JPH05209992A - Method for restraining shift of radioactive nitrogen to gaseous phase in primary cooling water system of direct cycle type reactor - Google Patents

Method for restraining shift of radioactive nitrogen to gaseous phase in primary cooling water system of direct cycle type reactor

Info

Publication number
JPH05209992A
JPH05209992A JP4016828A JP1682892A JPH05209992A JP H05209992 A JPH05209992 A JP H05209992A JP 4016828 A JP4016828 A JP 4016828A JP 1682892 A JP1682892 A JP 1682892A JP H05209992 A JPH05209992 A JP H05209992A
Authority
JP
Japan
Prior art keywords
reagent
primary cooling
ammonia
water
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4016828A
Other languages
Japanese (ja)
Inventor
Yasuko Aoki
青木康子
Masanori Takahashi
高橋正典
Hidefumi Ibe
伊部英史
Hidetoshi Karasawa
唐澤英年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4016828A priority Critical patent/JPH05209992A/en
Publication of JPH05209992A publication Critical patent/JPH05209992A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To enable the shift of radioactive nitrogen to a gaseous phase to be restrained, and reduce the dose rate of a turbine system by adding a reagent having high capability of forming complex ions with ammonia to primary cooling water. CONSTITUTION:In a feed water system at the downstream side of a condenser 15, a reducing agent, for example, nitrogen is supplied from a reducing agent filling system 16 to a line between a condensate demineralizing unit 10 and a feed water pump 21, thereby reducing the concentration of dissolved oxygen in a primary cooling system. On the other hand, a reagent filling system 23 is provided in a recirculation system comprising a recirculation pump 6 and a reactor water purifying system 8, and concurrently with the filling of the reagent from the system 16, a reagent having the high capability of forming a complex with ammonia is supplied from the system 23 to the downstream outlet of a purifying system 8. According to this construction, the reagent is dissolved in the liquid phases of a reactor core 1, a mixing plenum 4, a downcomer 5 and a lower plenum 7. Consequently, the gaseous phase shift amount of radioactive nitrogen generated in the core 1 can be restrained, and the radiation dose of a main steam piping and the turbine system can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直接サイクル型原子炉
の炉水の水質制御技術に係わり、特に原子炉タービン系
の線量率低減に好適な原子炉の水質制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality control technique for reactor water of a direct cycle reactor, and more particularly to a water quality control method for a reactor suitable for reducing the dose rate of a reactor turbine system.

【0002】[0002]

【従来の技術】原子炉構造材料の粒界応力腐食割れ(以
下IGSCCという)は、材料の成分組成、応力、水質
の3因子が共に好ましくない状態にある時に起こるとさ
れている。従来から原子炉構造材、特にSUS304鋼
に対しては、炭素含有量を低くすることや、残留応力緩
和の熱処理などを施し、IGSCCの観点からは十分安
全側で運転されてきた。このように、これまでの方策
は、IGSCCの3因子のうちで材料、応力の2因子に
対するものであったが、近年直接サイクル型原子炉一次
冷却系において、第3の因子のうちの一つである炉水中
溶存酸素を低減するため、特開昭57−3086号公報
に見られるように、水素注入が試みられてきた。
2. Description of the Related Art Intergranular stress corrosion cracking (hereinafter referred to as IGSCC) of a nuclear reactor structural material is said to occur when the three factors of material composition, stress, and water quality are in unfavorable states. Conventionally, reactor structural materials, especially SUS304 steel, have been subjected to heat treatment such as reduction of carbon content and residual stress relaxation, and have been operated on a sufficiently safe side from the viewpoint of IGSCC. As described above, the measures so far have been for the two factors of the material and the stress among the three factors of IGSCC, but in recent years, one of the third factors for the direct cycle reactor primary cooling system has been adopted. In order to reduce the amount of dissolved oxygen in the reactor water, hydrogen injection has been attempted as seen in JP-A-57-3086.

【0003】図2は沸騰水型原子炉(BWR)、新型転
換炉(ATR)のような直接サイクル型原子炉一次系の
主要系統の図であって、水素注入を行う従来例を示す。
同図において、1は原子炉炉心、2は上部プレナム、3
は気水分離器、4はミキシングプレナム、5はダウンカ
マ、6は再循環ポンプ、7は下部プレナム、8は炉水浄
化系、9は給水ヒータ、10は復水脱塩器、11Aは高
圧タービン、11Bは低圧タービン、12はこれらのタ
ービンにより運転される発電機、13はオフガス処理装
置、14は希ガスホールドアップ、15は復水器、16
は還元剤注入装置、17は給水配管、18は主蒸気配
管、19は再循環配管、20はジェットポンプ、21は
給水ポンプ、22は復水ポンプである。
FIG. 2 is a diagram of a main system of a direct cycle reactor primary system such as a boiling water reactor (BWR) and an advanced converter (ATR), showing a conventional example of hydrogen injection.
In the figure, 1 is a reactor core, 2 is an upper plenum, 3
Is a water / water separator, 4 is a mixing plenum, 5 is a downcomer, 6 is a recirculation pump, 7 is a lower plenum, 8 is a reactor water purification system, 9 is a water heater, 10 is a condensate demineralizer, and 11A is a high pressure turbine. , 11B is a low-pressure turbine, 12 is a generator operated by these turbines, 13 is an off-gas treatment device, 14 is a rare gas hold-up, 15 is a condenser, 16
Is a reducing agent injection device, 17 is a water supply pipe, 18 is a main steam pipe, 19 is a recirculation pipe, 20 is a jet pump, 21 is a water supply pump, and 22 is a condensate pump.

【0004】この図2に示した直接サイクル型原子炉一
次冷却系の従来例では、復水器以後の給水系に水素注入
を行うべく給水ポンプ21の上流に還元剤注入装置16
を配置し、ここから注入した水素を炉心における水の放
射線分解の結果生成する酸素と結合させ、再循環系6を
はじめとして一次冷却系各部の溶存酸素濃度を低減させ
ることを狙いとしている。
In the conventional example of the direct cooling type reactor primary cooling system shown in FIG. 2, the reducing agent injection device 16 is provided upstream of the water supply pump 21 to inject hydrogen into the water supply system after the condenser.
Is arranged, and hydrogen injected from here is combined with oxygen generated as a result of radiolysis of water in the core, and the aim is to reduce the dissolved oxygen concentration in each part of the primary cooling system including the recirculation system 6.

【0005】しかし、水素注入には限界がある。すなわ
ち、水素注入により通常は硝酸などの形で水中に溶けて
いる放射性窒素−16が還元されて気体になり、タービ
ン系ひいてはサイト敷地境界の線量率が上昇するという
現象が生じ(実機の例では水素注入量の増加に伴って最
大5倍程度の上昇が報告されている)、この上昇のしか
たは、ある水素濃度の閾値までは一定の値を保ち、その
閾値から急に上昇する傾向がある。したがって、水素注
入量には上限があることになり、従来、直接サイクル型
原子炉における水素注入運転はその上限以下の水素注入
量で環境緩和を実現する必要があった。
However, hydrogen injection has a limit. That is, when hydrogen is injected, radioactive nitrogen-16, which is usually dissolved in water in the form of nitric acid or the like, is reduced to a gas, and the phenomenon occurs that the dose rate at the turbine system and at the site boundary is increased (in the example of the actual machine, It has been reported that the maximum increase of hydrogen injection amount is about 5 times with the increase of hydrogen injection amount.) This increase tends to keep a constant value up to a certain hydrogen concentration threshold value and to increase sharply from that threshold value. .. Therefore, the hydrogen injection amount has an upper limit, and conventionally, in the hydrogen injection operation in the direct cycle reactor, it was necessary to realize environmental mitigation with the hydrogen injection amount less than the upper limit.

【0006】他方、タービン系の放射線線量率は亜硝
酸、NOガスなどの注入によって低減できることが特開
平1−102396号公報、特願昭63−154767
に示されている。この方法によれば基本的には放射性窒
素のタービン系での濃度の上昇を招くことなく、水素注
入による溶存酸素の濃度低減が可能である。しかし、亜
硝酸やNOガスの注入量が多すぎると、放射性窒素濃度
は下がるものの、溶存酸素濃度が逆に上昇してしまうこ
と、水の導電率が高くなること、また一次系内で溶存酸
素濃度の分布がつくことなど、制御に困難な点があっ
た。
On the other hand, the radiation dose rate of the turbine system can be reduced by injecting nitrous acid, NO gas, etc., in JP-A-1-102396, Japanese Patent Application No. 63-154767.
Is shown in. According to this method, basically, it is possible to reduce the concentration of dissolved oxygen by hydrogen injection without inviting an increase in the concentration of radioactive nitrogen in the turbine system. However, if the injection amount of nitrous acid or NO gas is too large, the concentration of radioactive nitrogen will decrease, but the concentration of dissolved oxygen will rise conversely, the conductivity of water will increase, and the amount of dissolved oxygen in the primary system will increase. There were some points that were difficult to control, such as the concentration distribution.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、直接
サイクル型原子力発電所において、タービン系の線量率
低減のために放射性窒素の気相への移行を抑制し得る制
御容易な方法を提供するにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a controllable method capable of suppressing the transfer of radioactive nitrogen to the gas phase in a direct cycle nuclear power plant in order to reduce the dose rate of the turbine system. There is

【0008】[0008]

【課題を解決するための手段】本発明は直接サイクル型
原子炉の一次冷却水に、アンモニアとの錯イオンを形成
する能力が大きい試薬を添加することにより、一次冷却
系の水質を制御して放射性窒素の気相への移行を抑制す
るものである。
The present invention controls the water quality of the primary cooling system by adding a reagent having a large ability to form complex ions with ammonia to the primary cooling water of a direct cycle reactor. It suppresses the transfer of radioactive nitrogen to the gas phase.

【0009】この試薬は原子炉内の高温下でのアンモニ
アとの錯体形成定数に依って選定さるべきであるが、高
温でのデータが殆んど無いので、目安として、常温(2
5℃)でのアンモニアとの錯体形成定数が配位子(アン
モニア)数と3.0との積以上である様な試薬を選定す
るのがよい。ここで、錯体形成定数は、次のように定め
られる定数を意味する。すなわち化学式
This reagent should be selected according to the complex formation constant with ammonia at a high temperature in a nuclear reactor, but since there is almost no data at a high temperature, as a guideline, the room temperature (2
It is preferable to select a reagent such that the complex formation constant with ammonia at 5 ° C.) is at least the product of the number of ligands (ammonia) and 3.0. Here, the complex formation constant means a constant defined as follows. Ie chemical formula

【0010】[0010]

【数1】 [Equation 1]

【0011】(但しMは試薬、Lは配位子(この場合ア
ンモニア)、MLnは錯体、nは配位子数)で示される
錯体形成の化学反応における試薬濃度[M]、配位子濃
度[L]、錯体濃度[MLn]から定まる
(Where M is a reagent, L is a ligand (ammonia in this case), MLn is a complex, and n is the number of ligands), the reagent concentration [M] in the chemical reaction for complex formation, the ligand concentration Determined from [L] and complex concentration [MLn]

【0012】[0012]

【数2】 [Equation 2]

【0013】を錯体形成定数という。Is called a complex formation constant.

【0014】本発明においては、放射性窒素の気相移行
量の低減は、試薬として、アンモニアとの錯形成能の高
い金属のイオンあるいはそれらから構成される水溶性の
塩を原子炉一次冷却水に添加することにより達成され
る。その様な試薬としては、パラジウム、カドミウム、
白金、金、水銀、コバルトのイオン又はそれらの混合物
あるいはそれらの水溶性の塩を用いることができる。こ
れらは、いずれも、前記の目安である、常温(25℃)
でのアンモニアとの錯体形成定数が配位子数×3.0と
いう値以上であるという条件を満足する。しかも、それ
らの試薬は再生作用があるため、非常に低濃度の添加で
効果がある。
In the present invention, the gas phase transfer of radioactive nitrogen is reduced by using, as a reagent, a metal ion having a high ability to form a complex with ammonia or a water-soluble salt composed of these ions in the reactor primary cooling water. It is achieved by adding. Such reagents include palladium, cadmium,
Platinum, gold, mercury, cobalt ions or mixtures thereof or water-soluble salts thereof can be used. All of these are the above-mentioned standard, room temperature (25 ° C)
The condition that the complex formation constant with ammonia in the above formula is not less than the number of ligands × 3.0 is satisfied. Moreover, since these reagents have a regenerating action, addition at a very low concentration is effective.

【0015】前記試薬は、炉水の導電率が原子炉として
一般的に規定されている規制値(一般的にマイナス30
0mV(SHE)と規定される)を超えないような濃度
で添加する必要があり、そのためには、前記試薬はpp
bのオーダーの低濃度で添加すればよい。本発明では、
この様な低濃度の添加でも放射性窒素の気相への移行の
防止効果がある。
The above-mentioned reagent has a regulated value (generally minus 30) for which the conductivity of reactor water is generally defined as a nuclear reactor.
It is necessary to add it at a concentration such that it does not exceed 0 mV (SHE)).
It may be added at a low concentration of the order of b. In the present invention,
Addition of such a low concentration also has the effect of preventing the transfer of radioactive nitrogen to the gas phase.

【0016】[0016]

【作用】タービン系の線量率の上昇は、炉心の高中性子
束場で冷却水の酸素原子が高エネルギー中性子との核反
応、16O(n,p)16Nにより放射化されて放射性窒素
16Nを生成し、これが気相である主蒸気系へ移行するこ
とに起因する。この核反応時において、発生した放射性
窒素−16は、最初は高速で運動している。しかし、他
原子との衝突によってその運動エネルギーを損失し、そ
の運動エネルギーが数10keVになった頃には、高エ
ネルギーを持つ中性原子であるホットアトムとなる。こ
のようなホットアトムの状態の放射性窒素−16は、さ
らに周囲の水分子と相互作用し、主に水素の引き抜き反
応を起こす。この過程は急速であるので、放射性窒素−
16の発生時の初期形態は16NH、16NH2 または16
3、あるいはホツトアトム反応を免れて熱化した16
と考えてよい。これらの放射性窒素化合物は、さらに、
水の放射線分解生成物と反応し、酸化または還元を受
け、さらに複雑な過程を経て、その化学形態が変化す
る。その結果の化学形態のうち気体のものは16NH3
16NOである。
[Action] The increase in the dose rate of the turbine system is due to the nuclear reaction of oxygen atoms in the cooling water with high-energy neutrons in the high neutron flux field of the core, which is activated by 16 O (n, p) 16 N to produce radioactive nitrogen.
This is due to the generation of 16 N, which is transferred to the main steam system in the gas phase. At the time of this nuclear reaction, the generated radioactive nitrogen-16 initially moves at high speed. However, when its kinetic energy is lost due to collision with another atom and the kinetic energy reaches several tens keV, it becomes a hot atom which is a neutral atom having high energy. The radioactive nitrogen-16 in the state of such a hot atom further interacts with surrounding water molecules, and mainly causes a hydrogen abstraction reaction. This process is so rapid that radioactive nitrogen-
The initial form when 16 occurs is 16 NH, 16 NH 2 or 16 N
H 3 or 16 N heated to escape the Hot atom reaction
You can think of it. These radioactive nitrogen compounds are
It reacts with the radiolysis products of water, undergoes oxidation or reduction, and undergoes a more complex process to change its chemical form. Of the resulting chemical forms, the gaseous one is 16 NH 3 .
16 NO.

【0017】炉水に還元剤(水素を用いるのが普通)注
入を行ないその結果として炉水が還元性の雰囲気である
場合には、炉水中で放射性窒素−16は主として16NH
3 として存在する。ここで、炉水にアンモニアとの錯イ
オンを形成する効果のある試薬を添加すると、アンミン
錯イオン形成反応によって、16NH3 は非揮発性の化合
物として試薬に捕捉されるので、揮発性の16NH316
NOの生成量は減少する。このため、タービン系の線量
率は低減される。
When the reducing agent (usually hydrogen is used) is injected into the reactor water and, as a result, the reactor water has a reducing atmosphere, the radioactive nitrogen-16 is mainly 16 NH in the reactor water.
Exists as 3 . Here, the addition of a reagent which is effective to form the complex ion of ammonia in the reactor water, the ammine complex ion formation reaction, since the 16 NH 3 is captured in the reagent as a non-volatile compounds, volatile 16 NH 3 , 16
The amount of NO produced is reduced. Therefore, the dose rate of the turbine system is reduced.

【0018】還元剤注入を行わず炉水が通常の非還元性
雰囲気である場合には、放射性窒素−16の初期化合物
16N、16NH、16NH2 または16NH3 )は溶存酸素
2や水の放射線分解によって生成するOHラジカルと
反応して酸化されるので、炉水中の放射性窒素−16の
主要化学形態は硝酸イオン16NO3 -または亜硝酸イオン
16NO2 -である。タービン系の線量率の上昇は、主とし
て、これら陰イオンと水の放射線分解生成物中の還元種
である水和電子e- あるいはHラジカルとの反応によっ
て揮発性の16NOが生成し、これが主蒸気系に放出され
ることに起因する。しかしながら、ここで、炉水に前記
の如き試薬を添加すると、放射性窒素の前記初期化合物
が前記16NO3 -又は16NO2 -に変化する様々な化学過程
の途中で、NH3 の形態を取った16Nは試薬とアンミン
錯体をつくり、水相での安定性が増大する。また、上記
試薬の中には、N24 、NH2 OH、NO2 -との錯形
成能の高いものがあり、この錯形成による16Nの水相で
の安定化の効果も期待できる。よって、前記の如き試薬
の添加は、還元剤注入を行わず炉水が通常の非還元性雰
囲気である場合においても、前記還元剤注入により炉水
が還元性雰囲気である場合と同様に、タービン系に移行
する揮発性の化学形態の放射性窒素の生成量を低減する
効果がある。
When the reactor water is in a normal non-reducing atmosphere without reducing agent injection, the initial compound of radioactive nitrogen-16 ( 16 N, 16 NH, 16 NH 2 or 16 NH 3 ) is dissolved oxygen O. since oxidized by reaction with OH radicals generated by radiolysis of 2 and water, the major chemical forms of the radioactive nitrogen -16 in the reactor water is nitrate ion 16 NO 3 - or nitrite
16 NO 2 - it is. The increase in the dose rate of the turbine system is mainly due to the reaction of these anions with the hydrated electron e or H radical, which is the reducing species in the radiolysis products of water, to produce volatile 16 NO, which is mainly Due to being released into the vapor system. However, here, when a reagent as described above is added to the reactor water, NH 3 is formed in the course of various chemical processes in which the initial compound of radioactive nitrogen is converted into 16 NO 3 or 16 NO 2 −. 16 N forms an ammine complex with the reagent, increasing the stability in the aqueous phase. Further, in the reagent can, N 2 H 4, NH 2 OH, NO 2 - There are higher for complexation ability with, it can be expected the effect of stabilizing the water phase of 16 N by the complex formation .. Therefore, the addition of the reagent as described above is performed even when the reactor water is in a normal non-reducing atmosphere without injecting the reducing agent, as in the case where the reactor water is in the reducing atmosphere by the reducing agent injection. It has the effect of reducing the production of volatile chemical forms of radioactive nitrogen that migrate to the system.

【0019】また、イオン交換樹脂やタービンオイル等
の有機物の炉水への混入がある場合、炉水は還元性の雰
囲気となり、放出化学形態に占める16NH3 の割合が増
大する。この場合、前記の如き試薬が添加されると、16
NH3 は試薬とアンミン錯体をつくり、水相での安定性
が増大するため、タービン系の線量率は低減される。す
なわち、前記試薬の添加は、有機物等の還元性物質の混
入によるタービン系線量率上昇についても、その防止効
果がある。
Further, when the organic water such as the ion exchange resin or the turbine oil is mixed in the reactor water, the reactor water becomes a reducing atmosphere and the proportion of 16 NH 3 in the released chemical form increases. In this case, when a reagent as described above is added, 16
Since NH 3 forms an ammine complex with the reagent and the stability in the aqueous phase is increased, the dose rate of the turbine system is reduced. That is, the addition of the above-mentioned reagent has an effect of preventing an increase in the turbine dose rate due to the mixing of a reducing substance such as an organic substance.

【0020】アンミン錯体を形成した放射性窒素−16
は、半減期7.13秒で崩壊し、非放射性の酸素−16
になる。これにより、アンミン錯体は解離し、試薬は別
のNH3 と再び配位する。このため、炉水中の試薬濃度
を常時監視している必要はなく、炉水浄化系を考慮した
マスバランスから導かれる量(すなわち、炉水浄化系で
除去されて行く試薬の量を補う程度の量)の試薬を常時
注入しつつ、タービン系の線量率を参考にした上で炉水
を適宜検査し、試薬を追加注入すればよい。但し、該試
薬は、炉水の導電率がその規制値(原子炉で一般的に定
められている規制値)を超えない濃度範囲で添加するも
のであるが、それはppbのオーダーの添加で充分であ
る。また、任意の期間試薬注入を行うことにより、その
期間だけタービン系の線量率を下げることができる。そ
の期間終了後は、試薬注入を停止すれば、試薬は炉水浄
化系により回収されるため、影響を残さない。また、こ
のタービン系線量率低減効果は、放射線の有無に依らな
いため、線量率の低い区域でも効果がある。
Radioactive nitrogen-16 forming an ammine complex
Is a non-radioactive oxygen-16, which decays with a half-life of 7.13 seconds.
become. This causes the ammine complex to dissociate and the reagent to recoordinate with another NH 3 . Therefore, it is not necessary to constantly monitor the concentration of the reagent in the reactor water, and the amount derived from the mass balance considering the reactor water purification system (that is, the amount of the reagent removed in the reactor water purification system must be compensated for. While constantly injecting the reagent of (amount), the reactor water is appropriately inspected after referring to the dose rate of the turbine system, and the reagent may be additionally injected. However, the reagent is added in a concentration range in which the electrical conductivity of the reactor water does not exceed its regulated value (regulated value generally set in a nuclear reactor), but it is sufficient to add it in the order of ppb. Is. Further, by performing the reagent injection for an arbitrary period, the dose rate of the turbine system can be reduced only during that period. After the end of the period, if the reagent injection is stopped, the reagent is recovered by the reactor water purification system, so that there is no effect. Further, this turbine system dose rate reduction effect is effective even in an area with a low dose rate because it does not depend on the presence or absence of radiation.

【0021】以上のように、直接サイクル型原子炉一次
冷却系に、アンモニアとの錯形成能の高い試薬あるいは
アンモニアとの錯形成能の高い物質を発生する効果のあ
る試薬を添加することにより(または、その金属を含む
構造材を使用して、そこから溶出させることによって添
加することにより)、還元剤注入時はもとより、還元剤
注入をしない通常運転時においても、ppbのオーダー
の極く微量の添加で放射性窒素の気相移行量を低減し得
る。
As described above, by adding a reagent having a high ability to form a complex with ammonia or a reagent having an effect of generating a substance having a high ability to form a complex with ammonia to the direct cycle reactor primary cooling system ( Or, by using a structural material containing the metal and adding it by eluting from it), not only when the reducing agent is injected, but also during the normal operation when the reducing agent is not injected, an extremely small amount of the order of ppb. Can reduce the amount of radioactive nitrogen gas phase transfer.

【0022】[0022]

【実施例】以下、本発明を実施例により説明する。図1
は本発明を適用した直接サイクル型原子炉一次系の一例
である。直接サイクル型原子炉一次冷却系の復水器15
以降の給水系において、復水脱塩基10と給水ポンプ2
1の間に還元剤注入系16から還元剤(本実施例では水
素)注入を行い、一次冷却系の溶存酸素濃度の低減化を
図る。他方、再循環ポンプ6および炉水浄化系8から構
成される再循環系に試薬注入系23を設置し、上記還元
剤注入系16からの還元剤注入と同時に、試薬注入系2
3から炉水浄化系8の下流側出口に試薬を注入する。試
薬としては、パラジウム、カドミウム、白金、金、水銀
もしくはコバルトのイオンまたはそれらの塩あるいはそ
れらの混合物を用いる。これにより、原子炉炉心1、ミ
キシングプレナム4、ダウンカマ5および下部プレナム
7の液相に試薬が溶解し、主蒸気配管18への放射性窒
素の移行は低減される。試薬注入系23からは、錯形成
能の高い上記の試薬、もしくはその水溶液が供給され
る。以下、試薬としてパラジウムイオンを用いる場合を
例に挙げて説明する。この際、パラジウムイオン濃度と
パラジウムにアンモニアが1つ配位したものとアンモニ
アとの濃度比は、常温(25℃)のときには、次式で表
わされる。高温でのデータが不充分なため、ここでは常
温のデータを用いることにする。
EXAMPLES The present invention will be described below with reference to examples. Figure 1
Is an example of a direct cycle reactor primary system to which the present invention is applied. Direct-cycle reactor primary cooling system condenser 15
In the subsequent water supply system, the condensate debasing 10 and the water supply pump 2
During the period 1, the reducing agent injection system 16 injects a reducing agent (hydrogen in this embodiment) to reduce the concentration of dissolved oxygen in the primary cooling system. On the other hand, a reagent injection system 23 is installed in a recirculation system composed of the recirculation pump 6 and the reactor water purification system 8, and at the same time when the reducing agent injection from the reducing agent injection system 16 is performed, the reagent injection system 2
A reagent is injected from 3 into the downstream outlet of the reactor water purification system 8. As the reagent, ions of palladium, cadmium, platinum, gold, mercury or cobalt or salts thereof or a mixture thereof are used. As a result, the reagent is dissolved in the liquid phase of the reactor core 1, the mixing plenum 4, the downcomer 5 and the lower plenum 7, and the transfer of radioactive nitrogen to the main steam pipe 18 is reduced. From the reagent injection system 23, the above-mentioned reagent having a high complex forming ability or an aqueous solution thereof is supplied. Hereinafter, the case where palladium ions are used as a reagent will be described as an example. At this time, the palladium ion concentration and the concentration ratio of ammonia in which one ammonia is coordinated to palladium and ammonia are expressed by the following equation at room temperature (25 ° C.). Since the data at high temperature is insufficient, the data at room temperature will be used here.

【0023】[0023]

【数3】 [Equation 3]

【0024】従ってパラジウムイオン濃度が1ppbの
とき、パラジウムにアンモニアが1つ配位したものとア
ンモニアとの濃度比は、3.7×104 となり、16Nの
約100%が炉水中に保持され、タービン系には移行し
ない。温度が上昇するに従って16Nの炉水中への保持率
は下がり、それだけタービン系に行く16Nが増えるけれ
ども、タービン系への16Nの移行量を低く抑えるには炉
水のパラジウムイオン濃度は数ppb程度で十分であ
る。
Therefore, when the palladium ion concentration is 1 ppb, the concentration ratio of ammonia with one coordinated palladium and ammonia is 3.7 × 10 4 , and about 100% of 16 N is retained in the reactor water. , Do not move to turbine system. Edge 16 retention of N into the reactor water with increasing temperature, although the more 16 N increases going to the turbine system, the number palladium ion concentration reactor water to suppress the migration of 16 N to the turbine system About ppb is sufficient.

【0025】他の試薬についても同様に数ppbから百
ppb程度で十分な同様の効果が期待できる。
With respect to the other reagents, similarly, a sufficient effect similar to that of several ppb to 100 ppb can be expected.

【0026】図3は、試薬注入系23の設置位置を図1
における再循環系から給水系へ変えた場合の実施例であ
る。図3では、還元剤注入系16から給水系へ還元剤
(本実施例では水素)注入が行われる。試薬注入は、還
元性の雰囲気下でより効果的に働くので、還元剤注入点
よりも下流で試薬を注入するのが望ましいが、そうでな
くても効果は充分にある。図3においても図1の場合と
同様、原子炉炉心1、ミキシングプレナム4、ダウンカ
マ5および下部プレナム7の液相に試薬が溶解し、前記
と同様の作用により主蒸気配管18への放射性窒素の移
行は低減される。図4および図5は、それぞれ、図1お
よび図3において還元剤注入を行わない場合の実施例で
ある。この場合も図1の場合と同様、原子炉炉心1、ミ
キシングプレナム4、ダウンカマ5および下部プレナム
7の液相に試薬が溶解し、前述した作用により主蒸気配
管18への放射性窒素の移行は低減される。特に有機物
等の還元性物質の混入によるタービン系線量率上昇につ
いて、その防止効果がある。
FIG. 3 shows the installation position of the reagent injection system 23.
It is an example in the case of changing from the recirculation system to the water supply system in. In FIG. 3, the reducing agent (hydrogen in this embodiment) is injected from the reducing agent injection system 16 into the water supply system. Since the reagent injection works more effectively in a reducing atmosphere, it is desirable to inject the reagent downstream of the reducing agent injection point, but even if not, the effect is sufficient. Also in FIG. 3, as in the case of FIG. 1, the reagent is dissolved in the liquid phase of the reactor core 1, the mixing plenum 4, the downcomer 5 and the lower plenum 7, and the action of radioactive nitrogen to the main steam pipe 18 is caused by the same action as described above. Migration is reduced. FIG. 4 and FIG. 5 are examples in which the reducing agent injection is not performed in FIGS. 1 and 3, respectively. Also in this case, as in the case of FIG. 1, the reagent is dissolved in the liquid phase of the reactor core 1, the mixing plenum 4, the downcomer 5 and the lower plenum 7, and the transfer of radioactive nitrogen to the main steam pipe 18 is reduced by the above-mentioned action. To be done. In particular, it has the effect of preventing an increase in turbine system dose rate due to the mixing of reducing substances such as organic substances.

【0027】図6は、給水配管17及び再循環配管19
にアンモニアとの錯形成能の高い金属イオンを形成する
金属又はその金属合金を使用した場合の実施例である。
アンモニアとの錯形成能の高い金属イオンを生成する金
属またはその金属合金は、上記配管から溶出し、原子炉
炉心1、ミキシングプレナム4、ダウンカマ5および下
部プレナム7の液相に金属イオンが生成し、前述と同様
の作用により主蒸気配管への放射性窒素の移行は低減さ
れる。
FIG. 6 shows a water supply pipe 17 and a recirculation pipe 19.
This is an example of using a metal or a metal alloy thereof that forms a metal ion having a high complex formation ability with ammonia.
A metal or a metal alloy thereof that generates a metal ion having a high ability to form a complex with ammonia is eluted from the pipe, and a metal ion is generated in the liquid phase of the reactor core 1, the mixing plenum 4, the downcomer 5 and the lower plenum 7. By the same action as described above, the transfer of radioactive nitrogen to the main steam pipe is reduced.

【0028】図7は原子炉炉心1、ミキシングプレナム
4、ダウンカマ5及び下部プレナム7部の構造材の一部
又は全体に、アンモニアとの錯形成能の高い金属イオン
を形成する金属又はその金属合金を使用した場合の実施
例である。アンモニアとの錯形成能の高い金属イオンを
生成する金属またはその金属合金は、上記構造材から溶
出し、図6と同様、原子炉炉心1、ミキシングプレナム
4、ダウンカマ5および下部プレナム7の液相に金属イ
オンが生成し、前述と同様の作用により主蒸気配管への
放射性窒素の移行は低減される。
FIG. 7 shows a metal or a metal alloy thereof which forms a metal ion having a high complex formation ability with ammonia, in a part or the whole of the structural material of the reactor core 1, the mixing plenum 4, the downcomer 5 and the lower plenum 7. It is an example in the case of using. A metal or a metal alloy thereof that generates a metal ion having a high ability to form a complex with ammonia is eluted from the above structural material, and similarly to FIG. 6, the liquid phase of the reactor core 1, the mixing plenum 4, the downcomer 5 and the lower plenum 7. Metal ions are generated in the slag, and the transfer of radioactive nitrogen to the main steam pipe is reduced by the same action as described above.

【0029】[0029]

【発明の効果】以上のように、本発明によれば、原子炉
一次冷却水へアンモニアとの錯形成能の高い試薬を添加
することにより、炉心で発生する放射性窒素の気相移行
量を抑制し、主蒸気配管およびタービン系の放射線量を
低減することができる。したがって、原子炉の健全性お
よび安全性を著しく向上させ、ひいては原子炉の長寿命
化にもつながるため、エネルギー源確保の上でメリット
が大きい。しかも、本発明では、試薬の注入はNOガス
注入でなくて液体の注入によって行うことができるの
で、原子炉一次冷却水内で試薬の作用が均一となり、試
薬注入の制御が容易であり、且つ、試薬注入量の制御
は、炉水の導電率が規制値を超えない範囲で行えばよい
ので、従来のNOガス注入の如き厄介な制御は必要でな
くなる。
As described above, according to the present invention, by adding a reagent having a high ability to form a complex with ammonia to the primary reactor cooling water, the amount of radioactive nitrogen gas phase transfer to the core can be suppressed. However, the radiation dose of the main steam pipe and the turbine system can be reduced. Therefore, the soundness and safety of the nuclear reactor are remarkably improved and the life of the nuclear reactor is prolonged, which is a great advantage in securing an energy source. Moreover, in the present invention, since the reagent injection can be performed not by the NO gas injection but by the liquid injection, the action of the reagent becomes uniform in the reactor primary cooling water, and the reagent injection is easily controlled, and The control of the reagent injection amount may be performed within the range in which the electric conductivity of the reactor water does not exceed the regulation value, and thus the troublesome control such as the conventional NO gas injection is not necessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図、FIG. 1 is a diagram showing an embodiment of the present invention,

【図2】水素注入を行う直接サイクル型原子炉一次冷却
系の従来例の概念図、
FIG. 2 is a conceptual diagram of a conventional example of a primary cooling system for a direct-cycle reactor in which hydrogen is injected,

【図3】アンモニアとの錯形成能の高い試薬の注入系2
3の設置位置を図1の再循環系から給水系へ変えた場合
の実施例を示す図、
FIG. 3 Injection system 2 of reagent having high ability to form complex with ammonia
The figure which shows the Example when changing the installation position of 3 from the recirculation system of FIG. 1 to a water supply system,

【図4】図1において還元剤注入を行わない場合の実施
例を示す図、
FIG. 4 is a diagram showing an embodiment in which no reducing agent is injected in FIG.

【図5】図3において還元剤注入を行わない場合の実施
例を示す図、
FIG. 5 is a diagram showing an embodiment in which no reducing agent is injected in FIG.

【図6】給水配管17及び再循環配管19にアンモニア
との錯形成能の高い金属イオンを形成する金属又はその
金属合金を使用した場合の実施例を示す図、
FIG. 6 is a diagram showing an example in which a metal or a metal alloy thereof that forms metal ions having a high complex formation ability with ammonia is used in the water supply pipe 17 and the recirculation pipe 19,

【図7】原子炉炉心1、ミキシングプレナム4、ダウン
カマ5及び下部プレナム7部の構造材の一部又は全体に
アンモニアとの錯形成能の高い金属イオンを形成する金
属又はその金属合金を使用した場合の実施例を示す図。
[FIG. 7] A metal or a metal alloy thereof that forms a metal ion having a high complex formation ability with ammonia is used as a part or the whole of the structural material of the reactor core 1, the mixing plenum 4, the downcomer 5 and the lower plenum 7. The figure which shows the Example in a case.

【符号の説明】[Explanation of symbols]

1…原子炉炉心 2…上部プレナム 3…気水分離器 4…ミキシングプレ
ナム 5…ダウンカマ 6…再循環ポンプ 7…下部プレナム 8…炉水浄化系 9…給水ヒータ 10…復水脱塩器 11A…高圧タービン 11B…低圧タービ
ン 12…発電機 13…オフガス処理
装置 14…希ガスホールドアップ装置 15…復水器 16…還元剤注入装置 17…給水配管 18…主蒸気配管 19…再循環配管 20…ジェットポンプ 21…給水ポンプ 22…復水ポンプ 23…試薬注入系
1 ... Reactor core 2 ... Upper plenum 3 ... Steam separator 4 ... Mixing plenum 5 ... Downcomer 6 ... Recirculation pump 7 ... Lower plenum 8 ... Reactor water purification system 9 ... Water heater 10 ... Condensate demineralizer 11A ... High-pressure turbine 11B ... Low-pressure turbine 12 ... Generator 13 ... Off-gas treatment device 14 ... Rare gas hold-up device 15 ... Condenser 16 ... Reductant injection device 17 ... Water supply pipe 18 ... Main steam pipe 19 ... Recirculation pipe 20 ... Jet Pump 21 ... Water supply pump 22 ... Condensate pump 23 ... Reagent injection system

フロントページの続き (72)発明者 唐澤英年 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内Front page continuation (72) Inventor Hidetoshi Karasawa 1168 Moriyama-cho, Hitachi-shi, Ibaraki Prefecture Energy Research Institute, Nitrate Manufacturing Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 直接サイクル型原子炉一次冷却水に、常
温でのアンモニアとの錯体形成定数が配位子数と3.0
との積以上である、アンモニアとの錯イオンを形成する
能力の大きい試薬を添加することを特徴とする、直接サ
イクル型原子炉一次冷却系における放射性窒素の気相へ
の移行の抑制方法。
1. A direct cycle reactor primary cooling water having a complex formation constant with ammonia at room temperature which has a number of ligands of 3.0 and 3.0.
A method of suppressing the transfer of radioactive nitrogen to the gas phase in a direct cycle reactor primary cooling system, which comprises adding a reagent having a capacity of forming complex ions with ammonia, which is equal to or more than the product of
【請求項2】 直接サイクル型原子炉一次冷却水に、ア
ンモニアとの錯イオンを形成する能力の大きい前記試薬
を、炉水の導電率がその規制値を超えない範囲の濃度で
添加する請求項1記載の直接サイクル型原子炉一次冷却
系における放射性窒素の気相への移行の抑制方法。
2. The direct cycle reactor primary cooling water is added with the reagent having a large ability to form complex ions with ammonia at a concentration within a range such that the electrical conductivity of the reactor water does not exceed the regulation value. 1. The method for suppressing the transfer of radioactive nitrogen to the gas phase in the direct cycle reactor primary cooling system according to 1.
【請求項3】 アンモニアとの錯イオンを形成する能力
の大きい前記試薬としてパラジウム、カドミウム、白
金、金、水銀、コバルトのイオンもしくはそれらの混合
物あるいはそれらの水溶性の塩を用い、これを直接サイ
クル型原子炉一次冷却水に注入することを特徴とする請
求項1又は2記載の直接サイクル型原子炉一次冷却系に
おける放射性窒素の気相への移行の抑制方法。
3. As the reagent having a large ability to form a complex ion with ammonia, an ion of palladium, cadmium, platinum, gold, mercury, cobalt or a mixture thereof or a water-soluble salt thereof is used, which is directly cycled. The method for suppressing the transfer of radioactive nitrogen to a gas phase in a direct cycle reactor primary cooling system according to claim 1 or 2, wherein the method is injected into the reactor primary cooling water.
【請求項4】 直接サイクル型原子炉一次冷却系の構造
材の一部又は全体に、アンモニアとの錯イオンを形成す
る作用がある金属イオンを溶出する金属またはその合金
を使用することを特徴とする請求項1記載の直接サイク
ル型原子炉一次冷却系における放射性窒素の気相への移
行の抑制方法。
4. A metal or an alloy thereof, which elutes a metal ion having a function of forming a complex ion with ammonia, is used as a part or the whole of a structural material of a direct cycle reactor primary cooling system. The method for suppressing transfer of radioactive nitrogen to a gas phase in a direct cycle nuclear reactor primary cooling system according to claim 1.
【請求項5】 直接サイクル型原子炉一次冷却系に水素
等の還元剤を注入することにより炉水の溶存酸素を低減
しつつ、アンモニアとの錯イオンを形成する能力の大き
い前記試薬を添加することを特徴とする請求項1,2,
3又は4記載の直接サイクル型原子炉一次冷却系におけ
る放射性窒素の気相への移行の抑制方法。
5. The direct cooling type reactor primary cooling system is injected with a reducing agent such as hydrogen to reduce dissolved oxygen in the reactor water while adding the reagent having a large ability to form complex ions with ammonia. Claims 1, 2, characterized in that
The method for suppressing the transfer of radioactive nitrogen to the gas phase in the direct cycle reactor primary cooling system according to 3 or 4.
JP4016828A 1992-01-31 1992-01-31 Method for restraining shift of radioactive nitrogen to gaseous phase in primary cooling water system of direct cycle type reactor Pending JPH05209992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4016828A JPH05209992A (en) 1992-01-31 1992-01-31 Method for restraining shift of radioactive nitrogen to gaseous phase in primary cooling water system of direct cycle type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4016828A JPH05209992A (en) 1992-01-31 1992-01-31 Method for restraining shift of radioactive nitrogen to gaseous phase in primary cooling water system of direct cycle type reactor

Publications (1)

Publication Number Publication Date
JPH05209992A true JPH05209992A (en) 1993-08-20

Family

ID=11927053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4016828A Pending JPH05209992A (en) 1992-01-31 1992-01-31 Method for restraining shift of radioactive nitrogen to gaseous phase in primary cooling water system of direct cycle type reactor

Country Status (1)

Country Link
JP (1) JPH05209992A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057879A1 (en) * 2000-02-02 2001-08-09 Hitachi, Ltd. Method for mitigating stress corrosion cracking of structural member of atomic reactor plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057879A1 (en) * 2000-02-02 2001-08-09 Hitachi, Ltd. Method for mitigating stress corrosion cracking of structural member of atomic reactor plant

Similar Documents

Publication Publication Date Title
Takagi et al. Thermal decomposition of hydrogen peroxide and its effect on reactor water monitoring of boiling water reactors
US4842811A (en) Method for preventing oxygen corrosion in a boiling water nuclear reactor and improved boiling water reactor system
JPH079477B2 (en) Radioactivity reduction method for nuclear power plant and nuclear power plant
US5896433A (en) Method of preventing the deposition of radioactive corrosion products in nuclear plants
GB2064852A (en) Decontaminating reagents for radioactive systems
Christensen Effect of water radiolysis on corrosion in nuclear reactors
JPH05209992A (en) Method for restraining shift of radioactive nitrogen to gaseous phase in primary cooling water system of direct cycle type reactor
JP2011111661A (en) Method for forming ferrite film on component of nuclear power, method for suppressing progress of stress corrosion cracking, and apparatus for forming ferrite film
JP7344132B2 (en) Method of adhering precious metals to carbon steel members of a nuclear power plant and method of suppressing adhesion of radionuclides to carbon steel members of a nuclear power plant
JP6322493B2 (en) Method for suppressing radionuclide adhesion to carbon steel components in nuclear power plants
Wang Irradiated assisted corrosion of stainless steel in light water reactors-focus on radiolysis and corrosion damage
JPH0833489B2 (en) Boiling water reactor hydrogen injector
US5084235A (en) Direct cycle-type atomic power plant with means for suppressing transfer from a liquid phase to a vapor phase of radioactive nitrogen oxides
JPH022994A (en) Suppression of pollution of nuclear reactor coolant circuit
US5901368A (en) Radiolysis-assisted decontamination process
Jenks et al. WATER CHEMISTRY IN PRESSURIZED AND BOILING WATER POWER REACTORS.
TW417112B (en) Temperature-based method for controlling the amount of metal applied to metal oxide surfaces to reduce corrosion and stress corrosion cracking
JP2019108600A (en) Corrosion suppressing method of carbon steel member of plant
JP2009109318A (en) Method for decreasing radiation dose in turbine system and nuclear power plant
JPH01102396A (en) Direct cycle type nuclear power plant, its operation and fuel rod
JP4349956B2 (en) Operation method of residual heat removal system
JPH04274800A (en) Water quality controlling of boiling water reactor primary cooling system and device thereof
JP2000162383A (en) Operation method for reactor power plant
JPH0431360B2 (en)
JPH01127999A (en) Suppression of 16n radiation level in vapor phase of boiling water type nuclear reactor