JP2002131473A - Water-quality control method - Google Patents

Water-quality control method

Info

Publication number
JP2002131473A
JP2002131473A JP2000332121A JP2000332121A JP2002131473A JP 2002131473 A JP2002131473 A JP 2002131473A JP 2000332121 A JP2000332121 A JP 2000332121A JP 2000332121 A JP2000332121 A JP 2000332121A JP 2002131473 A JP2002131473 A JP 2002131473A
Authority
JP
Japan
Prior art keywords
reactor
water
adhesion
metal
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000332121A
Other languages
Japanese (ja)
Other versions
JP3587161B2 (en
Inventor
Kazunari Ishida
一成 石田
Makoto Nagase
誠 長瀬
Hideyuki Hosokawa
秀幸 細川
Naoto Uetake
直人 植竹
Kazumi Anazawa
和美 穴沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000332121A priority Critical patent/JP3587161B2/en
Publication of JP2002131473A publication Critical patent/JP2002131473A/en
Application granted granted Critical
Publication of JP3587161B2 publication Critical patent/JP3587161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F15/00Other methods of preventing corrosion or incrustation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water-quality control method which restrains a radioactive substance from being stuck to a reactor core internal structure and to the surface of a pipe. SOLUTION: The radioactive substance which is stuck to at least a face coming into contact with reactor water in the reactor core internal structure or a face coming into contact with reactor water in the pipe is removed while a nuclear heating operation is stopped. Then, at least a metal organic compound complex or a metal oxide organic compound complex which has at least the adhesion suppression effect of the radioactive substance to the reactor core internal structure or the corrosion reduction effect of the reactor core internal structure is added to nuclear reactor water in a nuclear power plant before a rated output operation is performed after the radioactive substance has been removed. After that, the organic compound complex is decomposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水質制御方法に係
わり、特に炉水に接している面の放射性物質の除去を行
った原子炉炉内構造物及び配管の少なくとも一方への放
射性物質の付着を低減させる水質制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling water quality, and more particularly, to the attachment of radioactive material to at least one of a reactor internal structure and piping in which radioactive material has been removed from a surface in contact with reactor water. The present invention relates to a water quality control method for reducing water quality.

【0002】[0002]

【従来の技術】水冷却型原子力発電プラント(以下、L
WRプラントと呼ぶ。)において、保守,点検を行う際
の作業員の放射線被曝低減は安全上重要な課題である。
主な放射線源は、炉内構造物や配管の表面の酸化皮膜の
成長時に酸化皮膜中に原子炉水中から取り込まれたCo
−60,Co−58,Mn−54などの放射性物質であ
る(これら原子炉水中のCo−60,Co−58,Mn
−54は炉内,炉外構造物の腐食溶出により原子炉水中
又は給水中に持ち込まれたCo,Ni,Feといった金
属イオンが原子燃料の中性子照射に放射化することで生
成される)。そこで、炉内構造物や配管表面の酸化皮膜
を化学的あるいは物理的に除去すること(以下、除染と
言う)により、炉内構造物や配管の表面の酸化皮膜中に
取り込まれた放射性物質を除去し、作業員の放射線被曝
を抑制することが行われている。
2. Description of the Related Art A water-cooled nuclear power plant (hereinafter referred to as L
It is called a WR plant. In), reducing radiation exposure of workers during maintenance and inspection is an important issue for safety.
The main radiation source is Co that is taken in from the reactor water into the oxide film during the growth of the oxide film on the reactor internals and piping surfaces.
-60, Co-58, Mn-54, etc. (Co-60, Co-58, Mn in these reactor waters).
The -54 is produced by neutron irradiation of nuclear fuel such as Co, Ni, and Fe brought into the reactor water or feedwater due to corrosion and elution of structures inside and outside the reactor.) Therefore, radioactive substances taken into the oxide film on the surfaces of furnace structures and pipes by chemically or physically removing the oxide film on the surfaces of the furnace structures and pipes (hereinafter referred to as decontamination). To reduce radiation exposure of workers.

【0003】除染後に再び炉内構造物や配管の表面の酸
化皮膜に取り込まれることを抑制する方法としては、除
染後の運転中に原子炉水中にZnを原子炉水中濃度が5
から10ppb 程度になるように注入することで、放射性
物質の付着を抑制出来ることが、(社)日本原子力学会
「2000年春の年会」予稿集の1090ページに報告
されている。また、高温の酸化性ガスに曝露して酸化皮
膜を形成して放射性物質の付着を抑制する方法が特開平
09−133784号公報に、Alイオンなどを5から
1000ppb 添加した200から300℃の高温水に数
百時間曝露して表面に成長速度の小さい酸化皮膜を形成
することで放射性物質の付着を抑制する方法が特願昭6
2−24195号公報に開示されている。
[0003] As a method for suppressing the incorporation into the oxide film on the surface of the reactor internals and pipes after decontamination, Zn is contained in the reactor water during operation after decontamination at a reactor water concentration of 5%.
It has been reported on page 1090 of the Proceedings of the Atomic Energy Society of Japan "Spring 2000 Annual Meeting" that the injection of radioactive materials can be suppressed by injecting so that the pressure becomes about 10 ppb. Japanese Patent Application Laid-Open No. 09-133784 discloses a method of exposing to a high-temperature oxidizing gas to form an oxide film to suppress the adhesion of radioactive substances. Japanese Patent Application No. Showa 6 shows a method of controlling the adhesion of radioactive substances by forming an oxide film with a low growth rate on the surface after exposure to water for several hundred hours.
It is disclosed in Japanese Patent Application Laid-Open No. 2-24195.

【0004】[0004]

【発明が解決しようとする課題】除染により放射線源の
放射性物質が除去されるので、除去を行った直後の保
守,点検作業時においては、作業員の放射線被曝が抑制
される。しかし、炉内構造物や配管表面の酸化皮膜への
放射性物質の取込み速度と、酸化皮膜の成長速度は各々
式1,式2の関係があることから、除染により酸化皮膜
が除去されると、酸化皮膜の成長速度が大きくなり、急
速に炉内構造物や配管の表面の酸化皮膜に放射性物質が
取り込まれることになる。
Since the radioactive material of the radiation source is removed by the decontamination, the radiation exposure of the workers is suppressed during the maintenance and inspection work immediately after the removal. However, since the rate of incorporation of radioactive substances into the oxide film on the furnace internals and piping surface and the growth rate of the oxide film are related by the formulas 1 and 2, respectively, when the oxide film is removed by decontamination, As a result, the growth rate of the oxide film increases, and the radioactive substance is rapidly incorporated into the oxide film on the surface of the furnace internals and pipes.

【0005】 dA/dt=α・(dm/dt)・C …(式1) dm/dt=β・(1/t1/2) …(式2) A:放射能付着量,α:定数,m:酸化皮膜量,t:時
間、C:原子炉水中の放射性物質の量,β:定数 (もしt1>t2ならば1/t1 1/2<1/t2 1/2であるた
めdm1/dt<dm2/dtとなることから、dA1
dt<dA2/dtとなる。) この除染後の急速な放射性物質の再付着が起こると、急
速に放射線源の線量率が大きくなるため、次の保守,点
検作業時における除染の放射線被曝低減にあたえる効果
が小さくなる。
DA / dt = α · (dm / dt) · C (Equation 1) dm / dt = β · (1 / t 1/2 ) (Equation 2) A: radioactivity adhesion amount, α: constant , M: amount of oxide film, t: time, C: amount of radioactive material in reactor water, β: constant (if t 1 > t 2 , 1 / t 1 1/2 <1 / t 2 1/2 Therefore, since dm 1 / dt <dm 2 / dt, dA 1 / dt
dt <dA 2 / dt. If rapid reattachment of radioactive materials after this decontamination occurs, the dose rate of the radiation source rapidly increases, so that the effect of decontamination during the next maintenance and inspection work on reducing radiation exposure is reduced.

【0006】これに対して、再び除染を行うことが考え
られるが、被曝低減量に対する費用が高くなる。
[0006] On the other hand, it is conceivable to perform decontamination again, but the cost for the reduced amount of exposure increases.

【0007】また、(社)日本原子力学会「2000年
春の年会」予稿集の1090ページにて報告されている
方法では、Znの放射化により放射性物質であるZn−
65が生じ新たな放射線源になること、Zn−65の生
成を抑制するためにその親核種であるZn−64を取り
除く操作を行うと費用が高くなること、注入したZnイ
オンが原子炉水浄化系のイオン交換樹脂の負荷となり樹
脂の性能低下を早めその交換費用の増加につながるとい
った問題がある。
[0007] In the method reported on page 1090 of the Proceedings of the Atomic Energy Society of Japan, "Annual Meeting of the Spring of 2000", the activation of Zn causes the radioactive Zn-
65, which becomes a new radiation source, that the operation of removing Zn-64, which is the parent nuclide, in order to suppress the production of Zn-65 increases costs, and that the implanted Zn ions cause reactor water purification. There is a problem that the load on the ion exchange resin of the system is increased, and the performance of the resin is deteriorated earlier, which leads to an increase in the exchange cost.

【0008】特開平9−133784号公報に開示され
た方法は、広い領域に適用する場合の高温ガス供給設備
が大きくなる問題がある。また、特開昭62−2419
5号公報に開示された方法は、プラント運転時には高濃
度のイオンを注入できないことや、プラント運転時以外
に実施する場合は、高温高圧水を維持するためのヒータ
設備が大きくなるといった問題があった。
The method disclosed in Japanese Patent Application Laid-Open No. 9-133784 has a problem that the size of a high-temperature gas supply facility when applied to a wide area is increased. Also, Japanese Patent Application Laid-Open No. Sho 62-2419
The method disclosed in Japanese Patent Publication No. 5 has a problem that high-concentration ions cannot be implanted during plant operation, and a heater facility for maintaining high-temperature and high-pressure water becomes large when the method is performed other than during plant operation. Was.

【0009】本発明の目的は、除染を行った原子炉炉内
構造物及び配管表面への放射性物質の付着を抑制する水
質制御方法を提供する。
[0009] An object of the present invention is to provide a water quality control method for suppressing the adhesion of radioactive substances to the reactor internal structure and the pipe surface after decontamination.

【0010】[0010]

【課題を解決するための手段】課題を解決するための実
施態様は、核加熱停止中に原子炉炉内構造物の炉水に接
している面若しくは配管の炉水に接している面の少なく
とも何れかに付着した放射性物質の除去を実施した後で
その除去を実施した後の定格出力運転を行う前の原子力
プラントの原子炉水に、前記原子炉炉内構造物への放射
性物質の付着抑制効果及び原子炉構造物の腐食低減効果
のうち少なくとも何れかの効果をもつ金属の有機化合物
錯体及び前記金属の酸化物の有機化合物錯体のうち少な
くとも何れかを添加した後、前記有機化合物錯体を分解
する。
An embodiment for solving the problem is that at least the surface of the reactor internal structure that is in contact with the reactor water or the surface of the pipe that is in contact with the reactor water during the stop of nuclear heating. After the removal of the radioactive material attached to any of the reactor water of the nuclear power plant before the rated output operation after the removal is performed, the radioactive material is prevented from adhering to the reactor internal structure. Decomposing the organic compound complex after adding at least one of an organic compound complex of a metal and an organic compound complex of an oxide of the metal having at least one of the effect and the effect of reducing corrosion of the reactor structure. I do.

【0011】これにより、放射性物質の付着抑制効果及
び原子炉構造物の腐食低減効果のうち少なくとも何れか
の効果をもつ金属を付着させることができ、原子炉構造
物への放射性物質の再付着を抑制できる。また、金属酸
化物を付着させることで、放射性物質の源である金属イ
オンの生成を抑制し、原子炉水中の放射性物質の量を減
らすことで放射性物質の付着を抑制できる。
Thus, it is possible to deposit a metal having at least one of the effect of suppressing the adhesion of the radioactive material and the effect of reducing the corrosion of the nuclear reactor structure. Can be suppressed. Further, by depositing the metal oxide, generation of metal ions as a source of the radioactive substance can be suppressed, and by reducing the amount of the radioactive substance in the reactor water, the deposition of the radioactive substance can be suppressed.

【0012】課題を解決するための他の実施態様は、核
加熱停止中に原子炉炉内構造物の炉水に接している面若
しくは配管の炉水に接している面の少なくとも何れかに
付着した放射性物質の除去を実施した後でその除去を実
施した後の定格出力運転を行う前の原子力プラントの原
子炉水に、原子炉構造物への放射性物質の付着抑制効果
及び原子炉構造物の腐食低減効果のうち少なくとも何れ
かの効果をもつ金属のイオン又はコロイドのうち少なく
とも何れかと、鉄の有機物錯体を注入し、前記鉄の有機
化合物錯体を分解する。
Another embodiment for solving the problem is that, during the stop of the nuclear heating, at least one of the surface of the reactor internal structure which is in contact with reactor water and the surface of piping which is in contact with reactor water. After the removal of the radioactive material, the effect of suppressing the adhesion of radioactive material to the reactor structure and the effect of the An organic complex of iron and at least one of metal ions or colloids having at least one of the effects of reducing corrosion are injected to decompose the organic compound complex of iron.

【0013】これにより、鉄の有機化合物錯体を分解す
ることによって、鉄を析出することができ、炉水に注入
した原子炉構造物への放射性物質の付着抑制効果及び原
子炉構造物の腐食低減効果のうち少なくとも何れかの効
果をもつ金属のイオン又はコロイドのうち少なくとも何
れかが、鉄と共析させることが出来る。これにより、放
射性物質の付着抑制効果及び原子炉構造物の腐食低減効
果のうち少なくとも何れかの効果をもつ金属を付着させ
ることができ、原子炉構造物への放射性物質の再付着を
抑制できる。
[0013] Thus, iron can be deposited by decomposing the organic compound complex of iron, and the effect of suppressing the adhesion of radioactive substances to the reactor structure injected into the reactor water and reducing the corrosion of the reactor structure. At least one of metal ions or colloids having at least one of the effects can be co-deposited with iron. Thereby, a metal having at least one of the effect of suppressing the adhesion of the radioactive material and the effect of reducing the corrosion of the nuclear reactor structure can be attached, and the re-adhesion of the radioactive material to the nuclear reactor structure can be suppressed.

【0014】金属イオン有機化合物錯体の有機化合物錯
体の分解は、金属イオン有機化合物錯体を添加した水を
循環させながら紫外線を照射するか、あるいは不均一触
媒に通水することにより実施できる。不均一触媒として
はRuやPtなどの貴金属を担持した活性炭触媒が挙げ
られる。
The decomposition of the organic compound complex of the metal ion organic compound complex can be carried out by irradiating ultraviolet rays while circulating water to which the metal ion organic compound complex has been added, or by passing water through a heterogeneous catalyst. An example of the heterogeneous catalyst is an activated carbon catalyst supporting a noble metal such as Ru or Pt.

【0015】鉄イオンの有機化合物錯体としては、シュ
ウ酸錯体が好適である。なぜなら、シュウ酸は化学的な
方法で放射性物質を除去する除染で使われていることか
ら、シュウ酸使用後の材料の健全性が調べられているこ
と、シュウ酸を使用して除染を行い、除染の工程にその
シュウ酸を分解する操作を炉内で実施する場合は、同じ
操作を行うことからその除染工程の期間に付着操作を実
施でき、付着操作に余分な時間を費やす必要がなくなる
からである。
As the organic compound complex of iron ions, an oxalic acid complex is preferable. Because oxalic acid is used in decontamination to remove radioactive substances by chemical methods, the integrity of the material after oxalic acid is used has been investigated. When performing the operation of decomposing the oxalic acid in the furnace during the decontamination step, the same operation is performed, so that the adhesion operation can be performed during the decontamination step, and extra time is spent on the adhesion operation This is because there is no need.

【0016】鉄イオンのシュウ酸錯体の添加量は廃棄物
発生量を少なくすることと、濃度が小さすぎるとFeの
酸化物の析出が起こりにくいという観点から初期濃度が
鉄の濃度で0.5ppm から100ppm とすることが望ま
しい。
The initial concentration of iron oxalate complex is 0.5 ppm in terms of iron concentration from the viewpoint that the amount of waste generated is reduced and that if the concentration is too low, precipitation of Fe oxides is difficult to occur. To 100 ppm is desirable.

【0017】鉄イオンの析出は、Na2CO3,KOH,
NaOHなどのアルカリをpHが5.5 以上とならない
様に添加することにより促進できる。アルカリを入れる
と鉄イオンの溶解度が小さくなるためである。添加した
アルカリが廃棄物となるためpHが5.5 以上とならな
い様に添加することで廃棄物発生量を抑制できる。
The precipitation of iron ions is carried out by using Na 2 CO 3 , KOH,
It can be promoted by adding an alkali such as NaOH so that the pH does not become 5.5 or more. This is because the solubility of iron ions decreases when an alkali is added. Since the added alkali becomes a waste, the amount of waste generated can be suppressed by adding it so that the pH does not become 5.5 or more.

【0018】配位子のシュウ酸といった有機化合物の分
解は、酸化剤である過酸化水素を添加すると、その分解
を促進することができる。
The decomposition of an organic compound such as oxalic acid as a ligand can be accelerated by adding hydrogen peroxide as an oxidizing agent.

【0019】鉄イオンのシュウ酸錯体を使って付着操作
を行う場合で、特にシュウ酸を使用して除染を行い、除
染の工程にそのシュウ酸を分解する操作を炉内で実施す
る場合は、その除染工程のシュウ酸を分解する工程で重
ねて行うことが出来る。
In the case of performing an adhesion operation using an oxalic acid complex of iron ions, in particular, performing decontamination using oxalic acid, and performing an operation of decomposing the oxalic acid in the decontamination step in a furnace. Can be repeated in the step of decomposing oxalic acid in the decontamination step.

【0020】その実施開始時期は、シュウ酸の濃度が1
00ppm 以下、pHが4.0 以上になった時点が望まし
い。その時期になると、除染により溶解させた放射性物
質の量が十分少なくなっているからである。
At the start of the operation, the concentration of oxalic acid is 1
It is desirable that the time is not more than 00 ppm and the pH is not less than 4.0. At that time, the amount of radioactive substance dissolved by decontamination has become sufficiently small.

【0021】放射性物質の付着を抑制する効果のある金
属又は金属酸化物として、Pt,Rh,Pd,Zr,T
i,Al,Znなどがあり、それらを単独あるいは混合
して使用するのが望ましい。Pt,Rh,PdはH2
入環境下で水素を分解し溶存酸素濃度を低下する効果が
あるので、それにより酸化皮膜の成長を抑制すること
で、放射性物質の付着を抑制する効果を及ぼすことが期
待できる。Zr,Ti,Alは母材表面をZrO2,T
iO2,Al23などの化合物として覆うことで、母材
への酸素の拡散を抑制することにより、酸化皮膜の成長
を抑制することで、放射性物質の付着を抑制する効果を
及ぼすことが期待できる。Znは母材のFeあるいはC
rと反応することで溶解しにくい形態の酸化皮膜を形成
することにより、酸化皮膜の成長を抑制することで、放
射性物質の付着を抑制する効果を及ぼすことが期待でき
る。
Pt, Rh, Pd, Zr, Tr are metals or metal oxides that have the effect of suppressing the adhesion of radioactive substances.
There are i, Al, Zn and the like, and it is desirable to use them alone or as a mixture. Since Pt, Rh, and Pd have the effect of decomposing hydrogen and lowering the dissolved oxygen concentration in an H 2 injection environment, the effect of suppressing the growth of an oxide film, thereby suppressing the attachment of radioactive substances. Can be expected. Zr, Ti, and Al are made of ZrO 2 , T
By covering as a compound such as iO 2 and Al 2 O 3, it is possible to suppress the diffusion of oxygen into the base material, thereby suppressing the growth of the oxide film, thereby exerting the effect of suppressing the adhesion of radioactive substances. Can be expected. Zn is the base material Fe or C
By forming an oxide film in a form that is difficult to dissolve by reacting with r, it is expected that the growth of the oxide film is suppressed and an effect of suppressing the attachment of a radioactive substance is exerted.

【0022】原子炉構造物への放射性物質の付着抑制効
果及び原子炉構造物の腐食低減効果のうち少なくとも何
れかの効果をもつ金属としてはZnがあげられ、Znを
イオンまたはコロイドの形態で原子炉水濃度が0.1ppb
以上2ppb 以下となるように添加することが望ましい。
原子炉水中のZn濃度が2ppb となるように注入する
と、添加しない場合と比較して放射性物質の付着量を約
1/2に低減できるからである。またこの濃度にするこ
とで、注入するZnの量を減らすことが出来、Zn−6
5の生成を無視できるようになり、親物質のZn−64
を除く操作をする必要がなくなる。また、原子炉水浄化
系のイオン交換樹脂への負荷を低減できる。
As a metal having at least one of the effect of suppressing the adhesion of radioactive materials to the reactor structure and the effect of reducing corrosion of the reactor structure, Zn can be cited. Reactor water concentration is 0.1 ppb
It is desirable to add so as to be at least 2 ppb or less.
This is because, when the Zn water in the reactor water is injected so as to have a concentration of 2 ppb, the amount of radioactive substances attached can be reduced to about 1 / as compared with the case where no Zn is added. Further, by adjusting the concentration, the amount of Zn to be implanted can be reduced.
5 can be ignored and the parent substance Zn-64
There is no need to perform operations other than. Further, the load on the ion exchange resin of the reactor water purification system can be reduced.

【0023】[0023]

【発明の実施の形態】まず、実施の条件を見出すために
発明者らが行った実験について説明する。本実験は、F
eのシュウ酸有機化合物錯体の分解とそれに伴うFeの
析出の条件を見出すために行った実験である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an experiment performed by the inventors to find out the conditions for implementation will be described. In this experiment, F
This is an experiment performed to find out the conditions for decomposition of the oxalic acid organic compound complex of e and precipitation of Fe accompanying the decomposition.

【0024】実験は、図9に示すように、放射性物質の
付着抑制効果又は腐食低減効果のある金属又は金属酸化
物を付着させる付着処理装置210を、付着処理を施す
対象部位であるテフロン管2に接続部X1及びX2を介
して接続し、付着処理を実施する実験である。まず、装
置について説明する。テフロン管2は、循環ポンプ3,
系統水のpHや導電率を測定するための水質測定装置1
5,系統水を所定の温度に上げたり常温まで冷却するた
めの加熱冷却器16,系統水量調整の調整しろであるサ
ージタンク17と直列した閉ループとなるように配管1
2で接続されている。本実験において系統水の所定の温
度は90℃である。付着処理装置210は、配管12に
バルブ6を設置し、その上流側と下流側を接続するよう
に配管13を設置し、配管13に上流側からバルブ4
a,付着処理終了後に系統水を浄化させるための水質浄
化装置5及びバルブ4bを設置している。また、配管1
2に流量調整バルブ8を設置し、その上流側と下流側を
接続するように配管14を設置し、配管14に上流側か
らバルブ9a,Ruを担持した活性炭触媒を使用した有
機化合物分解装置10及びバルブ9bを設置し、バルブ
9aと有機化合物分解装置10の間にH22タンク2
1,H22注入ポンプ22及びバルブ23からなるH2
2注入装置20を接続している。更に配管12にFe
のシュウ酸錯体溶液を入れたタンク31,薬液注入ポン
プ32及びバルブ33からなるFeのシュウ酸錯体注入
装置30と、pH調整剤を入れたタンク41,薬液注入
ポンプ42及びバルブ43からなるpH調整剤注入装置
40を接続している。本実験においては、pH調整剤と
して、KOHを用いる。pH調整剤としてはその他にNa
OHやNa2CO3などを用いることが出来る。
In the experiment, as shown in FIG. 9, an adhesion processing apparatus 210 for adhering a metal or metal oxide having an effect of suppressing the adhesion of radioactive substances or an effect of reducing corrosion is attached to a Teflon tube 2 which is an object part to be subjected to the adhesion processing. This is an experiment in which a connection is made through the connection portions X1 and X2 to perform an adhesion process. First, the device will be described. The Teflon pipe 2 has a circulation pump 3
Water quality measuring device 1 for measuring pH and conductivity of system water
5, a piping 1 so as to form a closed loop in series with a heating / cooling device 16 for raising system water to a predetermined temperature or cooling to room temperature, and a surge tank 17 for adjusting system water flow.
2 connected. In this experiment, the predetermined temperature of the system water is 90 ° C. The adhesion processing apparatus 210 installs the valve 6 on the pipe 12, installs the pipe 13 so as to connect the upstream side and the downstream side, and installs the valve 4 on the pipe 13 from the upstream side.
a, A water purification device 5 and a valve 4b for purifying system water after the completion of the adhesion treatment are installed. Also, piping 1
2, a flow control valve 8 is installed, a pipe 14 is installed so as to connect the upstream side and the downstream side, and an organic compound decomposer 10 using an activated carbon catalyst carrying a valve 9a, Ru is installed in the pipe 14 from the upstream side. And a valve 9b, and an H 2 O 2 tank 2 between the valve 9a and the organic compound decomposing device 10.
1, consists of H 2 O 2 injection pump 22 and valve 23 H 2
The O 2 injection device 20 is connected. In addition, Fe
, An Fe oxalate complex injection device 30 comprising a tank 31 containing an oxalic acid complex solution, a chemical solution injection pump 32 and a valve 33, and a tank 41 containing a pH adjuster, a pH adjustment comprising a chemical solution injection pump 42 and a valve 43. The agent injection device 40 is connected. In this experiment, KOH is used as a pH adjuster. Other pH adjusters include Na
OH or Na 2 CO 3 can be used.

【0025】加えて配管12には有機化合物分解時に発
生するガスを抜くためのベント11と、系統への給水,
配管12を流れる溶液の水質分析のための溶液のサンプ
リング及び付着処理終了後に系統の溶液の廃水に用いる
給廃水バルブ7を接続している。尚、水質浄化装置5
は、陽イオン交換樹脂と陰イオン交換樹脂を混合して充
填したイオン交換樹脂塔を使用している。
In addition, a pipe 11 is provided with a vent 11 for removing gas generated at the time of decomposition of organic compounds,
After the sampling of the solution for the analysis of the water quality of the solution flowing through the pipe 12 and the completion of the adhesion treatment, the supply / drainage valve 7 used for the wastewater of the system solution is connected. The water purification device 5
Uses an ion exchange resin tower filled with a mixture of a cation exchange resin and an anion exchange resin.

【0026】本実験では、この装置を用いて、Feのシ
ュウ酸錯体の系統への添加量及び系統水のpH値を変化
(pH調整剤の添加量を変えることによって変化させ
る)させて複数回実験を行うことで、系統水のFe濃
度、系統水のpH値及び系統水のシュウ酸濃度と系統水
のFe析出の有無との関係を調べた。Fe析出の有無は
系統水を給廃水バルブ7からサンプリングすることによ
って判断した。
In this experiment, using this apparatus, the amount of Fe oxalate complex added to the system and the pH value of the system water were changed multiple times by changing the amount of the pH adjusting agent. By conducting experiments, the relationship between the Fe concentration of the system water, the pH value of the system water, the oxalic acid concentration of the system water, and the presence or absence of Fe precipitation in the system water was examined. The presence or absence of Fe precipitation was determined by sampling the system water from the feed / wastewater valve 7.

【0027】付着処理装置210の運転を説明する。 (1−1)給廃水バルブ7から系統に水を給水する。 (1−2)バルブ4a,4b,9a,9b,33,4
3,23を閉、バルブ6,バルブ8を開にして循環ポン
プ3で系統水を循環させ、加熱冷却器16で系統水の温
度を90℃まで昇温させる。 (1−3)系統水の温度が90℃に達したら、Feのシ
ュウ酸錯体注入装置30において、バルブ33を開き、
薬液注入ポンプ32を起動して、Feのシュウ酸錯体を
系統に添加し、添加終了後薬液注入ポンプ32を停止
し、バルブ33を閉じる。これにより、系統水のシュウ
酸濃度を調整する。系統水のシュウ酸濃度は水質測定装
置15で測定する。同様に、pH調整剤注入装置40か
らpH調整剤であるKOHを注入し系統水のpHを調整
する。系統水のpHは水質測定装置15により測定す
る。 (1−4)各種の試薬が系統に均一に混合したらバルブ
9a,9bを開き、流量調整バルブ8で流量を調整し
て、有機化合物分解装置10に系統水を通水させる。均
一に混合したか否かの判断は水質測定装置15にて測定
している導電率の変化から判断する。更にH22注入装
置20のバルブ23を開き、H22注入ポンプ22を起
動してH22を添加してシュウ酸を分解する。 (1−5)シュウ酸の分解が終了したら、H22注入ポ
ンプ22を停止し、バルブ23を閉じる。シュウ酸分解
の進行状況は、給廃水バルブ7から系統水をサンプリン
グして分析することにより監視する。また、系統水をサ
ンプリングして分析によりFe析出の有無を判断する。 (1−6)加熱冷却器16で系統水を常温(30℃程
度)に冷却する。 (1−7)冷却終了後、バルブ4a,4bを開き、バル
ブ6を閉じて、水質浄化装置5に系統水を通水して、廃
水ができる不純物濃度レベルまで、系統水を浄化する。
本実験ではシュウ酸濃度は検出限界以下まで浄化した。 (1−8)浄化終了後、給廃水バルブ7から系統水を廃
水する。 (1−9)テフロン管2を取り外し、接水面へのFeの
付着の状態を目視にて調べる。
The operation of the adhesion processing apparatus 210 will be described. (1-1) Water is supplied to the system from the supply / wastewater valve 7. (1-2) Valves 4a, 4b, 9a, 9b, 33, 4
The system water is circulated by the circulation pump 3 by closing the valves 3 and 23 and the valves 6 and 8 are opened, and the temperature of the system water is raised to 90 ° C. by the heating / cooling device 16. (1-3) When the temperature of the system water reaches 90 ° C., the valve 33 is opened in the Fe oxalate complex injection device 30,
The chemical liquid injection pump 32 is started, the oxalic acid complex of Fe is added to the system, and after the addition is completed, the chemical liquid injection pump 32 is stopped and the valve 33 is closed. Thereby, the oxalic acid concentration of the system water is adjusted. The oxalic acid concentration of the system water is measured by the water quality measuring device 15. Similarly, KOH as a pH adjuster is injected from the pH adjuster injection device 40 to adjust the pH of the system water. The pH of the system water is measured by the water quality measuring device 15. (1-4) When the various reagents are uniformly mixed in the system, the valves 9a and 9b are opened, the flow rate is adjusted by the flow rate adjusting valve 8, and the system water is passed through the organic compound decomposer 10. The determination as to whether or not they are uniformly mixed is made based on the change in the conductivity measured by the water quality measuring device 15. Further, the valve 23 of the H 2 O 2 injection device 20 is opened, the H 2 O 2 injection pump 22 is started, and H 2 O 2 is added to decompose oxalic acid. (1-5) When the decomposition of the oxalic acid is completed, stop the H 2 O 2 injection pump 22, closing the valve 23. The progress of oxalic acid decomposition is monitored by sampling and analyzing the system water from the feed / wastewater valve 7. Further, the system water is sampled and analyzed to determine the presence or absence of Fe precipitation. (1-6) The system water is cooled to a normal temperature (about 30 ° C.) by the heating / cooling device 16. (1-7) After cooling, the valves 4a and 4b are opened, the valve 6 is closed, and the system water is passed through the water purification device 5 to purify the system water to an impurity concentration level at which wastewater can be generated.
In this experiment, the oxalic acid concentration was purified to below the detection limit. (1-8) After the purification is completed, the system water is drained from the supply and waste water valve 7. (1-9) The Teflon tube 2 is removed, and the state of adhesion of Fe to the water contact surface is visually inspected.

【0028】本実験より得られた、Feの析出の有無に
ついて、Fe濃度とpHの関係を図2に、Fe濃度とシ
ュウ酸濃度の関係を図3に示す。図2及び図3におい
て、Feの析出が観測された場合を●、Feの析出が観
測されなかった場合を○で示す。図2及び図3から、F
eの析出はFe濃度が0.5ppm 以上、pHが5.7以
上、シュウ酸濃度が100ppm 以下で生じていることが
分かる。従って、付着処理装置1を運転する場合、Fe
のシュウ酸錯体のFe濃度が0.5ppm以上となるように
シュウ酸錯体を添加することが望ましい。また、廃棄物
発生量低減と時間短縮の観点からFe濃度100ppm 以
下とすることが望ましい。pHが5.7 以上とならない
範囲では、KOH水溶液やNaOH水溶液などのアルカ
リ性水溶液を添加すれば、系統水のpHを上げることが
出来るため、より速くFeを析出開始させることができ
る。
FIG. 2 shows the relationship between the Fe concentration and the pH, and FIG. 3 shows the relationship between the Fe concentration and the oxalic acid concentration. In FIGS. 2 and 3, the case where precipitation of Fe was observed is indicated by “●”, and the case where precipitation of Fe was not observed is indicated by “○”. From FIGS. 2 and 3, F
It can be seen that e was deposited when the Fe concentration was 0.5 ppm or more, the pH was 5.7 or more, and the oxalic acid concentration was 100 ppm or less. Therefore, when operating the adhesion processing apparatus 1, Fe
It is desirable to add the oxalic acid complex such that the Fe concentration of the oxalic acid complex becomes 0.5 ppm or more. Further, from the viewpoint of reducing the amount of waste generated and shortening the time, the Fe concentration is desirably 100 ppm or less. When the pH does not reach 5.7 or higher, the pH of system water can be increased by adding an alkaline aqueous solution such as an aqueous KOH solution or an aqueous NaOH solution, so that precipitation of Fe can be started more quickly.

【0029】なお、付着処理の終了判定は、腐食低減効
果を及ぼす金属イオンあるい腐食低減効果を及ぼす金属
を含むコロイドの付着量を実測することで行うこともで
きる。この場合は付着処理装置1あるいはそれとは別に
ラインを構成し、付着処理を行う部位と類似の状態の試
験片を設置し、付着処理実施時に逐次それを取出し付着
量を分析することで、付着量を直接判定できる。これに
よれば、付着量を直接判定できるため、上記運転方法に
おいて付着量が運転方法の(1−5)の時点で付着量が
不足している場合は、(1−3)に戻って付着処理を行
うことができる。また、付着量が所定の量を超えた場合
や、特に時間的な制約がある場合は、分解途中で(1−
5)以降を実施することにより、付着量の超過を防ぐこ
とができる。
The end of the adhesion treatment can also be determined by actually measuring the amount of metal ions having a corrosion reducing effect or the amount of colloid containing a metal having a corrosion reducing effect. In this case, a line is constructed separately from the adhesion processing apparatus 1 or separately, a test piece in a state similar to the part to be subjected to the adhesion processing is installed, and it is sequentially taken out during the execution of the adhesion processing, and the amount of the adhesion is analyzed. Can be determined directly. According to this, since the amount of adhesion can be directly determined, if the amount of adhesion is insufficient at the time of (1-5) of the operation method in the above-described operation method, the process returns to (1-3) and returns to (1-3). Processing can be performed. If the amount of adhesion exceeds a predetermined amount, or if there is a particular time constraint, (1-1-
5) By performing the following steps, it is possible to prevent the amount of adhesion from being exceeded.

【0030】以上の実験により、Feのシュウ酸錯体を
水に添加し、シュウ酸を分解した場合にFeが析出して
管の接水面に付着する事が確認された。これにより、Z
n等の放射性物質の付着を抑制する効果のある金属をシ
ュウ酸錯体として添加した場合、同様に接水面に付着す
る事が十分考えられる。また、Zn等の放射性物質の付
着を抑制する効果のある金属を金属イオンまたは金属コ
ロイドの状態でFeのシュウ酸錯体と水に添加し、Fe
のシュウ酸錯体からFeを析出させることで、金属イオ
ンまたは金属コロイドを共沈させることができる事も十
分考えられる。
From the above experiments, it was confirmed that when oxalic acid complex of Fe was added to water and oxalic acid was decomposed, Fe was deposited and adhered to the water-contact surface of the pipe. This gives Z
When a metal having an effect of suppressing the attachment of a radioactive substance such as n is added as an oxalic acid complex, it is conceivable that the metal adheres to the water contact surface in the same manner. Further, a metal having an effect of suppressing the adhesion of radioactive substances such as Zn is added to the oxalic acid complex of Fe and water in the form of metal ions or metal colloids,
It is conceivable that metal ions or metal colloids can be co-precipitated by precipitating Fe from the oxalic acid complex of (1).

【0031】以上の実験を踏まえ、以下実施例を説明す
る。 (実施例1)本実施例は、LWRプラントの一つである
沸騰水型原子力プラント(以下、BWRプラントと言
う)において、シュウ酸を除染剤として使用し、そのシ
ュウ酸を分解する工程がある化学除染作業に次いで、付
着処理装置1を使って化学除染後のBWRプラントの配
管に付着処理を行う実施例である。付着処理装置1は、
図1に示すように、付着処理装置210に、更に放射性
物質付着抑制試薬を入れたタンク51,薬液注入ポンプ
52及びバルブ53からなる放射性物質付着抑制試薬注
入装置50を接続した装置である。この付着処理装置1
を用いて、原子力プラントの炉水へ放射性物質の付着を
抑制する効果のある金属のイオンとFeのシュウ酸錯体
を注入する。
Embodiments will be described below based on the above experiments. (Embodiment 1) In this embodiment, a process of using oxalic acid as a decontamination agent and decomposing the oxalic acid in a boiling water nuclear power plant (hereinafter, referred to as a BWR plant) which is one of LWR plants is described. This is an example in which, after a certain chemical decontamination operation, the adhesion treatment is performed on the piping of the BWR plant after the chemical decontamination using the adhesion treatment device 1. The adhesion processing device 1
As shown in FIG. 1, this is an apparatus in which a radioactive substance adhesion suppressing reagent injection device 50 including a tank 51 containing a radioactive substance adhesion suppressing reagent, a chemical solution injection pump 52 and a valve 53 is further connected to the adhesion processing device 210. This adhesion processing device 1
Is used to inject a metal ion and an oxalic acid complex of Fe having an effect of suppressing the adhesion of radioactive substances to reactor water of a nuclear power plant.

【0032】まず、装置について説明する。付着処理装
置1は、放射性物質付着処理装置50以外は、付着処理
装置210と同じであるのでここでは説明を省略する。
付着処理装置1は、図4に示すように、付着処理を施す
対象部位であるBWRプラントの再循環配管108及び
再循環ポンプ105に接続部X1及びX2を介して接続
する。バルブ114とバルブ115により圧力容器10
1内に薬液が入らないように閉じ、バルブ110,11
1,18,19を開いて付着処理装置1と再循環配管1
08と再循環ポンプ105の間に循環ループを形成す
る。
First, the device will be described. The attachment processing apparatus 1 is the same as the attachment processing apparatus 210 except for the radioactive substance attachment processing apparatus 50, and thus the description is omitted here.
As shown in FIG. 4, the adhesion processing apparatus 1 is connected to the recirculation pipe 108 and the recirculation pump 105 of the BWR plant, which is the target area where the adhesion processing is performed, via the connection parts X1 and X2. The pressure vessel 10 is controlled by the valve 114 and the valve 115.
1 and close the valves 110 and 11
1, 18, 19 are opened, the adhesion processing apparatus 1 and the recirculation pipe 1 are opened.
08 and the recirculation pump 105.

【0033】本実施例において系統水の所定の温度は9
0℃である。本実施例においては、pH調整剤として、
KOHを用いる。また、本実施例においては、放射性物
質付着抑制試薬として、Znを用いる。放射性物質付着
抑制試薬としては、Znの他に、放射性物質の付着を抑
制する効果のある金属又は金属酸化物として、Pt,R
h,Pd,Zr,Ti,Al及びそれらの酸化物などが
あり、それらを単独あるいは混合して使用することがで
きる。Znは母材のFeあるいはCrと反応することで
溶解しにくい形態の酸化皮膜を形成することにより、酸
化皮膜の成長を抑制することで、放射性物質の付着を抑
制する効果がある。Pt,Rh,PdはH2 注入環境下
で水素を分解し溶存酸素濃度を低下する効果があるの
で、それにより酸化皮膜の成長を抑制することで、放射
性物質の付着を抑制する効果がある。Zr,Ti,Al
は母材表面をZrO2,TiO2,Al23などの化合物
として覆うことで、母材への酸素の拡散を抑制すること
により、酸化皮膜の成長を抑制することで、放射性物質
の付着を抑制する効果がある。
In this embodiment, the predetermined temperature of the system water is 9
0 ° C. In this example, as the pH adjuster,
Use KOH. In the present embodiment, Zn is used as a reagent for suppressing radioactive substance adhesion. As the radioactive substance adhesion suppressing reagent, in addition to Zn, metals or metal oxides having an effect of suppressing the adhesion of radioactive substances include Pt, R
There are h, Pd, Zr, Ti, Al and oxides thereof, and these can be used alone or as a mixture. Zn forms an oxide film in a form that is hardly dissolved by reacting with Fe or Cr of the base material, thereby suppressing the growth of the oxide film and has an effect of suppressing the adhesion of radioactive substances. Since Pt, Rh, and Pd have the effect of decomposing hydrogen and lowering the concentration of dissolved oxygen in an H 2 injection environment, they suppress the growth of an oxide film and thereby have the effect of suppressing the attachment of radioactive substances. Zr, Ti, Al
Is to cover the base material surface with a compound such as ZrO 2 , TiO 2 , Al 2 O 3 to suppress diffusion of oxygen into the base material, thereby suppressing the growth of an oxide film, thereby adhering radioactive substances. Has the effect of suppressing

【0034】次に、実施方法について説明する。まず、
化学除染を実施する。化学除染装置は、化学除染装置と
除染部位の間で除染剤を循環させるポンプ,除染剤を所
定の温度に加熱及び冷却する加熱冷却器,溶解させた放
射性物質を取る水質浄化装置(陽イオン交換樹脂塔及び
陽イオン交換樹脂と陰イオン交換樹脂を混合した混床樹
脂塔),酸化除染剤を注入する装置及び還元除染剤を注
入する装置からなる。これは付着処理装置1と同様の装
置で、付着処理装置とは注入する薬液が異なるものであ
る。従って、実施例では付着処理装置1を化学除染装置
として使用する。即ち、付着処理装置1の各部は以下の
通り化学除染装置として流用される。ポンプ3がポンプ
に、加熱冷却器16が加熱冷却器に、水質浄化装置15
が水質浄化装置に、放射性物質付着抑制試薬注入装置5
0が酸化除染剤を注入する装置に、シュウ酸錯体注入装
置30及びpH調整剤注入装置40が還元除染剤を注入
する装置に流用される。なお、付着処理装置1とは別に
化学除染装置を設けても良い。
Next, an implementation method will be described. First,
Conduct chemical decontamination. Chemical decontamination equipment includes a pump that circulates the decontamination agent between the chemical decontamination device and the decontamination site, a heating / cooling device that heats and cools the decontamination agent to a predetermined temperature, and water purification that removes dissolved radioactive materials. It comprises a device (cation exchange resin tower and a mixed bed resin tower in which cation exchange resin and anion exchange resin are mixed), a device for injecting oxidative decontamination agent, and a device for injecting reduction decontamination agent. This is the same apparatus as the adhesion processing apparatus 1 except that a chemical solution to be injected is different from the adhesion processing apparatus. Therefore, in the embodiment, the adhesion treatment device 1 is used as a chemical decontamination device. That is, each part of the adhesion processing apparatus 1 is used as a chemical decontamination apparatus as described below. The pump 3 is a pump, the heating / cooling device 16 is a heating / cooling device, and the water purification device 15
Is installed in the water purification system,
0 is diverted to the device for injecting the oxidative decontamination agent, and the oxalate complex injection device 30 and the pH adjusting agent injection device 40 are used for the device for injecting the reduced decontamination agent. In addition, a chemical decontamination apparatus may be provided separately from the adhesion processing apparatus 1.

【0035】化学除染では、酸化除染剤として過マンガ
ン酸カリウムを、還元除染剤としてシュウ酸とヒドラジ
ンを使用する。化学除染は次の手順で行う。 (2−1)加熱冷却器16で系統水の温度を所定の温度
に加熱する。 (2−2)所定の濃度になるように、放射性物質付着抑
制試薬注入装置50から過マンガン酸カリウムを系内に
注入し、所定の時間,除染部位に暴露する。 (2−3)シュウ酸錯体注入装置30よりシュウ酸を添
加することにより、過マンガン酸カリウムを、2価のマ
ンガンイオンに還元し、酸化除染剤を分解する。 (2−4)所定の濃度になるようにpH調整剤注入装置
40よりヒドラジンを系内に注入し、所定の時間,除染
部位に暴露する。暴露している間に、水質浄化装置5に
系統水を循環させて、溶解させた放射性物質を除去す
る。 (2−5)還元除染剤を除染剤分解装置で分解する。こ
の期間に放射性物質をとる浄化装置(陽イオン交換樹脂
塔)に系統水を循環させて、溶解させた放射性物質を除
去する。 (2−6)還元除染剤分解終了後、水質浄化装置5に系
統水を循環させて残留するイオンを除去する。 (2−7)(2−2)から(2−6)の操作を2乃至3
回繰り返す。 (2−8)(2−7)において(2−2)から(2−
6)をくり返し行う際の、最後の繰り返し行程の(2−
5)の途中から、(2−9)を実施する。(2−5)にお
いてシュウ酸分解により生じる炭酸によりpHが低下し
ている可能性が有るので、(2−5)においてシュウ酸
が100ppm 以下あるいは、pHが4.0 以上になった
時点から(2−9)を開始する。
In chemical decontamination, potassium permanganate is used as an oxidative decontamination agent, and oxalic acid and hydrazine are used as reductive decontamination agents. Chemical decontamination is performed in the following procedure. (2-1) The system water is heated to a predetermined temperature by the heating / cooling device 16. (2-2) Potassium permanganate is injected into the system from the radioactive substance adhesion suppressing reagent injection device 50 so as to have a predetermined concentration, and is exposed to the decontamination site for a predetermined time. (2-3) By adding oxalic acid from the oxalic acid complex injection device 30, potassium permanganate is reduced to divalent manganese ions, and the oxidative decontamination agent is decomposed. (2-4) Hydrazine is injected into the system from the pH adjusting agent injection device 40 so as to have a predetermined concentration, and is exposed to the decontamination site for a predetermined time. During the exposure, system water is circulated through the water purification device 5 to remove dissolved radioactive materials. (2-5) The reduced decontamination agent is decomposed by the decontamination agent decomposer. During this period, the system water is circulated through a purification device (cation exchange resin tower) that takes in radioactive substances to remove dissolved radioactive substances. (2-6) After the decomposition of the reducing decontaminant is completed, the system water is circulated through the water purification device 5 to remove the remaining ions. (2-7) The operations from (2-2) to (2-6) are performed in 2 to 3
Repeat several times. (2-8) In (2-7), from (2-2) to (2-
(6) is repeated, (2-
(2-9) is performed from the middle of 5). In (2-5), there is a possibility that the pH is lowered due to carbonic acid generated by the decomposition of oxalic acid. Therefore, from (2-5) when oxalic acid becomes 100 ppm or less or the pH becomes 4.0 or more ( 2-9) is started.

【0036】これは、次の理由による。付着処理を実施
すると、水中の放射性イオンも付着するので、その濃度
を十分低くする必要がある。本実施例で示した化学除染
方法において、還元剤を分解するとき、その水中の放射
性イオンの濃度は還元剤の濃度におよそ比例して減少す
る。廃棄物管理施設の廃棄物受入基準においては、シュ
ウ酸はキレート剤であるために、シュウ酸をイオン交換
樹脂で除去する場合、10ppm 以下で通水しなければな
らないというルールが有るため、還元剤の分解は10pp
m 以下になるまで分解する必要がある。分解にかかる時
間は、単位時間あたりに分解処理する液量を一定とする
と、 (所用時間)∝ln{(初期濃度)/(最終濃度)} であるので、例えば、シュウ酸の初期濃度を2000pp
mとすると、2000ppmから200ppm に分解する時間
と200ppm から20ppm に分解する時間は同じにな
る。
This is for the following reason. When the adhesion treatment is performed, radioactive ions in the water also adhere, so that the concentration thereof needs to be sufficiently low. In the chemical decontamination method shown in the present embodiment, when the reducing agent is decomposed, the concentration of radioactive ions in the water decreases approximately in proportion to the concentration of the reducing agent. According to the waste receiving standard at the waste management facility, oxalic acid is a chelating agent, and there is a rule that when oxalic acid is removed by ion exchange resin, water must be passed at 10 ppm or less. Decomposition of 10pp
It is necessary to disassemble it to m or less. The time required for the decomposition is (time required) {ln} (initial concentration) / (final concentration), assuming that the amount of the solution to be decomposed per unit time is constant. For example, the initial concentration of oxalic acid is 2000 pp.
Assuming m, the time to decompose from 2000 ppm to 200 ppm is the same as the time to decompose from 200 ppm to 20 ppm.

【0037】以上のことから、放射性物質の再付着防止
の観点から、系統水中の放射能濃度が1/10以下にな
ることが望ましく、分解処理短縮の観点から全シュウ酸
を分解するのにかかる時間の1/2から1/3の時間で
付着処理することが望ましい。これは系統水中のシュウ
酸の濃度が100から200ppm の時期である。シュウ
酸の濃度が100から200ppm のころpHは約4とな
る。
From the above, it is desirable that the radioactivity concentration in the system water be 1/10 or less from the viewpoint of preventing reattachment of radioactive substances, and it is necessary to decompose all oxalic acid from the viewpoint of shortening the decomposition treatment. It is desirable to carry out the adhesion treatment in a period of か ら to の of the time. This is the time when the concentration of oxalic acid in the system water is between 100 and 200 ppm. When the concentration of oxalic acid is 100 to 200 ppm, the pH becomes about 4.

【0038】(2−5)においては、既に系統水は付着
処理を行うに十分な温度(所定の温度)まで昇温してい
る。化学除染の最後の行程と付着処理の最初の行程をオ
ーバーラップさせることにより、処理時間の時間短縮を
図ることが出来る。また、更には、鉄イオンのシュウ酸
錯体の注入量を低減できる。除染の場合と異なるのは、
(2−5)の工程では放射性物質をとる浄化装置(陽イ
オン交換樹脂塔)に系統水を循環させて、溶解させた放
射性物質を除去するが、付着操作を行う時は浄化装置を
通水しないという点である。すなわち、所定の時期にな
ったら、(2−9)以降の操作を行う。 (2−9)Feのシュウ酸錯体注入装置30において、
バルブ33を開き、薬液注入ポンプ32を起動して、F
eのシュウ酸錯体を系統に添加し、添加終了後薬液注入
ポンプ32を停止し、バルブ33を閉じる。これによ
り、系統水のシュウ酸濃度を調整する。系統水のシュウ
酸濃度は水質測定装置15で測定する。同様に、pH調
整剤注入装置40からpH調整剤であるKOHを注入し
系統水のpHを調整する。系統水のpHは水質測定装置
15により測定する。同様に、放射性物質付着抑制試薬
注入装置50から放射性物質付着抑制試薬であるZnを
系統に添加する。 (2−10)各種の試薬が系統に均一に混合したらバル
ブ9a,9bを開き、流量調整バルブ8で流量を調整し
て、有機化合物分解装置10に系統水を通水させる。均
一に混合したか否かの判断は水質測定装置15にて測定
している導電率の変化から判断する。更にH22注入装
置20のバルブ23を開き、H22注入ポンプ22を起
動してH22を添加してシュウ酸を分解する。 (2−11)シュウ酸の分解が終了したら、H22注入
ポンプ22を停止し、バルブ23を閉じる。シュウ酸分
解の進行状況は、給廃水バルブ7から系統水をサンプリ
ングして分析することにより監視する。また、系統水を
サンプリングして分析によりFe析出の有無を判断す
る。 (2−12)加熱冷却器16で系統水を常温(30℃程
度)に冷却する。 (2−13)冷却終了後、バルブ4a,4bを開き、バ
ルブ6を閉じて、水質浄化装置5に系統水を通水して、
廃水ができる不純物濃度レベルまで、系統水を浄化す
る。本実験ではシュウ酸濃度は検出限界以下まで浄化し
た。 (2−14)浄化終了後、給廃水バルブ7から系統水を
廃水する。
In (2-5), the system water has already been heated to a temperature (predetermined temperature) sufficient to perform the adhesion treatment. By overlapping the last step of chemical decontamination with the first step of adhesion treatment, the processing time can be reduced. Further, the injection amount of the oxalic acid complex of iron ions can be reduced. What is different from the case of decontamination is
In the step (2-5), system water is circulated through a purification device (cation exchange resin tower) for removing radioactive substances to remove dissolved radioactive substances. The point is not to do so. That is, when the predetermined time comes, the operation after (2-9) is performed. (2-9) In the oxalic acid complex injection device 30 for Fe,
Open the valve 33, start the chemical injection pump 32, and
The oxalic acid complex of e is added to the system, and after the addition is completed, the chemical solution injection pump 32 is stopped and the valve 33 is closed. Thereby, the oxalic acid concentration of the system water is adjusted. The oxalic acid concentration of the system water is measured by the water quality measuring device 15. Similarly, KOH as a pH adjuster is injected from the pH adjuster injection device 40 to adjust the pH of the system water. The pH of the system water is measured by the water quality measuring device 15. Similarly, Zn as a radioactive substance adhesion suppressing reagent is added to the system from the radioactive substance adhesion suppressing reagent injection device 50. (2-10) When the various reagents are uniformly mixed in the system, the valves 9a and 9b are opened, the flow rate is adjusted by the flow rate adjusting valve 8, and the system water is passed through the organic compound decomposer 10. The determination as to whether or not they are uniformly mixed is made based on the change in the conductivity measured by the water quality measuring device 15. Further, the valve 23 of the H 2 O 2 injection device 20 is opened, the H 2 O 2 injection pump 22 is started, and H 2 O 2 is added to decompose oxalic acid. (2-11) When the decomposition of oxalic acid is completed, the H 2 O 2 injection pump 22 is stopped, and the valve 23 is closed. The progress of oxalic acid decomposition is monitored by sampling and analyzing the system water from the feed / wastewater valve 7. Further, the system water is sampled and analyzed to determine the presence or absence of Fe precipitation. (2-12) Cool the system water to normal temperature (about 30 ° C.) with the heating / cooling device 16. (2-13) After the cooling is completed, the valves 4a and 4b are opened, the valve 6 is closed, and the system water is passed through the water purification device 5,
Purify system water to an impurity concentration level that allows wastewater. In this experiment, the oxalic acid concentration was purified to below the detection limit. (2-14) After the purification is completed, the system water is drained from the supply / drain valve 7.

【0039】図4は沸騰水型原子炉の再循環配管108
及び再循環ポンプ105を対象部位とした例であるが、
その他の配管や原子炉炉内構造物に対しても同様に循環
ループを形成することで上記の操作を実施できる。
FIG. 4 shows a recirculation pipe 108 of a boiling water reactor.
And the recirculation pump 105 as the target site,
The above-mentioned operation can be carried out by forming a circulation loop in the same manner for other piping and reactor internals.

【0040】実施例1で挙げた化学除染を行うと、母材
表面の酸化被膜が溶解除去される。その後に、実験で見
出された条件を用いて腐食抑制効果を及ぼす金属,金属
酸化物の付着処理を行うと、図5の左上に示す図のよう
に母材表面に、腐食抑制効果を及ぼす金属,金属酸化物
を付着させることができる。
When the chemical decontamination described in Example 1 is performed, the oxide film on the surface of the base material is dissolved and removed. After that, when a metal or metal oxide that exerts a corrosion inhibiting effect is applied under the conditions found in the experiment, a corrosion inhibiting effect is exerted on the base metal surface as shown in the upper left diagram of FIG. Metals and metal oxides can be attached.

【0041】図5に示す現象の詳細を以下に説明する。
まず、腐食抑制効果を及ぼす金属,金属酸化物のイオン
または、コロイドは鉄酸化物の析出に伴い、イオンは金
属,酸化物または水酸化物として共沈すると考えられ
る。腐食抑制効果を及ぼす金属としてあげられるZn,
Al,Zr,Ti,Pt,Rh,Pdは各々Zn2+イオ
ン,Al3+イオン,ZrO2+イオン,TiO2+イオン,
Pt(OH)6 2+イオン,Rh(NO2)6 3+イオン,Pd2+
イオンとして添加されると、鉄酸化物の析出に伴い、各
々、ZnOまたはZn(OH)2,Al(OH)3またはAl
OOH,ZrO(OH)2またはZrO2,TiO(OH)2
またはTiO2,PtまたはPtO2,RhまたはRh2
3,PdまたはPdOとして共沈すると考えられる。
The details of the phenomenon shown in FIG. 5 will be described below.
First, it is considered that ions or colloids of metals and metal oxides which exert a corrosion inhibiting effect are accompanied by precipitation of iron oxides, and ions co-precipitate as metals, oxides or hydroxides. Zn, which is a metal having a corrosion inhibiting effect,
Al, Zr, Ti, Pt, Rh, and Pd are Zn 2+ ion, Al 3+ ion, ZrO 2+ ion, TiO 2+ ion, respectively.
Pt (OH) 6 2+ ions, Rh (NO 2) 6 3+ ions, Pd 2+
When added as ions, ZnO or Zn (OH) 2 , Al (OH) 3 or Al
OOH, ZrO (OH) 2 or ZrO 2 , TiO (OH) 2
Or TiO 2 , Pt or PtO 2 , Rh or Rh 2
It is believed that they co-precipitate as O 3 , Pd or PdO.

【0042】付着処理後、プラント起動により、高温高
圧水に曝露されと付着させた腐食抑制効果を及ぼす金
属,金属酸化物は溶解,再析出を起こすと考えられる。
腐食抑制効果を及ぼす金属,金属酸化物は、下記の3種
類で母材に腐食抑制効果を及ぼすと考えられる。 (1)その金属,金属酸化物のみで緻密な酸化被膜をつ
くって腐食抑制効果を及ぼす。 (2)母材の酸化被膜成長時に、FeやCrと化学反応
して緻密な酸化被膜をつくって腐食抑制効果を及ぼす。 (3)母材の酸化被膜成長時に、FeやCrと酸化還元
反応して金属として付着し、水素注入環境下で水素を酸
化する触媒として働き、腐食電位を低下させることで腐
食抑制効果を及ぼす。(1)のケースとしてAl,Z
r,Tiが挙げられる(図5の右上)。付着処理により
付着したこれらの金属酸化物は、溶解,再析出すること
により母材の表面に各々Al23,ZrO2,TiO2
酸化膜を作ると考えられる。これらの酸化物により表面
が覆われることで母材への酸素の拡散が抑制され、母材
の腐食が抑制されると考えられる。(2)のケースとし
てZnが挙げられる(図5の左下)。付着処理により付
着したZnはZnイオンとして溶解し、母材の腐食によ
り生じたFeイオンやCrイオンと化学反応してZnF
24やZnCr24などの酸化物を生成して析出する
と考えられる。これらの化合物により表面が覆われるこ
とで母材への酸素の拡散が抑制され、母材の腐食が抑制
されると考えられる。(3)のケースとしてPt,R
h,Pdが挙げられる(図5の右下)。付着処理により
付着したPt,Rh,PdはPtイオン,Rhイオン,
Pdイオンとして溶解し、母材の腐食により生じたFe
イオンやCrイオンと酸化還元反応して各々、Pt,R
h,Pd金属として再析出すると考えられる。これらの
金属は、水素注入環境下、特にH2/O2のモル比が2以
上の環境で、腐食電位を大きく低下させることが知られ
ている。腐食電位の低下に伴い母材表面は腐食しにくく
なると考えられる。
After the adhesion treatment, it is considered that the metal and the metal oxide exerting the corrosion inhibitory effect when exposed to high-temperature and high-pressure water upon starting the plant are dissolved and reprecipitated.
Metals and metal oxides having a corrosion inhibiting effect are considered to exert a corrosion inhibiting effect on the base material in the following three types. (1) A dense oxide film is formed only with the metal or metal oxide to exert a corrosion inhibiting effect. (2) During the growth of the oxide film on the base material, a fine oxide film is formed by a chemical reaction with Fe or Cr to exert a corrosion inhibiting effect. (3) During the growth of the oxide film on the base material, it undergoes an oxidation-reduction reaction with Fe or Cr and adheres as a metal, acts as a catalyst for oxidizing hydrogen under a hydrogen injection environment, and exerts a corrosion inhibiting effect by lowering the corrosion potential. . Al, Z as the case of (1)
r and Ti (upper right in FIG. 5). It is considered that these metal oxides deposited by the deposition process are dissolved and redeposited to form oxide films of Al 2 O 3 , ZrO 2 , and TiO 2 on the surface of the base material, respectively. It is considered that the diffusion of oxygen into the base material is suppressed by covering the surface with these oxides, and the corrosion of the base material is suppressed. The case (2) includes Zn (lower left of FIG. 5). Zn deposited by the deposition process dissolves as Zn ions, and chemically reacts with Fe ions and Cr ions generated by corrosion of the base material to form ZnF.
It is considered that oxides such as e 2 O 4 and ZnCr 2 O 4 are generated and deposited. It is considered that diffusion of oxygen to the base material is suppressed by covering the surface with these compounds, and corrosion of the base material is suppressed. Pt, R as case (3)
h and Pd (lower right of FIG. 5). Pt, Rh, and Pd deposited by the deposition process are Pt ions, Rh ions,
Fe dissolved as Pd ions and produced by corrosion of the base material
Pt, R
It is considered that they are reprecipitated as h and Pd metals. It is known that these metals greatly reduce the corrosion potential in a hydrogen implantation environment, particularly in an environment where the molar ratio of H 2 / O 2 is 2 or more. It is considered that the base material surface is less likely to corrode as the corrosion potential decreases.

【0043】炉水中の放射性の金属イオンは母材の進行
に伴い付着するので、以上により母材の腐食が抑制され
ると、放射性物質の付着量は抑制されると考えられる。
Since the radioactive metal ions in the reactor water adhere with the progress of the base material, it is considered that when the corrosion of the base material is suppressed as described above, the amount of the radioactive substance attached is suppressed.

【0044】付着処理後、LWRプラントを再起動し、
高温高圧水に曝すと、付着した放射性物質の付着を抑制
する効果のある金属又は金属酸化物(本実施例ではZn
を使用している)が溶解し、再析出,フェライト化反
応,酸化還元反応などにより、付着処理を施した原子炉
炉内構造物及び配管の表面を覆い、酸化皮膜の成長を抑
制し、放射能蓄積を抑制する。 (実施例2)本実施例は、Feのシュウ酸錯体を分解さ
せながら添加することにより付着処理する例である。図
6に本実施例で用いる付着処理装置80を示す。付着処
理装置80は、付着処理装置1と、Feのシュウ酸錯体
注入装置30をバルブ9aと有機物化合物分解装置10
の間の配管に接続した点で異なる構成を有する。それ以
外の箇所は付着処理装置80と同じである。本実施例に
おける装置の構成は、付着処理装置80を図4に示した
付着処理装置1と同様に、沸騰水型原子炉の再循環配管
108、及び再循環ポンプ105を対象部位として、接
続点X1及びX2を介して対象部位と接続する。沸騰水
型原子炉の各部の構成は実施例2と同様である。実施例
2と同様に化学除染を行った後、以下の手順で付着処理
装置80の運転を行う。 (3−1)給廃水バルブ7から系統に水を給水する。 (3−2)バルブ4a,4b,9a,9b,33,4
3,53,23を閉、バルブ6,バルブ8を開にして循
環ポンプ3で系統水を循環させ、加熱冷却器16で系統
水を所定の温度まで昇温する。 (3−3)系統水の温度が90℃に達したら、バルブ9
a,9bを開き流量調整バルブ8で流量を調整して、有
機化合物分解装置10に系統水を通水する。 (3−4)Feのシュウ酸錯体注入装置30において、
バルブ33を開き、薬液注入ポンプ32を起動して、F
eのシュウ酸錯体を系統に添加し、Feのシュウ酸錯体
の所定量を系統に添加開始する。また、H22注入装置
20のバルブ23を開き、H22注入ポンプ22を起動
してH22を添加してシュウ酸を分解する。同様に、放
射性物質付着抑制試薬注入装置50から放射性物質付着
抑制試薬であるZnを系統に添加する。 (3−5)水質測定装置15及び給廃水バルブ7からの
系統水のサンプリングにより、系統水の水質を分析す
る。これにより、シュウ酸の付着状況を判断する。ま
た、pHが5.5 以上とならない範囲で、pH調整剤注
入装置40からpH調整剤であるKOHを注入し系統水
のpHを調整する。 (3−6)各試薬の添加が終わったら、各試薬の注入ポ
ンプを止め、各バルブを閉にする。 (3−7)加熱冷却器16で系統水を常温(30℃程
度)に冷却する。 (3−8)冷却終了後、バルブ4a,4bを開き、バル
ブ6を閉じて、水質浄化装置5に系統水を通水して、廃
水ができる不純物濃度レベルまで、系統水を浄化する。
シュウ酸濃度は検出限界以下まで浄化する。 (3−9)浄化終了後、給廃水バルブ7から系統水を廃
水する。
After the adhesion treatment, the LWR plant is restarted,
When exposed to high-temperature and high-pressure water, a metal or metal oxide (in this embodiment, Zn or
Dissolves and re-deposits, ferrite-forms, redox-reacts, etc., covers the surfaces of the reactor internal structures and pipes that have been subjected to adhesion treatment, suppresses the growth of oxide films, and emits radiation. Suppress the capacity accumulation. (Embodiment 2) The present embodiment is an example in which an oxalic acid complex of Fe is added while being decomposed to perform an adhesion treatment. FIG. 6 shows an adhesion processing apparatus 80 used in this embodiment. The adhesion treatment device 80 includes the adhesion treatment device 1, the oxalic acid complex injection device 30 for Fe, the valve 9a and the organic compound decomposition device 10
It has a different configuration in that it is connected to the piping between Other parts are the same as those of the adhesion processing apparatus 80. The configuration of the apparatus in the present embodiment is similar to that of the adhesion processing apparatus 1 shown in FIG. 4 except that the adhesion processing apparatus 80 is connected to the recirculation pipe 108 of the boiling water reactor and the recirculation pump 105 as connection points. Connect to the target site via X1 and X2. The configuration of each part of the boiling water reactor is the same as that of the second embodiment. After performing chemical decontamination in the same manner as in Example 2, the adhesion treatment device 80 is operated in the following procedure. (3-1) Water is supplied to the system from the supply / wastewater valve 7. (3-2) Valves 4a, 4b, 9a, 9b, 33, 4
The system water is circulated by the circulation pump 3 by closing the valves 3, 53 and 23, the valves 6 and 8 are opened, and the system water is heated to a predetermined temperature by the heating / cooling device 16. (3-3) When the temperature of the system water reaches 90 ° C., the valve 9
a, 9b are opened, and the flow rate is adjusted by the flow rate adjusting valve 8, so that the system water is passed through the organic compound decomposing device 10. (3-4) In the Fe oxalate complex injection device 30,
Open the valve 33, start the chemical injection pump 32, and
The oxalic acid complex of e is added to the system, and a predetermined amount of the oxalic acid complex of Fe is added to the system. Further, the valve 23 of the H 2 O 2 injection device 20 is opened, the H 2 O 2 injection pump 22 is started, and H 2 O 2 is added to decompose oxalic acid. Similarly, Zn as a radioactive substance adhesion suppressing reagent is added to the system from the radioactive substance adhesion suppressing reagent injection device 50. (3-5) The quality of the system water is analyzed by sampling the system water from the water quality measuring device 15 and the supply / drainage valve 7. Thus, the state of attachment of oxalic acid is determined. In addition, KOH as a pH adjuster is injected from the pH adjuster injection device 40 to adjust the pH of the system water within a range where the pH does not become 5.5 or more. (3-6) When the addition of each reagent is completed, the injection pump for each reagent is stopped, and each valve is closed. (3-7) The system water is cooled to a normal temperature (about 30 ° C.) by the heating / cooling device 16. (3-8) After cooling is completed, the valves 4a and 4b are opened, the valve 6 is closed, and the system water is passed through the water purification device 5 to purify the system water to an impurity concentration level at which wastewater can be generated.
Purify the oxalic acid concentration below the detection limit. (3-9) After the purification is completed, the system water is drained from the supply and waste water valve 7.

【0045】実施例1は、予め、各試薬を系統に添加
し、均一に混合した後に分解を行うことにより付着処理
する例であるのに対し、本実施例は、逐次、腐食低減効
果を及ぼす金属イオンあるい腐食低減効果を及ぼす金属
を含むコロイドを共沈させるために添加するFeのシュ
ウ酸錯体を分解させながら添加することにより付着処理
する例である。特に放射性物質の付着を抑制する効果又
は腐食低減効果のある、金属又は金属酸化物の付着量に
応じて付着処理する場合、本実施例によれば、所定の付
着量に達した時点で各試薬の添加を停止することができ
るので、実施例1の場合と比較して添加する試薬の量を
低減することができる。 (実施例3)本実施例は、除染を行った後の原子力プラ
ント運転期間中に、放射性物質付着抑制試薬を原子炉水
中に添加する実施例である。装置構成は、図7に示すよ
うに、沸騰水型原子炉の給水系配管に放射性物質付着抑
制試薬注入装置50を接続し、再循環配管108に原子
炉水をサンプリングするためのサンプリング弁113を
接続している。放射性物質付着抑制試薬注入装置50は
再循環配管108に接続してもよい。また、サンプリン
グ弁113は原子炉水浄化系配管の浄化装置(図示せ
ず)の上流に接続してもよい。サンプリング弁からサン
プリングしたZnイオンまたはコロイドの濃度が所定の
濃度となるように放射性物質付着抑制試薬注入装置50
からZnイオンまたはZnコロイドの注入量を調整す
る。図8にこの条件でZnイオンの放射性物質付着抑制
効果を計測した実験結果を示す。これは原子炉水を模擬
した水質(溶存酸素(DO)200ppb 、温度288
℃)に調整した高温高圧水循環ループにCo−58イオ
ンを一定濃度となるように添加し、更にZnイオンを2
ppb 添加した場合と添加しない場合の2種類の条件とし
て、その中にステンレス鋼を1000時間浸漬した場合
のCo−58付着量を比較したものである。付着量はZ
nイオンを2ppb 添加するだけで添加しない場合の約1
/2にまで減少することがわかる。従って、Zn添加量
を原子炉水Zn濃度が2ppb となるように調整すること
で、放射能付着を抑制することができる。
Example 1 is an example in which each reagent is added to a system in advance, mixed uniformly, and then decomposed to perform an adhesion treatment. In contrast, this example sequentially provides a corrosion reducing effect. This is an example in which the oxalic acid complex of Fe, which is added for coprecipitating a metal ion or a colloid containing a metal having a corrosion reducing effect, is added while being decomposed, thereby performing an adhesion treatment. In particular, according to the present embodiment, each reagent has an effect of suppressing the adhesion of radioactive substances or having an effect of reducing corrosion, according to the present embodiment, when each of the reagents reaches a predetermined amount. Can be stopped, so that the amount of reagent to be added can be reduced as compared with the case of Example 1. (Embodiment 3) This embodiment is an embodiment in which a reagent for suppressing radioactive substance adhesion is added to reactor water during the operation period of a nuclear power plant after decontamination. As shown in FIG. 7, the apparatus configuration is such that a radioactive substance adhesion suppression reagent injection device 50 is connected to a water supply pipe of a boiling water reactor, and a sampling valve 113 for sampling reactor water is provided to a recirculation pipe 108. Connected. The radioactive substance adhesion suppressing reagent injection device 50 may be connected to the recirculation pipe 108. Further, the sampling valve 113 may be connected upstream of a purification device (not shown) of the reactor water purification system pipe. The apparatus 50 for injecting a radioactive substance adherence suppressing reagent so that the concentration of Zn ion or colloid sampled from the sampling valve becomes a predetermined concentration.
To adjust the injection amount of Zn ions or Zn colloid. FIG. 8 shows the results of an experiment in which the effect of suppressing the adhesion of radioactive substances by Zn ions under these conditions was measured. This is a water quality simulating reactor water (dissolved oxygen (DO) 200 ppb, temperature 288
C), a Co-58 ion is added to the high-temperature and high-pressure water circulation loop adjusted to have a constant concentration, and Zn ion is further added to the solution.
As two types of conditions, with and without ppb addition, the amounts of Co-58 adhered when stainless steel was immersed therein for 1000 hours were compared. The adhesion amount is Z
Approximately 1 when adding only 2 ppb of n ions and not adding
It can be seen that it decreases to / 2. Therefore, by adjusting the amount of Zn added so that the Zn concentration of the reactor water becomes 2 ppb, the deposition of radioactivity can be suppressed.

【0046】以上、述べた各実施例によれば、除染を行
った原子炉炉内構造物表面あるいは配管表面に放射性物
質の付着を抑制する効果又は腐食低減効果のある、金属
又は金属酸化物を付着させることができ、放射性物質の
急速な再付着を抑制でき、保守,点検作業時において
は、作業員の放射線被曝が抑制できる。
According to each of the embodiments described above, a metal or metal oxide having the effect of suppressing the adhesion of radioactive substances or the effect of reducing corrosion to the surface of a reactor internal structure or the surface of a pipe subjected to decontamination. Can be suppressed, rapid re-attachment of radioactive material can be suppressed, and radiation of workers can be suppressed during maintenance and inspection work.

【0047】また、シュウ酸を除染剤として使用し、そ
のシュウ酸を分解する工程のある化学除染において付着
処理を行う実施例によれば、同じ装置で化学除染と付着
処理ができ、更に化学除染の工程とオーバーラップさせ
ることができる。そのため、オーバーラップさせない場
合に比べ、付着処理に要する時間を短縮する事が出来
る。
According to the embodiment in which oxalic acid is used as a decontaminating agent and the adhesion treatment is performed in the chemical decontamination with the step of decomposing the oxalic acid, the chemical decontamination and the adhesion treatment can be performed by the same apparatus. Furthermore, it can overlap with the step of chemical decontamination. Therefore, the time required for the adhesion process can be reduced as compared with the case where the overlap is not performed.

【0048】放射性物質の付着を抑制する効果又は腐食
低減効果のある、金属又は金属酸化物として挙げた、P
tやRh,Pdなどの貴金属は腐食電位を下げる効果が
あるので、応力腐食割れ(SCC)の抑制に効果を発揮
することが期待できる。
The metal or metal oxide P, which has the effect of suppressing the adhesion of radioactive substances or the effect of reducing corrosion,
Since noble metals such as t, Rh, and Pd have the effect of lowering the corrosion potential, they can be expected to exhibit the effect of suppressing stress corrosion cracking (SCC).

【0049】除染を行った以降の運転中に放射性物質の
付着を抑制する効果又は腐食低減効果のある、金属イオ
ン又は金属コロイドを原子炉水中に添加することで、放
射性物質の急速な再付着を抑制できる。更に、保守,点
検作業時においては、作業員の放射線被曝が抑制でき
る。
By adding metal ions or metal colloids to the reactor water, which have the effect of suppressing the adhesion of radioactive substances or the effect of reducing corrosion during operation after decontamination, rapid re-adhesion of radioactive substances Can be suppressed. Further, during maintenance and inspection work, radiation exposure of workers can be suppressed.

【0050】またZnイオンまたはZnコロイドの添加
量が少ないので、試薬の費用を低減でき且つ、原子炉水
浄化系のイオン交換樹脂への負荷を小さくすることが出
来る。
Since the amount of Zn ion or Zn colloid added is small, the cost of the reagent can be reduced and the load on the ion exchange resin of the reactor water purification system can be reduced.

【0051】[0051]

【発明の効果】本発明によれば、除染を行った原子炉炉
内構造物及び配管表面への放射性物質の付着を抑制する
水質制御方法を提供することが出来る。
According to the present invention, it is possible to provide a water quality control method for suppressing the adhesion of radioactive substances to the reactor internals and the piping surface after decontamination.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に用いる付着処理装置を表わす図。FIG. 1 is a diagram illustrating an adhesion processing apparatus used in a first embodiment.

【図2】Feのシュウ酸錯体溶液のシュウ酸を触媒分解
させたときのFeの析出の有無についてのFe濃度と、
pHの関係を表わす図。
FIG. 2 shows the Fe concentration regarding the presence or absence of Fe precipitation when oxalic acid in an oxalic acid complex solution of Fe is catalytically decomposed, and
The figure showing the relationship of pH.

【図3】Feのシュウ酸錯体溶液のシュウ酸を触媒分解
させたときのFeの析出の有無についてのFe濃度と、
シュウ酸濃度の関係を表わす図。
FIG. 3 shows the Fe concentration regarding the presence or absence of Fe precipitation when oxalic acid in an oxalic acid complex solution of Fe is catalytically decomposed, and
The figure showing the relationship of oxalic acid concentration.

【図4】実施例1を表わす図。FIG. 4 is a diagram showing a first embodiment.

【図5】付着処理を施した後の付着物の挙動を表わす
図。
FIG. 5 is a view showing the behavior of an attached matter after applying an attaching treatment.

【図6】実施例2を表わす図。FIG. 6 is a diagram showing a second embodiment.

【図7】実施例3を表わす図。FIG. 7 is a diagram showing a third embodiment.

【図8】高温高圧水でのステンレス鋼へのCo−58付
着のZn注入効果を表わす図。
FIG. 8 is a graph showing the Zn injection effect of Co-58 adhesion to stainless steel in high-temperature, high-pressure water.

【図9】実験に用いた付着処理装置を表す図。FIG. 9 is a diagram illustrating an adhesion processing apparatus used in an experiment.

【符号の説明】[Explanation of symbols]

1…付着処理装置、2…テフロン(登録商標)管、3…
循環ポンプ、4a…配管バルブ、4b,6,9a,9
b,18,19,23,33,43,53,106,1
07,110,111,112,114,115…バル
ブ、5,15…水質浄化装置、7…給廃水バルブ、8…
流量調整バルブ、10…有機化合物分解装置、11…ベ
ント、12,13,14…配管、16…加熱冷却器、1
7…サージタンク、20…H22注入装置、21…H2
2タンク、22…H22注入ポンプ、30…Feのシ
ュウ酸錯体注入装置、31…シュウ酸錯体溶液を入れた
タンク、32,42,52…薬液注入ポンプ、40…p
H調整剤注入装置、41…pH調整剤を入れたタンク、
50…放射性物質付着処理装置、51…放射性物質付着
抑制試薬を入れたタンク、101…圧力容器、102…
主蒸気配管、103…給水配管、104…原子核燃料、
105…再循環ポンプ、108…再循環配管、109…
ジェットポンプ、113…サンプリング弁。
DESCRIPTION OF SYMBOLS 1 ... Adhesion processing apparatus, 2 ... Teflon (registered trademark) tube, 3 ...
Circulation pump, 4a ... piping valve, 4b, 6, 9a, 9
b, 18, 19, 23, 33, 43, 53, 106, 1
07, 110, 111, 112, 114, 115 ... valve, 5, 15 ... water purification device, 7 ... supply and waste water valve, 8 ...
Flow control valve, 10: Organic compound decomposer, 11: Vent, 12, 13, 14: Piping, 16: Heating / cooling device, 1
7 ... surge tank, 20 ... H 2 O 2 injection apparatus, 21 ... H 2
O 2 tank, 22 ... H 2 O 2 injection pump, 30 ... oxalate complexes implanter of Fe, 31 ... oxalate complex solution tank containing, 32, 42, 52 ... liquid injection pump, 40 ... p
H adjusting agent injection device, 41: tank containing a pH adjusting agent,
50: radioactive substance adhesion treatment device, 51: tank containing a radioactive substance adhesion suppressing reagent, 101: pressure vessel, 102:
Main steam piping, 103: water supply piping, 104: nuclear fuel,
105 ... recirculation pump, 108 ... recirculation piping, 109 ...
Jet pump, 113 ... sampling valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 細川 秀幸 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 植竹 直人 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 穴沢 和美 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideyuki Hosokawa 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Power and Electricity Research Laboratory, Hitachi, Ltd. (72) Inventor Naoto Uetake Omika-cho, Hitachi City, Ibaraki Prefecture 7-2-1, Hitachi, Ltd. Power and Electricity Research Laboratory (72) Inventor Kazumi Anazawa 3-1-1, Sakaimachi, Hitachi, Ibaraki Pref. Hitachi, Ltd. Nuclear Power Division

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】核加熱停止中に原子炉炉内構造物の炉水に
接している面若しくは配管の炉水に接している面の少な
くとも何れかに付着した放射性物質の除去を実施した後
でその除去を実施した後の定格出力運転を行う前の原子
力プラントの原子炉水に、前記原子炉炉内構造物への放
射性物質の付着抑制効果及び原子炉構造物の腐食低減効
果のうち少なくとも何れかの効果をもつ金属の有機化合
物錯体及び前記金属の酸化物の有機化合物錯体のうち少
なくとも何れかを添加した後、 前記有機化合物錯体を分解することを特徴とする水質制
御方法。
1. After the removal of radioactive substances adhered to at least one of the surface of reactor internals in contact with reactor water and the surface of pipes in contact with reactor water while nuclear heating is stopped. At least one of the effect of suppressing the adhesion of radioactive substances to the reactor internal structure and the effect of reducing the corrosion of the reactor structure is added to the reactor water of the nuclear power plant before performing the rated output operation after the removal. A water quality control method comprising decomposing the organic compound complex after adding at least one of an organic compound complex of a metal having the above effect and an organic compound complex of an oxide of the metal.
【請求項2】核加熱停止中に原子炉炉内構造物の炉水に
接している面若しくは配管の炉水に接している面の少な
くとも何れかに付着した放射性物質の除去を実施した後
でその除去を実施した後の定格出力運転を行う前の原子
力プラントの原子炉水に、原子炉構造物への放射性物質
の付着抑制効果及び原子炉構造物の腐食低減効果のうち
少なくとも何れかの効果をもつ金属のイオン又はコロイ
ドのうち少なくとも何れかと、鉄の有機物錯体を注入
し、前記鉄の有機化合物錯体を分解することを特徴とす
る水質制御方法。
2. After the removal of radioactive substances adhered to at least one of the surface of reactor internals in contact with reactor water and the surface of pipes in contact with reactor water while nuclear heating is stopped. After the removal, at least one of the effect of suppressing the adhesion of radioactive materials to the reactor structure and the effect of reducing the corrosion of the reactor structure in the reactor water of the nuclear power plant before the rated output operation is performed A method for controlling water quality, comprising injecting at least one of a metal ion or a colloid having an organic compound of iron and an organic compound of iron to decompose the organic compound complex of iron.
【請求項3】請求項2において、前記有機物錯体を分解
することによって、鉄を水酸化鉄又は鉄酸化物として析
出させ、前記金属のイオン又はコロイドと共沈させて、
前記金属もしくは前記金属の酸化物を前記原子炉構造物
に付着させることを特徴とする水質制御方法。
3. The method according to claim 2, wherein iron is precipitated as iron hydroxide or iron oxide by decomposing said organic complex, and coprecipitated with ions or colloids of said metal.
A method for controlling water quality, comprising attaching the metal or an oxide of the metal to the nuclear reactor structure.
【請求項4】請求項2または3において、鉄の有機化合
物錯体がシュウ酸錯体であることを特徴とする水質制御
方法。
4. The method for controlling water quality according to claim 2, wherein the organic compound complex of iron is an oxalic acid complex.
【請求項5】請求項4において、前記原子炉水の前記シ
ュウ酸錯体の濃度が、鉄濃度として0.5ppm以上100
ppm 以下であることを特徴とする水質制御方法。
5. The method according to claim 4, wherein the concentration of the oxalic acid complex in the reactor water is not less than 0.5 ppm and not more than 100 ppm as iron concentration.
Water quality control method characterized by being below ppm.
【請求項6】請求項2乃至5の何れかにおいて、Na2
CO3,KOH及びNaOHのうち少なくとも何れか
を、前記原子炉水のpHが5.5 以下の範囲で前記原子
炉水に添加することを特徴とする水質制御方法。
6. The method according to claim 2, wherein Na 2
A water quality control method, wherein at least one of CO 3 , KOH and NaOH is added to the reactor water in a range where the pH of the reactor water is 5.5 or less.
【請求項7】請求項1乃至6のいずれかにおいて、原子
炉水に添加した有機化合物錯体を、紫外線照射又は不均
一触媒への通水によって分解することを特徴とする水質
制御方法。
7. A method for controlling water quality according to claim 1, wherein the organic compound complex added to the reactor water is decomposed by irradiating ultraviolet rays or passing water through a heterogeneous catalyst.
【請求項8】請求項1乃至7のいずれかにおいて、前記
原子炉水に過酸化水素を添加して有機化合物を分解する
ことを特徴とする水質制御方法。
8. The water quality control method according to claim 1, wherein hydrogen peroxide is added to the reactor water to decompose an organic compound.
【請求項9】請求項1から請求項8において、前記放射
性物質の除去の方法が、シュウ酸を除染剤として使用し
前記シュウ酸を分解する工程を含むものであり、前記行
程と前記有機化合物錯体を分解する行程とを少なくとも
一部重複させて実施する行程を含むことを特徴とする水
質制御方法。
9. The method according to claim 1, wherein the method for removing a radioactive substance includes a step of decomposing the oxalic acid by using oxalic acid as a decontaminant, and A method for controlling water quality, comprising a step of performing at least partially overlapping a step of decomposing a compound complex.
【請求項10】請求項9において、前記重複させて実施
する行程を、前記原子炉水のシュウ酸濃度が100ppm
以下若しくは溶液のpHが4以上の少なくとも何れかの
条件を満たす時点で実施することを特徴とする水質制御
方法。
10. The reactor according to claim 9, wherein the step of performing the overlapping is performed when the oxalic acid concentration of the reactor water is 100 ppm.
A method for controlling water quality, wherein the method is performed at the time when the pH of the solution satisfies at least one of the conditions of 4 or more.
【請求項11】請求項1から請求項10において、前記
原子炉構造物への放射性物質の付着抑制効果及び原子炉
構造物の腐食低減効果のうち少なくとも何れかの効果を
もつ金属は、Pt,Rh,Pd,Zr,Ti,Al又は
Znの少なくとも1種類の金属であることを特徴とする
水質制御方法。
11. The method according to claim 1, wherein the metal having at least one of the effect of suppressing the adhesion of radioactive materials to the reactor structure and the effect of reducing corrosion of the reactor structure is Pt, A method for controlling water quality, comprising at least one metal selected from the group consisting of Rh, Pd, Zr, Ti, Al and Zn.
【請求項12】核加熱停止中に原子炉炉内構造物の炉水
に接している面若しくは配管の炉水に接している面の少
なくとも何れかに付着した放射性物質の除去を実施した
後でその除去を実施した次の運転を行っている原子力プ
ラントの原子炉水に、原子炉構造物への放射性物質の付
着抑制効果及び原子炉構造物の腐食低減効果のうち少な
くとも何れかの効果をもつ金属のイオン又はコロイドの
うち少なくとも何れかを添加することを特徴とする水質
制御方法。
12. After the removal of radioactive material attached to at least one of the surface of the reactor internal structure that is in contact with reactor water and the surface of the pipe that is in contact with reactor water while nuclear heating is stopped. It has at least one of the effect of suppressing the adhesion of radioactive materials to the reactor structure and the effect of reducing the corrosion of the reactor structure in the reactor water of the nuclear power plant that is performing the operation following the removal. A method for controlling water quality, comprising adding at least one of a metal ion and a colloid.
【請求項13】請求項12において、前記金属は、P
t,Rh,Pd,Zr,Ti,Al又はZnの少なくと
も1種類の金属であることを特徴とする水質制御方法。
13. The method according to claim 12, wherein said metal is P
A water quality control method comprising at least one metal selected from the group consisting of t, Rh, Pd, Zr, Ti, Al and Zn.
【請求項14】請求項12または13において、原子炉
水中のZn濃度が0.1ppb以上2ppb以下であることを
特徴とする水質制御方法。
14. The water quality control method according to claim 12, wherein the Zn concentration in the reactor water is 0.1 ppb or more and 2 ppb or less.
JP2000332121A 2000-10-26 2000-10-26 Water quality control method Expired - Fee Related JP3587161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000332121A JP3587161B2 (en) 2000-10-26 2000-10-26 Water quality control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000332121A JP3587161B2 (en) 2000-10-26 2000-10-26 Water quality control method

Publications (2)

Publication Number Publication Date
JP2002131473A true JP2002131473A (en) 2002-05-09
JP3587161B2 JP3587161B2 (en) 2004-11-10

Family

ID=18808364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000332121A Expired - Fee Related JP3587161B2 (en) 2000-10-26 2000-10-26 Water quality control method

Country Status (1)

Country Link
JP (1) JP3587161B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192745A (en) * 2006-01-20 2007-08-02 Hitachi Ltd Method and device for recycling agent forming ferrite coating film
JP2008209418A (en) * 2008-04-23 2008-09-11 Hitachi-Ge Nuclear Energy Ltd Adhesion control method of radionuclide on component member of nuclear power plant and film forming method
WO2009025330A1 (en) * 2007-08-23 2009-02-26 Kabushiki Kaisha Toshiba Method of inhibiting adhesion of radioactive substance and apparatus inhibited from suffering adhesion thereof
WO2010053079A1 (en) * 2008-11-04 2010-05-14 株式会社東芝 Method for reducing radiation exposure
JP2010127788A (en) * 2008-11-28 2010-06-10 Hitachi-Ge Nuclear Energy Ltd Ferrite film formation method on surface of plant component, ferrite film formation device, and quartz oscillator electrode device
US7844024B2 (en) 2004-07-22 2010-11-30 Hitachi-Ge Nuclear Energy, Ltd. Suppression method of radionuclide deposition on reactor component of nuclear power plant and ferrite film formation apparatus
WO2010137693A1 (en) * 2009-05-29 2010-12-02 株式会社東芝 Method and apparatus for suppressing adhesion of radioactive substance
EP2757177A1 (en) * 2011-09-15 2014-07-23 Kabushiki Kaisha Toshiba Corrosion inhibitor injection method
JP2015158486A (en) * 2014-01-27 2015-09-03 日立Geニュークリア・エナジー株式会社 Method for adhering noble metal to structural member of nuclear power plant
JP2017020786A (en) * 2015-07-07 2017-01-26 日立Geニュークリア・エナジー株式会社 Method for noble metal adhesion to structural member of atomic power plant

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8457270B2 (en) 2004-07-22 2013-06-04 Hitachi-Ge Nuclear Energy, Ltd. Suppression method of radionuclide deposition on reactor component of nuclear power plant
US7889828B2 (en) 2004-07-22 2011-02-15 Hitachi-Ge Nuclear Energy, Ltd. Suppression method of radionuclide deposition on reactor component of nuclear power plant and ferrite film formation apparatus
US7844024B2 (en) 2004-07-22 2010-11-30 Hitachi-Ge Nuclear Energy, Ltd. Suppression method of radionuclide deposition on reactor component of nuclear power plant and ferrite film formation apparatus
JP4607775B2 (en) * 2006-01-20 2011-01-05 日立Geニュークリア・エナジー株式会社 Method and apparatus for regenerating drug for forming ferrite film
JP2007192745A (en) * 2006-01-20 2007-08-02 Hitachi Ltd Method and device for recycling agent forming ferrite coating film
WO2009025330A1 (en) * 2007-08-23 2009-02-26 Kabushiki Kaisha Toshiba Method of inhibiting adhesion of radioactive substance and apparatus inhibited from suffering adhesion thereof
EP2180483A1 (en) * 2007-08-23 2010-04-28 Kabushiki Kaisha Toshiba Method of inhibiting adhesion of radioactive substance and apparatus inhibited from suffering adhesion thereof
EP2180483A4 (en) * 2007-08-23 2012-07-25 Toshiba Kk Method of inhibiting adhesion of radioactive substance and apparatus inhibited from suffering adhesion thereof
JPWO2009025330A1 (en) * 2007-08-23 2010-11-25 株式会社東芝 Method for suppressing adhesion of radioactive substance and apparatus for suppressing adhesion
JP4567765B2 (en) * 2008-04-23 2010-10-20 日立Geニュークリア・エナジー株式会社 Radionuclide adhesion suppression method and film forming apparatus for nuclear plant components
JP2008209418A (en) * 2008-04-23 2008-09-11 Hitachi-Ge Nuclear Energy Ltd Adhesion control method of radionuclide on component member of nuclear power plant and film forming method
JP5106640B2 (en) * 2008-11-04 2012-12-26 株式会社東芝 Radiation exposure reduction method
US8798225B2 (en) 2008-11-04 2014-08-05 Kabushiki Kaisha Toshiba Radiation exposure reduction method
WO2010053079A1 (en) * 2008-11-04 2010-05-14 株式会社東芝 Method for reducing radiation exposure
JP2010127788A (en) * 2008-11-28 2010-06-10 Hitachi-Ge Nuclear Energy Ltd Ferrite film formation method on surface of plant component, ferrite film formation device, and quartz oscillator electrode device
US9093185B2 (en) 2009-05-29 2015-07-28 Kabushiki Kaisha Toshiba Method of and system for suppressing deposition of radioactive substance
CN102449705A (en) * 2009-05-29 2012-05-09 株式会社东芝 Method and apparatus for suppressing adhesion of radioactive substance
KR101278231B1 (en) 2009-05-29 2013-06-24 가부시끼가이샤 도시바 Method and system for suppressing adhesion of radioactive substance
JP2011007786A (en) * 2009-05-29 2011-01-13 Toshiba Corp Method and device for suppressing adhesion of radioactive substance
EP2437270A4 (en) * 2009-05-29 2015-06-24 Toshiba Kk Method and apparatus for suppressing adhesion of radioactive substance
WO2010137693A1 (en) * 2009-05-29 2010-12-02 株式会社東芝 Method and apparatus for suppressing adhesion of radioactive substance
EP2757177A1 (en) * 2011-09-15 2014-07-23 Kabushiki Kaisha Toshiba Corrosion inhibitor injection method
EP2757177A4 (en) * 2011-09-15 2015-04-29 Toshiba Kk Corrosion inhibitor injection method
US9410252B2 (en) 2011-09-15 2016-08-09 Kabushiki Kaisha Toshiba Corrosion inhibitor injecting method
JP2015158486A (en) * 2014-01-27 2015-09-03 日立Geニュークリア・エナジー株式会社 Method for adhering noble metal to structural member of nuclear power plant
JP2017020786A (en) * 2015-07-07 2017-01-26 日立Geニュークリア・エナジー株式会社 Method for noble metal adhesion to structural member of atomic power plant

Also Published As

Publication number Publication date
JP3587161B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
JP6034149B2 (en) Method of attaching noble metal to components of nuclear power plant
US20060067455A1 (en) Suppression method of radionuclide deposition on reactor component of nuclear power plant and ferrite film formation apparatus
US6549603B1 (en) Method of chemical decontamination
JP3587161B2 (en) Water quality control method
JP6462378B2 (en) Method for attaching noble metals to structural members of nuclear power plants
JP6118278B2 (en) Method for attaching noble metals to structural members of nuclear power plants
JP2018054538A (en) Method for depositing precious metal on carbon steel member in nuclear power plant and method for preventing attachment of radioactive nuclide to carbon steel member in nuclear power plant
JP6552892B2 (en) Method for attaching noble metals to structural members of nuclear power plants
WO2019176376A1 (en) Method of attaching noble metal to carbon steel member of nuclear power plant and method of suppressing attachment of radionuclides to carbon steel members of nuclear power plant
JP6751044B2 (en) Method for depositing precious metal on carbon steel member of nuclear power plant, and method for suppressing deposition of radionuclide on carbon steel member of nuclear power plant
TW200849279A (en) Methods for operating and methods for reducing post-shutdown radiation levels of nuclear reactors
JP7344132B2 (en) Method of adhering precious metals to carbon steel members of a nuclear power plant and method of suppressing adhesion of radionuclides to carbon steel members of a nuclear power plant
JP2011111661A (en) Method for forming ferrite film on component of nuclear power, method for suppressing progress of stress corrosion cracking, and apparatus for forming ferrite film
JP6322493B2 (en) Method for suppressing radionuclide adhesion to carbon steel components in nuclear power plants
JP6751010B2 (en) Method for forming radioactive substance adhesion suppression film
JP2017138139A (en) Chemical decontamination method, chemical decontamination device, and nuclear power plant using them
JP2002071883A (en) Surface treatment method of structural material for nuclear power plant, and operating method of nuclear power plant
JP7104616B2 (en) Method of suppressing adhesion of radionuclides to carbon steel components of nuclear power plants
JP7475171B2 (en) Chemical decontamination method and chemical decontamination apparatus
JP7001534B2 (en) Method of suppressing adhesion of radionuclides to structural members of nuclear power plants
JP6894862B2 (en) Method for suppressing radionuclide adhesion to carbon steel components of nuclear power plants
WO2019102768A1 (en) Method for adhering noble metal to carbon steel member of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel member of nuclear power plant
WO2001057879A1 (en) Method for mitigating stress corrosion cracking of structural member of atomic reactor plant
JP2003035798A (en) Method for preventing corrosion of reactor
JP2023161666A (en) Chemical decontamination method for carbon steel member of nuclear power plant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees