JP2006250828A - Injection method for effective hydrogen in nuclear power plant - Google Patents

Injection method for effective hydrogen in nuclear power plant Download PDF

Info

Publication number
JP2006250828A
JP2006250828A JP2005070083A JP2005070083A JP2006250828A JP 2006250828 A JP2006250828 A JP 2006250828A JP 2005070083 A JP2005070083 A JP 2005070083A JP 2005070083 A JP2005070083 A JP 2005070083A JP 2006250828 A JP2006250828 A JP 2006250828A
Authority
JP
Japan
Prior art keywords
hydrogen
reactor
injection
water
ppb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005070083A
Other languages
Japanese (ja)
Other versions
JP4518984B2 (en
Inventor
Shinji Ochibe
真治 落部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2005070083A priority Critical patent/JP4518984B2/en
Publication of JP2006250828A publication Critical patent/JP2006250828A/en
Application granted granted Critical
Publication of JP4518984B2 publication Critical patent/JP4518984B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injecting method of hydrogen for preventing quick rise in the dose equivalent rate during hydrogen injection and hydrogen stoppage. <P>SOLUTION: In the injection method of hydrogen in a reactor power plant for injecting hydrogen, in reactor water by way of the water supply system of a reactor 1 of a nuclear power plant, hydrogen is continuously injected for a fixed period and terminated repeatedly during the operation of the nuclear power plant and hydrogen concentration is gradually varied at the hydrogen injection initiation and during termination. Since chrome-oxide accumulated in the piping system can be made to properly elude in reactor water, chrome-oxide accumulated in the piping system is extruded in large amounts during regular inspection, without forming irregularities of the inside of the piping system. Also, since water quality environment of reactor water can be varied slowly from oxidizing atmosphere to reducing atmosphere or from reducing atmosphere to oxidizing atmosphere, it is unlikely that the radioactivity concentration rise quickly due to the quick change of water quality environment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、原子力発電プラントの水素の注入方法に関し、特に、沸騰水型原子炉(BWR)の給水系を介して炉水に水素を注入する原子力発電プラントの水素の注入方法に関するものである。   The present invention relates to a method for injecting hydrogen into a nuclear power plant, and more particularly to a method for injecting hydrogen into a nuclear power plant that injects hydrogen into reactor water via a water supply system of a boiling water reactor (BWR).

今日、我が国は成熟社会を迎え、私たちは豊かな生活を享受している。この生活を支えているのは電気であるが、電気の使用量は、年々増加の傾向にあり、将来においても増大していくことが予想される。この電気は、石油や石炭をはじめとする様々な資源から作り出されているが、資源の少ない我が国ではこれらの資源のほとんどを海外からの輸入に頼っている。その中でウランは、エネルギー効率が高く、かつリサイクルが可能な資源であることからウランを利用した原子力発電は我が国にとって必要不可欠なものである。
そこで、安定したエネルギー供給と美しい地球環境を維持するための原子力発電所の維持管理には現場オペレーターの日々の努力と高度な知識が必要である。
Today, we have a mature society and we enjoy a rich life. Electricity supports this life, but the amount of electricity used is increasing year by year and is expected to increase in the future. This electricity is produced from various resources such as oil and coal, but in Japan with few resources, most of these resources depend on imports from overseas. Among them, uranium is an energy efficient and recyclable resource, so nuclear power generation using uranium is indispensable for Japan.
Therefore, the maintenance and management of nuclear power plants to maintain a stable energy supply and a beautiful global environment require daily efforts and advanced knowledge of field operators.

例えば、原子炉冷却系に使用されるステンレス鋼材の応力腐食割れ対策として導入した水素注入法は、世界的にも試験段階にあった技術を積極的に取り入れたものであり、水素注入に伴う水質の変化を管理する水化学管理技術の確立により、原子炉冷却系の応力腐食割れの発生を確実に防止するとともに定期検査に伴う作業者の被ばく線量を一般の人が自然状態で受けるのと同等量に抑制することができるようになった。   For example, the hydrogen injection method introduced as a measure against stress corrosion cracking of stainless steel used in reactor cooling systems is a technology that actively incorporates technology that was in the test stage worldwide, and the water quality associated with hydrogen injection Establishing water chemistry management technology to manage changes in the reactor ensures the prevention of stress corrosion cracking in the reactor cooling system and is equivalent to receiving the exposure dose of workers during regular inspections in the natural state. The amount can be controlled.

具体的には、炉水の腐食電位、溶存酸素濃度及び溶存水素濃度を測定し、この測定値に応じて沸騰型原子炉の給水系を介して炉水に水素を注入し、炉水の溶存酸素濃度、過酸化水素濃度等を低減させ、ステンレス鋼等からなる一次系構造材料の腐食電位を低下させて、応力腐食割れに対する感受性を低減させるように構成したものが知られている(例えば、特許文献1参照。)。   Specifically, the corrosion potential, dissolved oxygen concentration and dissolved hydrogen concentration of the reactor water are measured, and hydrogen is injected into the reactor water via the boiling water supply system according to the measured values, and the dissolved reactor water is dissolved. It is known that the oxygen concentration, the hydrogen peroxide concentration, etc. are reduced, the corrosion potential of the primary structural material made of stainless steel or the like is lowered, and the sensitivity to stress corrosion cracking is reduced (for example, (See Patent Document 1).

また、他の例として、沸騰水型原子炉底部の腐食電位、又は主蒸気系の線量率を測定し、これらの測定値に応じて沸騰水型原子炉の給水系を介して炉水に水素を注入し、炉水の溶存酸素濃度、過酸化水素濃度等を低減させ、ステンレス鋼等からなる一次系構造材料の腐食電位を低下させ、応力腐食割れに対する感受性を低減させるように構成したものが知られている(例えば、特許文献2参照。)。   As another example, the corrosion potential at the bottom of the boiling water reactor or the dose rate of the main steam system is measured, and hydrogen is added to the reactor water via the feed water system of the boiling water reactor according to these measured values. Is used to reduce the dissolved oxygen concentration, hydrogen peroxide concentration, etc. of the reactor water, reduce the corrosion potential of primary structural materials made of stainless steel, etc., and reduce the susceptibility to stress corrosion cracking. It is known (for example, refer to Patent Document 2).

ところで、上記のような構成の水素の注入方法にあっては、水素の炉水への注入によって沸騰水型原子炉の一次系構造材料の応力腐食割れに対する感受性を低減させることはできる。
しかしながら、一定の期間(約300日)連続して水素を注入しながら原子力発電プラントの連続運転を行っているため、配管系へのクロム酸化物の蓄積量が増加してしまう。
By the way, in the hydrogen injection method having the above-described configuration, the sensitivity to stress corrosion cracking of the primary structural material of the boiling water reactor can be reduced by injection of hydrogen into the reactor water.
However, since the nuclear power plant is continuously operated while injecting hydrogen continuously for a certain period (about 300 days), the amount of chromium oxide accumulated in the piping system increases.

また、原子力発電プラントの連続運転の後に水素の注入を停止した場合においては、炉水の水質環境が還元性雰囲気から酸化性雰囲気に急激に変化することによって配管の内面に蓄積されているクロム酸化物がクロム酸イオンとして炉水中に溶出すること、及び原子炉再循環系(PLR)ポンプの出口側に渦流が発生することによって配管の内面に蓄積されているクロム酸化物が炉水中に大量に吐き出されること等から、配管内面のクロム酸化物層に凹凸が形成されてしまう。   In addition, when hydrogen injection is stopped after continuous operation of the nuclear power plant, the chromium oxidation accumulated on the inner surface of the pipe is caused by a sudden change in the water quality environment of the reactor water from the reducing atmosphere to the oxidizing atmosphere. A large amount of chromium oxide accumulated on the inner surface of the piping is generated in the reactor water due to the leaching of substances in the reactor water as chromate ions and the generation of vortex on the outlet side of the reactor recirculation system (PLR) pump. Since it is discharged, irregularities are formed in the chromium oxide layer on the inner surface of the pipe.

その後、水素の注入を再開した場合においては、炉水の水質環境が酸化性雰囲気から還元性雰囲気に変化するために放射性物質濃度が急激に上昇してしまう。特に、原子炉再循環系(PLR)ポンプの出口側の配管に放射性クラッドが大量に付着してしまい、その部分の線量当量率が上昇していた。
特公昭63−19838号公報 特開平9−222495号公報
Thereafter, when the hydrogen injection is resumed, the water quality environment of the reactor water changes from the oxidizing atmosphere to the reducing atmosphere, so that the radioactive substance concentration rapidly increases. In particular, a large amount of radioactive cladding adhered to the piping on the outlet side of the reactor recirculation system (PLR) pump, and the dose equivalent rate of that portion was increased.
Japanese Patent Publication No. 63-19838 JP-A-9-222495

そこで、発明者らは、原子力発電プラントの運転中に一定期間の水素の連続注入、停止を繰り返し行うとともに水素の注入開始時及び停止時に給水水素濃度を段階的に変化させて、配管系に蓄積されているクロム酸化物を炉水中に適宜に溶出させることにより、原子力発電プラントの定期点検時に配管系に蓄積されているクロム酸化物が急激に吐き出されて配管内面のクロム酸化物層に凹凸が形成されることはなく、また、炉水の水質環境は緩やかに変化するので放射性物質濃度の急激な増加がなく、線量当量率も増加しないという知見を得ている(特願2005−067941参照)。   Therefore, the inventors repeatedly repeatedly inject and stop hydrogen for a certain period during operation of the nuclear power plant, and gradually change the hydrogen concentration in the feed water at the start and stop of hydrogen injection, and accumulate in the piping system. By appropriately eluting the chromium oxide in the reactor water, the chromium oxide accumulated in the piping system during the periodic inspection of the nuclear power plant is abruptly discharged, and the chromium oxide layer on the inner surface of the piping is uneven. It is not formed, and the water quality environment of the reactor water changes slowly, so there is no abrupt increase in the concentration of radioactive material, and the dose equivalent rate is not increased (see Japanese Patent Application No. 2005-067941). .

しかし、まれに図6に示すとおり、水素注入を停止するために給水水素濃度を段階的に0.3〜0.2ppmに減少させたとき、炉水中の導電率が一時的に高くなるという現象が発生し、これに伴い配管系の線量当量率が上昇する可能性が生じるという課題点があった。   However, rarely, as shown in FIG. 6, when the feedwater hydrogen concentration is gradually reduced to 0.3 to 0.2 ppm in order to stop hydrogen injection, the conductivity in the reactor water temporarily increases. As a result, there is a problem that the dose equivalent rate of the piping system may increase.

また、まれに図7に示すとおり、水素注入を再開するために給水水素濃度を段階的に0.2〜0.3ppmに増加させたとき、オフガス貯蔵タンク入口の線量当量率が一時的に高くなるという現象が発生し、警報設定値に近づくときがあるという課題点があった。   In addition, as shown in FIG. 7, when the feedwater hydrogen concentration is gradually increased to 0.2 to 0.3 ppm in order to resume hydrogen injection, the dose equivalent rate at the off-gas storage tank inlet is temporarily high. There is a problem that there is a case where the phenomenon of becoming occurs and there are times when the alarm set value is approached.

そこで、本発明者らは、水素注入時及び水素停止時において、線量当量率を確実に低減させるために種々の試験を行い、課題解決のための検討を行った。   Therefore, the present inventors conducted various tests to reliably reduce the dose equivalent rate at the time of hydrogen injection and at the time of hydrogen stop, and studied to solve the problem.

まず、水素注入停止時に炉水中の導電率が一時的に高くなるという課題については、本発明者らは、炉水中に高濃度で存在し、かつ導電率変化に最も影響をおよぼす元素はクロムであるという知見を得ていることから、今回の導電率の急激な上昇についてもクロムが急激に炉水中に溶出して炉水導電率が上昇したと考え、クロムの炉水中への溶出を抑制する方法について検討した。具体的には、クロムの溶出を抑制する水素注入方法について再検討した。   First, regarding the problem that the electrical conductivity in the reactor water temporarily increases when hydrogen injection is stopped, the present inventors have found that chromium is the element that exists in the reactor water at a high concentration and has the greatest effect on the change in electrical conductivity. As a result of this knowledge, it is thought that chromium was eluted in the reactor water rapidly and the reactor water conductivity was increased even in this rapid increase in conductivity, and the dissolution of chromium into the reactor water was suppressed. The method was examined. Specifically, the hydrogen injection method that suppresses chromium elution was reviewed.

定期点検終了後に原子炉の運転を再開する際は、燃料の濃縮度が高いので余分の中性子を吸収するために制御棒を炉内に挿入し、炉心流量を低めに設定して運転時間に応じてこの炉心流量を増加する。そして、運転時間が経過し、燃焼するウランの量が少なくなってきたら、制御棒をやや引き抜きいて炉心流量を減少させて再度運転時間に応じて炉心流量を増加する。通常、このような制御棒の引き抜き調整作業は、次の定期点検までの間に数回実施する。したがって、定期点検から次の定期点検までの1サイクルを通じて炉心内の炉心流量は変化する。そのため、サイクル初期に水質を測定して給水水素量を決定すると、サイクル中期は炉心流量が増加して炉水中の水素濃度が減少する。そこで、より細かく炉水中の水素量を管理するために、水素濃度に給水流量と炉心流量との商を乗じた実効水素濃度を用いた。実効水素濃度を算出する式を下記に示す。

実効水素濃度=給水水素濃度×(給水流量÷炉心流量) …(式1)
When the operation of the reactor is resumed after the periodic inspection is completed, the control rod is inserted into the reactor to absorb excess neutrons because the fuel concentration is high, and the core flow rate is set low, depending on the operation time. Increase the core flow of the lever. Then, when the operation time has elapsed and the amount of uranium to burn is reduced, the control rod is slightly pulled out to decrease the core flow rate, and the core flow rate is increased again according to the operation time. Normally, such control rod pull-out adjustment work is performed several times before the next periodic inspection. Therefore, the core flow rate in the core changes through one cycle from the periodic inspection to the next periodic inspection. Therefore, if the water quality is determined by measuring the water quality at the beginning of the cycle, the core flow rate increases and the hydrogen concentration in the reactor water decreases in the middle of the cycle. Therefore, in order to more precisely manage the amount of hydrogen in the reactor water, an effective hydrogen concentration obtained by multiplying the hydrogen concentration by the quotient of the feed water flow rate and the core flow rate was used. The formula for calculating the effective hydrogen concentration is shown below.

Effective hydrogen concentration = feed water hydrogen concentration x (feed water flow rate ÷ core flow rate) (Equation 1)

実効水素濃度にて管理する方法は、具体的には、炉心流量が変動する毎に実効水素濃度が一定となるように調整することは現実的ではないことから、炉心内の実効水素濃度の変化量を管理した。   Specifically, the effective hydrogen concentration management method is not realistic to adjust the effective hydrogen concentration to be constant every time the core flow rate fluctuates. The amount was controlled.

図8は本沸騰水型原子炉における給水水素濃度を実効水素濃度に換算した図である。
図8に示すとおり、給水水素濃度を0.10、0.20、0.25、0.30、0.40ppmの5段階としたときの本沸騰型原子炉における実効水素濃度は炉心流量の変化に伴いそれぞれ約11〜14、約22〜28、約28〜35、約34〜42、約45〜56ppbとなり、実効水素濃度値が大きな幅を持っていたことがわかった。以下、実効水素濃度は式1にて算出した値を使用する。
FIG. 8 is a diagram in which the feedwater hydrogen concentration in the boiling water reactor is converted into an effective hydrogen concentration.
As shown in FIG. 8, the effective hydrogen concentration in this boiling reactor when the feedwater hydrogen concentration is five levels of 0.10, 0.20, 0.25, 0.30, and 0.40 ppm is the change in the core flow rate. As a result, it was found that the effective hydrogen concentration values had a wide range with about 11 to 14, about 22 to 28, about 28 to 35, about 34 to 42, and about 45 to 56 ppb, respectively. Hereinafter, the effective hydrogen concentration uses the value calculated by Equation 1.

そして、炉水中の実効水素濃度とクロム酸イオン濃度との関係について検討した。
図9は水素注入停止時の炉水中の実効水素濃度とクロム酸イオン濃度との関係図である。
The relationship between the effective hydrogen concentration in the reactor water and the chromate ion concentration was examined.
FIG. 9 is a relationship diagram between the effective hydrogen concentration in the reactor water and the chromate ion concentration when hydrogen injection is stopped.

図9に示すとおり、実効水素濃度が55〜40ppbまで減少してもクロム酸イオン濃度は0ppb程度でクロムはほとんど溶出していないが、実効水素濃度が40ppb以下となるとクロム酸イオン濃度は徐々に増加し、実効水素濃度が25ppbのとき最大で153ppb程度になる。また、実効水素濃度が25ppb以下になるとクロム酸イオン濃度は徐々に減少するが、実効水素濃度が0ppbで、水素注入を停止してもクロム酸イオン濃度は20〜108ppbと幅を持ってクロムは溶出している。   As shown in FIG. 9, even when the effective hydrogen concentration is reduced to 55 to 40 ppb, the chromate ion concentration is about 0 ppb and almost no chromium is eluted, but when the effective hydrogen concentration is 40 ppb or less, the chromate ion concentration gradually increases. When the effective hydrogen concentration is 25 ppb, the maximum is about 153 ppb. In addition, when the effective hydrogen concentration becomes 25 ppb or less, the chromate ion concentration gradually decreases. However, the effective hydrogen concentration is 0 ppb, and even when hydrogen injection is stopped, the chromate ion concentration has a width of 20 to 108 ppb, so Elution.

水素注入停止時のクロム酸イオン濃度は、実効水素濃度が25ppb前後のときに最大値をとることから、実効水素濃度が40〜25ppbの間にクロムが溶出するピークが存在すると考えられる。
したがって、実効水素濃度の40〜25ppbの間に複数回の水素注入段階を設けることにより、一度に溶出するクロムの量を少なくすることが可能であると考えられる。
Since the chromate ion concentration at the time of stopping the hydrogen injection takes the maximum value when the effective hydrogen concentration is around 25 ppb, it is considered that there is a peak from which chromium is eluted when the effective hydrogen concentration is 40 to 25 ppb.
Therefore, it is considered that the amount of chromium eluting at a time can be reduced by providing a plurality of hydrogen injection steps between the effective hydrogen concentration of 40 to 25 ppb.

次に、水素注入開始時にオフガス貯蔵タンク入口の線量当量率が一時的に高くなるという課題について検討した。   Next, the problem that the dose equivalent rate at the off-gas storage tank inlet temporarily increased at the start of hydrogen injection was examined.

図10は炉水が酸化雰囲気から還元雰囲気に変化するときの放射性窒素化合物(13N及び16N)の形態の変化及び変化に伴い発生する気体の生成量を示す図である。
図10に示すとおり、炉水中の放射性窒素化合物(13N及び16N)は酸化雰囲気ではNO3−であるが、水素注入量が増加して還元雰囲気に変化するに伴いNO3−からNO2−をへて揮発性の大きいNO及びNHへと化学形態が変化する。
FIG. 10 is a diagram showing a change in the form of radioactive nitrogen compounds ( 13 N and 16 N) when the reactor water changes from an oxidizing atmosphere to a reducing atmosphere, and the amount of gas generated accompanying the change.
As shown in FIG. 10, the radioactive nitrogen compounds ( 13 N and 16 N) in the reactor water are NO 3− in the oxidizing atmosphere, but NO 3 − to NO 2 as the hydrogen injection amount increases and changes to the reducing atmosphere. The chemical form changes to NO and NH 3 having high volatility after passing through .

還元雰囲気ではNOは水に溶けにくいがNHは水に非常に溶けやすい。したがって、原子炉内にて発生したNO及びNHは主蒸気系を通過してNHは復水器で復水中にトラップするが、NOはそのままオフガス系へ移行するために、オフガス系線量当量率が増加すると考えられる。 In a reducing atmosphere, NO is hardly dissolved in water, but NH 3 is very soluble in water. Accordingly, NO and NH 3 generated in the nuclear reactor NH 3 passes through the main steam system is trapped in the condensate water in the condenser, but because NO is the control proceeds to the off-gas system, the off-gas system dose equivalent The rate is expected to increase.

図11は水素注入開始時の実効水素濃度とオフガス貯蔵タンク入口の線量当量率との関係図である。
図11に示すとおり、実効水素濃度が0ppbで、水素注入開始前の線量当量率は0.36mSv/h程度であるが、水素注入を開始し、実効水素濃度が24ppbまで増加すると線量当量率は緩やかに増加して0.45mSv/h程度になる。また、実効水素濃度が24ppb以上になると線量当量率は急激に増加し、実効水素濃度が36ppbのときピーク値の0.78mSv/h程度となる。また、実効水素濃度が36ppbより大きくなると線量当量率は急激に減少し、実効水素濃度48ppbのとき0.43mSv/h程度となる。
FIG. 11 is a relationship diagram between the effective hydrogen concentration at the start of hydrogen injection and the dose equivalent rate at the off-gas storage tank inlet.
As shown in FIG. 11, the effective hydrogen concentration is 0 ppb and the dose equivalent rate before the start of hydrogen injection is about 0.36 mSv / h. However, when the hydrogen injection is started and the effective hydrogen concentration increases to 24 ppb, the dose equivalent rate is It gradually increases to about 0.45 mSv / h. In addition, when the effective hydrogen concentration is 24 ppb or more, the dose equivalent rate increases rapidly, and when the effective hydrogen concentration is 36 ppb, the peak value is about 0.78 mSv / h. Further, when the effective hydrogen concentration is higher than 36 ppb, the dose equivalent rate decreases rapidly, and becomes about 0.43 mSv / h when the effective hydrogen concentration is 48 ppb.

水素注入時の線量当量率は、実効水素濃度が36ppb前後のときに最大値をとることから、実効水素濃度が27〜40ppbの間にNOが発生するピークが存在すると考えられる。したがって、実効水素濃度の27〜40ppbの間に水素注入段階を設けないことにより、発生するNOの量を少なくすることが可能であると考えられる。   Since the dose equivalent rate at the time of hydrogen injection takes the maximum value when the effective hydrogen concentration is around 36 ppb, it is considered that there is a peak where NO is generated when the effective hydrogen concentration is 27 to 40 ppb. Therefore, it is considered that the amount of generated NO can be reduced by not providing the hydrogen injection stage between the effective hydrogen concentration of 27 and 40 ppb.

そこで、本発明は、上記のような従来の問題に鑑みなされたものであって、沸騰水型原子炉の給水系を介して炉水に一定の期間水素を注入した後に、定期点検等のために水素注入を停止させた場合に、配管の内面に蓄積されているクロム酸化物が原子炉再循環系(PLR)ポンプの出口側の渦流等によって大量に吐き出されて配管内面のクロム酸化物層に凹凸が形成されるようなことがなく、さらに、水素の注入を再開した場合に、炉水の水質環境が酸化性雰囲気から還元性雰囲気に変化しても放射性物質濃度が急激に増加することなく、かつ配管系及びオフガス系の線量当量率も上昇しない、原子力発電プラントの水素の注入方法を提供することを目的とするものである。   Therefore, the present invention has been made in view of the above-described conventional problems, and for periodic inspections and the like after injecting hydrogen into the reactor water for a certain period through the water supply system of the boiling water reactor. When the hydrogen injection is stopped, a large amount of chromium oxide accumulated on the inner surface of the pipe is discharged by a vortex on the outlet side of the reactor recirculation system (PLR) pump, and the chromium oxide layer on the inner surface of the pipe In addition, when the hydrogen injection is resumed, the concentration of radioactive materials increases rapidly even if the water quality of the reactor water changes from an oxidizing atmosphere to a reducing atmosphere. It is an object of the present invention to provide a hydrogen injection method for a nuclear power plant that does not increase the dose equivalent rate of the piping system and off-gas system.

上記問題を解決する本発明の水素注入方法は、原子力発電プラントの運転中に原子炉の給水系を介して炉水に一定期間の水素の連続注入、停止を繰り返し行う原子力発電プラントの水素の注入方法であって、前記水素の注入開始時及び停止時に、給水水素濃度に給水流量と炉心流量との商を乗じた実効水素濃度を段階的に変化させるように構成したことを特徴とする(第1の発明)。   The hydrogen injection method of the present invention that solves the above-described problem is a hydrogen injection in a nuclear power plant that repeatedly repeats and stops hydrogen for a certain period of time through the reactor water supply system during operation of the nuclear power plant. The method is characterized in that the effective hydrogen concentration obtained by multiplying the feedwater hydrogen concentration by the quotient of the feedwater flow rate and the core flow rate is changed stepwise at the start and stop of the hydrogen injection. 1 invention).

第2の発明は、第1の発明において、前記水素の注入開始時において炉水内に一酸化窒素が発生する実効水素濃度区間では水素注入の段階を設けないことを特徴とする。   A second invention is characterized in that, in the first invention, a hydrogen injection stage is not provided in an effective hydrogen concentration section in which nitrogen monoxide is generated in the reactor water at the start of the hydrogen injection.

第3の発明は、第1又は第2の発明において、前記水素の注入停止時において炉内が還元性雰囲気から酸化性雰囲気に変化する実効水素濃度区間では一回以上の水素注入の段階を設けることを特徴とする。   According to a third invention, in the first or second invention, at least one hydrogen injection stage is provided in an effective hydrogen concentration section in which the inside of the furnace changes from a reducing atmosphere to an oxidizing atmosphere when the hydrogen injection is stopped. It is characterized by that.

本発明による原子力発電プラントの水素の注入方法によれば、給水水素濃度に給水流量と炉心流量との商を乗じた実効水素濃度にて管理することにより、水素注入開始時において原子炉内に一酸化窒素が発生する水素注入濃度区間を速やかに避けてオフガス系の線量当量率の上昇を抑制することができる。   According to the method for injecting hydrogen in a nuclear power plant according to the present invention, by managing the effective hydrogen concentration obtained by multiplying the feedwater hydrogen concentration by the quotient of the feedwater flow rate and the core flow rate, It is possible to quickly avoid the hydrogen injection concentration interval in which nitrogen oxide is generated, and to suppress an increase in the dose equivalent rate of the off-gas system.

さらに、水素注入量を実効水素濃度で管理することにより、水素注入停止時において炉水の水質環境を還元雰囲気から酸化雰囲気に緩やかに変化させ、配管系に蓄積されているクロム酸化物を炉水中に適宜に溶出させて配管系の線量当量率の上昇を抑制することができる。したがって、オフガス系及び配管系の点検作業に影響をおよぼすことなく、定期点検を安全にかつ容易に行うことができる。   Furthermore, by controlling the hydrogen injection amount with the effective hydrogen concentration, the water quality environment of the reactor water is gradually changed from the reducing atmosphere to the oxidizing atmosphere when the hydrogen injection is stopped, and the chromium oxide accumulated in the piping system is changed to the reactor water. It is possible to suppress the increase in the dose equivalent rate of the piping system. Therefore, the periodic inspection can be performed safely and easily without affecting the inspection work of the off-gas system and the piping system.

以下に本発明の実施形態について図面を用いて詳細に説明する。
本発明による原子力発電プラントの水素の注入方法は、沸騰水型原子炉(BWR)を備えた原子力発電プラントに適用したものであって、沸騰水型原子炉の配管系の給水系を介して炉水に水素を注入するように構成したものである。
Embodiments of the present invention will be described below in detail with reference to the drawings.
The method for injecting hydrogen in a nuclear power plant according to the present invention is applied to a nuclear power plant equipped with a boiling water reactor (BWR), and the reactor is supplied via a water supply system of a piping system of the boiling water reactor. It is configured to inject hydrogen into water.

図1は本発明による原子力発電プラントの水素の注入方法を適用した沸騰水型原子炉の配管系を示した概略系統図である。
図1に示すとおり、沸騰水型原子力発電プラントの配管系は、沸騰水型原子炉1の炉心で発生した蒸気をタービン2aに送る主蒸気系の配管3と、タービン2aで仕事をした蒸気は復水器2bにて復水され、この復水を復水脱塩器4に送る復水系の配管5と、復水脱塩器4から復水昇圧ポンプ12、加熱器13、給水ポンプ6を介して復水を沸騰水型原子炉1に送る給水系の配管7と、給水系の配管7に配管11を介して接続され、水素を注入する水素注入装置10と、沸騰水型原子炉1内の冷却水を再循環ポンプ8により再循環させる再循環系の配管9と、復水器2bの気体を抽出するための空気抽出器14、再結合器15を介してオフガスをスタック16に送るオフガス系の配管17と、オフガス系の配管17に配管18を介して接続され、酸素を注入する酸素注入装置19とから構成されている。
FIG. 1 is a schematic system diagram showing a piping system of a boiling water reactor to which a hydrogen injection method for a nuclear power plant according to the present invention is applied.
As shown in FIG. 1, the piping system of the boiling water nuclear power plant includes a main steam system piping 3 that sends steam generated in the core of the boiling water nuclear reactor 1 to the turbine 2 a and steam that has worked in the turbine 2 a. A condensate system pipe 5 that condenses the condensate 2b and sends the condensate to the condensate demineralizer 4, and a condensate booster pump 12, a heater 13, and a feed water pump 6 from the condensate demineralizer 4 A feed water system pipe 7 for sending condensate to the boiling water reactor 1 through a pipe 11 connected to the feed water system pipe 7 through a pipe 11, and a boiling water reactor 1. The off-gas is sent to the stack 16 through the recirculation system pipe 9 for recirculating the cooling water inside by the recirculation pump 8, the air extractor 14 for extracting the gas from the condenser 2b, and the recombiner 15. Connected to off-gas piping 17 and off-gas piping 17 via piping 18 , And a oxygen injection device 19 for injecting oxygen.

一次系構造材料としては、耐食性、靭性、強度、溶接性等に優れるものが好ましく、例えば、各種のステンレス鋼、各種の炭素鋼等が使用される。また、給水ポンプ6、再循環ポンプ8のケーシング、羽根車、弁等の構成部品も、耐食性、靭性、強度、溶接性等に優れるものが好ましく、各種のステンレス鋼、各種の炭素鋼等が使用される。   As the primary structural material, those having excellent corrosion resistance, toughness, strength, weldability and the like are preferable. For example, various stainless steels, various carbon steels and the like are used. In addition, components such as the casing, impeller, and valve of the feed water pump 6 and the recirculation pump 8 are preferably excellent in corrosion resistance, toughness, strength, weldability, etc., and various stainless steels and various carbon steels are used. Is done.

水素注入装置10は、沸騰水型原子炉1の配管系のうち、例えば、復水脱塩器4と給水ポンプ6との間の給水系の配管7に配管11を介して接続される。但し、この箇所に限らず、給水系の配管7内を流通する給水内に水素を注入できる箇所であれば良い。   The hydrogen injection apparatus 10 is connected to, for example, a water supply system pipe 7 between the condensate demineralizer 4 and the feed water pump 6 in the piping system of the boiling water reactor 1 via a pipe 11. However, it is not limited to this location, and any location can be used as long as hydrogen can be injected into the feed water flowing through the water supply system pipe 7.

水素注入装置10としては、例えば、高圧のガスボンベから所定の圧力に減圧してガス状の水素を給水系の配管7内を流通する給水内に注入する装置、水の電気分解により水素を製造し、ガス状の水素を給水系の配管7内を流通する給水内に注入する装置等が挙げられる。但し、これらの装置に限らず、水素を給水系を介して給水内に注入できる装置であれば良い。   Examples of the hydrogen injection device 10 include a device for reducing the pressure from a high-pressure gas cylinder to a predetermined pressure and injecting gaseous hydrogen into the feed water flowing through the water supply system pipe 7, and producing hydrogen by electrolysis of water. And an apparatus for injecting gaseous hydrogen into the feed water flowing through the feed water system pipe 7. However, it is not limited to these devices, and any device that can inject hydrogen into the water supply via the water supply system may be used.

まず、炉水中の導電率が一時的に高くなるという課題、そして、次にオフガス貯蔵タンク入口の線量当量率が一時的に高くなるという課題を解決するための試験結果を以下に示す。   First, test results for solving the problem that the electrical conductivity in the reactor water temporarily increases and then the problem that the dose equivalent rate at the off-gas storage tank inlet temporarily increases will be shown below.

図9に示すとおり、水素注入停止時において、クロムの溶出のピークが存在すると考えられる実効水素濃度の40〜25ppb区間の下限値である25ppbとほぼ中央値である33ppbとに水素注入の段階を設ける。また、実効水素濃度の25〜0ppb区間のほぼ中央値である12ppbにも水素注入の段階を設ける。本方法を適用した結果を次に示す。   As shown in FIG. 9, when hydrogen injection is stopped, the stage of hydrogen injection is reduced to 25 ppb, which is the lower limit of the 40 to 25 ppb interval of effective hydrogen concentration, which is considered to have chromium elution peaks, and to 33 ppb, which is approximately the median. Provide. Also, a hydrogen injection stage is provided at 12 ppb, which is approximately the median of the effective hydrogen concentration range of 25 to 0 ppb. The results of applying this method are as follows.

図2は本発明による水素注入停止時の実効水素濃度と炉水中のクロム酸イオン濃度との関係図である。
図2に示すとおり、実効水素濃度が46〜33ppbまで減少するとクロム酸イオン濃度は徐々に増加して12〜22ppb程度となり、実効水素濃度が33〜0ppbまで減少する間はクロム酸イオン濃度はほとんど一定で変化がなく、実効水素濃度が0ppbになってもクロム酸イオン濃度は10〜19ppb程度である。
図2より、水素注入停止時に実効水素濃度の40〜25ppb区間内に複数回の水素注入段階を設けることにより、1回の段階に溶出するクロムの量を少なくすることが可能である。また、本沸騰型原子炉において用いた実効水素濃度の40、33、25、12ppb及び水素注入停止段階数の4段階は適切である。
FIG. 2 is a graph showing the relationship between the effective hydrogen concentration when hydrogen injection is stopped and the chromate ion concentration in the reactor water according to the present invention.
As shown in FIG. 2, when the effective hydrogen concentration is reduced to 46 to 33 ppb, the chromate ion concentration is gradually increased to about 12 to 22 ppb. While the effective hydrogen concentration is reduced to 33 to 0 ppb, the chromate ion concentration is almost constant. Even when the effective hydrogen concentration becomes 0 ppb, the chromate ion concentration is about 10 to 19 ppb.
From FIG. 2, it is possible to reduce the amount of chromium eluted in one stage by providing a plurality of hydrogen injection stages in the 40 to 25 ppb section of effective hydrogen concentration when hydrogen injection is stopped. In addition, the effective hydrogen concentration of 40, 33, 25, 12 ppb and the number of hydrogen injection stop stages used in this boiling reactor are appropriate.

図3は本発明による水素注入停止時の実効水素濃度と炉水中の導電率との関係図である。
図3に示すとおり、実効水素濃度が46〜33ppbまで減少する間、導電率はやや増加して13μS/mとなるが、実効水素濃度を33ppbで一定とすると導電率はやや減少して10μS/mとなり、この値でほぼ一定となる。また、実効水素濃度が33〜25ppbまで減少する間、導電率はやや増加して14μS/mとなり、実効水素濃度を25ppbで一定とするとゆっくり減少して10μS/mとなり、この値でほぼ一定となる。さらに、実効水素濃度が25〜12ppbまで減少する間、導電率はやや増加して16μS/mとなり、実効水素濃度を12ppbで一定とすると導電率はゆっくり減少して12μS/mとなり、この値でほぼ一定となる。そして、実効水素濃度が12〜0ppbまで減少する間、導電率はやや増加し13μS/mとなるが、実効水素濃度が0ppbとなると導電率は徐々に減少を始め、水素注入停止中は緩やかな傾斜で減少し続ける。
FIG. 3 is a graph showing the relationship between the effective hydrogen concentration when the hydrogen injection is stopped and the conductivity in the reactor water according to the present invention.
As shown in FIG. 3, while the effective hydrogen concentration decreases from 46 to 33 ppb, the conductivity increases slightly to 13 μS / m, but when the effective hydrogen concentration is constant at 33 ppb, the conductivity decreases slightly to 10 μS / m. m, which is substantially constant at this value. Further, while the effective hydrogen concentration decreases to 33 to 25 ppb, the conductivity increases slightly to 14 μS / m, and when the effective hydrogen concentration is constant at 25 ppb, it gradually decreases to 10 μS / m. Become. Furthermore, while the effective hydrogen concentration decreases from 25 to 12 ppb, the conductivity increases slightly to 16 μS / m, and when the effective hydrogen concentration is constant at 12 ppb, the conductivity decreases slowly to 12 μS / m. It becomes almost constant. While the effective hydrogen concentration decreases to 12 to 0 ppb, the conductivity increases slightly to 13 μS / m. However, when the effective hydrogen concentration reaches 0 ppb, the conductivity starts to decrease gradually and is moderate while hydrogen injection is stopped. It keeps decreasing with the slope.

また、導電率は、水素注入管理方法を実効水素濃度での管理とすることで、給水水素濃度での管理をしていたときの値と比較して大幅に下回り、最高値でも16μS/mで、平常時の管理値である20(軽水炉燃料のふるまい第4版、原子力安全研究協会、1998.7、P325)μS/m以下となっている。   In addition, the conductivity is significantly lower than the value when the hydrogen injection management method is managed at the effective hydrogen concentration, and the maximum value is 16 μS / m. The normal control value is 20 (light water reactor fuel behavior 4th edition, Nuclear Safety Research Association, 19988.7, P325) μS / m or less.

したがって、水素注入停止時に実効水素濃度の40〜25ppb区間内に複数回の水素注入段階を設けることにより、1回の段階の導電率を低くすることが可能である。また、本沸騰型原子炉において用いた実効水素濃度の40、33、25、12ppb及び水素注入停止段階数の4段階は適切である。   Therefore, by providing a plurality of hydrogen injection steps in the effective hydrogen concentration 40 to 25 ppb section when the hydrogen injection is stopped, it is possible to reduce the conductivity of one step. In addition, the effective hydrogen concentration of 40, 33, 25, 12 ppb and the number of hydrogen injection stop stages used in this boiling reactor are appropriate.

次に、図11に示すとおり、水素注入再開時において、NOの発生のピークが存在すると考えられる実効水素濃度の27〜40ppb区間内に水素注入段階を設けず、この区間の下限値である27ppb以下と上限値である40ppb以上とに水素注入の段階を設ける。ここで、下限値の27ppbは原子力プラント運転管理の簡素化を図るために水素注入停止時の実効水素濃度と同一の25ppb程度とする。また、実効水素濃度25ppb以下では線量当量率の増加が緩やかであったことから25ppb程度〜0ppbまでの区間には注入段階を設けない。本方法を適用した結果を次に示す。   Next, as shown in FIG. 11, when restarting hydrogen injection, a hydrogen injection stage is not provided in the 27-40 ppb section of the effective hydrogen concentration considered to have a peak of NO generation, and 27 ppb, which is the lower limit of this section. The hydrogen injection stage is provided below and above the upper limit of 40 ppb. Here, the lower limit of 27 ppb is set to about 25 ppb which is the same as the effective hydrogen concentration at the time of stopping hydrogen injection in order to simplify the operation management of the nuclear power plant. Further, since the dose equivalent rate gradually increased when the effective hydrogen concentration was 25 ppb or less, no injection stage was provided in the section from about 25 ppb to 0 ppb. The results of applying this method are as follows.

図4は本発明による水素注入開始時の実効水素濃度とオフガス貯蔵タンク入口の線量当量率との関係図である。図4に示すとおり、水素を注入しない状態で線量当量率が0.48mSv/hであり、実効水素濃度を26ppbとしても、線量当量率はほとんどかわらず0.49mSv/hである。そして、実効水素濃度を53ppbに増加すると線量当量率は0.36mSv/hと減少する傾向を示している。   FIG. 4 is a graph showing the relationship between the effective hydrogen concentration at the start of hydrogen injection and the dose equivalent rate at the off-gas storage tank inlet according to the present invention. As shown in FIG. 4, the dose equivalent rate is 0.48 mSv / h in a state where hydrogen is not injected, and even if the effective hydrogen concentration is 26 ppb, the dose equivalent rate is almost 0.49 mSv / h. When the effective hydrogen concentration is increased to 53 ppb, the dose equivalent rate tends to decrease to 0.36 mSv / h.

したがって、水素注入開始時に実効水素濃度の27〜40ppb区間内に水素注入段階を設けず、この区間の下限値である27ppb以下と上限値である40ppb以上とに水素注入の段階を設けることにより線量当量率を低くすることが可能である。また、本沸騰型原子炉において用いた実効水素濃度の25ppb程度、40ppb以上及び水素注入停止段階数の2段階は適切である。   Therefore, the hydrogen injection stage is not provided in the effective hydrogen concentration 27 to 40 ppb section at the start of hydrogen injection, and the hydrogen injection stage is provided at the lower limit value of 27 ppb or lower and the upper limit value of 40 ppb or higher. It is possible to reduce the equivalent ratio. In addition, the effective hydrogen concentration of about 25 ppb, 40 ppb or more, and the number of hydrogen injection stop stages used in this boiling reactor are appropriate.

図5(a)は本発明の1サイクルにおける水素注入方法を示すフロー図である。
図5(b)は従来の1サイクルにおける水素注入方法を示すフロー図である。
FIG. 5A is a flowchart showing a hydrogen injection method in one cycle of the present invention.
FIG. 5B is a flowchart showing a conventional hydrogen injection method in one cycle.

従来の1サイクルにおける水素の注入方法は、図5(b)に示すとおり、水素注入開始の際は、給水水素濃度を1日目に0〜0.2ppm、2日目に0.2〜0.45ppmとし、その後、所定の日数、水素を連続注入し、水素注入停止の際は、注入停止の前日に0.45〜0.2ppm、停止日に0.2〜0ppmとした。そして、次の注入まで、炉水の導電率を安定させるために2日間水素の注入を停止した。   As shown in FIG. 5 (b), the conventional hydrogen injection method in one cycle is such that when hydrogen injection is started, the hydrogen concentration in the feed water is 0 to 0.2 ppm on the first day and 0.2 to 0 on the second day. Then, hydrogen was continuously injected for a predetermined number of days, and when hydrogen injection was stopped, it was set to 0.45 to 0.2 ppm on the day before the injection stop and 0.2 to 0 ppm on the stop day. Then, until the next injection, hydrogen injection was stopped for 2 days in order to stabilize the conductivity of the reactor water.

本発明の1サイクルにおける水素の注入方法は、図5(a)に示すとおり、水素注入開始の際は、実効水素濃度を1日目に0〜25ppb程度(但し27ppb以下)、2日目に25ppb程度(但し27ppb以下)〜40ppb以上、3日目に40ppb以上〜55ppb程度とし、その後、所定の日数の間、水素を連続注入し、水素注入停止の際は、注入停止の前日に3日前に55〜33ppbへ、2日前に33〜25ppbへ、1日前に25〜12ppbへ、停止日に12〜0ppbへとした。そして、次の注入まで、炉水の導電率を安定させるために2日間水素の注入を停止した。   As shown in FIG. 5 (a), the hydrogen injection method in one cycle of the present invention has an effective hydrogen concentration of about 0 to 25 ppb on the first day (however, 27 ppb or less) on the second day at the start of hydrogen injection. About 25 ppb (however, 27 ppb or less) to 40 ppb or more, and about 40 ppb to 55 ppb on the third day, and then continuously injecting hydrogen for a predetermined number of days, and when stopping hydrogen injection, 3 days before the injection stop 5 to 33 ppb, 2 to 3 days to 33 to 25 ppb, 1 day to 25 to 12 ppb, and the stop date to 12 to 0 ppb. Then, until the next injection, hydrogen injection was stopped for 2 days in order to stabilize the conductivity of the reactor water.

図5(a)に示す水素注入方法を用いることにより、定期点検等のために水素注入を停止させた場合に、配管の内面に蓄積されているクロム酸化物が原子炉再循環系(PLR)ポンプの出口側の渦流等によって大量に吐き出されて配管内面のクロム酸化物層に凹凸が形成されるようなことがなく、さらに、水素の注入を再開した場合に、炉水の水質環境が酸化性雰囲気から還元性雰囲気に変化しても放射性物質濃度が急激に増加することなく、かつ配管系及びオフガス系の線量当量率も上昇しない。   By using the hydrogen injection method shown in FIG. 5 (a), the chromium oxide accumulated on the inner surface of the piping is removed from the reactor recirculation system (PLR) when hydrogen injection is stopped for periodic inspection or the like. No large irregularities are formed in the chromium oxide layer on the inner surface of the pipe due to eddy currents at the outlet side of the pump, and the water environment of the reactor water is oxidized when hydrogen injection is resumed. Even if the atmosphere changes from a reducing atmosphere to a reducing atmosphere, the radioactive substance concentration does not increase rapidly, and the dose equivalent rate of the piping system and off-gas system does not increase.

本実施例において使用した実効水素濃度及び水素注入の段階数は、給水流量と炉心流量との比が本沸騰水型原子炉と異なる原子炉であっても、実効水素濃度にて炉水の水質環境を管理しているので適用が可能である。   The effective hydrogen concentration and the number of stages of hydrogen injection used in this example are the water quality of the reactor water at the effective hydrogen concentration even if the ratio of the feed water flow rate and the core flow rate is different from that of the boiling water reactor. It is applicable because it manages the environment.

本発明による原子力発電プラントの水素の注入方法を適用した沸騰水型原子炉の配管系を示した概略系統図である。It is the schematic system diagram which showed the piping system of the boiling water reactor which applied the hydrogen injection method of the nuclear power plant by this invention. 本発明による水素注入停止時の実効水素濃度と炉水中のクロム酸イオン濃度との関係図である。FIG. 4 is a diagram showing the relationship between the effective hydrogen concentration when hydrogen injection is stopped and the chromate ion concentration in the reactor water according to the present invention. 本発明による水素注入停止時の実効水素濃度と炉水中の導電率との関係図である。FIG. 4 is a relationship diagram between effective hydrogen concentration at the time of stopping hydrogen injection and electrical conductivity in the reactor water according to the present invention. 本発明による水素注入開始時の実効水素濃度とオフガス貯蔵タンク入口の線量当量率との関係図である。FIG. 4 is a relationship diagram between an effective hydrogen concentration at the start of hydrogen injection and a dose equivalent rate at an off-gas storage tank inlet according to the present invention. 本発明の1サイクルにおける水素注入方法を示すフロー図である。It is a flowchart which shows the hydrogen injection method in 1 cycle of this invention. 従来の1サイクルにおける水素注入方法を示すフロー図である。It is a flowchart which shows the hydrogen injection method in the conventional 1 cycle. 従来の水素注入停止時における給水水素濃度と炉水中の導電率との関係図である。It is a related figure of the feed water hydrogen concentration at the time of the conventional hydrogen injection stop, and the electrical conductivity in the reactor water. 従来の水素注入開始時における給水水素濃度とオフガス貯蔵タンク入口の線量当量率との関係図である。It is a related figure of the feed water hydrogen concentration at the time of the conventional hydrogen injection start, and the dose equivalent rate of an off-gas storage tank inlet. 本沸騰水型原子炉における給水水素濃度を実効水素濃度に換算した図である。It is the figure which converted feed water hydrogen concentration in this boiling water reactor into effective hydrogen concentration. 水素注入停止時の炉水中の実効水素濃度とクロム酸イオン濃度との関係図である。It is a related figure of effective hydrogen concentration in reactor water at the time of hydrogen injection stop, and chromate ion concentration. 炉水が酸化雰囲気から還元雰囲気に変化するときの放射性窒素化合物(13N及び16N)の形態の変化及び変化に伴い生成される成分の生成量を示す図である。Reactor water is a diagram showing the production of components produced with changes and changes in the form of radioactive nitrogen compounds (13 N and 16 N) at the time of change from the oxidation atmosphere to the reduction atmosphere. 水素注入時の実効水素濃度とオフガス貯蔵タンク入口線量当量率との関係図である。It is a related figure of the effective hydrogen concentration at the time of hydrogen injection, and an off-gas storage tank entrance dose equivalent rate.

符号の説明Explanation of symbols

1 沸騰水型原子炉
2a タービン
2b 復水器
3 主蒸気系の配管
4 復水脱塩器
5 復水系の配管
6 給水ポンプ
7 給水系の配管
8 再循環ポンプ
9 再循環系の配管
10 水素注入装置
11 配管
12 復水昇圧ポンプ
13 加熱器
14 空気抽出器
15 再結合器
16 スタック
17 オフガス系の配管
18 配管
19 酸素注入装置
DESCRIPTION OF SYMBOLS 1 Boiling water reactor 2a Turbine 2b Condenser 3 Main steam system piping 4 Condensate demineralizer 5 Condensation system piping 6 Water supply pump 7 Water supply system piping 8 Recirculation pump 9 Recirculation system piping 10 Hydrogen injection Device 11 Piping 12 Condensate booster pump 13 Heater 14 Air extractor 15 Recombiner 16 Stack 17 Off-gas piping 18 Piping 19 Oxygen injector

Claims (3)

原子力発電プラントの運転中に原子炉の給水系を介して炉水に一定期間の水素の連続注入、停止を繰り返し行う原子力発電プラントの水素の注入方法であって、
前記水素の注入開始時及び停止時に、給水水素濃度に給水流量と炉心流量との商を乗じた実効水素濃度を段階的に変化させるように構成したことを特徴とする原子力発電プラントの水素の注入方法。
A method of injecting hydrogen into a nuclear power plant that repeatedly injects and stops hydrogen for a certain period of time through the reactor water supply system during operation of the nuclear power plant,
Injecting hydrogen in a nuclear power plant, wherein the effective hydrogen concentration obtained by multiplying the feedwater hydrogen concentration by the quotient of the feedwater flow rate and the core flow rate is changed stepwise at the start and stop of the hydrogen injection. Method.
前記水素の注入開始時において炉水内に一酸化窒素が発生する実効水素濃度区間では水素注入の段階を設けないことを特徴とする請求項1に記載の原子力発電プラントの水素の注入方法。   2. The method of hydrogen injection in a nuclear power plant according to claim 1, wherein no hydrogen injection stage is provided in an effective hydrogen concentration section where nitrogen monoxide is generated in the reactor water at the start of hydrogen injection. 前記水素の注入停止時において炉内が還元性雰囲気から酸化性雰囲気に変化する実効水素濃度区間では一回以上の水素注入の段階を設けることを特徴とする請求項1又は2に記載の原子力発電プラントの水素の注入方法。
3. The nuclear power generation according to claim 1, wherein at least one stage of hydrogen injection is provided in an effective hydrogen concentration section in which the inside of the furnace changes from a reducing atmosphere to an oxidizing atmosphere when the hydrogen injection is stopped. Plant hydrogen injection method.
JP2005070083A 2005-03-11 2005-03-11 Hydrogen injection method for nuclear power plant Expired - Fee Related JP4518984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070083A JP4518984B2 (en) 2005-03-11 2005-03-11 Hydrogen injection method for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070083A JP4518984B2 (en) 2005-03-11 2005-03-11 Hydrogen injection method for nuclear power plant

Publications (2)

Publication Number Publication Date
JP2006250828A true JP2006250828A (en) 2006-09-21
JP4518984B2 JP4518984B2 (en) 2010-08-04

Family

ID=37091490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070083A Expired - Fee Related JP4518984B2 (en) 2005-03-11 2005-03-11 Hydrogen injection method for nuclear power plant

Country Status (1)

Country Link
JP (1) JP4518984B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151726A (en) * 2006-12-20 2008-07-03 Chugoku Electric Power Co Inc:The Method for filling hydrogen into nuclear power generation plant
WO2015178240A1 (en) * 2014-05-21 2015-11-26 株式会社Ihi Rotary device for nuclear power facility

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174891A (en) * 1992-12-09 1994-06-24 Toshiba Corp Boiling water nuclear power plant
JPH10115696A (en) * 1996-10-15 1998-05-06 Toshiba Eng Co Ltd Method for stopping injection of hydrogen-oxygen of nuclear power plant and equipment for injection of hydrogen-oxygen for emergency
WO2000058974A1 (en) * 1999-03-26 2000-10-05 Hitachi, Ltd. Method of operating reactor
WO2001057879A1 (en) * 2000-02-02 2001-08-09 Hitachi, Ltd. Method for mitigating stress corrosion cracking of structural member of atomic reactor plant
JP2001305276A (en) * 2000-04-24 2001-10-31 Hitachi Ltd Operating method of nuclear power plant, nuclear power plant, and water quality control method for nuclear power plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174891A (en) * 1992-12-09 1994-06-24 Toshiba Corp Boiling water nuclear power plant
JPH10115696A (en) * 1996-10-15 1998-05-06 Toshiba Eng Co Ltd Method for stopping injection of hydrogen-oxygen of nuclear power plant and equipment for injection of hydrogen-oxygen for emergency
WO2000058974A1 (en) * 1999-03-26 2000-10-05 Hitachi, Ltd. Method of operating reactor
WO2001057879A1 (en) * 2000-02-02 2001-08-09 Hitachi, Ltd. Method for mitigating stress corrosion cracking of structural member of atomic reactor plant
JP2001305276A (en) * 2000-04-24 2001-10-31 Hitachi Ltd Operating method of nuclear power plant, nuclear power plant, and water quality control method for nuclear power plant

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151726A (en) * 2006-12-20 2008-07-03 Chugoku Electric Power Co Inc:The Method for filling hydrogen into nuclear power generation plant
JP4722026B2 (en) * 2006-12-20 2011-07-13 中国電力株式会社 Hydrogen injection method for nuclear power plant
WO2015178240A1 (en) * 2014-05-21 2015-11-26 株式会社Ihi Rotary device for nuclear power facility
JP2015219211A (en) * 2014-05-21 2015-12-07 株式会社Ihi Nuclear facility rotary device
CN106256006A (en) * 2014-05-21 2016-12-21 株式会社Ihi The slewing of atomic energy facility
KR20190018050A (en) * 2014-05-21 2019-02-20 가부시키가이샤 아이에이치아이 Rotary device for nuclear power facility
KR20190018051A (en) * 2014-05-21 2019-02-20 가부시키가이샤 아이에이치아이 Rotary device for nuclear power facility
KR102070668B1 (en) * 2014-05-21 2020-01-29 가부시키가이샤 아이에이치아이 Rotary device for nuclear power facility
KR102070669B1 (en) * 2014-05-21 2020-01-29 가부시키가이샤 아이에이치아이 Rotary device for nuclear power facility
US10699817B2 (en) 2014-05-21 2020-06-30 Ihi Corporation Rotary device for nuclear power facility

Also Published As

Publication number Publication date
JP4518984B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4105052B2 (en) A method for mitigating stress corrosion cracking in nuclear plant structural materials.
EP2312588B1 (en) Method of operating a nuclear plant
JP2808970B2 (en) Nuclear power plant, its water quality control method and its operation method
US8194816B2 (en) Boiling water reactor nuclear power plant with alcohol injection
JP4518984B2 (en) Hydrogen injection method for nuclear power plant
JP4420838B2 (en) Hydrogen injection method for nuclear power plant
KR100380127B1 (en) Control of oxide electrical conductivity to maintain low corrosion potential in hot water
US20110122986A1 (en) Method of inhibiting adhesion of radioactive substance and apparatus inhibited from suffering adhesion thereof
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
JP4555625B2 (en) Operation method of nuclear power plant
JP4722026B2 (en) Hydrogen injection method for nuclear power plant
JP6322493B2 (en) Method for suppressing radionuclide adhesion to carbon steel components in nuclear power plants
JP2017138139A (en) Chemical decontamination method, chemical decontamination device, and nuclear power plant using them
JPH0833489B2 (en) Boiling water reactor hydrogen injector
US20040057549A1 (en) Method of operating nuclear reactor
JP4437256B2 (en) Methods for preventing corrosion and thinning of carbon steel
JP2008185016A (en) Turbine facilities and initial switching method of oxygen treatment of turbine facilities
JP4717388B2 (en) Hydrogen injection method for boiling water nuclear power plant
JP6585553B2 (en) Method for controlling stress corrosion cracking of nuclear plant components
JP6077260B2 (en) Method and system for injecting zinc into BWR plant cooling water
JP4366227B2 (en) Stress corrosion cracking suppression method
Hettiarachchi A review of BWR fuel performance under modern water chemistry conditions
WO2000058974A1 (en) Method of operating reactor
JP4349956B2 (en) Operation method of residual heat removal system
JP3250146B2 (en) Boiling water nuclear power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4518984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees