷却し た後で、 水質測定装置 2 0 a及び 2 O bによってオンラインで測定され る。 ドレン配管 1 6内を流れる炉水に接する構造材の E C Pは、 E C P センサ 2 5によって測定される。 このため、 炉水の酸素濃度及び過酸化 水素濃度の両方が測定できる。  The water quality (dissolved oxygen concentration, dissolved hydrogen concentration, PH, conductivity, etc.) of the reactor water sampled from the sampling pipes 21 and 22 was measured using a water quality measurement device 20a after depressurizing and cooling the reactor water. And measured online by 2 Ob. The ECP of the structural material in contact with the reactor water flowing in the drain pipe 16 is measured by the ECP sensor 25. Therefore, both the oxygen concentration and the hydrogen peroxide concentration of the reactor water can be measured.
サンプリング配管 1 9によって給水配管 2から採取した給水の水質 (溶存酸素濃度, 溶存水素濃度, p H , 導電率など) は、 その給水を減 圧及び冷却した後で、 水質測定装置 2 0 cによってオンラインで測定さ れる。 主蒸気配管 5にも、 サンプリング配管 2 3を介して水質測定装置 2 0 dが接続されている。 水質測定装置 2 0 dは、 サンプリ ング配管 2 3から抽出した蒸気を凝縮し、 この凝縮水を減圧及び冷却した後で、 凝縮水の水質をオンラインで測定する。 主蒸気配管 5には、 主蒸気系の 放射線量率を測定するための線量率モニタ 2 6が設置されている。  The water quality (dissolved oxygen concentration, dissolved hydrogen concentration, pH, conductivity, etc.) collected from the water supply pipe 2 by the sampling pipe 19 is measured by the water quality measurement device 20c after depressurizing and cooling the water supply. Measured online. The main steam pipe 5 is also connected to a water quality measuring device 20 d via a sampling pipe 23. The water quality measuring device 20d condenses the steam extracted from the sampling pipe 23, decompresses and cools the condensed water, and measures the water quality of the condensed water online. The main steam pipe 5 is provided with a dose rate monitor 26 for measuring the radiation dose rate of the main steam system.
水質測定装置 2 0 a〜 2 0 dは、 対象となる水を減圧及び冷却するこ とにより、 室温〜約 5 0 ° (:、 及び 1〜約 5気圧の条件下で水質を測定す る。 水質測定装置 2 0 a〜 2 0 dによる溶存酸素濃度, 溶存水素濃度, P H、 及び導電率などの測定結果は、 表示装置 (図示せず) に表示され て監視される。 炉水の p Hは 5 . 3 ~ 8 . 6の範囲に、 炉水の導電率は 1 0 it s / cm以下に保持される。 The water quality measuring devices 20a to 20d measure the water quality from room temperature to about 50 ° (:, and 1 to about 5 atm by reducing and cooling the target water. The measurement results such as the dissolved oxygen concentration, dissolved hydrogen concentration, PH, and conductivity by the water quality measurement device 20a to 20d are displayed and monitored on a display device (not shown). Is in the range of 5.3 to 8.6, and the conductivity of the reactor water is It is kept below 10 it s / cm.
貴金属化合物注入装置 3 1が再循環系配管 4に接続される。 水素注入 装置 2 4が低圧給水加熱器 1 0と給水ポンプ 1 2との間で給水配管に接 続される。  The noble metal compound injector 31 is connected to the recirculation pipe 4. A hydrogen injection device 24 is connected to the water supply pipe between the low pressure water heater 10 and the water pump 12.
オフガス系配管 2 8が復水器 7に接続される。 蒸気抽出器 2 7及び再 結合器 3 0がオフガス系配管 2 8に設置される。 酸素注入装置 2 9力 、 復水器 7 と蒸気抽出器 2 7の間でオフガス系配管 2 8に接続されている。 以上の搆成を有する B W Rプラントにおける本実施例の応力腐食割れ を緩和する方法を、 第 7図を用いて説明する。 第 7図において、 横軸は B W Rプラントの運転時間を示し、 縦軸は炉水の温度、 並びに炉水中の 貴金属元素濃度を示す。 第 7図は、 1つの運転サイクル期間の原子炉停 止運転時における炉水の温度、 及び炉水中の貴金属元素濃度の変化を模 式的に示している。 ここで 1つの運転サイクルは、 原子炉の起動から、 燃料集合体の交換のために原子炉を停止するまでの期間であり、 原子炉 の起動運転, 原子炉の定格出力運転 (定格運転) , 原子炉の停止運転を 含んでいる。 炉心 1 3内に装荷されている燃料集合体の一部は、 1つの 運転サイクルが経過した後に、 炉心 1 3から取出されて新燃料集合体と 交換される。  The off-gas piping 28 is connected to the condenser 7. The steam extractor 27 and the recombiner 30 are installed on the off-gas piping 28. The oxygen injection device 29 is connected to the offgas piping 28 between the condenser 7 and the steam extractor 27. The method of alleviating the stress corrosion cracking of the present embodiment in the BWR plant having the above-mentioned structure is described with reference to FIG. In Fig. 7, the horizontal axis shows the operation time of the BWR plant, and the vertical axis shows the temperature of the reactor water and the concentration of noble metal elements in the reactor water. FIG. 7 schematically shows changes in the temperature of the reactor water and the concentration of noble metal elements in the reactor water during the shutdown operation of the reactor during one operation cycle. Here, one operation cycle is a period from the start of the reactor to the shutdown of the reactor for replacement of the fuel assembly. The start operation of the reactor, the rated output operation of the reactor (rated operation), Includes reactor shutdown operation. A portion of the fuel assemblies loaded in the core 13 are taken out of the core 13 and replaced with a new fuel assembly after one operation cycle.
本実施例では、 パラジウム化合物, 白金化合物及びロジウム化合物が、 原子炉出力を低下させる原子炉停止運転時で炉水温度が 1 5 0でになる 直前 (例えば、 1 7 0 に低下したとき) に、 貴金属化合物注入装置 3 1から再循環配管 4内を流れる炉水に注入され始める。 これらの化合 物の注入は、 炉水温度が 8 O :になったときに停止される。 炉水温度 1 7 0から 8 0での期間が、 貴金属注入期間 (第 7図) である。 この期 間に、 前述の 3種類の化合物が注入される。 それぞれの化合物は、 原子 炉圧力容器 3の下部プレナム 1 5内に導かれる。 貴金属化合物注入装置 3 1からのそれらの化合物の供給開始及び供給停止は、 貴金属化合物注 入装置 3 1に設けられたバルブ 4 2 , 4 6, 5 0の開閉によって行われ る。 In this embodiment, the palladium compound, the platinum compound, and the rhodium compound are used immediately before the reactor water temperature reaches 150 (for example, when the reactor water temperature drops to 170) during the reactor shutdown operation for reducing the reactor power. The injection from the noble metal compound injection device 31 into the reactor water flowing in the recirculation pipe 4 starts. The injection of these compounds is stopped when the reactor water temperature reaches 8 O :. The period when the reactor water temperature is between 170 and 80 is the precious metal injection period (Fig. 7). During this period, the three compounds mentioned above are injected. Each compound has an atom It is led into the lower plenum 15 of the furnace pressure vessel 3. The start and stop of the supply of those compounds from the noble metal compound injection device 31 are performed by opening and closing valves 42, 46, 50 provided in the noble metal compound injection device 31.
貴金属化合物注入装置 3 1は、 パラジウム化合物の溶液を充填した夕 ンク 40, 白金化合物の溶液を充填したタンク 44及びロジウム化合物 の溶液を充填したタンク 48を有している。 それぞれのタンクは、 別々 の配管 4 1, 4 5, 49によって、 再循環系配管 4に接続される配管 5 2に連絡される。 バルブ 42及びポンプ 43が配管 4 1に設けられ、 バルブ 4 6及びポンプ 4 7が配管 4 5に設けられ、 バルブ 5 0及びボン プ 5 1が配管 49に設けられる。 パラジウム化合物, 白金化合物及び口 ジゥム化合物の注入量は個別に調節できる。 すなわち、 制御器 5 3力 誘導結合プラズマ質量分析器 3 8 (または誘導結合プラズマ質量分析器 3 7) で測定された炉水中のパラジウム, 白金及びロジウムの各濃度の 測定値を用い、 各バルブ 42, 46, 5 0の開度を個別に制御す'る。 こ のような各化合物溶液の注入量の調節は、 各貴金属元素の構造部材表面 への付着速度が異なり、 しかも炉水中における各貴金属元素の濃度の変 化率が異なるため、 非常に好都合である。  The noble metal compound injection device 31 has a tank 40 filled with a solution of a palladium compound, a tank 44 filled with a solution of a platinum compound, and a tank 48 filled with a solution of a rhodium compound. Each tank is connected to a pipe 52 connected to the recirculation pipe 4 by separate pipes 41, 45, and 49. A valve 42 and a pump 43 are provided on a pipe 41, a valve 46 and a pump 47 are provided on a pipe 45, and a valve 50 and a pump 51 are provided on a pipe 49. The injection amount of palladium compound, platinum compound and mouth compound can be adjusted individually. In other words, using the measured values of the concentrations of palladium, platinum and rhodium in the reactor water measured by the controller 53 inductively coupled plasma mass spectrometer 38 (or inductively coupled plasma mass spectrometer 37), each valve 42 , 46, 50 are controlled individually. Such adjustment of the injection amount of each compound solution is very convenient because the deposition rate of each noble metal element on the surface of the structural member is different and the change rate of the concentration of each noble metal element in the reactor water is different. .
本実施例では、 パラジウム化合物として P d (N03)2、 白金化合物と して [P t (NH3)4] (N03)2、 及びロジウム化合物として R h (N〇3) 3が用いられた。 これらの化合物は炉水に溶解しており、 パラジウム, 白金及びロジウムは炉水中でイオンの状態で存在する。 炉水中のパラジ ゥム濃度が 5 0ppb 白金濃度が 1 0 0ppb、 及びロジウム濃度が 1 0 0 ppb になるように、 各々の化合物の炉水への注入量が該当するバルブの 開度を調節することにより制御される。 前述の貴金属注入期間のうち、 炉水温度 1 5 0〜 8 0 の期間において、 パラジウム, 白金濃度及び口 ジゥムの各濃度が上記の各設定濃度に制御される。 濃度パラジウム, 白 金及びロジウムの各濃度は、 後述の誘導結合プラズマ質量分析器 3 7及 び 3 8によって測定される。 これらの測定値に基づいて、 該当する上記 バルブが調節され、 炉水中のそれぞれの濃度が制御される。 炉水中のパ ラジウム, 白金及びロジウムの各イオンが、 炉水と接触する、 BWRプ ラント構造部材の表面に付着する。 その構造部材の表面には、 パラジゥ ム, 白金及びロジウムの付着によりこれらの金属が混合した皮膜が形成 される。 パラジウム化合物の添加により、 白金及びロジウムの構造部材 表面への付着量が増大する。 更には、 炉水の流速が小さい領域に存在す る構造部材の表面への白金及びロジウムの付着量が増大する。 80〜 1 5 0 °Cの炉水の温度範囲では、 白金及びロジウムの原子炉プラント構 造部材への付着量が多くなる。 In this embodiment, P d (N0 3) as a palladium compound 2, as a platinum compound [P t (NH 3) 4 ] (N0 3) 2, and R h (N_〇 3) 3 used as the rhodium compound Was done. These compounds are dissolved in the reactor water, and palladium, platinum and rhodium are present in the reactor water as ions. Adjust the valve opening corresponding to the amount of each compound injected into the reactor water so that the palladium concentration in the reactor water is 50 ppb, the platinum concentration is 100 ppb, and the rhodium concentration is 100 ppb. Is controlled by During the precious metal injection period described above, During the period of the reactor water temperature of 150 to 80, the concentrations of palladium and platinum and the concentration of orifice are controlled to the above-mentioned set concentrations. The concentrations of palladium, platinum and rhodium are measured by inductively coupled plasma mass spectrometers 37 and 38 described below. Based on these measurements, the corresponding valve is adjusted to control the respective concentration in the reactor water. Palladium, platinum and rhodium ions in the reactor water adhere to the surface of the BWR plant structural members that come into contact with the reactor water. On the surface of the structural member, a film in which these metals are mixed is formed by adhesion of palladium, platinum and rhodium. The addition of the palladium compound increases the amount of platinum and rhodium deposited on the surface of the structural member. Furthermore, the amount of platinum and rhodium adhering to the surface of the structural member existing in the region where the flow rate of the reactor water is low increases. In the reactor water temperature range of 80 to 150 ° C, the amount of platinum and rhodium adhering to reactor plant structural members increases.
P d (N03)2の替りに [P d (NH3)J (N03)2、 または Instead of P d (N0 3 ) 2 , [P d (NH 3 ) J (N0 3 ) 2 , or
P d (N02) 2 (NH3) 2を用いてもよい。 [P d (NH3) J (N03) 2の替 りに [P t (NH3)4] (OH)2を用いてもよい。 R h (N〇 3) 3の替りに [R h (NH3)5 (H2〇)] (N03)3を用ぃてもょぃ。 以上に示した 3種類 の貴金属元素の各化合物は、 各化合物が分解したときに、 アンモニゥム イオン及び硝酸イオンが生成される化合物を選択した。 これらの 2つの イオンは原子炉プラントの構造部材の腐食への影響が小さい。 また、 炉 水の p Hはアンモニアの緩衝効果によって大きく変化しにく くなる。 誘導結合プラズマ質量分析器 3 7及び 3 8がサンプリング配管 2 1及 び 2 2に設置される。 炉水中の各貴金属元素の濃度は、 定期的に (また は必要に応じて) サンプリング配管 2 1及び 2 2によって採取された炉 水を誘導結合プラズマ質量分析器 3 7及び 3 8によって測定することに よって確認できる。 誘導結合プラズマ質量分析器の替りに、 フレームレ ス原子吸光分析計を用いてもよい。 更には、 炉水中の各貴金属元素の濃 度は、 サンプリング配管 2 1及び 2 2に炉水導電率計 (または p H計) を設置し、 この炉水導電率計 (または P H計) によってモニタすること もできる。 すなわち、 炉水を採取していないときの炉水中の貴金属濃度 変化に伴う炉水導電率 (または p H ) の変化を、 炉水導電率計 (または p H計) によって監視する。 P d (N0 2) 2 ( NH 3) 2 may be used. [P d (NH 3) J (N0 3) to Ri replacement of 2 [P t (NH 3) 4] (OH) 2 may be used. R h (N_〇 3) 3 instead [R h (NH 3) 5 (H 2 〇)] (N0 3) 3 The use Ite also Yoi. For each compound of the three types of noble metal elements shown above, a compound was selected that produced ammonium ion and nitrate ion when each compound was decomposed. These two ions have a small effect on the corrosion of structural components of the reactor plant. Also, the pH of the reactor water is less likely to change significantly due to the buffering effect of ammonia. Inductively coupled plasma mass spectrometers 37 and 38 are installed in sampling pipes 21 and 22. The concentration of each noble metal element in the reactor water shall be measured periodically (or as necessary) by using the inductively coupled plasma mass spectrometer 37 and 38 on the reactor water collected by the sampling pipes 21 and 22. To Therefore, it can be confirmed. A flameless atomic absorption spectrometer may be used instead of the inductively coupled plasma mass spectrometer. Furthermore, the concentration of each precious metal element in the reactor water is monitored by installing a reactor water conductivity meter (or pH meter) on the sampling pipes 21 and 22 and using this reactor water conductivity meter (or PH meter). You can also do it. That is, the change in the reactor water conductivity (or pH) due to the change in precious metal concentration in the reactor water when the reactor water is not sampled is monitored by the reactor water conductivity meter (or pH meter).
炉水中の白金, ロジウム及びパラジウムの量は、 構造部材表面への付 着、 炉水浄化系の脱塩器 1 8による白金, ロジウム及びパラジウムの各 イオンの除去によって、 減少する。 貴金属注入期間における、 貴金属化 合物注入装置 3 1からの白金, ロジウム及びパラジウムの各化合物の注 入は、 脱塩器 1 8によるそれぞれの除去量をも補償するように行われる。 貴金属注入期間経過後においては、 脱塩器 1 8による除去作用によって 炉水中の白金, ロジウム及びパラジウムの各濃度は減少する。  The amounts of platinum, rhodium and palladium in the reactor water are reduced by the attachment to the surface of structural members and the removal of platinum, rhodium and palladium ions by the desalter 18 of the reactor water purification system. The injection of each of the platinum, rhodium and palladium compounds from the noble metal compound injector 31 during the noble metal injection period is performed so as to compensate for the respective removal amounts by the desalter 18. After the noble metal injection period, the concentration of platinum, rhodium and palladium in the reactor water decreases due to the removal action by the desalter 18.
各化合物の注入による、 原子炉プラント構造部材への白金, ロジウム 及びパラジウムの付着処理が終了した後、 B W Rプラン 卜の運転が停止 される。 その後の定期検査期間において、 燃料集合体の交換及びプラン トの定期検査が実施される。 定期検査終了後、 B W Rプラントが起動時 において、 第 7図に示されるように、 炉心からの制御棒の引き抜き操作 が開始される。 炉水温度が定格温度 (約 2 8 0 °C ) に達し原子炉圧力が 設定圧力 ( 7 0気圧) に達した後に原子炉出力が 1 0 0 %出力まで上昇 される。  After the treatment of depositing platinum, rhodium and palladium on the reactor plant structural members by the injection of each compound is completed, the operation of the BWR plant is stopped. During the subsequent periodic inspection period, replacement of the fuel assemblies and periodic inspection of the plant will be carried out. After the periodic inspection, when the BWR plant starts up, as shown in Fig. 7, the operation of pulling out the control rods from the reactor core is started. After the reactor water temperature reaches the rated temperature (about 280 ° C) and the reactor pressure reaches the set pressure (70 atm), the reactor power is increased to 100% output.
給水ポンプ 1 2が駆動してから、 水素注入装置 2 4のバルブ (図示せ ず) が開かれて給水配管 2内に注入される。 この水素を含んだ給水は、 原子炉圧力容器 3内に導かれる。 このとき、 原子炉圧力容器 3内の炉水 中の水素濃度は、 E C Pが十分低下する値にして水素注入量に応じた E C Pの応答を調べた上で決定する。 その水素濃度は、 好ましくは炉水 中において 2 0〜 6 0 ppb である。 ただし、 炉水中の水素濃度は原子炉 圧力容器内の位置によって、 また原子炉の運転状態によって変化するの で、 給水中の水素濃度が 0 . 1 ρρπ!〜 0 . 4 ppm の範囲になるように水素注 入量が制御される。 本実施例では、 炉水中の水素濃度は第 8図に示すよ うに 2 5 ppb に制御される。 なお、 S C C保護対象部位の E C P力 直 接測定できるか、 または計算により推定できる場合には、 その部位での E C Pが— 2 3 O m V vs S H E以下となるように水素注入装置 2 4から の水素注入量を制御してもよい。 After the water supply pump 12 is driven, the valve (not shown) of the hydrogen injection device 24 is opened and injected into the water supply pipe 2. The feedwater containing hydrogen is guided into the reactor pressure vessel 3. At this time, the reactor water in the reactor pressure vessel 3 The hydrogen concentration in the medium is determined by setting the ECP to a sufficiently low value and examining the ECP response according to the amount of hydrogen injected. Its hydrogen concentration is preferably 20 to 60 ppb in reactor water. However, since the hydrogen concentration in the reactor water changes depending on the position in the reactor pressure vessel and the operating conditions of the reactor, the hydrogen concentration in the feedwater is 0.1 ρρπ! The hydrogen injection amount is controlled to be in the range of ~ 0.4 ppm. In this embodiment, the hydrogen concentration in the reactor water is controlled to 25 ppb as shown in FIG. If the ECP force at the SCC protection target site can be measured directly or can be estimated by calculation, the ECP force at that site should be less than −23 OmV vs SHE and the hydrogen injection device 24 should be used. The hydrogen injection amount may be controlled.
原子炉プラン卜構造部材の表面に付着した白金, ロジウム及びパラジ ゥムの触媒作用によって、 注入された水素と炉水に含まれた酸素との反 応が促進されて水が生成される。 このように、 水素は原子炉プラント構 造部材近傍の炉水中の溶存酸素の低減に寄与する。 このため、 原子炉圧 力容器 3内の原子炉ブラン卜構造部材の E C Pが低減されて、 その構造 部材の S C Cが著しく抑制される。 特に、 炉水の流速が非常に小さい炉 水領域に接する原子炉プラント構造部材の表面にも、 白金, ロジウム及 びパラジウムが付着しているので、 その炉水領域に接するその構造部材 の E C Pが第 4図の鼴印で示すように低下し一 2 3 O m V vs S H E以下 になる。 その炉水領域に接するその構造部材の S C Cも著しく抑制され る。 白金, ロジウム及びパラジウムの触媒作用を利用するため、 溶存酸 素との反応に必要な水素量が著しく低減される。 従って、 溶存酸素量の 低減効果が大きい割には、 窒素 1 6の発生量が著しく少なくなる。 主蒸 気配管 5及びタービン 6等の蒸気系の表面線量率が増加しないので、 こ れらの保守点検が容易になりその保守点検に要する時間も短縮される。 本実施例においては、 炉水中のパラジウム濃度が、 炉水中の白金濃度 及びロジウム濃度が等しいので、 白金濃度及びロジウム濃度よりも低く なっている。 すなわち、 パラジウムのモル数が、 白金及びロジウムのモ ル数よりも小さくなつている。 このため、 白金及びロジウムの付着量が 増加する。 パラジウムのモル数が白金及びロジウムのモル数よりも大き くなると、 白金及びロジウムの構造部材への付着が阻害され、 それらの 付着量が減少する。 これは、 付着しやすいパラジウムの付着量が増加す るためである。 パラジウムは、 付着しやすいが、 逆に白金及びロジウム よりもイオンになりやすくそれだけ付着した構造部材表面から炉水中に 溶けやすい。 白金及びロジウムは、 長期間にわたって構造材表面に付着 している。 このため、 白金及びロジウムの付着量の増大は、 それだけ、 長期間に渡って、 構造部材表面近傍での炉水中の溶存酸素濃度を低減さ せ、 原子炉プラント構造部材の E C Pが低減される。 The reaction between the injected hydrogen and the oxygen contained in the reactor water is promoted by the catalytic action of platinum, rhodium and palladium attached to the surface of the reactor plant structural member, and water is generated. Thus, hydrogen contributes to the reduction of dissolved oxygen in the reactor water near the reactor plant structural members. For this reason, the ECP of the reactor brand structural member in the reactor pressure vessel 3 is reduced, and the SCC of the structural member is significantly suppressed. In particular, since platinum, rhodium, and palladium also adhere to the surface of the reactor plant structural members that are in contact with the reactor water region where the flow rate of the reactor water is extremely low, the ECP of the structural members that are in contact with the reactor water region is low. As shown by the symbol in Fig. 4, it decreases and falls below 23 OmV vs SHE. SCC of the structural member in contact with the reactor water area is also significantly suppressed. Utilizing the catalytic action of platinum, rhodium and palladium, the amount of hydrogen required for reaction with dissolved oxygen is significantly reduced. Therefore, although the effect of reducing the dissolved oxygen amount is large, the amount of generated nitrogen 16 is significantly reduced. Since the surface dose rate of the steam system such as the main steam pipe 5 and the turbine 6 does not increase, these maintenance inspections are facilitated and the time required for the maintenance inspections is shortened. In this embodiment, the palladium concentration in the reactor water is lower than the platinum concentration and the rhodium concentration because the platinum concentration and the rhodium concentration in the reactor water are equal. That is, the number of moles of palladium is smaller than the number of moles of platinum and rhodium. This increases the amount of platinum and rhodium deposited. When the number of moles of palladium is larger than the number of moles of platinum and rhodium, the attachment of platinum and rhodium to the structural member is hindered, and the amount of the attachment decreases. This is because the amount of palladium that is easily deposited increases. Palladium adheres easily, but on the other hand, it is more easily ionized than platinum and rhodium, and is easily dissolved in reactor water from the surface of the structural member to which it adheres. Platinum and rhodium have been attached to the surface of structural materials for a long time. For this reason, the increase in the amount of platinum and rhodium deposited reduces the concentration of dissolved oxygen in the reactor water near the surface of the structural member over a long period of time, thereby reducing the ECP of the structural member of the reactor plant.
(第 2実施例)  (Second embodiment)
本発明の他の実施例である原子炉プラント構造部材の応力腐食割れを 緩和する方法を、 第 9図を用いて説明する。 本実施例に用いられる BWR プラントの構成は、 第 5図を用いて述べた第 1実施例が適用される BWR プラントの構成と同じである。 本実施例は、 原子炉停止運転時において 炉水温度が 1 7 0でから 8 0 °Cに低下するまでの間に、 パラジウム化合 物 (P d (Ν〇3 ) 2 ) , 白金化合物 ([ P t (N H 3 ) J (N〇3) 2) 及びロジ ゥム化合物 (R h (N 0 3 ) 3 ) が炉水に注入される。 しかしながら、 本実 施例では、 パラジウムは 1 5 0 - 2 0 0 の温度範囲でも構造部材に付 着しやすいので、 第 9図に示すように、 パラジウム化合物が白金化合物 及びロジウム化合物よりも先に温度の高い時点で注入される。 本実施例 は、 炉水中のパラジウム濃度が 1 0 5 ppb、 白金及びロジウムの各濃度 が 1 2 5 ppb となるように制御される。 本実施例でも、 炉水中のパラジ ゥムのモル数は白金及びロジウムの各モル数よりも小さい。 本実施例は、 パラジウムが原子炉プラント構造部材に先に付着され、 その後に白金及 びロジウムがその構造部材に付着される。 A method of mitigating stress corrosion cracking of a reactor plant structural member according to another embodiment of the present invention will be described with reference to FIG. The configuration of the BWR plant used in this embodiment is the same as the configuration of the BWR plant to which the first embodiment described with reference to FIG. 5 is applied. This embodiment, until the reactor water temperature at the time of reactor shutdown operation drops to 8 0 ° C from 1 7 0, a palladium compound (P d (Nyu_〇 3) 2), platinum compounds ([ P t (NH 3) J (N_〇 3) 2) and Logistics © beam compound (R h (N 0 3) 3) is injected into the reactor water. However, in this embodiment, palladium easily adheres to structural members even in a temperature range of 150-200, so that as shown in FIG. 9, the palladium compound is earlier than the platinum compound and the rhodium compound. Inject at high temperature. In this example, the palladium concentration in the reactor water was 105 ppb, and the concentrations of platinum and rhodium were Is controlled to be 125 ppb. Also in this embodiment, the mole number of palladium in the reactor water is smaller than the mole numbers of platinum and rhodium. In this embodiment, palladium is first deposited on the reactor plant structural member, and then platinum and rhodium are deposited on the structural member.
本実施例は、 第 1実施例で生じる効果と同じ効果を得ることができる。 本実施例は、 パラジウムが先に構造部材に付着されるため、 パラジウム を炉水の導電率及び p Hに影響のない範囲で濃度を高めて注入できる。 また、 白金及びロジウムもパラジウムが共存しない分だけ濃度を高めて 注入することができる。 このため、 原子炉プラント構造部材への白金及 びロジウムの付着量を第 1実施例よりも増大させることができる。  This embodiment can provide the same effect as the first embodiment. In this embodiment, since palladium is first attached to the structural member, palladium can be injected at a high concentration within a range that does not affect the conductivity and pH of the reactor water. In addition, platinum and rhodium can be injected at a higher concentration as long as palladium does not coexist. For this reason, the amount of platinum and rhodium adhering to the structural members of the reactor plant can be increased as compared with the first embodiment.
(第 3実施例)  (Third embodiment)
本発明の他の実施例である原子炉プラント構造部材の応力腐食割れを 緩和する方法を、 以下に説明する。 本実施例が適用される B W Rプラン 卜の構成は、 第 1 0図に示されるように、 第 5図の構成にアルカリ注入 装置 3 2を付加した構成を有する。 アルカリ注入装置 3 2は、 低圧給水 加熱器 1 0の下流側で給水配管 2に接続される。  A method of alleviating stress corrosion cracking of a reactor plant structural member according to another embodiment of the present invention will be described below. The configuration of a BWR plant to which this embodiment is applied has a configuration in which an alkali injection device 32 is added to the configuration of FIG. 5, as shown in FIG. The alkali injection device 32 is connected to the water supply pipe 2 on the downstream side of the low-pressure water heater 10.
本実施例も、 第 1実施例と同様に、 白金化合物, ロジウム化合物及び パラジウム化合物が注入され、 白金, ロジウム及びパラジウムが原子炉 ブラント構造部材表面に付着される。 本実施例応力腐食割れを緩和する 方法は、 白金, ロジウム及びパラジウムの付着作業が終わった次の運転 サイクルにおいて、 アルカリ注入装置 3 2のバルブを開いて給水中にァ ルカリ溶液を注入する。 アルカリ溶液の注入は、 第 1 1図に示すように、 B W Rプラントが起動時の制御棒引き抜き開始から原子炉の運転停止ま での間の期間において行われる。 アル力リを含む給水を原子炉圧力容器 3内に供給することによって、 炉水の p Hは運転サイクルを通して弱ァ ルカリである約 8に維持される。 炉水の p Hは、 水質測定装置 2 0 a又 は 2 0 bを用いて測定する。 測定された p H値に基づいてアルカリ注入 装置 3 2のバルブの開度が調節されて炉水の p Hが制御される。 アル力 リ溶液としては、 N a〇H溶液が用いられる。 しかし、 アルカリ溶液と して、 L i 〇H溶液, アンモニア水、 または炭酸水素ナトリウム及び炭 酸ナトリウムを含む溶液を用いてもよい。 In this embodiment, as in the first embodiment, a platinum compound, a rhodium compound and a palladium compound are injected, and platinum, rhodium and palladium are attached to the surface of the reactor plant structural member. In this embodiment, the method of alleviating stress corrosion cracking is to open the valve of the alkali injection device 32 and inject the alkali solution into the feed water in the next operation cycle after the work of depositing platinum, rhodium and palladium has been completed. As shown in Fig. 11, the injection of the alkaline solution is performed during the period from the start of control rod withdrawal when the BWR plant starts up to the shutdown of the reactor. By supplying the feedwater containing the reactor water into the reactor pressure vessel 3, the pH of the reactor water is weakened throughout the operation cycle. It is maintained at about 8 which is Lucari. The pH of the reactor water is measured using a water quality measuring device 20a or 20b. Based on the measured pH value, the opening of the valve of the alkali injection device 32 is adjusted to control the pH of the reactor water. An Na〇H solution is used as the alkaline solution. However, Li ア ル カ リ H solution, aqueous ammonia, or a solution containing sodium hydrogen carbonate and sodium carbonate may be used as the alkaline solution.
本実施例は、 第 1実施例で生じる効果を得ることができる。 本実施例 は、 炉水を弱アルカリに制御しているので、 原子炉プラント構造部材の き裂先端部の P Hをアルカリ側にシフトできる。 このため、 その構造部 材のき裂の進展を効果的に抑制できる。 炉水の弱アル力リ制御により、 水素注入量を低減できるため、 炉水中の水素濃度を約 1 7 ppb まで減少 できる。 このため、 窒素 1 6の発生量が第 1実施例よりも減少する。 運転サイクルにおいて、 炉水の室温 p Hは 7〜 8 . 5の範囲内に制御 されることが望ましい。 また、 運転サイクルにおける炉水の水素濃度は 1 5〜 6 O ppb の範囲内に制御することが望ましい。 室温 p H及び水素 濃度が上記の範囲内に制御されることにより、 水素注入効果と弱アル力 リ水質の効果とが相乗して、 より少ない水素注入量で構造部材の E C P がー 5 0 0 m V vs S H E程度に低下する。  In the present embodiment, the effects produced in the first embodiment can be obtained. In this embodiment, since the reactor water is controlled to be weakly alkaline, the pH at the crack tip of the reactor plant structural member can be shifted to the alkaline side. For this reason, the propagation of cracks in the structural member can be effectively suppressed. Since the amount of hydrogen injected can be reduced by weak control of the reactor water, the hydrogen concentration in the reactor water can be reduced to about 17 ppb. For this reason, the amount of generated nitrogen 16 is smaller than in the first embodiment. In the operation cycle, the room temperature pH of the reactor water is desirably controlled within the range of 7 to 8.5. It is also desirable to control the hydrogen concentration of the reactor water in the operation cycle within the range of 15 to 6 O ppb. By controlling the room temperature pH and the hydrogen concentration within the above ranges, the effect of hydrogen injection and the effect of weak water force are synergistically achieved, and the ECP of the structural member can be reduced to −500 with a smaller amount of hydrogen injection. m V vs SHE.
本実施例の炉水の p H調整は、 アル力リ注入装置 3 2を用いないで、 復水脱塩器 9又は脱塩器 1 8に充填された H型のカチオン樹脂の一部を、 N a型などのアル力リ型のカチオン樹脂に変えることによつても可能で ある。 N a型カチオン樹脂を用いることによって、 N a型カチオン樹脂 から流出する N aイオンが炉水に注入されるので、 炉水の p Hを弱アル カリに制御できる。 アルカリ型のカチオン樹脂としては、 N a型以外に、 K型, L i型または N H 型を用いてもよい。 アルカリ型のカチオン樹 脂を用いることによって、 アルカリ注入装置 3 2が不要となり、 B W R プラントの構成が単純化される。 The pH adjustment of the reactor water of the present embodiment is performed by using a part of the H-type cation resin filled in the condensate desalter 9 or the desalter 18 without using the power injection device 32. It is also possible to change to an alkaline type cationic resin such as Na type. By using the Na-type cationic resin, Na ions flowing out of the Na-type cationic resin are injected into the reactor water, so that the pH of the reactor water can be controlled to a weak alkali. As the alkali type cationic resin, K type, Li type or NH type may be used in addition to Na type. Alkali-type cation tree The use of the fat eliminates the need for the alkali injection device 32, and simplifies the configuration of the BWR plant.
第 1 , 第 2及び第 3実施例では、 炉水内の白金及びロジウムのモル数 が同じになるように白金化合物及びロジウム化合物が注入されている。 しかしながら、 炉水中の白金及びロジウムのうちの一方のモル数を他方 のモル数よりも小さくなるように白金化合物及びロジウム化合物を注入 してもよい。 この場合、 パラジウム化合物は、 炉水中のパラジウムのモ ル数が白金及び口ジゥムのうちの小さいモル数よりも更に小さくなるよ うに注入される。 例えば、 第 5図の構成において、 炉水中の白金濃度が 5 0 ppb、 ロジウム濃度が 1 0 0 ppb、 及びパラジウム濃度が 1 0 ppb に なるように、 白金化合物, ロジウム化合物及びパラジウム化合物が貴金 属注入装置 3 1から炉水中に注入される。 パラジウムのモル数が、 白金 及びロジウムのうちでモル数の小さな白金のモル数よりも更に小さいた め、 パラジウムは原子炉プラント構造部材の表面への白金及びロジウム の付着を促進させるように機能する。 この機能は、 白金濃度 5 0 ppb 及 びロジウム濃度 1 0 O ppb の条件下で、 パラジウム濃度が 5 0 ppb 未満 で発揮される。 パラジウムのモル数がモル数の小さな白金のモル数より も大きくなつた場合は、 パラジウムは白金及びロジウムの付着を抑制す るように機能する。  In the first, second and third embodiments, the platinum compound and the rhodium compound are injected so that the moles of platinum and rhodium in the reactor water are the same. However, the platinum compound and the rhodium compound may be injected such that one mole number of platinum and rhodium in the reactor water is smaller than the other mole number. In this case, the palladium compound is injected so that the number of moles of palladium in the reactor water is even smaller than the smaller number of moles of platinum and the orifice. For example, in the configuration of FIG. 5, the platinum compound, the rhodium compound, and the palladium compound are noble gold so that the platinum concentration in the reactor water is 50 ppb, the rhodium concentration is 100 ppb, and the palladium concentration is 10 ppb. It is injected into the reactor water from the metal injection device 31. Palladium functions to promote the deposition of platinum and rhodium on the surfaces of reactor plant components because the moles of palladium are even smaller than the smaller moles of platinum, platinum and rhodium. . This function is exhibited at a palladium concentration of less than 50 ppb under the conditions of a platinum concentration of 50 ppb and a rhodium concentration of 10 O ppb. When the number of moles of palladium is greater than the number of moles of platinum, which is a small number of moles, palladium functions to suppress the adhesion of platinum and rhodium.
逆に、 炉水中のロジウムのモル数が白金のモル数よりも小さい場合に は、 炉水中のパラジウムのモル数がロジウムのモル数よりも小さくなる ように、 パラジウム化合物が炉水中に注入される。 これは、 上記したパ ラジウムによる白金及びロジウムの付着促進機能を発揮させるためであ る。  Conversely, when the number of moles of rhodium in the reactor water is smaller than the number of moles of platinum, the palladium compound is injected into the reactor water so that the number of moles of palladium in the reactor water becomes smaller than the number of moles of rhodium. . This is for exhibiting the function of accelerating the adhesion of platinum and rhodium by palladium.
白金化合物及びロジウム化合物のいずれか一方とパラジウム化合物を 炉水中に注入することも考えられる。 この場合には、 パラジウムのモル 数が白金 (またはロジウム) のモル数よりも小さくなるように、 パラジ ゥム化合物を炉水中に注入する。 これによつて、 白金 (またはロジゥ ム) の付着が促進される。 白金化合物及びパラジウム化合物 (または口 ジゥム化合物及びパラジウム化合物) の 2種類の化合物を注入する場合 も、 白金化合物, ロジウム化合物及びパラジウム化合物の 3種類の化合 物を注入する場合に生じる効果が得られる。 Palladium compound with either platinum compound or rhodium compound Injection into the reactor water is also conceivable. In this case, the palladium compound is injected into the reactor water such that the number of moles of palladium is smaller than the number of moles of platinum (or rhodium). This promotes the adhesion of platinum (or rhodium). Injecting two types of compounds, a platinum compound and a palladium compound (or an orifice compound and a palladium compound), also has an effect obtained when three types of compounds of a platinum compound, a rhodium compound and a palladium compound are injected.
以上述べた各実施例は貴金属化合物注入装置 3 1を再循環系配管 4に 接続したが、 貴金属化合物注入装置 3 1を炉水浄化系配管 1 7 (好まし くはポンプ 1 7 cよりも下流側で) 、 または復水脱塩器 9よりも下流側 の給水配管 2に接続してもよい。 また、 原子炉停止時に炉水が供給され る残留熱除去系配管 (図示せず) に貴金属化合物注入装置 3 1を接続し てもよい。 残留熱除去系配管は再循環系配管 4と原子炉圧力容器 3を接 "る。  In each of the embodiments described above, the noble metal compound injection device 31 was connected to the recirculation system piping 4, but the noble metal compound injection device 31 was connected to the reactor water purification system piping 17 (preferably downstream from the pump 17c). Or on the downstream side of the condensate desalter 9. Further, a noble metal compound injection device 31 may be connected to a residual heat removal system pipe (not shown) to which reactor water is supplied when the reactor is stopped. The residual heat removal piping connects the recirculation piping 4 to the reactor pressure vessel 3.
白金及びロジウムの原子炉プラント構造部材表面への付着は、 炉水温 度が 8 0〜 1 5 0での範囲で行われる。 炉水温度がその条件を満足する のであれば、 原子炉停止運転時でなく、 原子炉の停止中 (例えば、 定期 検査期間中) または原子炉起動時にパラジウム, 白金及びロジウムの各 化合物の注入を行ってもよい。 また、 前述の各実施例は、 炉水温度を 1 5 0でから 8 0 に下げながら上記各化合物の注入を行っている。 し かしながら、 その温度範囲内であればある炉水温度 (例えば、 150t: ) に保って上記各化合物の注入を行ってもよい。 産業上の利用可能性  Platinum and rhodium are deposited on the surface of reactor plant structural members when the reactor water temperature is in the range of 80 to 150. If the reactor water temperature satisfies the conditions, palladium, platinum, and rhodium compounds should be injected during reactor shutdown (for example, during periodic inspections) or when the reactor starts up, not during reactor shutdown operation. May go. In each of the above-described embodiments, the above-mentioned compounds are injected while the reactor water temperature is lowered from 150 to 80. However, the above compounds may be injected at a certain reactor water temperature (for example, 150 t :) within the temperature range. Industrial applicability
本発明は、 B W Rプラントだけでなく、 加圧水型原子炉プラントにも 適用可能である。 The present invention is applicable not only to BWR plants but also to pressurized water reactor plants. Applicable.

Claims

請 求 の 範 囲 The scope of the claims
1 .白金及びロジウムの貴金属元素のうちから選ばれた少なく とも 1つ の貴金属元素の化合物、 及びパラジウムの化合物を、 原子炉の炉水に注 入する工程を含んでおり、 前記炉水中のパラジウムのモル数が前記炉水 中の前記貴金属元素のモル数よりも小さくなるように前記貴金属化合物 及びパラジウム化合物が前記炉水に注入されることを特徴とする原子炉 ブラント構造部材の応力腐食割れを緩和する方法。  1. a step of injecting a compound of at least one noble metal element selected from the noble metal elements of platinum and rhodium, and a compound of palladium into reactor water of a reactor, wherein palladium in the reactor water is included. Wherein the noble metal compound and the palladium compound are injected into the reactor water such that the number of moles of the noble metal element in the reactor water is smaller than the number of moles of the noble metal element in the reactor water. How to ease.
2 .前記炉水に注入される前記選ばれた貴金属元素化合物が白金化合物 及びロジウム化合物であり、 前記炉水中のパラジウムのモル数が、 前記 炉水中の白金及びロジウムのモル数のうちの小さいモル数よりも更に小 さくなるように、 前記パラジウム化合物が注入される請求項 1の原子炉 プラント構造部材の応力腐食割れを緩和する方法。  2. The selected noble metal element compounds to be injected into the reactor water are a platinum compound and a rhodium compound, and the mole number of palladium in the reactor water is a smaller mole of the platinum and rhodium moles in the reactor water. 2. The method for mitigating stress corrosion cracking of a reactor plant structural member according to claim 1, wherein the palladium compound is injected so as to be smaller than the number.
3 .白金化合物及びロジウム化合物は、 8 0〜 1 5 0 t:の炉水に注入さ れる。 請求項 2の原子炉プラント構造部材の応力腐食割れを緩和する方 法。  3. The platinum compound and rhodium compound are injected into the reactor water at 80 to 150 t :. A method for mitigating stress corrosion cracking of a structural member of a nuclear reactor plant according to claim 2.
4 .前記選ばれた貴金属元素化合物を注入する前に、 前記パラジウム化 合物の注入を行う請求項 1の原子炉プラント構造部材の応力腐食割れを 緩和する方法。  4. The method of claim 1, wherein the palladium compound is injected before the selected noble metal element compound is injected.
5 .前記選ばれた貴金属元素化合物及びパラジウム化合物は硝酸イオン を生成する化合物である請求項 1の原子炉プラント構造部材の応力腐食 割れを緩和する方法。  5. The method of claim 1, wherein the selected noble metal element compound and palladium compound are compounds that generate nitrate ions.
6 .前記選ばれた貴金属元素化合物及びパラジウム化合物は硝酸ィオン 及びアンモニアイオンを生成する化合物である請求項 5の原子炉プラン ト構造部材の応力腐食割れを緩和する方法。  6. The method for mitigating stress corrosion cracking of a reactor plant structural member according to claim 5, wherein the selected noble metal element compound and palladium compound are compounds that generate ion nitrate and ammonia ions.
7 .前記選ばれた貴金属元素化合物及びパラジウム化合物の注入後の新 たな運転サイクルにおける原子炉の運転期間において、 前記炉水に水素 を供給する請求項 1の原子炉プラント構造部材の応力腐食割れを緩和す る方法。 7. New after injection of the selected noble metal element compound and palladium compound 2. The method for mitigating stress corrosion cracking of a reactor plant structural member according to claim 1, wherein hydrogen is supplied to the reactor water during the operation period of the reactor in a new operation cycle.
8 .前記運転サイクルにおいて、 原子炉に供給される給水の水素濃度を、 0 . 1 〜 0 . 4 ppm の範囲内で制御する請求項 7の原子炉プラント構造部 材の応力腐食割れを緩和する方法。  8. In the operation cycle, the hydrogen concentration of the feedwater supplied to the reactor is controlled within a range of 0.1 to 0.4 ppm, and the stress corrosion cracking of the structural members of the reactor plant according to claim 7 is reduced. Method.
9 .前記炉水に接する原子炉プラント構造部材の腐食電位が一 2 3 0 m V vs S H E以下となるように前記炉水に水素を添加する請求項 7の原 子炉プラント構造部材の応力腐食割れを緩和する方法。  9.Hydrogen is added to the reactor water so that the corrosion potential of the reactor plant structural members in contact with the reactor water is not more than 230 mV vs SHE or less. How to mitigate cracks.
1 0 .白金及びロジウムの貴金属元素のうちから選ばれた少なく とも 1 つの貴金属元素の化合物、 及びパラジウムの化合物を、 原子炉の炉水に 注入する工程を含んでおり、 前記炉水に接する原子炉プラント構造部材 の表面に付着したパラジウムの少なくとも一部と置き換わって前記選ば れた貴金属元素が前記表面に付着することを特徴とする原子炉プラント 構造部材の応力腐食割れを緩和する方法。  10. A step of injecting at least one compound of a noble metal element selected from platinum and rhodium noble metal elements and a compound of palladium into reactor water of a reactor, wherein the atom in contact with the reactor water is included. A method for alleviating stress corrosion cracking of a reactor plant structural member, wherein the selected noble metal element is attached to the surface in place of at least a part of palladium attached to the surface of the reactor plant structural member.
1 1 .白金及びロジウムの貴金属元素のうちから選ばれた少なく とも 1 つの貴金属元素の化合物、 及びパラジウムの化合物を、 原子炉の炉水に 注入する工程を含んでおり、 前記炉水中のパラジウムのモル数が前記炉 水中の前記貴金属元素のモル数よりも小さくなるように前記貴金属化合 物及びパラジウム化合物が前記炉水に注入され、 前記選ばれた貴金属元 素化合物及びパラジウム化合物の注入後の新たな運転サイクルにおける 原子炉の運転期間において前記炉水に水素を供給し、 その運転期間にお いて前記炉水にアル力リ物質を供給することを特徴とする原子炉プラン ト構造部材の応力腐食割れを緩和する方法。  11. A step of injecting at least one compound of a noble metal element selected from platinum and rhodium noble metal elements, and a compound of palladium into reactor water of a reactor, The noble metal compound and the palladium compound are injected into the reactor water such that the number of moles is smaller than the number of moles of the noble metal element in the reactor water, and the selected noble metal element compound and the new palladium compound after the injection are mixed. Stress corrosion of a reactor plant structural member characterized by supplying hydrogen to the reactor water during the operation period of the reactor in a simple operation cycle, and supplying the reactor water to the reactor water during the operation period. How to mitigate cracks.
1 2 .前記運転サイクルにおいて、 炉水の室温 p Hを 7〜 8 . 5の範囲内 に制御すると共に、 前記炉水の水素濃度を 1 5〜 6 O ppb の範囲内に制 御する請求項 1 1の原子炉ブラント構造部材の応力腐食割れを緩和する 方法。 12. In the above operation cycle, the room temperature pH of the reactor water is in the range of 7 to 8.5. The method for mitigating stress corrosion cracking of a reactor blunt structural member according to claim 11, wherein the hydrogen concentration in the reactor water is controlled within a range of 15 to 6 O ppb.
1 3,前記アル力リ物質の供給は炉水を浄化する脱塩器内に充填された イオン交換樹脂より行う請求項 1 1の原子炉プラント構造部材の応力腐 食割れを緩和する方法。  13. The method of alleviating stress corrosion cracking of a structural member of a nuclear reactor plant according to claim 11, wherein the supply of the alkaline substance is performed by using an ion exchange resin filled in a desalter for purifying reactor water.
1 4 .前記イオン交換樹脂はアル力リ基型のカチオン樹脂である請求項 1 3の原子炉ブラント構造部材の応力腐食割れを緩和する方法。  14. The method for alleviating stress corrosion cracking of a reactor blunt structural member according to claim 13, wherein the ion exchange resin is an Al-based cation resin.
PCT/JP2000/000563 2000-02-02 2000-02-02 Method for mitigating stress corrosion cracking of structural member of atomic reactor plant WO2001057879A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2000/000563 WO2001057879A1 (en) 2000-02-02 2000-02-02 Method for mitigating stress corrosion cracking of structural member of atomic reactor plant
JP2001557046A JP3941503B2 (en) 2000-02-02 2000-02-02 Method for mitigating stress corrosion cracking of nuclear plant structural components
TW089117409A TW498348B (en) 2000-02-02 2000-08-28 Method for relaxing stress corrosion cracking of structural member of nuclear reactor plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/000563 WO2001057879A1 (en) 2000-02-02 2000-02-02 Method for mitigating stress corrosion cracking of structural member of atomic reactor plant

Publications (1)

Publication Number Publication Date
WO2001057879A1 true WO2001057879A1 (en) 2001-08-09

Family

ID=11735647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000563 WO2001057879A1 (en) 2000-02-02 2000-02-02 Method for mitigating stress corrosion cracking of structural member of atomic reactor plant

Country Status (3)

Country Link
JP (1) JP3941503B2 (en)
TW (1) TW498348B (en)
WO (1) WO2001057879A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283181A (en) * 2004-03-29 2005-10-13 Hitachi Ltd Operation method of residual heat removal system
JP2006250828A (en) * 2005-03-11 2006-09-21 Chugoku Electric Power Co Inc:The Injection method for effective hydrogen in nuclear power plant
JP2007232432A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Chimney of natural circulation type boiling water reactor
JP2017181351A (en) * 2016-03-31 2017-10-05 日立Geニュークリア・エナジー株式会社 Nuclear power plant and noble metal injection method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209992A (en) * 1992-01-31 1993-08-20 Hitachi Ltd Method for restraining shift of radioactive nitrogen to gaseous phase in primary cooling water system of direct cycle type reactor
US5448605A (en) * 1993-10-29 1995-09-05 General Electric Company Palladium acetylacetonate solution and related method of manufacture
US5581588A (en) * 1995-06-23 1996-12-03 General Electric Company Insulated protective coating doped with a noble metal for mitigation of stress corrosion cracking
JPH10160892A (en) * 1996-11-27 1998-06-19 Hitachi Ltd Method and device for treatment of carbon steel part in reactor power plant
JPH10186085A (en) * 1996-12-20 1998-07-14 Toshiba Corp Device and method for sticking noble metal to nuclear reactor structural material
JPH10319181A (en) * 1998-04-06 1998-12-04 Hitachi Ltd Atomic power plant and its water quality control method and device
JPH1184075A (en) * 1997-09-12 1999-03-26 Hitachi Ltd Anticorrosion method for atomic reactor
JPH11295480A (en) * 1998-04-13 1999-10-29 Hitachi Ltd Method for forming catalyst surface

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209992A (en) * 1992-01-31 1993-08-20 Hitachi Ltd Method for restraining shift of radioactive nitrogen to gaseous phase in primary cooling water system of direct cycle type reactor
US5448605A (en) * 1993-10-29 1995-09-05 General Electric Company Palladium acetylacetonate solution and related method of manufacture
US5581588A (en) * 1995-06-23 1996-12-03 General Electric Company Insulated protective coating doped with a noble metal for mitigation of stress corrosion cracking
JPH10160892A (en) * 1996-11-27 1998-06-19 Hitachi Ltd Method and device for treatment of carbon steel part in reactor power plant
JPH10186085A (en) * 1996-12-20 1998-07-14 Toshiba Corp Device and method for sticking noble metal to nuclear reactor structural material
JPH1184075A (en) * 1997-09-12 1999-03-26 Hitachi Ltd Anticorrosion method for atomic reactor
JPH10319181A (en) * 1998-04-06 1998-12-04 Hitachi Ltd Atomic power plant and its water quality control method and device
JPH11295480A (en) * 1998-04-13 1999-10-29 Hitachi Ltd Method for forming catalyst surface

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HETTIARACHCHI S. ET AL.: "Noble metal technique cuts corrosion and radiation", POWER ENG.,, vol. 102, no. 11, November 1998 (1998-11-01), pages 84, 86, 88, 90, 92, XP002922589 *
KIM Y.J.: "Effect of Noble Metal Addition on Electrochemical Polarization Behavior of Hydrogen Oxidation and Oxygen Reduction on Type 304 Stainless Steel in High-Temperature Water", CORROSION,, vol. 55, no. 5, May 1999 (1999-05-01), pages 456 - 451, XP002922588 *
LUTZ D.R. ET AL.: "Influence of noble metal additions to water on corrosion of Zircaloy", PROC. 8TH. INT. SYMP. ENVIRON. DEGRAD. MATER. NUCL. POWER. SYST. WATER. REACT.,, vol. 2, 1997, pages 997 - 1004, XP002922587 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283181A (en) * 2004-03-29 2005-10-13 Hitachi Ltd Operation method of residual heat removal system
JP2006250828A (en) * 2005-03-11 2006-09-21 Chugoku Electric Power Co Inc:The Injection method for effective hydrogen in nuclear power plant
JP4518984B2 (en) * 2005-03-11 2010-08-04 中国電力株式会社 Hydrogen injection method for nuclear power plant
JP2007232432A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Chimney of natural circulation type boiling water reactor
JP2017181351A (en) * 2016-03-31 2017-10-05 日立Geニュークリア・エナジー株式会社 Nuclear power plant and noble metal injection method therefor

Also Published As

Publication number Publication date
JP3941503B2 (en) 2007-07-04
TW498348B (en) 2002-08-11

Similar Documents

Publication Publication Date Title
JP2001124891A (en) Surface treatment method for nuclear power plant structure, and nuclear power plant
JPH0915382A (en) Radiation-induced palladium doping of metal for preventing stress corrosion cracking
JP3923705B2 (en) Operation method of nuclear power plant, nuclear power plant, and water quality control method of nuclear power plant
JP2006162522A (en) Nuclear power plant, anticorrosion coating film forming method therefor, and nuclear reactor operation method
US20020080906A1 (en) Noble metal catalysis for mitigation of corrosion, erosion and stress corrosion cracking in pressurized water reactor and related high temperature water environments
JP5634007B2 (en) Reactor operating method and method for reducing radiation level of reactor after shutdown
WO2001057879A1 (en) Method for mitigating stress corrosion cracking of structural member of atomic reactor plant
JP4528499B2 (en) Method for reducing corrosion of reactor structural materials
JP2002131473A (en) Water-quality control method
JPH08220293A (en) Operation method for nuclear power plant
WO2019176376A1 (en) Method of attaching noble metal to carbon steel member of nuclear power plant and method of suppressing attachment of radionuclides to carbon steel members of nuclear power plant
JP6751044B2 (en) Method for depositing precious metal on carbon steel member of nuclear power plant, and method for suppressing deposition of radionuclide on carbon steel member of nuclear power plant
JP4555625B2 (en) Operation method of nuclear power plant
JP2003035798A (en) Method for preventing corrosion of reactor
JP3289679B2 (en) Water quality control method for boiling water nuclear power plant
JP2017138139A (en) Chemical decontamination method, chemical decontamination device, and nuclear power plant using them
JP2003035797A (en) Method for relaxing stress corrosion cracking of reactor structural member
JP2000329895A (en) Operation method of nuclear reactor plant and waste liquid processing method of nuclear reactor plant
JP2003222697A (en) Method for evaluating quantity of accreting noble metal and method for accreting noble metal
JP2015161664A (en) Surface treatment method for structural member of nuclear power plant, structure member of nuclear power plant, nuclear power plant, anti-corrosive material injection device for nuclear power plant, and surface treatment device for structural member of nuclear power plant
JP7104616B2 (en) Method of suppressing adhesion of radionuclides to carbon steel components of nuclear power plants
Hettiarachchi NobleChem TM for commercial power plant application
WO2019102768A1 (en) Method for adhering noble metal to carbon steel member of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel member of nuclear power plant
Hettiarachchi Worldwide BWR chemistry performance with noble metal chemical addition
JP4612590B2 (en) Method for suppressing radioactive release from the surface of a fuel cladding tube

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2000902052

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09623047

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 557046

Kind code of ref document: A

Format of ref document f/p: F

WWW Wipo information: withdrawn in national office

Ref document number: 2000902052

Country of ref document: EP

122 Ep: pct application non-entry in european phase