WO2001054296A1 - Dispositif de communication de sons et processeur d'echo - Google Patents

Dispositif de communication de sons et processeur d'echo Download PDF

Info

Publication number
WO2001054296A1
WO2001054296A1 PCT/JP2000/008863 JP0008863W WO0154296A1 WO 2001054296 A1 WO2001054296 A1 WO 2001054296A1 JP 0008863 W JP0008863 W JP 0008863W WO 0154296 A1 WO0154296 A1 WO 0154296A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo
speaker
amplification value
filter coefficient
pseudo
Prior art date
Application number
PCT/JP2000/008863
Other languages
English (en)
French (fr)
Inventor
Shinya Takahashi
Ikuo Kajiyama
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2001553677A priority Critical patent/JP3406590B2/ja
Priority to EP00981723A priority patent/EP1164712A4/en
Publication of WO2001054296A1 publication Critical patent/WO2001054296A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M9/00Arrangements for interconnection not involving centralised switching
    • H04M9/08Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic
    • H04M9/082Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic using echo cancellers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L2021/02082Noise filtering the noise being echo, reverberation of the speech

Definitions

  • the present invention relates to a voice communication device such as an on-vehicle phone and a TV mobile phone, and in particular, includes a transmission voice signal as a result of mixing output voice output from a speaker with input voice input via a microphone.
  • the present invention relates to an echo processing device and an echo processing processor for reducing an echo generated.
  • FIG. 15 is a block diagram showing a configuration of a conventional voice communication device.
  • FIG. 16 is a block diagram showing a configuration of an echo processing device provided in the voice communication device shown in FIG. 15 and peripheral components.
  • 1 is a voice communication device
  • 2 is a sound volume adjustment means
  • 3 is a receiving circuit unit
  • 4 is a baseband signal processing unit
  • 5 is a voice codec
  • 6 is an echo processing device
  • 7 is DZA conversion.
  • 8 is a speaker amplifier
  • 9 is a control CPU
  • 10 is a speaker
  • 11 is a microphone
  • 12 is a microphone amplifier
  • 13 is an AZD converter
  • 14 is a transmission circuit section.
  • the external reception signal R transmitted from the far-end speaker, that is, the other party of the call and received by the voice communication device 1 is converted into a digital signal in the intermediate frequency band in the reception circuit unit 3, and the baseband signal processing unit 4
  • the audio codec 5 demodulates the audio, and the audio codec 5 performs audio decoding.
  • the received input signal R d (i) subjected to the above processing is output to the DZA converter 7 via the echo processor 6.
  • D / A converter 7 converts the received input signal R d (i) to an analog signal R a
  • control CPU 9 outputs the configured speaker amplifier 8, for example, operational amplifier, using a volume adjusting means 2 C
  • the speaker amplifier 8 outputs the speaker amplification value corresponding to the slip volume adjusted by the terminal user to the speaker amplifier 8.
  • the speaker amplifier 8 amplifies the analog signal Ra according to the speaker amplification value output from the control CPU 9, and outputs the received signal. Output to the speaker 10 as a signal.
  • the speaker 10 outputs an output sound at a volume desired by the terminal user.
  • the input voice emitted from the terminal user is input to the voice communication device 1 via the microphone 11.
  • an output voice output from the speaker 10 is input to the microphone 11 as an echo while undergoing deformation due to the acoustic transfer characteristics between the speaker 10 and the microphone 11.
  • the path until the output sound output from the speaker 10 mixes with the microphone 11 is called an echo path.
  • the transmission input signal Sa including the echo is input to the A / D converter 13 through the microphone amplifier 12 as an analog signal Sa, and is converted into the signal Sd (i) by the A / D converter 13 to be echoed. Output to processing unit 6.
  • the echo processor 6 is configured as shown in FIG. In FIG. 16, 15 is an echo canceller, 16 is an adaptive filter, 17 is a subtractor, and 18 is an echo canceller.
  • the received input signal Rd (i) input from the voice codec 5 to the echo processor 6 is input to the echo canceller 15 and the echo suppressor 18, passes through the echo processor 6, and passes through the D / A converter 7. Is output to The echo canceller 15 synthesizes a pseudo echo SE (i) close to the echo included in the signal Sd (i), and subtracts the pseudo echo SE (i) from the signal Sd (i) to remove the echo, thereby obtaining a residual signal.
  • Get U (i) This residual signal U (i) is input to the adaptive filter 16 Is done.
  • the adaptive filter 16 estimates a sound transfer characteristic between the speaker 10 and the microphone 11 using the received input signal Rd (i) output from the voice codec 5 and the residual signal U (i) after removing the echo.
  • the filter coefficient h (n) is sequentially obtained, and a pseudo echo SE (i) is generated from the received input signal Rd (i) and the filter coefficient h (n) and output to the calculator 17.
  • the signal Sd (i) from the A / D converter 13 is input to the subtractor 17.
  • the subtractor 17 subtracts the pseudo echo S E (i) from the signal S d (i), and outputs a residual signal U (i) from which the echo has been removed.
  • the echo canceller 15 outputs the residual signal U (i) from which the echo has been removed to the echo-sublesser 18. Unlike the echo canceller 15, the echo canceller 18 simply suppresses the amplitude of the signal output from the echo canceller 15 uniformly. More specifically, the echo sub-laser 18 obtains the short-time power of the received input signal R d (i), and determines that a section in which the value of the short-time power is equal to or greater than a certain threshold is a utterance section of the far-end speaker.
  • the amplitude of the residual signal U (i) input from the echo canceller 15 is suppressed by a predetermined non-large attenuation (for example, 10 dB), and the transmission output signal T d ( i).
  • the transmission output signal T d (i) is voice-coded by the voice codec 5, modulated by the baseband signal processing unit 4, and transmitted by the transmission circuit unit. It is converted to an analog signal in the transmission frequency band and transmitted as an external transmission signal T.
  • the echo processing apparatus of the conventional voice communication apparatus is configured such that the echo canceller 18 suppresses the residual echo component that cannot be completely removed by the echo canceller 15 and does not set a large attenuation. This allows the near-end and near-end speakers to speak at the same time, It prevents large attenuation.
  • FIG. 2 of Japanese Patent Application Laid-Open No. H10-242891 A conventional echo canceller that performs double talk detection and controls the stop or start of updating the fill coefficient based on the result is disclosed in FIG. 2 of Japanese Patent Application Laid-Open No. H10-242891.
  • the power of the transmission signal from the near-end speaker is Sp
  • the power of the reception signal from the far-end speaker is Rp
  • the output signal from the subtraction circuit 21 is Let the power of a certain residual signal be Ep.
  • the conventional echo canceller uses the following equations (1) to (3), and if any of conditions 1 to 3 shown below is cleared, double talk, that is, near-end speaker and far-end speaker Judgment of simultaneous utterance state or far-end speaker non-utterance state is made, and updating of the filter coefficient is stopped.
  • Pl, P2, and P3 are fixed values.
  • Non-linear distortion occurs in Sd (i).
  • Fig. 17 (a) shows an example of signal Rd (i) before nonlinear distortion occurs
  • Fig. 17 (b) shows an example of signal Sd (i) with nonlinear distortion.
  • the estimation accuracy of the filter coefficient h (n) in the adaptive filter 16 deteriorates.
  • the difference between the pseudo echo SE (i) calculated from the filter coefficient h (n) and the echo actually included in the signal Sd (i) increases, and the echo removal performance deteriorates.
  • the conventional invention disclosed in Japanese Patent Application Laid-Open No. H10-242891 is based on the following equation (3) when the power of the residual signal is increased when the amplification value of the beaker changes and the echo removal performance deteriorates. Is established and mistakenly judged as double talk Since the update of the filter coefficient is stopped, the echo removal performance does not improve and there is a problem that echo remains.
  • the present invention has been made to solve the above-described problem.
  • the first object of the present invention is to provide a voice communication device including an echo processing device that suppresses residual echo regardless of a speaker amplification value.
  • a second object of the present invention is to provide a voice communication device provided with a compact echo processing device.
  • a voice communication device according to the present invention includes a control CPU that outputs a speaker amplification value corresponding to a speaker volume adjusted by a terminal user using a volume adjustment unit, and a demodulated and audio-decoded received input signal converted to a speaker amplification value.
  • Echo processing to reduce, according to the loudspeaker amplification value output from the control CPU, echoes that are mixed in the transmission input signal input through the microphone among the output audio that has been amplified and output from the speaker C
  • the echo processing device generates a pseudo-echo from the received input signal amplified according to the amount of change in the speaker amplification value and the filter coefficient calculated from the sound transfer characteristics between the microphone and the speaker.
  • an echo canceling means for removing an echo from a transmission input signal including the echo by using the pseudo echo.
  • the echo processor changes the filter coefficient calculated from the sound transfer characteristic between the speaker and the microphone in accordance with the amount of change in the speaker amplification value, and generates a pseudo echo from the filter coefficient and the received input signal. It is provided with an echo canceling means for removing the echo from the transmission input signal including the echo by using the pseudo echo.
  • the echo canceling means changes the filter coefficient stepwise when the change amount of the speaker amplification value is larger than a predetermined change amount.
  • the echo canceling means sets the filter coefficient to zero or a value close to zero when the change amount of the speaker amplification value is larger than a predetermined change amount.
  • the echo canceling means changes the filter coefficient when a change in the speaker amplification value within a predetermined time is larger than a predetermined change.
  • the echo processor calculates a pseudo echo from the received input signal and the filter coefficient calculated from the sound transfer characteristics between the microphone and the speaker, and changes the pseudo echo according to the amplified value of the speech power. It is equipped with an echo canceling means for removing an echo from a transmission input signal including the echo by using a pseudo echo.
  • the echo canceling means changes the pseudo echo to zero or a value close to zero when the speaker amplification value is larger than a predetermined threshold value.
  • the echo canceling means attenuates the pseudo echo by a predetermined amount when the loudspeaker amplification value is larger than a predetermined threshold value. Further, when the speaker amplification value is larger than the predetermined threshold value, the echo canceling means performs the operation before the speaker amplification value becomes larger than the threshold value. A pseudo echo calculated from the filter coefficient is used.
  • the echo processing device changes the criterion for double-talk detection according to the amount of change in the speaker amplification value, double-talk detection means for detecting double-talk according to the criterion, and sound transmission between the microphone and the speaker.
  • a pseudo echo is obtained from the filter coefficient calculated from the characteristic, the echo is used to remove the echo from the transmission input signal including the echo, and the filter coefficient is determined based on the detection result of the double talk detecting means. It is equipped with an echo canceling means for stopping or starting the updating of the data.
  • the echo processing device changes the criterion for double-talk detection according to the change amount of the slip force amplification value, uses double-talk detection means for detecting double-talk according to the criterion, and uses a pseudo echo. Echo canceling means for reducing the echo component of the transmission input signal to generate a residual signal, and echo suppressing means for suppressing the residual signal with an attenuation that changes based on the detection result of the double talk detecting means. .
  • the double-talk detecting means detects double-talk based on a comparison between the power of the transmission input signal and the power of the residual signal, and determines a weight coefficient by which the power of the transmission input signal is multiplied according to a change amount of the speaker amplification value. This changes the criteria for double talk determination.
  • the echo processing device is provided with an echo suppressor for suppressing a transmission input signal including an echo with an attenuation corresponding to a speaker amplification value output from the control CPU.
  • the echo processing device is a digital signal processor.
  • An echo processor comprises: a reception signal input port to which a reception input signal including voice information is input; and a speaker amplification value input to which a speaker amplification value is input in accordance with a volume adjusted by using volume adjustment means.
  • Port and A transmission signal input port to which a transmission input signal including a voice emitted by the terminal user is input, and a reception input signal that is amplified according to the speaker amplification value and mixed with the transmission input signal of the output voice output from the speaker It is provided with an echo reduction processing unit that performs an echo reduction process that reduces the echoes that have been input in accordance with the speaker amplification value input through the sub-force amplification value input port.
  • the echo reduction processing unit is configured to amplify a reception input signal input from the reception signal input port according to a change amount of the speaker amplification value input from the speaker amplification value input port; Filter coefficient calculation processing for obtaining filter coefficients from sound transfer characteristics, pseudo echo calculation processing for calculating pseudo echoes from calculated filter coefficients and amplified received input signals, and transmission input using pseudo echo It performs echo cancellation processing to remove echo from the signal.
  • the echo reduction processing section includes a filter coefficient calculating process for obtaining a filter coefficient from a sound transfer characteristic between the speaker and the microphone, and a speaker amplifier input from the speaker amplification value input port for calculating the calculated filter coefficient.
  • a pseudo echo calculation process is performed to calculate a pseudo echo from the filter coefficient and the reception input signal input from the reception signal input port, and an echo is calculated from the transmission input signal using the pseudo echo. This is to perform echo cancellation processing to remove.
  • the echo reduction processing section performs a pseudo-echo calculation process of changing the filter coefficient stepwise when the amount of change in the speaker amplification value is larger than a predetermined amount of change.
  • the echo reduction processing unit performs a pseudo echo calculation process of setting the filter coefficient to a value from zero to a value close to zero when the change amount of the speaker amplification value is larger than a predetermined change amount.
  • the echo reduction processing unit detects a change in the speaker amplification value within a predetermined time. If the amount is larger than a predetermined change amount, a pseudo echo calculation process for changing the filter coefficient is performed.
  • the echo reduction processing unit calculates a filter coefficient from the sound transfer characteristic between the speaker and the microphone, and performs a pseudo coefficient calculation based on the calculated filter coefficient and the reception input signal input from the reception signal input port.
  • the echo reduction processing unit calculates a pseudo echo from the filter coefficient before the speaker amplification value becomes larger than the threshold value. Processing is performed.
  • the echo processing reduction unit changes the criterion for double talk detection according to the change amount of the change amount of the slip force amplification value, and performs double talk detection processing for detecting double talk according to the criterion.
  • a filter coefficient calculation process that calculates a filter coefficient from the sound transfer characteristics between the sliding force and the microphone, and stops or starts updating of the filter coefficient based on the result of the double talk determination, and a calculated filter coefficient.
  • a pseudo-echo calculation processing for calculating a pseudo echo from a reception input signal input from a reception signal input port, and an echo cancel processing for removing an echo from a transmission input signal using the pseudo echo.
  • the echo processing reduction unit changes the criterion for double-talk detection according to the amount of change in the amount of change in the loudspeaker amplification value, and performs double-talk detection processing for detecting double-talk, and transmission input signals using pseudo echo.
  • Echo cancellation means for reducing the echo component of the signal and generating a residual signal; It performs echo suppression processing to suppress the residual signal with the amount of attenuation that changes based on the detection result of the logic.
  • the echo reduction processing unit performs an echo suppression process for suppressing a transmission input signal including an echo with an attenuation amount corresponding to a speaker amplification value.
  • FIG. 1 is a block diagram showing a configuration of a voice communication device according to the present invention.
  • FIG. 2 is a block diagram showing a configuration of an echo processing device provided in the voice communication device according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart for explaining the operation of the echo canceller according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart for explaining the operation of the echo canceller according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart for explaining another example of the operation of the echo canceller according to Embodiment 1 of the present invention.
  • FIG. 6 is a flowchart illustrating an operation of the echo canceller according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart illustrating another example of the operation of the echo canceller according to Embodiment 2 of the present invention.
  • FIG. 8 is a flowchart for explaining the operation of the echo canceller according to Embodiment 3 of the present invention.
  • FIG. 9 is a flowchart illustrating another example of the operation of the echo canceller according to Embodiment 3 of the present invention.
  • FIG. 10 is a flowchart illustrating the operation of the echo canceller according to Embodiment 4 of the present invention.
  • FIG. 11 is a flowchart for explaining the operation of the echo canceller according to the fifth embodiment of the present invention.
  • FIG. 12 is a block diagram showing a configuration of an echo processing device provided in a voice communication device according to Embodiment 7 of the present invention.
  • FIG. 13 is a flowchart illustrating the operation of the echo canceller according to Embodiment 7 of the present invention.
  • FIG. 14 is a block diagram showing a configuration of an echo processing device provided in a voice communication device according to Embodiment 8 of the present invention.
  • FIG. 15 is a block diagram showing a configuration of a conventional voice communication device.
  • FIG. 16 is a block diagram showing a configuration of an echo processing device provided in a conventional voice communication device.
  • FIG. 17 is an explanatory diagram showing a signal before the nonlinear distortion occurs and a signal after the nonlinear distortion occurs.
  • FIG. 1 is a block diagram showing a configuration of a voice communication device according to the present invention.
  • FIG. 2 is a block diagram showing a configuration of an echo processing device provided in the voice communication device shown in FIG. 1 and a peripheral configuration thereof.
  • the conventional voice communication device was provided with a control CPU 9 for outputting a speaker amplification value corresponding to a speaker volume of the volume control means 2 to a speaker amplifier 8.
  • the voice communication device shown in FIG. 1 includes a control CPU 9 that outputs a speaker amplification value S to an echo processing device 6 and a speaker amplifier 8.
  • the voice communication device controls the echo canceller 15 and the echo suppressor 18 by using the beaker amplification value S output from the control CPU 9 to generate a transmission voice signal.
  • Echo processing device for reducing included echo Is provided.
  • FIGS. 1 and 2 the same reference numerals as those shown in FIGS. 15 and 16 denote the same or corresponding parts, and a description of the same operations will be omitted.
  • the control CPU 9 outputs the speaker amplification value S to the echo processor 6 and the speed amplifier 8 according to the speaker volume adjusted by the terminal user using the volume adjustment means 2.
  • the volume adjustment means 2 receives, for example, a speaker amplification value S set by a user by key input or volume adjustment. However, the volume adjustment means 2 accepts, by key input, a symbol corresponding to the speaker amplification value S instead of the speaker amplification value S itself, and the control CPU 9 controls the subroutine corresponding to the symbol input via the volume adjustment means 2.
  • the force amplification value S may be output.
  • the speaker amplifier 8 can set an amplification value of a total of seven levels in 6 dB steps around the reference level in advance.
  • a speaker amplification value S at which nonlinear distortion occurs in the output of the speaker amplifier 8 is determined in advance by measurement.
  • the speaker amplification value S at which nonlinear distortion occurs in the output of the speaker amplifier 8 is 18 dB (level A) or more
  • the speaker amplification value S at which the echo canceller 15 may generate abnormal noise is 24 dB (Level B) This is described above.
  • the speaker amplification value S output from the control CPU 9 to the echo processing device 6 is input to the adaptive filter 16 and the echo sub-laser 18 of the echo canceller 15.
  • the echo canceller 15 is used as a parameter for determining whether or not the speaker amplification value S should be echo-removed. That is, by comparing the loudspeaker amplification value S input from the control CPU 9 with a predetermined threshold value, it is determined whether or not the loudspeaker amplification value S is equal to or less than 24 dB (level B).
  • the echo canceller 15 removes the echo from the signal S d (i) if the sliding power amplification value S is 24 dB or less, and the echo of the echo canceller 15 if the speaker amplification value S is 24 dB or more.
  • the pseudo echo SE (i) 0, but if the amount of suppression of the pseudo echo is such that the generation of noise can be suppressed, a value close to zero is set as the pseudo echo SE (i). Is also good.
  • the adaptive filter 16 of the echo canceller 15 amplifies the amplitude of the received input signal R d (i) input to the adaptive filter 16 according to the amount of change in the speaker amplification value S. For example, when the speaker amplification value S changes from -6 dB to +6 dB, the received input signal; d (i) is amplified by +12 dB corresponding to the amount of change. Further, for example, when the speaker amplification value S changes from +6 dB to the reference level of 0 dB, the received input signal R d (i) is amplified by ⁇ 6 dB corresponding to the change amount.
  • the adaptive filter 16 obtains a filter coefficient h (n) from the received input signal R d (i) and the residual signal U (i) whose amplitude has been amplified
  • the pseudo echo SE (i) is obtained using h (n) and the received input signal Rd (i). Note that the adaptive filter 16 does not amplify the received input signal R d (i) input to the echo canceller 15 according to the speaker amplification value S, but according to the speaker amplification value S outside the echo canceller 15.
  • the amplified reception input signal Rd (i) may be configured to be input to the echo canceller 15.
  • the echo canceller 18 changes the amount of attenuation for suppressing the residual signal U (i) output from the echo canceller 15 according to the speaker amplification value S. That is, if the loudspeaker amplification value S output from the control CPU 9 is 18 dB (level A) or more, the signal output from the echo canceller 15 is greatly attenuated (for example, -40 dB), and the loudspeaker amplification value is reduced. If S is less than 18 dB, the signal is attenuated relatively small (eg, 10 dB) and the transmission output signal Td (i) is output.
  • FIG. 3 is a flowchart for explaining the operation of the echo canceller 15 provided in the echo processing device 6.
  • FIG. 4 is a flowchart illustrating the operation of the echo suppressor 18.
  • the speaker amplification value S is input from the control CPU 9 to the echo canceller 15 (step 1), and the reception input signal R d (i) is also input (step 2).
  • the received input signal Rd (i) is amplified according to the variation of the amplified power value S (ste P 3), and the loudspeaker amplified value S is compared with the threshold value th (B) (24dB) (step 4).
  • th B
  • the pseudo echo signal SE (i) is obtained from the received input signal Rd (i) and the received input signal Rd (i) in step 9 in step 9. Is calculated, SE (i) is subtracted from the signal S d (i) containing the echo (step 6), and the residual signal U (i) is output (step 7). Then, the filter coefficient h (n) is obtained from the received input signal Rd (i) and the residual signal U (i) in step8, and the process returns to stpe1.
  • the loudspeaker amplification value S is input from the control CPU 9 (step l2), and the received input signal Rd (i) is also input to the echo sub-lesser 18 (step 13). Then, the residual signal U (i) is input from the echo canceller 15 (step l 4).
  • the reception input signal Rd (i) input to the adaptive filter and the speaker The level of the received output signal output from the amplifier 8 can be made to exactly match, and even if the speaker amplification value S changes, an appropriate fill coefficient h (n) is obtained in the adaptive filter 16 to obtain the actual echo. Can calculate pseudo echo SE (i) close to The echo can be properly removed by the subtractor 17.
  • the speaker amplification value S is a predetermined level, and is 18 dB or more according to the above description, the echo canceling performance of the echo canceller 15 is deteriorated, and the residual signal U ( Since the residual echo may remain in i), the echo component that cannot be completely removed by the echo canceller 15 is suppressed by increasing the amount of attenuation that suppresses the output of the echo canceller 15 in the echo canceller 18. be able to.
  • the audio communication device 1 shown in FIGS. 1 and 2 described above employs a configuration that does not include the volume control means 2, the speaker 10, and the microphone 11, so that the volume of the in-vehicle audio device or the home audio device can be reduced. It is intended for use in which the volume is adjusted using adjustment means, and voice is input and output via speakers and microphones.
  • the audio communication device 1 according to the above description may be configured to include the volume adjusting means 2, the speaker 10, and the microphone 11.
  • the voice communication device 1 can also be implemented as a television mobile phone that handles image information.
  • an image display device such as a liquid crystal display and a CRT
  • an image input device such as a CCD camera
  • the above description relates to a voice communication device having an echo canceller 15 and an echo canceller 18 and an echo processing device 6 for reducing an echo according to the speaker amplification value S. It is also possible to use an echo processor having either one of the echo canceller 15 and the echo canceller 18.
  • the echo processing device 6 having the echo canceller 15 uses the loudspeaker amplification value S as a parameter to determine whether or not to remove the echo, thereby adding a signal that causes an abnormal sound by removing the echo. Can be detected.
  • the adaptive filter It is possible to accurately match the level of the received input signal R d (i) input to the receiver with the level of the received output signal output from the speaker amplifier 8, and calculate a pseudo echo SE (i) close to the actual echo . Further, the echo processing device 6 having the echo sub-reseller 18 changes the amount of attenuation for suppressing the signal containing the echo, so that the echo can be suppressed efficiently according to the magnitude of the echo contained in the signal.
  • Embodiment 2 The operation described with reference to FIG. 3 may be executed by changing the processing order as shown in FIG.
  • FIG. 5 the same reference numerals as those in FIG. 3 indicate the same or corresponding parts.
  • the voice communication device When the speaker amplification value S is equal to or more than a predetermined level (24 dB), the voice communication device according to the first embodiment has a very large nonlinear distortion in the signal S d (i) input to the echo processing device 6.
  • a predetermined level 24 dB
  • an echo canceler that does not cancel the signal S d (i) may be added. I had it.
  • the pseudo echo S E (i) is attenuated by a fixed value to control the amount of echo cancellation to eliminate echoes, it is possible to prevent noise from being added to the signal.
  • the voice communication device includes an echo canceller that removes an echo using a pseudo echo SE (i) attenuated by a fixed value when the speaker amplification value S is equal to or greater than a predetermined level. It is a thing.
  • FIG. 6 is a flowchart illustrating the operation of the echo canceller of the voice communication device according to Embodiment 2 of the present invention. Steps 4 and before in the flowchart shown in FIG. 6 are the same as steps 1 to 4 in the flowchart in FIG. 3 described in the first embodiment, and a description thereof will not be repeated. At step ep4 in Fig.
  • step 23 when the speaker amplification value S is equal to or greater than the predetermined threshold th (B) (24 dB), in step 23, the pseudo value is calculated using the fill coefficient h (n) obtained so far. Computes the echo SE (i). Then, by multiplying the pseudo echo SE (i) calculated in step 23 by a coefficient ⁇ (0 ⁇ ? ⁇ 1), the pseudo echo SE (i) is attenuated by a constant value (st ep 24) and attenuated. The subtracted pseudo echo SE (i) is subtracted from the signal S d (i) (step 25) to perform echo cancellation.
  • 0.5 can be set as the coefficient / ?.
  • step 4 when the slip amplification value S is less than the predetermined threshold th (B) (24 dB), the process proceeds to step 9 to calculate a pseudo echo SE (i), and to perform step 25.
  • the speaker amplification value S is a predetermined level, and is 24 dB or more according to the above description, extremely large nonlinear distortion occurs in the signal S d (i) input to the echo processing device 6, and the echo Since there is a risk that abnormal noise may be added by removing the signal, it is possible to add a signal that causes abnormal noise by removing the echo using the speaker amplification value S output from the control CPU 9. Judge whether it is high. If there is a high possibility that abnormal noise will be added, the pseudo echo SE (i) attenuated by a certain value is used to control the amount of echo cancellation to remove the echo. Addition can be suppressed.
  • Embodiment 3 In the voice communication device according to the first embodiment, when the speaker amplification value S is equal to or higher than a predetermined level (24 dB), an extremely large nonlinear distortion is generated in the signal S d (i) input to the echo processing device 6. When the Speaker amplification value S is higher than a predetermined level, an echo canceller that does not remove the signal Sd (i) from the echo may be added. I had it.
  • the speaker amplification value S is set to a predetermined level (24 dB) or more, the updating of the fill coefficient h (n) by the sequential calculation is stopped, and the speaker amplification value S is set to the predetermined level (24 dB).
  • the echo removal may be controlled by calculating the pseudo echo SE (i) from the fill coefficient before being set to 24 dB). Then, when the loudspeaker amplification value S is set to a predetermined level or less, the updating by the successive calculation of the filter coefficient is restarted, and the pseudo echo SE (i) is generated by the successively calculated filter coefficient. Is also good.
  • the voice communication device is characterized in that when the amplified power S is equal to or higher than a predetermined level, the filter before the speaker amplification S is set to be equal to or higher than a predetermined level (24 dB) It is provided with an echo canceller for obtaining a pseudo echo SE (i) from the coefficient and removing the echo.
  • FIG. 8 is a flowchart illustrating an operation of the echo canceller of the voice communication device according to Embodiment 3 of the present invention. 8, the same reference numerals as those in FIG. 3 denote the same or corresponding parts as in FIG.
  • step 4 of FIG. 8 when the speaker amplification value S is equal to or more than the predetermined threshold th (B) (24 dB), the process proceeds to step 38, and the speaker amplification value S is set to a predetermined level (24 dB) or more.
  • the fill coefficient h (n) before the reading is read from a memory (not shown).
  • a pseudo echo SE (i) is calculated based on the filter coefficient h (n) read in step 38 (step 39), and the pseudo echo SE calculated in step 39 is calculated.
  • One SE (i) is subtracted from the signal Sd (i) to remove the echo (step 6).
  • step 8 the filter coefficient h (n) calculated in step 9 is stored in the memory.
  • the loudspeaker amplification value S is a predetermined level, and is 24 dB or more according to the above description, extremely large nonlinear distortion is generated in the transmission voice digital signal input to the echo processor 6.
  • Noise may be added by removing the echo, and a signal that produces an abnormal noise is added by removing the echo using the speaker amplification value S output from the control CPU 9.
  • the pseudo echo SE (i) is calculated using the filter coefficient h (n) before the speaker amplification value S is set to a predetermined level (24 dB) or more. ), The amount of echo removal is controlled and the echo is removed, so that it is possible to prevent the transmission output signal T d (i) from adding abnormal noise.
  • the pseudo echo SE from the filter coefficient h (n) before the speaker amplification value S is set to the predetermined level (24 dB).
  • the present invention relates to an echo processor that removes the echo by obtaining (i).
  • the pseudo echo SE (i) is calculated using a pre-registered filter coefficient h (n). SE (i) may be calculated.
  • FIG. 8 The operation described using FIG. 8 is performed by changing the processing order as shown in FIG. May be performed.
  • FIG. 9 the same reference numerals as those in FIG. 5 or FIG. 8 represent the same or corresponding parts.
  • the voice communication device includes an echo canceller that amplifies the received input signal R d (i) according to the amount of change in the speaker amplification value S, as shown in step 3 of FIG. .
  • an adjustment value according to the change in the speaker amplification value S is used as a filter coefficient as shown in Equation 4.
  • the filter coefficient may be changed by multiplying only once.
  • FIG. 10 is a flowchart for explaining the processing of the echo canceller according to the present embodiment. 10, the same reference numerals as those in FIG. 3 represent the same or corresponding parts as those in FIG.
  • the same reference numerals as those in FIG. 3 represent the same or corresponding parts as those in FIG.
  • the slip amplification value S The filter coefficient h (n) corresponding to the above is calculated as in the above equation (2).
  • the filter coefficient h (n) is sequentially calculated from the filter coefficient h (n) as a starting point.
  • the signal is adjusted using an adjustment value corresponding to the change in the speaker amplification value S.
  • the echo elimination processing when changing the filter coefficient h (n) is the same as steps 6 to 9 in FIG. 3 as shown in FIG. As described above, the filter coefficient h (n) is multiplied by the adjustment value corresponding to the change in the speaker amplification value S to change the filter coefficient h (n). With a relatively small amount of computation, which is multiplication of the order of the filter coefficient h (n), a pseudo echo SE (i) is generated by finding an appropriate adaptive filter coefficient h (n), and an appropriate echo One can be removed.
  • the filter coefficient is changed, so that the slip force amplification value S exceeds the predetermined time. If the filter coefficient changes slowly and the filter coefficient is updated properly, the echo coefficient can be properly removed without changing the filter coefficient to an incorrect value.
  • the voice communication device does not amplify the received input signal R d (i) according to the amount of change in the speaker amplification value S, but instead adjusts the adjustment value ⁇ according to the change in the speaker amplification value S.
  • an echo canceller that multiplies the filter coefficient only once to change the filter coefficient h (n) is provided.
  • the pseudo echo SE (i) obtained by the adaptive filter h (n) becomes large. Discontinuities may occur. If the echo is removed using the pseudo echo SE (i) in which this discontinuity has occurred, an abnormal sound may be added to the echo-removed signal.
  • the target adjustment value 2 If (1/2) J , 1/2 is multiplied by J times the fill factor.
  • FIG. 11 is a flowchart illustrating the operation of the echo canceller of the voice communication device according to Embodiment 5 of the present invention.
  • the same reference numerals as those in FIG. 3 indicate the same or corresponding parts.
  • the process of multiplying the adjustment value stepwise by using FIG. 11 will be described.
  • the change amount D s of the speaker amplification value S is stored in the memory from the current speaker amplification value S in the next step 26. It is obtained by subtracting the previous speaker amplification value S o 1 d.
  • step 27 the number of divisions J is set.
  • the number of divisions J corresponding to the change amount Ds is stored in a memory in advance. You may set it.
  • step 28 the counter j is reset in step 28, and it is determined whether the number of divisions J is 0 in step 29. If the value is 0, the process proceeds to step 37, the counter k is set to a predetermined constant K, and the process proceeds to step 2.
  • the filter coefficient h (n) is adjusted stepwise in step 30 using the following equation.
  • step 31 reset the count k to 0, and perform echo removal in steps 2 to 9. .
  • the processing of each step is performed in the same manner as in Embodiment 1.o
  • the echo canceller 15 can execute the echo removal processing K times based on the filter coefficient h (n) adjusted by one step in step 30.
  • the echo canceller 15 adds 1 to the count j and determines whether the count j has reached the division count J or more. If not, return to step 30.
  • the echo canceller 15 repeats the processing of steps 30 to 35 to adjust the filter to the J stage.
  • the echo elimination process can be executed based on the LU coefficient.
  • step 35 If it is determined in step 35 that the counter j has reached the division count J or more, the process proceeds to step 36, and the echo canceller 15 stores the current speaker adjustment value S as So 1 d. Thereafter, similar processing is performed from st e p 1.
  • the adjustment value is divided and multiplied so that the filter coefficient h (n) is gradually changed. Therefore, it is possible to prevent a large discontinuity from being generated in the generated pseudo echo SE (i) .In other words, the generated pseudo echo changes more smoothly than when the filter coefficient is greatly changed at once, and the signal after echo cancellation is also reduced. Changes smoothly. Therefore, by removing the echo using the pseudo echo SE (i), it is possible to obtain an effect of preventing the signal U (i) from generating abnormal noise.
  • the voice communication device when the value of the speaker amplification value S greatly changes, an adjustment value according to the amount of change is divided into several times and multiplied by the fill coefficient.
  • the adaptive filter h (n) A large discontinuity occurs in the required pseudo echo SE (i), and as a result, There may be abnormal noise in the signal.
  • the voice communication device resets the filter coefficient to zero when the change amount of the sub-force amplification value S is larger than a predetermined value. That is, when the change in the loudspeaker amplification value S is, for example, +24 dB or more (or 124 dB or less) within 0.8 seconds, the echo canceller 15 calculates the filter coefficient h (n) by Equation (7). After that, set to zero once, and then update the filter coefficient by sequential calculation so that the value gradually becomes correct.
  • the filter coefficient h (n) is set to zero. However, a value close to zero may be set as much as possible to avoid large discontinuity in the pseudo echo SE (i). it can.
  • the filter coefficient h (n) is temporarily set to zero or a value close to zero, so that the filter coefficient is multiplied by a large (or small) adjustment value.
  • the filter coefficient h (n) is temporarily set to zero or a value close to zero, so that the filter coefficient is multiplied by a large (or small) adjustment value.
  • the evening coefficient h (n) is changed, it is possible to prevent a large discontinuity from being generated in the generated pseudo echo SE (i).
  • the generated pseudo echo changes smoothly, and the signal after the echo cancellation also changes smoothly to prevent the generation of abnormal noise. Therefore, by removing the echo using this pseudo echo SE (i), it is possible to obtain an effect that no abnormal noise is generated in the signal U (i).
  • FIG. 12 is a block diagram showing the configuration of an echo processing device provided in the voice communication device according to the present invention and the peripheral configuration thereof.
  • the echo processing apparatus according to this embodiment has a simultaneous utterance state of the far end speaker and the near end speaker. (Double-talk), and outputs the detection result to the adaptive filter 16.
  • the double-talk detecting means 26 is provided.
  • the configuration other than the adaptive filter 16 in FIG. 12 is the same as that in the first embodiment, and the same reference numerals as those shown in FIG.
  • the double talk detecting means 26 receives the received input signal Rd (i), the signal Sd (i), and the residual signal U (i), and obtains respective signal powers as Rp, Sp, and Ep.
  • the double talk detecting means 26 is either a double talk or a far end talker. It is determined that the user is in the utterance state. Then, the result of the determination is output to the adaptive filter 16 as a result of the double talk determination.
  • PV is a weight coefficient that changes according to the amount of change in the speaker amplification value S.
  • the updating of the fill coefficient is stopped when the result of the double talk determination indicates double talk, and the update of the fill coefficient is performed when the result of the double talk determination is not double talk.
  • FIG. 13 is a flowchart for explaining the operation of the echo canceller of the voice communication apparatus according to the seventh embodiment.
  • the same reference numerals as those in FIG. 3 or FIG. 8 represent the same or corresponding parts as in FIG. 3 or FIG.
  • step 41 If double talk is determined in step 41, the process proceeds to step 42 and the fill coefficient h (n) obtained before the double talk is determined is read from the memory 27.
  • the filter coefficient h (n) is used for calculating the pseudo echo SE (i) in the next step 39.
  • step 41 the process proceeds to step 8 and the fill coefficient h (n) is updated.
  • step 32 the fill coefficient h (n) calculated in step 8 is stored in memory 2 Remember at 7 and go to step 3 9
  • the double talk detecting means 26 outputs the result of the double talk determination to the echo sub-dresser 18. According to the result of the double talk determination, the echo canceller 18 sets a larger echo suppression amount during the period determined not to be double talk than the period determined to be double talk, and makes the residual signal U (i) larger. Oppress.
  • the echo suppression amount for example, 6 dB can be set when it is determined to be double talk, and 24 dB when it is determined that it is not double talk.
  • the echo canceller described in this embodiment is not limited to the echo canceller described in this embodiment, but may be the same as the echo canceller described in other embodiments or various types of conventional echo cancellers. They can be used in combination.
  • the voice communication device described in the first to seventh embodiments has an adaptive filter 16 and a subtraction unit 17 and performs echo removal according to the speaker amplification value S output from the control CPU 9.
  • the echo processing device is composed of an echo canceller 15 and an echo canceller 18 that changes the amount of attenuation that suppresses the echo canceller output in accordance with the speaker amplification value S output from the control CPU 9. I was However, it is also possible to realize the processing of the echo canceller 15 and the echo sub-lesser 18 by software. Hereinafter, a description will be given of a voice communication device that executes the processing of the echo canceller 15 and the echo sub-lesser 18 by software in an echo processor.
  • FIG. 14 is a block diagram showing a configuration of a voice communication device according to Embodiment 8 of the present invention.
  • reference numeral 19 denotes an echo processing unit constituted by a digital signal processor (hereinafter referred to as DSP)
  • reference numeral 20 denotes a reception signal input port
  • reference numeral 21 denotes a reception signal output port.
  • Reference numeral 22 denotes a speaker amplification input port
  • reference numeral 23 denotes a transmission signal input port
  • reference numeral 24 denotes a transmission signal output port
  • reference numeral 25 denotes an echo processor.
  • the same reference numerals as those in FIG. 2 or FIG. 12 indicate the same or corresponding parts as those in FIG. 2 or FIG.
  • the echo processing processor 25 includes a DSP 19 for performing echo reduction processing, a reception signal input port 20 to which a reception input signal R d (i) is input, and a reception A reception signal output port 21 from which an input signal R d (i) is output, a speaker amplification value input port 2 2 from which a speaker amplification value S is input from the control CPU 9, and a voice uttered by a terminal user.
  • Transmission signal input port 23 input as signal S d (i) via microphone 11, microphone amplifier 12, A / D converter 13, transmission with echo cancellation processing and echo suppression processing
  • the transmission signal output port 24 from which the output signal T d (i) is output is provided.
  • the control CPU 9 outputs the speaker amplification value S corresponding to the volume adjusted by the volume adjustment means 2 to the DSP 19 via the speaker amplification value input port 22 of the echo processor 25.
  • the software inside the DSP 19 reads the speaker amplification value S from the speaker amplification value input port 22 at regular time intervals (for example, at every sampling cycle of the audio sample). Then, the DSP 19 performs an echo canceling process and an echo suppressing process based on the read speaker amplification value S.
  • the echo cancellation processing and the echo suppression processing are the same as the processing contents described in the first to seventh embodiments with reference to FIGS.
  • the echo processing processor 25 which executes the processing of the echo canceller 15 and the echo sub-lesser 18 shown in FIGS. 1, 2, and 12 by software, is provided as an echo processing device.
  • the voice communication device performs the echo canceling process and the echo suppressing process in accordance with the speaker amplification value S input from the volume adjusting means 2 with a simple device configuration, so that the voice communication device according to the first to seventh embodiments will be described. The same effect as the voice communication device described can be obtained.
  • the echo reduction processing section 19 is a DSP, the operation of the echo cancellation processing and the echo suppression processing can be flexibly switched according to the change in the speaker amplification value S. Also, Echo Since the canceller and echo canceller are implemented by software, the operation can be switched immediately according to the change in the speaker amplification value S.
  • the software inside the DSP 19 reads the speaker amplification value S from the speaker amplification value input port 22 at regular time intervals, and echoes the echo based on the slip amplification value S. Switching between cancel processing and echo subless processing.
  • the control CPU 9 outputs the speaker amplification value S to the speaker amplification value input port 22 of the DSP 19, the DSP 19 is interrupted, and the echo cancellation processing and the echo suppression are performed in this interruption processing. You may comprise so that each process may be switched.
  • the DSP 19 performs only the echo canceling process and the echo suppressing process, but may further include a function of performing a voice codec process.
  • an echo processing function can be relatively easily added to the vehicle-mounted phone or the mobile phone.
  • the echo removal processing and the echo canceller processing are performed based on the speaker amplification value output from the control CPU.
  • the output from the control CPU is used. Instead, it is also possible to detect the amplification value of the slip force or receive it from another and execute the echo removal processing or the echo sub-lesser processing.
  • the control CPU that outputs the speaker amplification value corresponding to the speaker volume adjusted by the terminal user using the volume adjustment means, the demodulation, and the audio decoding
  • the received input signal is amplified according to the speaker amplification value and the output audio output from the speaker Of which is equipped with an echo processing device that reduces the echo mixed in the transmission input signal input via the microphone according to the speaker amplification value output from the control CPU. It can be reduced appropriately according to the value.
  • the echo processing device obtains a pseudo echo from the received input signal amplified according to the amount of change in the speaker amplification value and a filter coefficient calculated from the sound transfer characteristic between the microphone and the speaker, and uses the pseudo echo. And an echo canceling means for removing echoes from a transmission input signal including an echo, thereby calculating a pseudo echo from the filter coefficient and the amplified received signal.
  • the echo processor changes the filter coefficient calculated from the sound transfer characteristics between the speaker and the microphone in accordance with the amount of change in the speaker amplification value, and calculates a pseudo echo from the filter coefficient and the received input signal. Since the echo canceling means for removing the echo from the transmission input signal including the echo using the pseudo echo is provided, the echo can be properly removed.
  • the echo canceling means changes the filter coefficient stepwise when the change amount of the speaker amplification value is larger than a predetermined change amount.
  • the generated pseudo echo gradually changes, and the signal after echo cancellation also gradually changes, which has the effect of suppressing abnormal noise.
  • the echo canceling means sets the filter coefficient to a value between zero and a value close to zero when the change amount of the speaker amplification value is larger than a predetermined change amount. Therefore, the generated pseudo echo gradually changes, and the signal after canceling the echo gradually changes, which has an effect of suppressing abnormal noise.
  • the echo cancellation means changes the filter coefficient, so that the speaker amplification value is gradually reduced with time.
  • the filter coefficient changes and the filter coefficient is updated properly, the echo can be properly removed without changing the filter coefficient to an incorrect value.
  • the echo processing device obtains a pseudo echo from the received input signal and a filter coefficient calculated from the sound transfer characteristics between the microphone and the speaker, and changes the pseudo echo in accordance with the Slip force amplification value to change the pseudo echo.
  • echo canceling means that uses pseudo echoes to remove echoes from the transmitted input signal including echoes, nonlinear distortion occurs in the signal input to the echo canceling means as an echo, and the estimation accuracy of the filter coefficients deteriorates. In this case, it is more likely that very large nonlinear distortion will occur in the signal input as an echo to the echo canceling means, and the accuracy of estimating the filter coefficient will be significantly degraded, resulting in the addition of an abnormal signal. Detection can be performed with good accuracy, and deterioration in the estimation accuracy of the fill coefficient and addition of abnormal noise can be suppressed.
  • the echo canceling means changes the pseudo echo to zero or a value close to zero, so that the echo canceling means is input as an echo to the echo canceling means.
  • the echo canceling means attenuates the pseudo echo by a predetermined amount, so that a large non-linear distortion is applied to the signal input to the echo canceling means as an echo. If the accuracy of estimating the filter coefficient deteriorates significantly, Can be suppressed.
  • the echo canceling means uses a pseudo echo calculated from the filter coefficient before the speaker amplification value becomes larger than the threshold value.
  • the echo processing device changes the criterion for double-talk detection according to the amount of change in the speaker amplification value, double-talk detection means for detecting double-talk in accordance with the criterion, and sound transmission between the microphone and the speaker.
  • a pseudo echo is calculated from the filter coefficient calculated from the characteristic, and the pseudo echo is used to remove the echo from the transmission input signal including the echo, and to calculate the filter coefficient based on the detection result of the double talk detecting means. Equipped with echo canceling means to stop or start the update. Echo-Continues echo removal even when nonlinear input signals are input to the canceling means, causing non-linear distortion and degrading the filter coefficient estimation accuracy. be able to.
  • the echo processing device changes the criterion for double-talk detection according to the amount of change in the speaker amplification value, and transmits using double-talk detection means for detecting double-talk according to the criterion, and a pseudo echo.
  • the speaker is equipped with an echo canceling unit that reduces the echo component of the input signal to generate a residual signal, and an echo subless unit that suppresses the residual signal with an attenuation that changes based on the detection result of the double talk detecting unit. Even if the amplification value greatly changes, the stop of updating the filter coefficient due to erroneous determination as double talk is suppressed, and echo can be properly removed.
  • the double talk detecting means is used to detect the power of the transmission input signal and the residual signal
  • the speaker amplification value is changed in order to change the criterion for the double talk determination by changing the weighting factor by which the power of the transmission input signal is multiplied according to the change in the speaker amplification value. Even if the power of the residual signal increases due to a large change in the signal, it is possible to suppress the stop of updating the filter coefficient due to erroneous determination as double talk, and it is possible to appropriately remove the echo.
  • the echo processing device since the echo processing device includes the echo suppressor that suppresses the transmission input signal including the echo with an attenuation corresponding to the amplification value of the speed output from the control CPU, the echo canceler cannot completely remove the echo.
  • the echo sub-less means can suppress the residual echo included in the output of the echo canceller according to the speed amplification value.
  • the echo processing device is a digital signal processor, it is possible to appropriately remove echo.
  • An echo processor comprises: a reception signal input port to which a reception input signal including voice information is input; and a speaker amplification value input to which a speaker amplification value is input in accordance with a volume adjusted by using volume adjustment means.
  • An echo reduction processing unit that performs echo reduction processing that reduces echoes mixed into the signal in accordance with the speaker amplification value input through the power amplification value input port enables the echo contained in the transmitted audio signal to be reduced. It can be reduced appropriately.
  • the echo reduction processing section includes an amplification process for amplifying the reception input signal input from the reception signal input port in accordance with a variation in the slip amplification value input from the speaker amplification value input port; Filter coefficient calculation processing for obtaining a filter coefficient from the sound transfer characteristics between In order to perform a pseudo echo calculation process for calculating a pseudo echo from the received input signal and the amplified reception input signal and an echo cancellation process for removing the echo from the transmission input signal using the pseudo echo, the transmission signal input port is used.
  • the echo included in the transmission audio signal input to the echo processing processor via the connection processor can be appropriately reduced according to the slip amplification value.
  • the echo reduction processing unit calculates a filter coefficient from the acoustic transfer characteristic between the speaker and the microphone and calculates the filter coefficient by using the calculated filter coefficient and the amount of change in the amplification of the speech force input from the speaker amplification input port. And a pseudo echo calculation process for calculating a pseudo echo from this filter coefficient and the reception input signal input from the reception signal input port, and an echo cancellation for removing the echo from the transmission input signal using the pseudo echo. Since the processing is performed, an appropriate filter coefficient according to the change in the speaker amplification value can be obtained, and the echo can be appropriately removed.
  • the echo reduction processing unit performs a pseudo-echo operation for changing the filter coefficient stepwise, so that the generated The effect is that the echo changes stepwise, making it difficult to generate abnormal noise.
  • the echo reduction processing unit When the amount of change in the loudspeaker amplification value is larger than a predetermined amount of change, the echo reduction processing unit performs a pseudo-echo operation to set the filter coefficient to a value close to zero or close to zero. Compared with the case where the coefficient is multiplied by a constant, the generated pseudo-echo changes more smoothly, and the signal after echo cancellation also changes more smoothly, so that there is no noise.
  • the echo reduction processing unit performs a pseudo echo calculation process of changing a filter coefficient, so that the speaker amplification If the value changes slowly over time and the fill coefficient is updated properly, It is possible to suppress changing the filter coefficient to an erroneous value and to properly remove echo.
  • the echo reduction processing unit calculates a filter coefficient from the sound transfer characteristic between the speaker and the microphone, and performs a pseudo coefficient calculation based on the calculated filter coefficient and the reception input signal input from the reception signal input port.
  • Pseudo-echo calculation processing for calculating the echo, and changing the pseudo echo calculated in the pseudo-echo calculation processing according to the speaker amplification value input from the speaker amplification value input port, and transmitting using the changed pseudo echo Echo cancellation processing that removes echo from the input signal causes nonlinear distortion in the signal input as an echo to the echo processing processor, which degrades the estimation accuracy of the filter coefficient.
  • extremely large nonlinear distortion occurs in the input signal, and the estimation accuracy of the filter coefficient is significantly poor.
  • the echo reduction processing unit calculates a pseudo echo from the filter coefficient before the speaker amplification value becomes larger than the threshold. Since the echo calculation processing is performed, non-linear distortion occurs in the signal input as an echo to the echo canceller, and the echo removal can be continued even when the filter coefficient estimation accuracy deteriorates.
  • the echo processing reduction unit changes the criterion for double talk detection according to the change amount of the change amount of the speaker amplification value, and performs double talk detection processing for detecting double talk according to the criterion;
  • a filter coefficient is calculated from the sound transfer characteristics between microphones, and a filter coefficient calculation process for stopping or starting updating of the filter coefficient based on the result of the double talk determination, and calculating the calculated filter coefficient and receiving signal input.
  • the pseudo-echo calculation processing for calculating a pseudo echo from the received input signal input from the receiver and the echo cancellation processing for removing the echo from the transmission input signal using the pseudo echo are performed. However, it is possible to prevent the update of the fill coefficient from being erroneously determined to be double talk at that time, and to properly remove echo.
  • the echo processing reduction unit changes the criterion for double-talk detection according to the amount of change in the amount of change in the loudspeaker amplification value, and performs double-talk detection processing for detecting double-talk, and transmission input signals using pseudo echo.
  • Erroneous determination as double talk because echo cancellation means that reduces the echo component of the signal to generate a residual signal and echo suppression processing that suppresses the residual signal with an amount of attenuation that changes based on the detection result of the double talk processing Therefore, the residual signal is appropriately suppressed, so that the echo component that cannot be completely removed by the echo cancellation processing can be suppressed.
  • the echo reduction processing unit performs an echo suppression process that suppresses the transmission input signal including the echo with an attenuation amount corresponding to the speaker amplification value. Therefore, even if the echo cannot be completely removed by the echo cancellation process, the echo is reduced. By performing subless processing, residual echo contained in the signal subjected to echo cancellation processing can be suppressed according to the speaker amplification value.
  • the voice communication device and the echo processing processor according to the present invention are suitable for use in voice communication of, for example, an in-vehicle phone and a mobile phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Telephone Function (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

明 細 書 音声通信装置、 およびエコー処理プロセッサ 技術分野
この発明は、 車載電話およびテレビ携帯電話などの音声通信装置に関 するものであり、 特にスピーカから出力された出力音声がマイクを介し て入力された入力音声に混入した結果、 送信音声信号に含まれるエコー を低減するエコー処理装置およびエコー処理プロセッサに関する。 背景技術
図 1 5は従来の音声通信装置の構成を示すブロック図である。 図 1 6 は図 1 5に示す音声通信装置に設けられたエコー処理装置と周辺の構成 を示すブロック図である。 図 1 5において、 1は音声通信装置、 2は音 量調整手段、 3は受信回路部、 4はベースバンド信号処理部、 5は音声 コ一デック、 6はエコー処理装置、 7は D ZA変換器、 8はスピーカ増 幅器、 9は制御 C P U、 1 0はスピーカ、 1 1はマイク、 1 2はマイク 増幅器、 1 3は AZD変換器、 1 4は送信回路部である。 次に図 1 5を 用いて従来の音声通信装置の構成および動作について説明する。
音声通信装置 1を利用する近端話者、 すなわち端末利用者は音量調整 手段 2を用いてスピーカボリュームを調整する。 遠端話者、 すなわち通 話の相手方から送信され、 音声通信装置 1が受信した外部受信信号 Rは 受信回路部 3において中間周波数帯のディジ夕ル信号に変換され、 ベ一 スパンド信号処理部 4において復調され、 音声コーデック 5において音 声復号化処理が施される。 以上の処理が施された受信入力信号 R d(i)は エコー処理装置 6を経由して D Z A変換器 7に出力される。 D/A変換器 7は受信入力信号 R d(i)をアナログ信号 R aに変換し、 例えばオペレーションアンプで構成されるスピーカ増幅器 8に出力する c 制御 CPU 9は、 音量調整手段 2を用いて端末利用者が調整したスビ一 力ボリュームに対応するスピーカ増幅値をスピーカ増幅器 8に出力する c スピーカ増幅器 8は制御 CPU 9から出力されたスピーカ増幅値に応じ てアナログ信号 Raを増幅し、 受信出力信号としてスピーカ 10に出力 する。 スピーカ 10は端末利用者の所望の音量で出力音声を外部へ出力 する。
一方、 端末利用者より発せられた入力音声はマイク 1 1を介して音声 通信装置 1に入力される。 また、 マイク 1 1には端末利用者による入力 音声以外に、 スピーカ 10から出力された出力音声がスピーカ 10とマ イク 1 1間の音響伝達特性による変形を受けつつエコーとして入力され る。 スピーカ 10から出力された出力音声がマイク 1 1に混入するまで の経路をエコーパスと呼ぶ。 エコーが含まれた送信入力信号 S aはマイ ク増幅器 12を経てアナログ信号 S aとして A/D変換器 13に入力さ れ、 A/D変換器 13において信号 Sd ( i) に変換され、 エコー処理 装置 6に出力される。
エコー処理装置 6は図 1 6に示すように構成されている。 図 16にお いて、 15はエコーキャンセラ、 16は適応フィル夕、 17は減算器、 18はエコーサブレッサである。 音声コ一デック 5からエコー処理装置 6に入力された受信入力信号 Rd(i)は、 エコーキャンセラ 15および エコーサプレッサ 18に入力されるとともに、 エコー処理装置 6を通過 して D/A変換器 7に出力される。 エコーキャンセラ 15は、 信号 Sd ( i ) に含まれたエコーに近い疑似エコー S E(i)を合成し、 信号 Sd (i) から疑似エコー SE(i)を引くことによりエコーを除去した残差 信号 U ( i ) を得る。 この残差信号 U ( i) は適応フィル夕 16に入力 される。
適応フィルタ 16は、 音声コーデック 5から出力された受信入力信号 Rd ( i ) とエコーを除去後の残差信号 U ( i ) を用いてスピーカ 10 とマイク 1 1間の音響伝達特性を推定してフィル夕係数 h (n) を逐次 求めるとともに、 受信入力信号 Rd(i)とフィル夕係数 h (n) より疑 似エコー SE(i)を生成して减算器 17に出力する。 減算器 17には A /D変換器 13から信号 Sd ( i) が入力される。 減算器 17は信号 S d ( i) より疑似エコー S E(i)を減算し、 エコーを除去した残差信号 U ( i ) を出力する。
エコーキャンセラ 15はエコーが除去された残差信号 U ( i ) をェコ —サブレッサ 18に出力する。 エコーサブレッサ 18はエコーキャンセ ラ 15と異なり、 単にエコーキャンセラ 15から出力された信号の振幅 を一律に抑圧するものである。 具体的には、 エコーサブレヅサ 18は受 信入力信号 R d(i)の短時間パワーを求め、 この短時間パワーの値があ るしきい値以上の区間は遠端話者の発声区間と判定し、 この発生区間の 間、 エコーキャンセラ 15から入力された残差信号 U(i)の振幅を、 予 め定められた大きくない減衰量 (例えば 10 dB) だけ抑圧し、 送信出 力信号 T d ( i ) を得る。 エコーサブレヅサ 18において所定の減衰量 で振幅が抑圧された送信出力信号 T d ( i) は、 音声コ一デック 5で音 声符号化され、 ベースパンド信号処理部 4で変調され、 送信回路部で送 信周波数帯のアナログ信号に変換されて外部送信信号 Tとして送信され る。
以上説明したように、 従来の音声通信装置のエコー処理装置は、 ェコ —キャンセラ一 15で除去しきれない残留ェコ一成分を、 エコーサブレ ッサ 18が抑圧するとともに、 減衰量を大きく設定しないことで、 遠端 話者と近端話者が同時に発声するダブルトーク時に、 近端話者の音声を 大きく減衰させることを防止している。
また、 従来のダブルトーク検知を行ってその結果によりフィル夕係数 の更新の停止あるいは開始を制御するエコーキャンセラーには特開平 1 0 - 242891号公報の図 2に開示されたものがある。 特開平 10— 242891号公報の図 2において、 近端話者側からの送信信号のパヮ 一を Sp、 遠端話者側からの受信信号のパワーを Rp、 減算回路 21か らの出力信号である残差信号のパワーを E pとする。 従来のエコーキヤ ンセラーは、 以下の式 ( 1) 〜式 (3) を用い、 その下に示す条件 1〜 条件 3のいずれかをクリアした場合、 ダブルトーク即ち近端話者と遠端 話者が同時発声状態かあるいは遠端話者無発声状態と判定し、 フィル夕 係数の更新を停止する。 ここで P l、 P 2 , P3は固定値である。
Rp<P 1- ( 1)
Sp>P 2*Rp— (2)
Ep>P3*Sp- (3)
条件 1 :式 ( 1 ) が成立した場合
条件 2 :式 ( 1) が不成立かつ式 (2) が成立した場合
条件 3 :式 ( 1) 、 (2) が不成立かつ式 (3) が成立した場合 また、 特開平 10— 294785号公報に開示された従来発明による と、 制御 C P Uが外部入力から受けたスビーカ増幅値をスビーカ増幅器 に出力するとともに、 このスピーカ増幅器の出力を全波整流回路で全波 整流した信号が制御 CPUに入力される。 そして、 この全波整流信号に 応じてエコーキャンセル回路へ入力する受信信号の利得を制御する。 す なわち、 制御 C P Uはスビーカ出力を全波整流回路を通った全波整流信 号から求め、 その出力に応じてエコーキャンセル回路へ入力される受信 信号の利得を大きくする。 このことで、 スピーカ出力に応じた受信信号 をエコーキャンセル回路に入力することができ、 効果的なエコーキャン セルを行うことができる。
ところで、 図 1 6に示す従来のエコー処理装置では、 スピーカ増幅値 がある値以上に大きく設定されると、 スピーカ増幅器 8のォペレ一ショ ンアンプから出力される信号に非線形な歪が生じる。 また、 スピーカ増 幅値が大きく設定されるとスピーカ 1 0からの出力音声が大きくなり、 マイク 1 1、 マイク増幅器 1 2経由で A/D変換器 1 3に入力されるァ ナログ信号 S aの振幅が大きくなる。 アナログ信号 S aの振幅がある値 以上になって A/D変換器 1 3の入力最大値を越えると、 A/D変換器 1 3の出力に非線形な歪みが生じる。
スピーカ増幅器 8から出力される信号に生じた非線形な歪、 あるいは A/D変換器 1 3の出力に生じた非線形な歪みの一方あるいは両方に起 因してエコーキャンセラ一 1 5に入力される信号 Sd(i)に非線形な歪 が生じる。 図 1 7 (a) に非線形な歪みが生じる前の信号 Rd(i)、 図 1 7 (b) に非線形な歪みが生じた信号 Sd(i)の例を示す。 この結果、 適応フィルタ 1 6におけるフィル夕係数 h(n)の推定精度が劣化する。 このためフィル夕係数 h(n)より演算される疑似エコー S E(i)と、 信号 S d(i)に実際に含まれるエコーとの差違が大きくなり、 エコー除去性 能が劣化する。 また、 エコー除去性能が劣化するだけでなく逆に異音と なる信号を付加する可能性もある。 エコー除去性能が劣化すると、 ェコ —キャンセラ 1 5からの残差信号 U(i)には大きな残留エコーが残存す ることになり、 後段に備えられたエコーサブレヅサ 1 8において一定値 の減衰量でエコー抑圧処理をしても、 送信出力信号 T d(i)に大きなェ コ一成分が残るという課題があつた。
また、 特開平 1 0— 24289 1号公報に開示された従来発明は、 ス ビーカ増幅値が変化してエコー除去性能が劣化して残差信号のパワー E Pが大きくなつた場合、 式 (3 ) が成立してダブルトークと誤まって判 定されフィル夕係数の更新が停止するので、 エコー除去性能が改善して 行かずエコーが残留する課題があった。
また、 特閧平 1 0— 2 9 4 7 8 5号公報に開示された従来発明は、 ス ビーカ増幅器のスピーカ増幅値を求めるのに全波整流回路を設ける必要 があるため、 装置規模が大きくなるという問題があった。 さらに、 全波 整流回路で出力される波形は変化が大きいため、 スピーカ増幅値を正確 に求めるのは困難である。 発明の開示
この発明は、 以上説明した課題を解決するためになされたものである c すなわち、 スビーカ増幅値に関わらずにエコーの残留を抑制するエコー 処理装置を備えた音声通信装置を提供することを第一の目的とする。 また、 この発明は、 コンパク トなエコー処理装置を備えた音声通信装 置を提供することを第二の目的とする。 この発明における音声通信装置は、 音量調整手段を用いて端末利用者 が調整したスピーカ音量に対応するスピーカ増幅値を出力する制御 C P Uと、 復調、 音声復号化された受信入力信号がスピーカ増幅値に応じて 増幅されてスピーカから出力された出力音声のうち、 マイクを介して入 力された送信入力信号に混入したェコ一を、 制御 C P Uから出力された スピーカ増幅値に応じて低減させるエコー処理装置を備えたものである c また、 エコー処理装置は、 スピーカ増幅値の変化量に応じて増幅され た受信入力信号と、 マイクとスピーカ間の音響伝達特性より演算される フィル夕係数より疑似エコーを求め、 この疑似エコーを用いて、 エコー を含む送信入力信号よりエコーを除去するエコーキヤンセル手段を備え たものである。 また、 エコー処理装置は、 スピーカとマイク間の音響伝達特性より演 算されるフィル夕係数をスピーカ増幅値の変化量に応じて変化させると ともに、 このフィル夕係数と受信入力信号より疑似エコーを求め、 この 疑似エコーを用いて、 エコーを含む送信入力信号よりエコーを除去する エコーキャンセル手段を備えたものである。
また、 エコーキャンセル手段は、 スピーカ増幅値の変化量が予め定め た変化量よりも大きい場合には、 フィル夕係数を段階的に変化させるも のである。
また、 エコーキャンセル手段は、 スピーカ増幅値の変化量が予め定め た変化量よりも大きい場合には、 フィルタ係数をゼロ乃至ゼロに近い値 にするものである。
また、 エコーキャンセル手段は、 所定の時間内でのスピーカ増幅値の 変化量が予め定めた変化量よりも大きい場合には、 フィル夕係数を変化 させるものである。
また、 エコー処理装置は、 受信入力信号と、 マイクとスピーカ間の音 響伝達特性より演算されたフィル夕係数より疑似エコーを求め、 スピー 力増幅値に応じてこの擬似エコーを変化させ、 変化した疑似エコーを用 いて、 エコーを含む送信入力信号よりエコーを除去するエコーキャンセ ル手段を備えたものである。
また、 エコーキャンセル手段は、 スピーカ増幅値が所定のしきい値よ りも大きい場合には、 疑似エコーをゼロあるいはゼロに近い値に変化さ せるものである。
また、 エコーキャンセル手段は、 スピーカ増幅値が所定のしきい値よ りも大きい場合には、 疑似エコーを所定量だけ減衰させるものである。 また、 エコーキャンセル手段は、 スピーカ増幅値が所定のしきい値よ りも大きい場合には、 スピーカ増幅値がしきい値よりも大きくなる前の フィル夕係数より演算した疑似エコーを用いるものである。
また、 エコー処理装置は、 スピーカ増幅値の変化量に応じてダブルト ーク検知の判定基準を変更するとともに、 この判定基準に従ってダブル トークを検知するダブルトーク検知手段と、 マイクとスピーカ間の音響 伝達特性より演算されるフィル夕係数から疑似エコーを求め、 この疑似 エコーを用いて、 エコーを含む送信入力信号よりエコーを除去するとと もに、 ダブルトーク検知手段の検知結果に基づいて、 フィル夕係数の更 新の停止あるいは開始を行うエコーキヤンセル手段を備えるものである。 また、 エコー処理装置は、 スビ一力増幅値の変化量に応じてダブルト —ク検知の判定基準を変更するとともに、 この判定基準に従ってダブル トークを検知するダブルトーク検知手段と、 疑似エコーを用いて送信入 力信号のエコー成分を低減し残差信号を生成するエコーキャンセル手段 と、 ダブルトーク検知手段の検知結果に基づいて変化する減衰量で残差 信号を抑圧するエコーサプレス手段を備えるものである。
また、 ダブルトーク検知手段は、 送信入力信号のパワーと残差信号の パワーとの比較に基づいてダブルトークを検知するとともに、 送信入力 信号のパワーに乗じる重み係数をスピーカ増幅値の変化量に応じて変更 することによりダブルトーク判定の基準を変更するものである。
また、 エコー処理装置は、 エコーを含む送信入力信号を制御 C P Uか ら出力されたスピーカ増幅値に応じた減衰量で抑圧するエコーサプレス 手段を備えたものである。
また、 エコー処理装置は、 ディジタルシグナルプロセッサであること を特徴とするものである。
この発明のエコー処理プロセッサは、 音声情報を含む受信入力信号が 入力される受信信号入力ポートと、 音量調整手段を用いて調整された音 量に応じてスピーカ増幅値が入力されるスピーカ増幅値入力ポートと、 端末利用者の発する音声を含む送信入力信号が入力される送信信号入力 ポ一トと、 スピーカ増幅値に応じて受信入力信号が増幅されてスピーカ から出力された出力音声のうち送信入力信号に混入したエコーを、 スビ —力増幅値入力ポートを介して入力されたスピーカ増幅値に応じて低減 するエコー低減処理を行うエコー低減処理部を備えたものである。
また、 エコー低減処理部は、 スピーカ増幅値入力ポートから入力され たスピーカ増幅値の変化量に応じて、 受信信号入力ポートから入力され た受信入力信号を増幅する増幅処理と、 スピーカとマイク間の音響伝達 特性よりフィルタ係数を求めるフィル夕係数演算処理と、 演算されたフ ィル夕係数と増幅された受信入力信号より疑似エコーを演算する疑似ェ コー演算処理と、 疑似エコーを用いて送信入力信号よりエコーを除去す るエコーキャンセル処理を行うものである。
また、 エコー低減処理部は、 スピーカとマイク間の音響伝達特性より フィル夕係数を求めるフィル夕係数演算処理と、 演算されたフィル夕係 数をスピーカ増幅値入力ポ一卜から入力されたスピーカ増幅値の変化量 に応じて変化させるとともに、 このフィル夕係数と受信信号入力ポート から入力された受信入力信号より疑似エコーを演算する疑似エコー演算 処理と、 疑似エコーを用いて送信入力信号よりエコーを除去するエコー キヤンセル処理とを行うものである。
また、 ェコ一低減処理部は、 スピーカ増幅値の変化量が予め定めた変 化量よりも大きい場合には、 フィル夕係数を段階的に変化させる疑似ェ コー演算処理を行うものである。
また、 エコー低減処理部は、 スピーカ増幅値の変化量が予め定めた変 化量よりも大きい場合には、 フィル夕係数をゼロ乃至ゼロに近い値にす る疑似エコー演算処理を行うものである。
また、 エコー低減処理部は、 所定の時間内でのスピーカ増幅値の変化 量が予め定めた変化量よりも大きい場合には、 フィル夕係数を変化させ る疑似エコー演算処理を行うものである。
また、 エコー低減処理部は、 スピーカとマイク間の音響伝達特性より フィル夕係数を求めるフィル夕係数演算処理と、 演算されたフィル夕係 数と受信信号入力ポートから入力された受信入力信号より疑似エコーを 演算する疑似エコー演算処理と、 スピーカ増幅値入力ポートから入力さ れたスピーカ増幅値に応じて疑似エコー演算処理において演算された疑 似エコーを変化させ、 変化させた擬似エコーを用いて送信入力信号より エコーを除去するエコーキヤンセル処理を行うものである。
また、 エコー低減処理部は、 スピーカ増幅値が所定のしきい値よりも 大きい場合には、 スピーカ増幅値がしきい値よりも大きくなる前のフィ ル夕係数より疑似エコーを演算する疑似エコー演算処理を行うものであ る。
また、 エコー処理低減部は、 スビ一力増幅値の変化量の変化量に応じ てダブルトーク検知の判定基準を変更するとともに、 この判定基準に従 つてダブルトークを検知するダブルトーク検知処理と、 スビ一力とマイ ク間の音響伝達特性よりフィル夕係数を求めるとともに、 フィルタ係数 の更新の停止あるいは開始をダブルトーク判定結果に基づいて行うフィ ル夕係数演算処理と、 演算されたフィル夕係数と受信信号入力ポートか ら入力された受信入力信号より疑似エコーを演算する疑似エコー演算処 理と、 この擬似エコーを用いて送信入力信号よりエコーを除去するェコ —キヤンセル処理を行うものである。
また、 エコー処理低減部は、 スピーカ増幅値の変化量の変化量に応じ てダブルトーク検知の判定基準を変更し、 ダブルトークの検知を行うダ ブルトーク検知処理と、 疑似エコーを用いて送信入力信号のエコー成分 を低減し残差信号を生成するエコーキャンセル手段と、 ダブルトーク処 理の検知結果に基づいて変化する減衰量で残差信号を抑圧するエコーサ プレス処理を行うものである。
また、 エコー低減処理部は、 エコーを含む送信入力信号を、 スピーカ 増幅値に応じた減衰量で抑圧するエコーサプレス処理を行うものである。 図面の簡単な説明
第 1図は、 この発明に係る音声通信装置の構成を示すプロック図で ある。
第 2図は、 この発明の実施の形態 1に係る音声通信装置に備えられ たエコー処理装置の構成を示すプロック図である。
第 3図は、 この発明の実施の形態 1に係るエコーキヤンセラの動作 を説明するフローチヤ一卜である。
第 4図は、 この発明の実施の形態 1に係るエコーサブレッサの動作 を説明するフローチヤ一トである。
第 5図は、 この発明の実施の形態 1に係るエコーキャンセラの動作 の他の例を説明するフローチヤ一トである。
第 6図は、 この発明の実施の形態 2に係るエコーキャンセラの動作 を説明するフローチャートである。
第 7図は、 この発明の実施の形態 2に係るエコーキャンセラの動作 の他の例を説明するフローチャートである。
第 8図は、 この発明の実施の形態 3に係るエコーキャンセラの動作 を説明するフローチヤ一トである。
第 9図は、 この発明の実施の形態 3に係るエコーキャンセラの動作 の他の例を説明するフローチャートである。
第 1 0図は、 この発明の実施の形態 4に係るエコーキャンセラの動 作を説明するフローチャートである。 第 1 1図は、 この発明の実施の形態 5に係るエコーキャンセラの動 作を説明するフローチヤ一トである。
第 1 2図は、 この発明の実施の形態 7に係る音声通信装置に備えら れたエコー処理装置の構成を示すプロック図である。
第 1 3図は、 この発明の実施の形態 7に係るエコーキャンセラの動 作を説明するフローチャートである。
第 1 4図は、 この発明の実施の形態 8に係る音声通信装置に備えら れたエコー処理装置の構成を示すプロック図である。
第 1 5図は、 従来の音声通信装置の構成を示すブロック図である。 第 1 6図は、 従来の音声通信装置に備えられたエコー処理装置の構 成を示すプロック図である。
第 1 7図は、 非線形な歪みが生じる前の信号と生じた後の信号を示 す説明図である。 発明を実施するための最良の形態
実施の形態 1 .
図 1は、 この発明に係る音声通信装置の構成を示すプロック図である。 図 2は図 1に示す音声通信装置に設けられたエコー処理装置とその周辺 の構成を示すブロック図である。 従来の音声通信装置は、 音量調整手段 2のスピーカボリュームに応じたスピーカ増幅値を、 スピーカ増幅器 8 に出力する制御 C P U 9を備えていた。 これに対して、 図 1に示す音声 通信装置は、 スピーカ増幅値 Sをエコー処理装置 6およびスピーカ増幅 器 8に出力する制御 C P U 9を備えたものである。 以下説明する本発明 の実施の形態 1に係る音声通信装置は、 制御 C P U 9から出力されたス ビーカ増幅値 Sを用いてエコーキャンセラ一 1 5、 エコーサプレッサ 1 8を制御して送信音声信号に含まれるエコーを低減するエコー処理装置 を設けたものである。 なお、 図 1、 図 2において図 1 5、 図 1 6に示す 符号と同一の符号は同一または相当部分を示すので、 動作が同じものに ついては説明は省略する。
端末利用者が音量調整手段 2を用いて調整したスピーカボリユームに 応じて、 制御 C P U 9はスピーカ増幅値 Sをエコー処理装置 6およびス ピー力増幅器 8に出力する。 音量調整手段 2は例えばユーザーが設定す るスピーカ増幅値 Sをキー入力ないしボリユームっまみなどで受け付け るものである。 しかしながら、 音量調整手段 2はスピーカ増幅値 Sその ものでなくスピーカ増幅値 Sに対応する記号をキー入力で受け付け、 制 御 C P U 9は音量調整手段 2を介して入力された記号に対応するスビ一 力増幅値 Sを出力してもかまわない。
スピーカ増幅器 8は、 例えば表 1に示すように予め基準レベルを中心 に 6 d B刻みで計 7段階の増幅値を設定できる。 表 1 スピーカ増幅値
+ 2 4 d B
+ 1 8 d B
- 1 2 d B
+ 6 d B
0 d B (基準)
一 6 d B
一 1 2 d B
そして、 このスピーカ増幅器 8の基準レベルのうち、 スピーカ増幅器 8の出力に非線形歪みが生じるスピーカ増幅値 Sと、 エコーキャンセラ 15が異音を生成する可能性があるスピーカ増幅値 Sのレベルを事前に 予め測定によって求めておく。 以下の説明では、 スピーカ増幅器 8の出 力に非線形歪みが生じるスピーカ増幅値 Sを 18 dB (レベル A) 以上、 エコーキャンセラ 15が異音を生成する可能性があるスピーカ増幅値 S を 24 d B (レベル B) 以上として説明する。
制御 CPU 9からエコー処理装置 6に出力されたスピーカ増幅値 Sは、 エコーキャンセラ 15の適応フィル夕 16およびエコーサブレヅサ 18 に入力される。 エコーキャンセラ 15は、 スピーカ増幅値 Sをエコー除 去すべきか判断するパラメ一夕として使用するものである。 すなわち、 制御 CPU 9から入力されたスピーカ増幅値 Sを所定のしきい値と比較 することにより、 スピーカ増幅値 Sが 24 dB (レベル B) 以下か判断 する。 スビ一力増幅値 Sが 24 d B以下であれば、 エコーキャンセラ 1 5は信号 S d(i)からエコー除去を行い、 スピーカ増幅値 Sが 24 d B 以上であれば、 エコーキャンセラ 15のエコー除去量を 0 (すなわち疑 似エコー SE ( i ) = 0 ) に制御して、 エコー除去を行わない。
なお、 この例では疑似エコー SE ( i ) =0としたが、 疑似エコーの 抑圧量が雑音の発生を抑えられる程度であれば、 ゼロに近い値を疑似ェ コー SE ( i) として設定してもよい。
また、 エコーキャンセラ 15の適応フィル夕 16は、 スピーカ増幅値 Sの変化量に応じて適応フィル夕 16に入力された受信入力信号 R d ( i) の振幅を増幅させる。 例えばスピーカ増幅値 Sがー 6 dBから + 6 dBに変化した場合、 受信入力信号; d(i)を変化量分の + 12 dB 増幅する。 また例えばスピーカ増幅値 Sが + 6 dBから基準レベルの 0 dBに変化したとき、 受信入力信号 R d(i)を変化量分の— 6 dB増幅 する。 適応フィル夕 16はこのように振幅を増幅された受信入力信号 R d(i)と残差信号 U(i)からフィル夕係数 h (n) を求め、 フィル夕係数 h (n) と受信入力信号 R d(i)と用いて疑似エコー S E ( i) を求め る。 なお、 適応フィル夕 16がエコーキャンセラ 15に入力された受信 入力信号 R d(i)をスピーカ増幅値 Sに応じて増幅するのではなく、 ェ コーキャンセラ 15の外部でスピーカ増幅値 Sに応じて増幅された受信 入力信号 Rd(i)をエコーキャンセラ 15に入力するように構成しても よい。
また、 エコーサブレッサ 18は、 スピーカ増幅値 Sに応じてエコーキ ヤンセラ 15から出力された残差信号 U ( i ) を抑圧する減衰量を変化 させるものである。 すなわち、 制御 CPU 9から出力されたスピーカ増 幅値 Sが 18 dB (レベル A) 以上であれば、 エコーキャンセラ 15か ら出力された信号を大きく (例えば— 40 dB) 減衰させ、 スピーカ増 幅値 Sが 18 dB以下であれば、 比較的小さく (例えば一 10 dB) 減 衰させ、 送信出力信号 Td ( i) を出力する。
図 3はエコー処理装置 6に設けられたエコーキャンセラ 15の動作を 説明するフローチヤ一トである。 図 4は、 エコーサプレッサ 18の動作 を説明するフローチャートである。 以下、 図 3、 図 4を用いてエコー処 理装置 6の動作について説明する。 図 3において、 エコーキャンセラ 1 5には制御 C P U 9からスピーカ増幅値 Sが入力され ( s t e p 1 ) 、 受信入力信号 R d ( i ) も入力される (s t ep 2) 。 そして、 スピー 力増幅値 Sの変化量に応じて受信入力信号 Rd (i) を増幅し (s t e P 3) 、 スピーカ増幅値 Sとしきい値 t h (B) (24dB) と比較す る ( s t e p 4 ) 。
s t ep4は、 スピーカ増幅値 Sが 24 dB以上の場合、 入力される 信号 Sd ( i ) には極めて大きな非線形歪みが生じており、 エコー除去 することによって異音を付加してしまうおそれがあることから、 スピー 力増幅値 Sとしきい値 t h (B) (= 24 dB) を比較し、 エコー除去 すべきか判断する処理である。 s t e p 4においてスピーカ増幅値 Sが 24 dB以上であれば、 疑似エコー信号 S E ( i) を 0と決定し (s t e p 5 ) 、 エコーが含まれている信号 S d ( i) から SE ( i) =0を 減算し ( s t e p 6) 、 残差信号 U ( i) としてエコーサブレッサ 1 8 に出力する( s t e p 7 )。ここで、エコーが含まれている信号 S d ( i ) から S E ( i) = 0を減算するということはエコー除去しないことを意 味している。
一方、 s t e p 4においてスピーカ増幅値 Sが 24 dB未満であれば、 s t e p 9において、 それまでに求めたフィル夕係数 h (n) と受信入 力信号 Rd ( i) から疑似エコー信号 SE (i) を演算し、 エコーが含ま れている信号 S d ( i ) から S E ( i ) を減算し ( s t e p 6 ) 、 残差 信号 U ( i) を出力する (s t e p 7) 。 そして s t e p 8で受信入力 信号 Rd ( i) と残差信号 U ( i) からフィル夕係数 h (n) を求め、 s t e 1に戻る。
一方、 図 4に示すように、 制御 C P U 9からスピーカ増幅値 Sが入力 され( s t e p l 2)、エコーサブレッサ 1 8にも受信入力信号 R d ( i ) が入力される (s t e p 1 3) 。 そして、 ェコ一キャンセラ 1 5から残 差信号 U ( i ) が入力される (s t e p l 4) 。 エコーサブレッサ 1 8 は、 例えば受信入力信号 Rd ( i) の短時間パワーを求め、 この値があ るしきい値以上の区間を遠端話者発声区間と判定する (s t e p 1 5) 。 そして、 s t e p 1 5において判定された遠端話者の発声区間における スピーカ増幅値 Sとしきい値 t h (A) (= 18 dB) を比較する (s t e p 1 6 ) o
s t e p 1 6は、 スピーカ増幅値 Sが 1 8 dB以上の場合、 入力され る信号 S d (i)に生じた大きな非線形歪みによってフィルタ係数 h (n) の推定精度が劣化し、 エコーキャンセラ 1 5から出力される残差信号 U ( i ) に残留エコーが含まれることから、 スピーカ増幅値 Sとしきい値 t h (A) (= 18 dB) を比較し、 信号減衰量を大きくすべきか判断 する処理である。 スピーカ増幅値 Sとしきい値 t h (A) (= 18 dB) を比較した結果 (s t ep 17) 、 スピーカ増幅値 Sが 18dB以上で あれば、 エコー抑圧量を大きく して (s t e p 18)、 残差信号 U ( i) を抑圧する ( s t e p 19 ) 。 そして、 大きな減衰量 (例えば一 40 d B)でエコー抑圧した送信出力信号 T d (i)を出力する( s t e p 20 ) < 一方、 スピーカ増幅値が 18 d B以下であれば、 s t ep 2 1にてェコ 一抑圧量を小さく して (例えば一 10 dB) 残差信号 U ( i) を抑圧す る (s t ep l 9) 。
以上説明したエコー処理装置は、 スピーカ増幅値 Sが所定のレベル、 上記説明によると 24dB以上の場合、 エコー処理装置 6に入力される 信号 Sd (i)に極めて大きな非線形歪みが生じ、 エコー除去することに よつて異音を付加してしまうおそれがあることから、 制御 CPU9から 出力されたスピーカ増幅値 Sを用いて、 エコー除去すべきか判断するェ コ一キャンセラ 15を備えたものである。 したがって、 エコー除去する ことにより異音となる信号を付加する可能性が高い場合を確実に検出で き、 異音を付加する可能性が高い場合にはエコー除去量を 0 (すなわち 疑似エコー SE ( i) =0) に制御してエコー除去を停止するので送信 信号に異音を付加することを防止できる。
また、 スピーカ増幅値 Sの変化量に応じて受信入力信号 Rd ( i) の 増幅値を変化させるエコーキヤンセラ 15を備えたので、 適応フィル夕 に入力する受信入力信号 R d ( i) とスピーカ増幅器 8から出力される 受信出力信号のレベルを正確に合致させることが可能となり、 スピーカ 増幅値 Sが変化しても適応フィル夕 16において適正なフィル夕係数 h (n) を求めて実際のエコーに近い疑似エコー S E(i)を演算できるの で、 減算器 1 7で適正にエコーを除去することができる。
また、 スピーカ増幅値 Sが所定のレベル、 上記説明によると 1 8 d B 以上の場合、 エコーキャンセラ 1 5のエコー除去性能が劣化して、 ェコ —キャンセラ 1 5が出力した残差信号 U ( i ) に残留エコーが残る可能 性があることから、 エコーサブレヅサ 1 8においてエコーキャンセラ 1 5出力を抑圧する減衰量を大きくすることにより、 エコーキャンセラ一 1 5で除去しきれなかったエコー成分を抑圧することができる。
以上説明した図 1および図 2に示した音声通信装置 1は音量調整手段 2、 スピーカ 1 0、 マイク 1 1を含まない構成を採用しており、 車載ォ —ディォ機器や家庭用オーディオ機器の音量調整手段を用いて音量を調 整し、 スピーカ、 マイクを介して音声を入出力する使用形態を想定した ものである。 しかし、 上記説明による音声通信装置 1に音量調整手段 2、 スピーカ 1 0、 マイク 1 1を備えた構成としてもよい。 また、 上記説明 による音声通信装置 1に音量調整手段 2、 スピーカ 1 0、 マイク 1 1の ほか、 液晶ディスプレイ、 C R Tなどの画像表示手段、 C C Dカメラ等 の画像入力手段を備えることにより、 音声情報のほか画像情報を扱うテ レビ携帯電話として実施することも可能である。
なお、 上記説明は、 エコーキャンセラ 1 5およびエコーサブレッサ 1 8を有し、 スピーカ増幅値 Sに応じてエコーを低減させるエコー処理装 置 6を備えた音声通信装置に関するものであるが、 エコーキャンセラ 1 5またはエコーサブレッサ 1 8のいずれか一方を有するエコー処理装置 を用いることも可能である。 例えば、 ェコ一キャンセラ 1 5を有するェ コー処理装置 6は、 スピーカ増幅値 Sをエコー除去すべきか判断するパ ラメ一夕として用いることにより、 エコー除去することにより異音とな る信号を付加する場合を検出できる。 また、 スピーカ増幅値 Sの変化量 に応じて受信入力信号 R d ( i ) の増幅値を変化させるので、 適応フィ ル夕に入力する受信入力信号 R d ( i ) とスピーカ増幅器 8から出力さ れる受信出力信号のレベルを正確に合致させることが可能となり、 実際 のエコーに近い疑似エコー S E ( i )を演算できる。 また、 エコーサブレ ッサ 1 8を有するエコー処理装置 6は、 エコーが含まれる信号を抑圧す る減衰量を変化させるので、 信号に含まれるエコーの大きさに応じて効 率よくエコーを抑圧できる。
なお、 図 3を用いて説明した動作は、 図 5のように処理順序を変えて 実行してもよい。 ここで、 図 5において、 図 3と同一の符号は同一また は相当の部分を表わしている。 実施の形態 2 .
実施の形態 1に係る音声通信装置は、 スピーカ増幅値 Sが所定のレべ ル( 2 4 d B )以上の場合、エコー処理装置 6に入力される信号 S d ( i ) に極めて大きな非線形歪みが生じ、 エコー除去することによって異音を 付加してしまうおそれがあることから、 スピーカ増幅値 Sが所定のレべ ル以上であるときには、 信号 S d (i) をエコー除去しないエコーキャン セラを備えていた。 しかしながら、 疑似エコー S E ( i ) を一定値だけ 減衰させることによりエコー除去量を制御してェコ一除去するようにし ても、 信号に異音が付加されることを防止できる。
本発明の実施の形態 2に係る音声通信装置は、 スピーカ増幅値 Sが所 定のレペル以上であるときには、 一定値だけ減衰させた疑似エコー S E ( i ) を用いてエコー除去するエコーキャンセラを備えたものである。 図 6は本発明の実施の形態 2に係る音声通信装置のエコーキャンセラの 動作を説明するフローチャートである。 図 6に示すフローチャートの s t e p 4以前は、 実施の形態 1において説明した図 3のフローチャート の s t e p 1〜4と同一であるので説明は省略する。 図 6の s t ep4において、 スビーカ増幅値 Sが所定のしきい値 t h (B) ( 24 d B) 以上であるときには s t e p 23ではそれまでに求 めたフィル夕係数 h (n) を用いて疑似エコー SE ( i ) を演算する。 そして、 s t e p 23で演算された疑似エコー S E ( i) に係数^ ( 0 < ?< 1 ) を乗算することにより、 疑似エコー SE ( i) は一定値だけ 減衰され (s t ep 24) 、 減衰された疑似エコー S E ( i ) を信号 S d ( i) から減算して (s t ep 25) エコー除去を実行する。 ここで、 係数/?としては、 例えば 0. 5を設定することができる。
以上の処理を終えると、 s t ep 7と s t ep 8が実行されるとともに、 s t e 1に処理が引き渡される。 一方、 s t e p 4において、 スビ一 力増幅値 Sが所定のしきい値 t h (B) ( 24 d B) 未満であるときに は s t e p 9に進み疑似エコー S E ( i ) を演算し、 s t e p 25に戻 る。 以上説明したように、 スピーカ増幅値 Sが所定のレベル、 上記説 明によると 24 d B以上の場合、 エコー処理装置 6に入力される信号 S d ( i ) に極めて大きな非線形歪みが生じ、 エコー除去することによつ て異音を付加してしまうおそれがあることから、 制御 CPU 9から出力 されたスピーカ増幅値 Sを用いて、 エコー除去することにより異音とな る信号を付加する可能性が高いか判断する。 そして、 異音を付加する可 能性が高い場合には、 一定値だけ減衰させた疑似エコー S E (i) を用 いてエコー除去量を制御してエコー除去するので、 送信信号に異音を付 加することを抑制できる。
なお、 図 6を用いて説明した動作は、 図 7のように処理順序を変えて 実行してもよい。 ここで、 図 7において、 図 5又は図 6と同一の符号は 同一または相当の部分を表わしている。 実施の形態 3. 実施の形態 1に係る音声通信装置は、 スピーカ増幅値 Sが所定のレべ ル( 24 d B)以上の場合、エコー処理装置 6に入力される信号 S d ( i ) に極めて大きな非線形歪みが生じ、 エコー除去することによって異音を 付加してしまうおそれがあることから、 スビーカ増幅値 Sが所定のレべ ル以上であるときには、 信号 Sd (i) をエコー除去しないェコ一キャン セラを備えていた。しかしながら、スピーカ増幅値 Sが所定のレベル( 2 4 dB) 以上に設定された場合にはフィル夕係数 h (n) の逐次演算に よる更新を停止して、 スピーカ増幅値 Sが所定のレベル (24 dB) に 設定される前のフィル夕係数から疑似エコー S E(i)を求めることによ りエコー除去量を制御してエコー除去してもよい。 そしてスピーカ増幅 値 Sが所定のレベル以下に設定されたとき、 フィル夕係数の逐次演算に よる更新を再開して、 逐次演算されたフィル夕係数で疑似エコー S E (i)を生成するようにしても良い。
本発明の実施の形態 3に係る音声通信装置は、 スピー力増幅値 Sが所 定のレベル以上であるときには、 スピーカ増幅値 Sが所定のレベル (2 4 dB) 以上に設定される前のフィルタ係数から疑似エコー SE ( i ) を求めてエコー除去するエコーキヤンセラを備えたものである。 図 8は 本発明の実施の形態 3に係る音声通信装置のエコーキャンセラの動作を 説明するフローチャートである。 図 8において、 図 3と同一の符号は、 図 3と同一又は相当の部分を表わす。
図 8の s t e p 4において、 スピーカ増幅値 Sが所定のしきい値 t h (B) ( 24 d B) 以上であるときには s t e p 38に進み、 スピーカ 増幅値 Sが所定のレベル (24dB) 以上に設定される前のフィル夕係 数 h (n) を図示しないメモリから読み出す。 次に、 s t e p 38にお いて読み出されたフィルタ係数 h (n)に基づいて疑似エコー SE ( i ) を演算し (s t ep 39) 、 s t e p 39において演算された疑似ェコ 一 S E ( i) を信号 S d ( i) から減算してエコー除去する (s t e p 6 ) 。 以上の処理を終えると s t e p 7と s t e p 8が実行され、 s t e p 1に処理が引き渡される。 一方、 s t e p 4において、 スピーカ増 幅値 Sが所定のしきい値 t h (B) ( 24 d B) 未満であるときには s t e p 9に進む。 以下、 実施の形態 1で説明したように、 図 3 s t e p 6〜8を実行する。 なお、 s t e p 8では、 s t e p 9で演算されたフ ィル夕係数 h (n) がメモリに記憶される。
以上説明したように、 この実施の形態は、 スピーカ増幅値 Sが所定の レベル、 上記説明によると 24 dB以上の場合、 エコー処理装置 6に入 力される送信音声ディジタル信号に極めて大きな非線形歪みが生じ、 ェ コ一除去することによって異音を付加してしまうおそれがあることから、 制御 CPU 9から出力されたスピーカ増幅値 Sを用いて、 エコー除去す ることにより異音となる信号を付加する可能性が高いか判断するもので ある。 そして、 異音を付加する可能性が高い場合には、 スピーカ増幅値 Sが所定のレベル ( 24 d B) 以上に設定される前のフィル夕係数 h (n) を用いて疑似エコー S E ( i) を演算することによりエコー除去 量を制御してエコー除去するので、 送信出力信号 T d ( i) に異音を付 加することを防止できる。
なお、 上記説明では、 スピーカ増幅値 Sが所定のレベル以上に設定さ れた場合、 スピーカ増幅値 Sが所定のレベル ( 24 dB) に設定される 前のフィルタ係数 h (n) から疑似エコー S E ( i ) を求めてエコー除 去するエコー処理装置に関するものであった。 しかし、 所定のレベルに 設定される前のフィル夕係数 h (n) から疑似エコー SE ( i) を演算 するのではなく、 予め登録されたフィル夕係数 h (n) を用いて疑似ェ コ一 SE ( i) を演算してもよい。
なお、 図 8を用いて説明した動作は、 図 9のように処理順序を変えて 実行してもよい。 ここで、 図 9において、 図 5又は図 8と同一の符号は 同一または相当の部分を表わしている。 実施の形態 4.
実施の形態 1に係る音声通信装置は、 図 3の s t e p 3に示すように、 スピーカ増幅値 Sの変化量に応じて受信入力信号 R d(i)を増幅するェ コ一キャンセラを備えていた。 しかしながら、 スビ一力増幅値 Sの変化 量に応じて受信入力信号 Rd(i)を増幅するのではなく、 スピーカ増幅値 Sの変化に応じた調整値ひを式 4に示すようにフィルタ係数に一回だけ 乗じてフィル夕係数を変化させるようにしてもよい。
h (n) =a xh (n) (n= 0 , N- 1 ) (4) 図 1 0は、 この実施の形態のエコーキャンセラの処理を説明するフロ 一チャートである。 図 1 0において、 図 3と同一の符号は、 図 3と同一 又は相当の部分を表わしている。 実施の形態 1で説明したように、 s t e p 1〜2で、 スピーカ増幅値 Sと受信入力信号 Rd ( i ) がエコーキ ヤンセラ 1 5に入力されると、 s t e p 2 2において、 スビ一力増幅値 Sに応じたフィル夕係数 h (n) を上述式 ( 2 ) のように演算する。 こ こで、 スピーカ増幅値 Sが例えば、 0.8秒以内に + 6 dBから + 1 2 d Bに変化した場合、 6 d B分の増幅に相当するものとして、 エコーキヤ ンセラ 1 5はひ = 2を設定しフィル夕係数 h (n) を演算する。 また、 スピーカ増幅値 Sが 0 d Bから一 6 d Bに変化した場合は、 一 6 d B分 の増幅に相当するものとしてひ = 1Z2としてフィル夕係数 h (n) を 演算する。 フィル夕係数 h (n) に調整値を一回乗じた後は、 そのフィ ル夕係数 h (n) を起点としてフィル夕係数 h (n) の逐次演算を行う < なお、 スビ一力増幅値 Sの変化量に応じて受信入力信号 R d(i)を増幅 するのではなく、 スピーカ増幅値 Sの変化に応じた調整値ひを用いてフ ィル夕係数 h (n) を変化させる場合のエコー除去処理は、 図 10に示 したとおり図 3の s t e p 6〜9と同様であるので説明は省略する。 以上説明したように、 スピーカ増幅値 Sの変化に応じた調整値をフィ ル夕係数 h (n) に乗じてフィル夕係数 h (n) を変化させるので、 ス ビーカ増幅値 Sが変化してもフィル夕係数 h (n) の次数分の乗算とい う比較的少ない演算量で、 適正な適応フィル夕係数 h (n) を求めて疑 似エコー S E(i)を生成し、 適正にェコ一を除去することができる。 また、 所定の時間内でのスピーカ増幅値の変化量が予め定めた変化量 よりも大きい場合にフィル夕係数を変化させるようにしたので、 スビ一 力増幅値 Sが所定の時間を越えて時間的に緩やに変化しフィル夕係数が 適正に更新されている場合にフィル夕係数を誤った値に変化させること がなく、 適正にエコーを除去することができる。 実施の形態 5.
実施の形態 4に係る音声通信装置は、 スピーカ増幅値 Sの変化量に応 じて受信入力信号 R d(i)を増幅するのではなく、 スピーカ増幅値 Sの 変化に応じた調整値 αを式 4に示すようにフィルタ係数に一回だけ乗じ てフィル夕係数 h (n) を変化させるエコーキャンセラを備えていた。 しかしながら、 スピーカ増幅値 Sの変化量が非常に大きいため、 調整値 ひが非常に大きく (あるいは非常に小さく) なった場合、 適応フィル夕 h (n) により求められる疑似エコー S E(i)に大きな不連続が生じる ことが考えられる。 この不連続が生じた疑似エコー S E(i)を用いてェ コ一除去すると、 エコー除去した信号に異音が付加されてしまう可能性 もある。
そこで、 以下説明する実施の形態 5に係る音声通信装置は、 スピーカ 増幅値 Sの変化量が予め定めた値より大きい場合、 調整値ひを数回に分 けてフィル夕係数 h (n) に乗じるエコーキャンセラを備えたものであ る。 すなわち、 エコーキャンセラ 1 5は、 スピーカの増幅値 Sの変化量 が例えば 0.8秒以内に + 1 2 d B以上であったときは調整値ひを分割 して乗じることとし、 目的の調整値ひ =4 (= 22) を得るため、 フィル 夕係数 h (n) を逐次演算する毎にフィル夕係数 h (n) に 2を 2回乗 じてフィル夕係数 h (n) を演算する。 また、 スピーカ増幅値 Sの変化 量が 0.8秒以内に + 1 8 d Bであったときは目的の調整値ひ = 8 (= 2 3) を得るため 2を 3回乗じてフィル夕係数 h (n) を演算する。 また、 スビーカ増幅値 Sの変化量が 0.8秒以内に例えば— 1 2 d B以下であ つたときにも調整値ひを分割して乗じることとし、 一 1 2 dBでは目的 の調整値ひ = 1Z4 (=(1/2)2) を得るため、 フィル夕係数 h (n) を逐次演算する毎にフィルタ係数 h (n) に 1/2を 2回乗じる。 すな わち、 増幅値 Sの変化量が正の場合、 目的の調整値ひ = 2 Jとすると、 2を J回フィル夕係数に乗じ、変化量が負の場合、 目的の調整値ひ = ( 1 /2 ) Jとすると、 1/2を J回フィル夕係数に乗ずる。
図 1 1は、 本発明の実施の形態 5に係る音声通信装置のエコーキャン セラの動作を説明するフローチャートである。 図 1 1において、 図 3と 同一の符号は同一または相当の部分を表わしている。 以下、 この図 1 1 を用いて調整値ひを段階的に乗じる処理について説明する。
他の実施の形態同様、 s t e p 1でエコーキャンセラ 1 5がスピーカ 増幅値 Sを受信すると、 次の s t e p 26において、 スピーカ増幅値 S の変化量 D sを現在のスピーカ増幅値 Sからメモリに記憶しておいた過 去のスピーカ増幅値 S o 1 dを減算することによって求める。
続いて、 s t e p 2 7で分割回数 Jを設定する。 この分割回数 Jはェ コ一キャンセラ 1 5が下記条件式を満たす Jを求めることによって設定 される。 a= 2J (D s≥ 0の場合)
= ( 1/2 ) J (D s < 0の場合) ( 5)
なお、 実施の形態 4で述べたようにスピーカ増幅値 Sの変化量 D sによ つて対応する調整値ひが決められるため、 この変化量 D sに対応する分 割回数 Jを予めメモリ上に設定しておいてもよい。
次に、 s t e p 2 8においてカウン夕 jをリセッ トし、 s t e p 2 9 で分割回数 Jが 0であるか否かが判定される。 0である場合には、 s t e p 3 7に進み、 カウンタ kを予め定められた定数 Kにセッ トし、 s t e p 2に進む。
一方、 s t e p 2 9で 0でないと判断された場合には、 s t e p 30 で以下の式を用いてフィル夕係数 h (n) の段階的調整を行う。
h (n) = 2 x h (n) (D s〉 0の場合)
h (n) = ( 1/2 ) x h (n) (D sく 0の場合) ( 5) 次に s t e p 3 1でカウン夕 kを 0にリセヅ トし、 s t e p 2〜9の エコー除去を行う。 各 s t e pの処理は、 実施の形態 1と同様に行われ る o
続いて、 s t e p 3 2、 3 3でカウン夕 kに 1を加算し、 カウンタ k が定数 Kに達するまで s t e p 2〜9のエコー除去処理を実行する。 ェ コ一キャンセラ 1 5は、 この処理により、 s t e p 30で 1段階調整さ れたフィル夕係数 h (n) に基づきエコー除去処理を K回実行すること ができる。
次に、 s t e p 34、 3 5において、 エコーキャンセラ 1 5はカウン 夕 jに 1を加算し、 このカウン夕 jが分割回数 J以上に達したかを判断 する。 達していない場合には、 s t e p 30に戻る。 ここで、 s t e p 30でフィル夕係数が再調整されるため、 エコーキャンセラ 1 5は s t e p 30から 3 5の処理を繰り返すことにより、 J段階に調整したフィ ル夕係数に基づいてエコー除去処理を実行することができる。
s t e p 35でカウンタ jが分割回数 J以上に達したと判断された場 合には、 s t e p 36に進み、 エコーキャンセラ 1 5は現在のスビーカ 調整値 Sを S o 1 dとして記憶する。 以降、 s t e p 1から同様の処理 が行われる。
以上説明したように、 スピーカ増幅値 Sの変化が大きい場合はフィル 夕係数 h (n) を徐々に変化させるように、 調整値ひを分割して乗じる ので、一度の演算で変化させる場合に比べ、生成する疑似エコー S E(i) に大きな不連続が生じることを防止できる、 すなわち、 フィルタ係数を 一度に大きく変化させる場合に比べ、 生成する疑似エコーが滑らかに変 化し、 エコーキャンセル後の信号も滑らかに変化する。 したがつてこの 疑似エコー S E(i)を用いてエコー除去することにより、信号 U(i)に異 音を生じさせないという効果を得ることができる。
また、 フィル夕係数の次数分の乗算という比較的少ない演算量で、 ス ピ一力増幅値 Sの変化に応じた適正なフィル夕係数を求めることができ、 このスピーカ増幅値 Sの変化に応じたフィル夕係数と受信信号から実際 のエコーに近い疑似エコーを求めることができるので、 適正にエコーを 除去することができる。 実施の形態 6.
実施の形態 5に係わる音声通信装置は、 スピーカ増幅値 Sの値が大き く変化したとき、 その変化量に応じた調整値ひを数回に分けてフィル夕 係数に乗じるようにした。 しかしスピーカ増幅値 Sの変化量が非常に大 きく (あるいは非常に小さく) なった場合、 たとえ調整値ひを数回に分 けてフィル夕係数に乗じても、 適応フィル夕 h (n) から求められる擬 似エコー S E ( i) に大きな不連続が生じ、 結果的にエコー除去後の信 号に異音が生じる可能性がある。
そこで、 以下に説明する実施の形態 6に係わる音声通信装置は、 スビ —力増幅値 Sの変化量が予め定めた値より大きい場合、 フィル夕係数を ゼロにリセッ トする。 すなわち、 エコーキャンセラ 15は、 スピーカ増 幅値 Sの変化量化が例えば 0.8秒以内に + 24 dB以上(あるいは一 2 4dB以下) であったときは、 フィル夕係数 h (n) を式 (7) のよう に一旦ゼロに設定し、 その後、 フィル夕係数の逐次演算による更新を行 つて徐々に正しい値になるようにする。
h (n) =0 (n=0, N - 1) ( 7 )
なお、 式 (7) では、 フィル夕係数 h (n) をゼロに設定したが、 疑 似エコー S E(i)に大きな不連続が生じないようにできる限り、 ゼロに 近い値を設定することもできる。
以上説明したように、 スピーカ増幅値 Sの変化が大きい場合はフィル 夕係数 h (n) を一旦ゼロ又はゼロに近い値に設定するようにしたので、 大きな (あるいは小さな) 調整値を乗じてフィル夕係数 h (n) 変化さ せる場合に比べ、 生成する疑似エコー S E(i)に大きな不連続が生じる ことを防止できる。 すなわち、 フィル夕係数に定数を乗じて大きく変化 させる場合に比べ、 生成する疑似エコーが滑らかに変化し、 エコーキヤ ンセル後の信号も滑らかに変化して異音を生じさせない効果がある。 し たがってこの疑似エコー S E(i)を用いてエコー除去することにより、 信号 U(i)に異音を生じさせないというという効果を得ることができる。 実施の形態 7.
図 12は、 この発明に係る音声通信装置に設けられたエコー処理装置 とその周辺の構成を示すブロック図である。 図 12に示すように、 この 実施の形態のエコー処理装置は、 遠端話者側と近端話者の同時発声状態 (ダブルトーク) を検出して、 この検出結果を適応フィル夕 1 6に出力 するダブルトーク検出手段 2 6を備えたものである。 なお、 図 1 2にお いて適応フィル夕 1 6以外の構成は実施の形態 1と同様であり、 図 2に 示す符号と同一の符号は同一または相当部分を示すので説明は省略する。 ダブルトーク検出手段 2 6は受信入力信号 Rd ( i) と信号 S d ( i)、 残差信号 U ( i ) を入力として、 それぞれの信号パワーを Rp, S p, E pとして求める。
また、 スピーカ増幅値 Sを入力として受け取り、 その変化量を求める。 そして、 以下の式 ( 8 ) 〜式 ( 1 0) を用い、 その下に示す条件 4〜 6のいずれかをクリアした場合、 ダブルトーク検出手段 2 6はダブルト ークかあるいは遠端話者無発声状態と判定する。 そして、 この判定結果 をダブルトーク判定結果として適応フィル夕 1 6に出力する。
R p < P 1 ··· ( 8 )
S p>P 2 *Rp- ( 9 )
E p>Pv* S p- ( 1 0 )
条件 4 :式 ( 8) が成立した場合
条件 5 :式 ( 8 ) が不成立かつ式 ( 9 ) が成立した場合
条件 6 :式 (8 ) 、 ( 9 ) が不成立かつ式 ( 1 0) が成立した場 式 ( 8) 〜 ( 1 0 ) において P 1、 P 2は固定値である。 また、 P Vは スピーカ増幅値 Sの変化量に従って変化する重み係数である。 スビーカ 増幅値 Sの変化量が例えば + 1 2 d B以上 (あるいは一 1 2 d B以下) のときは Pvの値を予め設定した基準値 (P vb) に定数を加えた値に 設定し (例えば P v = P vb + 0.2) 、 ダブルトークと判定しにく くす る。 またスピーカ増幅値 Sの変化量が + 1 2 d B以下でかつ— 1 2 dB 以上のときは P v = P vbとして基準値に設定する。 適応フィル夕 1 6はダブルトーク判定結果がダブルトークを示してい る場合はフィル夕係数の更新を停止し、 ダブルトーク判定結果がダブル トークで無い場合はフィル夕係数の更新を行う。
図 1 3は実施の形態 7に係わる音声通信装置のエコーキャンセラの動 作を説明するフローチヤ一トである。 図 1 3において、 図 3又は図 8と 同一の符号は図 3又は図 8と同一又は相当の部分を表わしている。
図 1 3の s t e p 4においてスピーカ増幅値 Sが所定の闞値 t h (B) ( 24 d B) 以下である場合は s t e p 40に進む。 s t e p 4 0ではスピ一力増幅値 Sの変化量が + 1 2 d B以上 (あるいは一 1 2 d B以下) のときは P v = P vb + 0.2に設定する。 またスピーカ増幅値 Sの変化量が + 1 2 d B以下でかつ一 1 2 d B以上のときは P v = P v bと設定する。 次の s t e p 4 1では式 ( 8 ) 〜 ( 1 0 ) と条件 4〜 6 に従ってダブルトークの判定を行う。 s t e p 4 1でダブルトークと判 定した場合は s t e p 4 2に進み、 ダブルトークと判定される前に求め たフィル夕係数 h (n) をメモリ 2 7から読み出す。 このフィルタ係数 h (n) は次の s t e p 3 9で、 疑似エコー S E ( i ) の演算に用いら れる。
一方、 s t e p 4 1でダブルトークと判定されなかった場合は s t e p 8へ進みフィル夕係数 h (n) が更新され、 s t e p 3 2において、 s t e p 8で計算したフィル夕係数 h (n) をメモリ 2 7に記憶し、 s t e p 3 9へ進む。
以上のように、 ダブルトークの場合には、 フィル夕係数が更新されな いため、 エコーとして入力される信号に非線型な歪みが生じ、 フィル夕 係数の推定精度が劣化する場合でもェコ一除去を継続することができる。 なお、 本実施の形態では、 図 8に示された実施の形態 3のエコーキャン セル処理に、 ダブルトークと判断された場合のフィル夕係数の更新停止 あるいは開始を行う処理を適用した例について説明した。 しかし、 この 更新停止処理はこれに限らず、 他の実施の形態にも同様に適用すること ができる。 次に、 エコーサブレッサ 1 8の動作について説明する。
ダブルトーク検出手段 2 6は、 ダブルトーク判定結果をエコーサブレ ッサ 1 8に出力する。 エコーサブレッサ 1 8はダブルトーク判定結果に 従い、 ダブルトークで無いと判定されている期間はダブルトークと判定 される期間よりエコー抑圧量を大きく設定し、 残差信号 U ( i ) をより 大きく抑圧する。 ここでエコー抑圧量の例としては、 例えば、 ダブルト ークと判断された場合には 6 d B、 ダブルトークでないと判断された場 合には 2 4 d Bを設定することができる。
なお、 残差信号 U ( i ) だけでなく受信入力信号 R d ( i ) をダブル トーク判定結果に従って抑圧するように構成しても良い。
以上説明したように、 スピーカ増幅値 Sの変化量が大きい場合はダブ ルトーク判定のための条件式 ( 1 0 ) において、 残差信号のパワー E p に対する定数を変化させダブルトークと判定しにく くなるようにしたの で、 スピーカ増幅値 Sが大きく変化して適正にフィルタ係数 h ( n ) を 求めて適正にエコー除去することができず、 残差信号のパワー E pが大 きくなつた場合でも、 これをダブルトークと誤判定してフィル夕係数の 更新を停止することが防がれる。 このため、 フィルタ係数 h ( n ) が次 第に適正となり適正にエコー除去することができる。
また、 スピーカ増幅値 Sが大きく変化した場合でもダブルトークと誤 判定されることが防がれ残差信号 U ( i ) が適正に抑圧されるので、 ェ コ一キャンセラー 1 5で除去し切れなかったエコー成分を抑圧すること ができる。 なお、 この実施の形態で説明したエコーサブレッサは、 この実施の形 態で説明したエコーキャンセラに限らず、 他の実施の形態で説明したェ コ一キャンセラや従来の様々なタイプのエコーキャンセラと組み合わせ て使用することもできる。 実施の形態 8 .
実施の形態 1から実施の形態 7で説明した音声通信装置は、 適応フィ ル夕 1 6と減算手段 1 7を有し、 制御 C P U 9から出力されたスピーカ 増幅値 Sに応じてエコー除去を行うエコーキャンセラ 1 5と、 制御 C P U 9から出力されたスピーカ増幅値 Sに応じて、 エコーキャンセラ出力 を抑圧する減衰量を変化させるエコーサブレッサ 1 8と、 から構成され たェコ一処理装置を備えていた。 しかしながら、 エコーキャンセラ 1 5 およびエコーサブレッサ 1 8の処理をソフ トウェアで実現することも可 能である。 以下、 エコーキャンセラ 1 5およびエコーサブレッサ 1 8の 処理を、 エコー処理プロセッサにおけるソフ トウェアで実行する音声通 信装置について説明する。
図 1 4は本発明の実施の形態 8に係る音声通信装置の構成を示すプロ ック図である。図 1 4において、 1 9はデジタルシグナルプロセッサ(以 下、 D S P : Digital Signal Processorと称する) によって構成されたェ コ一低减処理部 、 2 0は受信信号入力ポート、 2 1は受信信号出力ポ一 ト、 2 2はスピーカ増幅値入力ポート、 2 3は送信信号入力ポート、 2 4は送信信号出力ポート、 2 5はエコー処理プロセッサである。 図 1 4 において図 2または図 1 2と同一の符号は、 図 2または図 1 2と同一ま たは相当部分を示すので説明は省略する。
エコー処理プロセッサ 2 5は、 エコー低減処理を行う D S P 1 9と、 受信入力信号 R d ( i ) が入力される受信信号入力ポート 2 0と、 受信 入力信号 R d ( i ) が出力される受信信号出力ポート 2 1と、 制御 C P U 9からスピーカ増幅値 Sが入力されるスピーカ増幅値入力ポ一ト 2 2 と、 端末利用者の発する音声などがマイク 1 1、 マイク増幅器 1 2、 A / D変換器 1 3を介して信号 S d ( i ) として入力される送信信号入力 ポート 2 3と、 エコーキャンセル処理、 およびエコーサプレス処理が施 された送信出力信号 T d ( i ) が出力される送信信号出力ポート 2 4を 備えている。
次に動作について説明する。 制御 C P U 9は音量調整手段 2において 調整された音量に対応するスピーカ増幅値 Sを、 エコー処理プロセッサ 2 5のスピーカ増幅値入力ポート 2 2を介して D S P 1 9に出力する。 D S P 1 9の内部のソフ トウヱァは、 例えば一定時間毎 (例えば音声サ ンプルのサンプリング周期毎) にスピーカ増幅値入力ポ一ト 2 2からス ビーカ増幅値 Sを読み取る。 そして、 D S P 1 9は読み取ったスピーカ 増幅値 Sに基づいてエコーキヤンセル処理およびエコーサプレス処理を 実行する。 エコーキャンセル処理およびエコーサプレス処理は、 図 3か ら図 1 3を用いて実施の形態 1から実施の形態 7で説明した処理内容と 同一であるので説明は省略する。
以上説明したように、 図 1、 図 2および図 1 2に示すエコーキャンセ ラ 1 5およびェコ一サブレッサ 1 8の処理をソフ トウエアで実行するェ コー処理プロセッサ 2 5をエコー処理装置として備えた音声通信装置は、 簡易な装置構成で音量調整手段 2から入力されたスピーカ増幅値 Sに応 じてエコーキャンセル処理、 およびエコーサプレス処理を行うので、 実 施の形態 1から実施の形態 7にて説明した音声通信装置と同様の効果を 得ることができる。 また、 エコー低減処理部 1 9は D S Pであるので、 スピーカ増幅値 Sの変化に応じてエコーキャンセル処理およびエコーサ プレス処理の動作を柔軟に切り換えることができる。 また、 エコーキヤ ンセラとエコーサブレッサをソフ トウェアで実現したので、 スピーカ増 幅値 Sの変化に応じて直ちに動作を切り替えることができる。
なお、 以上説明した音声通信装置では、 D S P 1 9内部のソフ トゥェ ァが一定時間毎にスピーカ増幅値入力ポート 2 2からスピーカ増幅値 S を読み取り、 このスビ一力増幅値 Sに基づいてエコーサキャンセル処理 とエコーサブレス処理を切り換えていた。 しかしながら、 制御 C P U 9 から D S P 1 9のスピーカ増幅値入力ポート 2 2にスピーカ増幅値 Sを 出力する際、 D S P 1 9に割り込み処理をかけるようにし、 この割り込 み処理でエコーキヤンセル処理とエコーサプレス処理それぞれの処理を 切り替えるように構成してもよい。
また、 以上説明した音声通信装置では、 D S P 1 9はエコーキャンセ ル処理とエコーサプレス処理のみを行ったが、 さらに音声コーデック処 理を行う機能を含めてもよい。
なお、 上記説明によるエコー処理プロセッサを車載電話や携帯電話に 実装することにより、 車載電話や携帯電話に比較的容易にエコー処理機 能を追加することができる。
また、 以上の説明では、 制御 C P Uから出力されたスピーカ増幅値に 基づいて、 エコー除去処理、 エコーサブレッサ処理を行う例を説明した が、 実施の形態 1〜8においては制御 C P Uからの出力でなく、 スビ一 力の増幅値を検知、 または、 他から受け取って、 エコー除去処理、 また はエコーサブレッサ処理を実行するようにしてもかまわない。 以上説明したように、 この発明に係る音声通信装置によれば、 音量調 整手段を用いて端末利用者が調整したスピーカ音量に対応するスピーカ 増幅値を出力する制御 C P Uと、 復調、 音声復号化された受信入力信号 がスピーカ増幅値に応じて増幅されてスピーカから出力された出力音声 のうち、 マイクを介して入力された送信入力信号に混入したエコーを、 制御 C P Uから出力されたスピーカ増幅値に応じて低減させるエコー処 理装置を備えたため、 送信音声に含まれるエコーをスピーカ増幅値に応 じて適切に低減できる。
また、 エコー処理装置は、 スピーカ増幅値の変化量に応じて増幅され た受信入力信号と、 マイクとスピーカ間の音響伝達特性より演算される フィル夕係数より疑似エコーを求め、 この疑似エコーを用いて、 エコー を含む送信入力信号よりエコーを除去するエコーキャンセル手段を備え たため、 フィル夕係数と増幅された受信信号から疑似エコーを演算する 適応フィル夕に入力される信号とスピーカ増幅値に応じて増幅されて外 部へ出力される信号のレベルを正確に合致させて、 スピーカ増幅値が変 化しても、 実際のエコーに近い疑似エコーを求めることができるので、 適正にエコーを除去することができる。
また、 エコー処理装置は、 スピーカとマイク間の音響伝達特性より演 算されるフィル夕係数をスピーカ増幅値の変化量に応じて変化させると ともに、 このフィルタ係数と受信入力信号より疑似エコーを求め、 この 疑似エコーを用いて、 エコーを含む送信入力信号よりエコーを除去する エコーキャンセル手段を備えたため、 適正にエコーを除去することがで きる。
また、 エコーキャンセル手段は、 スピーカ増幅値の変化量が予め定め た変化量よりも大きい場合には、 フィル夕係数を段階的に変化させるた め、 フィル夕係数を一度に大きく変化させる場合に比べ、 生成する疑似 エコーが徐々に変化し、 エコーキャンセル後の信号も徐々に変化して異 音を抑制する効果がある。
また、 エコーキャンセル手段は、 スピーカ増幅値の変化量が予め定め た変化量よりも大きい場合には、 フィル夕係数をゼロ乃至ゼロに近い値 にするため、 生成される疑似エコーが徐々に変化し、 ェコ一キャンセル 後の信号も徐々に変化して異音を抑制する効果がある。
また、 エコーキャンセル手段は、 所定の時間内でのスピーカ増幅値の 変化量が予め定めた変化量よりも大きい場合には、 フィル夕係数を変化 させるため、 スピーカ増幅値が時間的に緩やに変化しフィル夕係数が適 正に更新されている場合にフィル夕係数を誤った値に変化させることが なく、 適正にエコーを除去することができる。
また、 エコー処理装置は、 受信入力信号と、 マイクとスピーカ間の音 響伝達特性より演算されたフィルタ係数より疑似エコーを求め、 スビ一 力増幅値に応じてこの擬似エコーを変化させ、 変化した疑似エコーを用 いて、 エコーを含む送信入力信号よりエコーを除去するエコーキャンセ ル手段を備えため、 エコーキャンセル手段にエコーとして入力される信 号に非線形な歪が生じ、 フィルタ係数の推定精度が劣化する場合、 また はエコーキャンセル手段にエコーとして入力される信号に極めて大きな 非線形な歪が生じ、 フィル夕係数の推定精度が大幅に劣化して異音とな る信号を付加してしまう場合をよりよい精度で検知し、 フィル夕係数の 推定精度の劣化および異音の付加を抑制することができる。
また、 エコーキャンセル手段は、 スピーカ増幅値が所定のしきい値よ りも大きい場合には、 疑似ェコ一をゼロあるいはゼロに近い値に変化さ せるため、 エコーキャンセル手段にエコーとして入力される信号に大き な非線形な歪が生じ、 フィル夕係数の推定精度が大幅に劣化してしまう 場合に、 異音が付加されるのを抑制することができる。
また、 エコーキャンセル手段は、 スピーカ増幅値が所定のしきい値よ りも大きい場合には、 疑似エコーを所定量だけ減衰させるため、 エコー キャンセル手段にエコーとして入力される信号に大きな非線形な歪が生 じ、 フィル夕係数の推定精度が大幅に劣化しまう場合に、 異音が付加さ れるのを抑制することができる。
また、 エコーキャンセル手段は、 スピーカ増幅値が所定のしきい値よ りも大きい場合には、 スピーカ増幅値がしきい値よりも大きくなる前の フィル夕係数より演算した疑似エコーを用いるため、 エコーキャンセル 手段にエコーとして入力される信号に大きな非線形な歪が生じ、 フィル 夕係数の推定精度が大幅に劣化してしまう場合に、 異音が付加されるの を抑制することができる。
また、 エコー処理装置は、 スピーカ増幅値の変化量に応じてダブルト —ク検知の判定基準を変更するとともに、 この判定基準に従ってダブル トークを検知するダブルトーク検知手段と、 マイクとスピーカ間の音響 伝達特性より演算されるフィル夕係数から疑似エコーを求め、 この疑似 エコーを用いて、 エコーを含む送信入力信号よりエコーを除去するとと もに、 ダブルトーク検知手段の検知結果に基づいて、 フィルタ係数の更 新の停止あるいは開始を行うエコーキャンセル手段を備えるため、 ェコ —キャンセル手段にエコーとして入力される信号に非線形な歪が生じ、 フィル夕係数の推定精度が劣化する場合でもエコー除去を継続すること ができる。
また、 エコー処理装置は、 スピーカ増幅値の変化量に応じてダブル卜 —ク検知の判定基準を変更するとともに、 この判定基準に従ってダブル トークを検知するダブルトーク検知手段と、 疑似エコーを用いて送信入 力信号のエコー成分を低減し残差信号を生成するエコーキャンセル手段 と、 ダブルトーク検知手段の検知結果に基づいて変化する減衰量で残差 信号を抑圧するエコーサブレス手段を備えたため、 スピーカ増幅値が大 きく変化しても、 ダブルトークと誤判定してフィルタ係数の更新を停止 することが抑制され、 適正にエコー除去することができる。
また、 ダブルトーク検知手段は、 送信入力信号のパワーと残差信号の パワーとの比較に基づいてダブルトークを検知するとともに、 送信入力 信号のパワーに乗じる重み係数をスピーカ増幅値の変化量に応じて変更 することによりダブルトーク判定の基準を変更するため、 スピーカ増幅 値が大きく変化して残差信号のパワーが大きくなつても、 ダブルトーク と誤判定してフィルタ係数の更新を停止することを抑制することができ、 適正にエコー除去することができる。
また、 エコー処理装置は、 エコーを含む送信入力信号を制御 C P Uか ら出力されたスピー力増幅値に応じた減衰量で抑圧するエコーサプレス 手段を備えたため、 エコーキャンセル手段がエコーを除去しきれなくて も、 エコーサブレス手段がエコーキャンセラ出力に含まれる残留エコー をスピ一力増幅値に応じて抑圧することができる。
また、 エコー処理装置は、 ディジタルシグナルプロセッサであるため、 適正にエコーを除去することができる。
この発明のエコー処理プロセッサは、 音声情報を含む受信入力信号が 入力される受信信号入力ポートと、 音量調整手段を用いて調整された音 量に応じてスピーカ増幅値が入力されるスピーカ増幅値入力ポートと、 端末利用者の発する音声を含む送信入力信号が入力される送信信号入力 ポ一トと、 スピーカ増幅値に応じて受信入力信号が増幅されてスピーカ から出力された出力音声のうち送信入力信号に混入したエコーを、 スビ —力増幅値入力ポートを介して入力されたスピーカ増幅値に応じて低減 するエコー低減処理を行うエコー低減処理部を備えたため、 送信音声信 号に含まれるエコーを適切に低減できる。
また、 エコー低減処理部は、 スピーカ増幅値入力ポートから入力され たスビ一力増幅値の変化量に応じて、 受信信号入力ポートから入力され た受信入力信号を増幅する増幅処理と、 スピーカとマイク間の音響伝達 特性よりフィルタ係数を求めるフィル夕係数演算処理と、 演算されたフ ィル夕係数と増幅された受信入力信号より疑似エコーを演算する疑似ェ コ一演算処理と、 疑似エコーを用いて送信入力信号よりエコーを除去す るエコーキャンセル処理を行うため、 送信信号入力ポ一トを介してェコ 一処理プロセッサに入力された送信音声信号に含まれるエコーをスビ一 力増幅値に応じて適正に低減できる。
また、 エコー低減処理部は、 スピーカとマイク間の音響伝達特性より フィルタ係数を求めるフィルタ係数演算処理と、 演算されたフィルタ係 数をスピーカ増幅値入力ポートから入力されたスピー力増幅値の変化量 に応じて変化させるとともに、 このフィル夕係数と受信信号入力ポート から入力された受信入力信号より疑似エコーを演算する疑似エコー演算 処理と、 疑似エコーを用いて送信入力信号よりエコーを除去するエコー キャンセル処理とを行うため、 スビーカ増幅値の変化に応じた適正なフ ィル夕係数を求めることができ、 適正にエコーを除去することができる。 また、 エコー低減処理部は、 スピーカ増幅値の変化量が予め定めた変 化量よりも大きい場合には、 フィル夕係数を段階的に変化させる疑似ェ コ一演算処理を行うため、 生成する疑似エコーが段階的に変化し、 異音 を生じさせにくいという効果がある。
また、 エコー低減処理部は、 スピーカ増幅値の変化量が予め定めた変 化量よりも大きい場合には、 フィル夕係数をゼロ乃至ゼロに近い値にす る疑似エコー演算処理を行うため、 フィル夕係数に定数を乗じて大きく 変化させる場合に比べ、 生成する疑似エコーが滑らかに変化し、 エコー キャンセル後の信号も滑らかに変化して異音を生じさせない効果がある。 また、 エコー低減処理部は、 所定の時間内でのスピーカ増幅値の変化 量が予め定めた変化量よりも大きい場合には、 フィル夕係数を変化させ る疑似エコー演算処理を行うため、 スピーカ増幅値が所定の時間を越え て時間的に緩やに変化しフィル夕係数が適正に更新されている場合にフ ィル夕係数を誤った値に変化させることを抑制し、 適正にエコーを除去 することができる。
また、 エコー低減処理部は、 スピーカとマイク間の音響伝達特性より フィル夕係数を求めるフィル夕係数演算処理と、 演算されたフィル夕係 数と受信信号入力ポートから入力された受信入力信号より疑似エコーを 演算する疑似エコー演算処理と、 スピーカ増幅値入力ポートから入力さ れたスビーカ増幅値に応じて疑似エコー演算処理において演算された疑 似エコーを変化させ、 変化させた擬似エコーを用いて送信入力信号より エコーを除去するエコーキヤンセル処理を行うため、 エコー処理プロセ ッサにエコーとして入力される信号に非線形な歪が生じ、 フィル夕係数 の推定精度が劣化する場合、 またはエコー処理プロセッサにエコーとし て入力される信号に極めて大きな非線形な歪が生じ、 フィル夕係数の推 定精度が大幅に劣化して異音となる信号を付加してしまう場合を確実に 検知し、 フィル夕係数の推定精度の劣化および異音の付加を防止できる。 また、 ェコ一低減処理部は、 スピーカ増幅値が所定のしきい値よりも 大きい場合には、 スビーカ増幅値がしきい値よりも大きくなる前のフィ ル夕係数より疑似エコーを演算する疑似エコー演算処理を行うため、 ェ コーキャンセラにエコーとして入力される信号に非線形な歪が生じ、 フ ィルタ係数の推定精度が劣化する場合でもエコー除去を継続することが できる。
また、 エコー処理低減部は、 スピーカ増幅値の変化量の変化量に応じ てダブルトーク検知の判定基準を変更するとともに、 この判定基準に従 つてダブルトークを検知するダブルトーク検知処理と、 スピーカとマイ ク間の音響伝達特性よりフィル夕係数を求めるとともに、 フィルタ係数 の更新の停止あるいは開始をダブルトーク判定結果に基づいて行うフィ ル夕係数演算処理と、 演算されたフィル夕係数と受信信号入力ポートか ら入力された受信入力信号より疑似エコーを演算する疑似エコー演算処 理と、 この擬似エコーを用いて送信入力信号よりエコーを除去するェコ 一キャンセル処理を行うため、 スピーカ増幅値が大きく変化しても、 そ の時をダブルトークと誤判定してフィル夕係数の更新を停止することが 防がれ、 適正にエコー除去することができる。
また、 エコー処理低減部は、 スピーカ増幅値の変化量の変化量に応じ てダブルトーク検知の判定基準を変更し、 ダブルトークの検知を行うダ ブルトーク検知処理と、 疑似エコーを用いて送信入力信号のエコー成分 を低減し残差信号を生成するエコーキャンセル手段と、 ダブルトーク処 理の検知結果に基づいて変化する減衰量で残差信号を抑圧するエコーサ プレス処理を行うので、 ダブルトークと誤判定されることが防がれ残差 信号が適正に抑圧されるため、 エコーキャンセル処理で除去しきれなか つたエコー成分を抑圧することができる。
また、 エコー低減処理部は、 エコーを含む送信入力信号を、 スピーカ 増幅値に応じた減衰量で抑圧するエコーサプレス処理を行うため、 ェコ 一キヤンセル処理でエコーを除去しきれなくても、 エコーサブレス処理 を行い、 エコーキヤンセル処理が施された信号に含まれる残留エコーを スピーカ増幅値に応じて抑圧することができる。 産業上の利用可能性
以上のように、 本発明にかかる音声通信装置ならびにェコ一処理プロ セッサは、 例えば、 車載電話、 携帯電話等の音声通信に用いるのに適し ている。

Claims

請 求 の 範 囲
1 . 音量調整手段を用いて端末利用者が調整したスピーカ音量に 対応するスピーカ増幅値を出力する制御 C P Uと、 復調、 音声復号化さ れた受信入力信号が前記スピーカ増幅値に応じて増幅されてスピーカか ら出力された出力音声のうち、 マイクを介して入力された送信入力信号 に混入したエコーを、 前記制御 C P Uから出力されたスピーカ増幅値に 応じて低減させるエコー処理装置を備えたことを特徴とする音声通信装
2 . エコー処理装置は、 スピーカ増幅値の変化量に応じて増幅さ れた受信入力信号と、 マイクとスピーカ間の音響伝達特性より演算され るフィル夕係数より疑似エコーを求め、 この疑似エコーを用いて、 ェコ —を含む送信入力信号より前記エコーを除去するエコーキャンセル手段 を備えたことを特徴とする請求項 1に記載の音声通信装置。
3 . エコー処理装置は、 スピーカとマイク間の音響伝達特性より 演算されるフィル夕係数をスピーカ増幅値の変化量に応じて変化させる とともに、 このフィル夕係数と受信入力信号より疑似エコーを求め、 こ の疑似エコーを用いて、 エコーを含む送信入力信号より前記エコーを除 去するエコーキャンセル手段を備えたことを特徴とする請求項 1に記載 の音声通信装置。
4 . エコーキャンセル手段は、 スピーカ増幅値の変化量が予め定 めた変化量よりも大きい場合には、 フィル夕係数を段階的に変化させる ことを特徴とする請求項 3に記載の音声通信装置。
5 . エコーキャンセル手段は、 スピーカ増幅値の変化量が予め定 めた変化量よりも大きい場合には、 フィル夕係数をゼロ乃至ゼロに近い 値にすることを特徴とする請求項 3に記載の音声通信装置。
6 . エコーキャンセル手段は、 所定の時間内でのスピーカ増幅値 の変化量が予め定めた変化量よりも大きい場合には、 フィル夕係数を変 化させることを特徴とする請求項 3に記載の音声通信装置。
7 . エコー処理装置は、 受信入力信号と、 マイクとスピーカ間の 音響伝達特性より演算されたフィル夕係数より疑似エコーを求め、 スビ
—力増幅値に応じてこの擬似エコーを変化させ、 変化した疑似エコーを 用いて、 エコーを含む送信入力信号よりエコーを除去するエコーキャン セル手段を備えることを特徴とする請求項 1に記載の音声通信装置。
8 . エコーキャンセル手段は、 スピーカ増幅値が所定のしきい値 よりも大きい場合には、 疑似エコーをゼロあるいはゼロに近い値に変化 させることを特徴とする請求項 2に記載の音声通信装置。
9 . エコーキャンセル手段は、 スピーカ増幅値が所定のしきい値 よりも大きい場合には、 疑似エコーを所定量だけ減衰させることを特徴 とする請求項 2に記載の音声通信装置。
1 0 . ェコ一キャンセル手段は、 スピーカ増幅値が所定のしきい 値よりも大きい場合には、 前記スピーカ増幅値が前記しきい値よりも大 きくなる前のフィルタ係数より演算した疑似エコーを用いることを特徴 とする請求項 2に記載の音声通信装置。
1 1 . ェコ一処理装置は、 スピーカ増幅値の変化量に応じてダブ ルトーク検知の判定基準を変更するとともに、 この判定基準に従ってダ ブルトークを検知するダブルトーク検知手段と、 マイクとスピーカ間の 音響伝達特性より演算されるフィル夕係数から疑似エコーを求め、 この 疑似エコーを用いて、 エコーを含む送信入力信号より前記エコーを除去 するとともに、 前記ダブルトーク検知手段の検知結果に基づいて、 前記 フィル夕係数の更新の停止あるいは開始を行うエコーキャンセル手段を 備えることを特徴とする請求項 1に記載の音声通信装置。
1 2 . エコー処理装置は、 スピーカ増幅値の変化量に応じてダブ ルトーク検知の判定基準を変更するとともに、 この判定基準に従ってダ ブルトークを検知するダブルト一ク検知手段と、 疑似エコーを用いて送 信入力信号のエコー成分を低減し残差信号を生成するエコーキャンセル 手段と、 前記ダブルトーク検知手段の検知結果に基づいて変化する減衰 量で前記残差信号を抑圧するエコーサプレス手段を備えることを特徴と する請求項 1に記載の音声通信装置。
1 3 . ダブルトーク検知手段は、 送信入力信号のパワーと残差信 号のパワーとの比較に基づいてダブルトークを検知するとともに、 前記 送信入力信号のパワーに乗じる重み係数をスピーカ増幅値の変化量に応 じて変更することによりダブルトーク判定の基準を変更することを特徴 とする請求項 1 1又は請求項 1 2に記載の音声通信装置。
1 4 . エコー処理装置は、 エコーを含む送信入力信号を制御 C P Uから出力されたスピーカ増幅値に応じた減衰量で抑圧するエコーサブ レス手段を備えたことを特徴とする請求項 1から請求項 1 0のいずれか に記載の音声通信装置。
1 5 . エコー処理装置は、 ディジタルシグナルプロセッサである ことを特徴とする請求項 1から請求項 1 4のいずれかに記載の音声通信
1 6 . 音声情報を含む受信入力信号が入力される受信信号入力ポ —卜と、 音量調整手段を用いて調整された音量に応じてスピーカ増幅値 が入力されるスピーカ増幅値入力ポートと、 端末利用者の発する音声を 含む送信入力信号が入力される送信信号入力ポートと、 前記スピーカ増 幅値に応じて前記受信入力信号が増幅されてスピーカから出力された出 力音声のうち前記送信入力信号に混入したエコーを、 前記スピーカ増幅 値入力ポートを介して入力されたスピーカ増幅値に応じて低減するェコ 一低減処理を行うェコ一低減処理部を備えたェコ一処理プロセッサ。
1 7 . エコー低減処理部は、 スピーカ増幅値入力ポートから入力 されたスビーカ増幅値の変化量に応じて、 受信信号入力ポートから入力 された受信入力信号を増幅する増幅処理と、 スピーカとマイク間の音響 伝達特性よりフィル夕係数を求めるフィル夕係数演算処理と、 演算され たフィル夕係数と前記増幅された受信入力信号より疑似エコーを演算す る疑似エコー演算処理と、 前記疑似エコーを用いて送信入力信号よりェ コ一を除去するエコーキヤンセル処理を行うことを特徴とする請求項 1 6に記載のエコー処理プロセッサ。
1 8 . エコー低減処理部は、 スピーカとマイク間の音響伝達特性 よりフィル夕係数を求めるフィル夕係数演算処理と、 演算されたフィル 夕係数をスピーカ増幅値入力ポートから入力されたスピーカ増幅値の変 化量に応じて変化させるとともに、 このフィル夕係数と受信信号入力ポ —卜から入力された受信入力信号より疑似エコーを演算する疑似エコー 演算処理と、 前記疑似エコーを用いて送信入力信号よりエコーを除去す るエコーキャンセル処理とを行うことを特徴とする請求項 1 6に記載の エコー処理プロセッサ。
1 9 . エコー低減処理部は、 スピーカ増幅値の変化量が予め定め た変化量よりも大きい場合には、 フィル夕係数を段階的に変化させる疑 似エコー演算処理を行うことを特徴とする請求項 1 8に記載のエコー処 理プロセッサ。
2 0 . エコー低減処理部は、 スピーカ増幅値の変化量が予め定め た変化量よりも大きい場合には、 フィル夕係数をゼロ乃至ゼロに近い値 にする疑似エコー演算処理を行うことを特徴とする請求項 1 8に記載の エコー処理プロセッサ。
2 1 . エコー低減処理部は、 所定の時間内でのスピーカ増幅値の 変化量が予め定めた変化量よりも大きい場合には、 フィル夕係数を変化 させる疑似エコー演算処理を行うことを特徴とする請求項 1 8に記載の エコー処理プロセヅサ。
2 2 . エコー低減処理部は、 スピーカとマイク間の音響伝達特性 よりフィル夕係数を求めるフィル夕係数演算処理と、 演算されたフィル 夕係数と受信信号入力ポートから入力された受信入力信号より疑似ェコ 一を演算する疑似エコー演算処理と、 スピーカ増幅値入力ポートから入 力されたスピーカ増幅値に応じて前記疑似エコー演算処理において演算 された疑似エコーを変化させ、 変化させた擬似エコーを用いて送信入力 信号よりエコーを除去するエコーキャンセル処理を行うことを特徴とす る請求項 1 6に記載のエコー処理プロセッサ。
2 3 . エコー低減処理部は、 スピーカ増幅値が所定のしきい値よ りも大きい場合には、 前記スビーカ増幅値が前記しきい値よりも大きく なる前のフィルタ係数より疑似エコーを演算する疑似エコー演算処理を 行うことを特徴とする請求項 1 6に記載のエコー処理プロセッサ。
2 4 . エコー処理低減部は、 スピーカ増幅値の変化量の変化量に 応じてダブルトーク検知の判定基準を変更するとともに、 この判定基準 に従ってダブル卜一クを検知するダブルトーク検知処理と、 スピーカと マイク間の音響伝達特性よりフィル夕係数を求めるとともに、 前記フィ ル夕係数の更新の停止あるいは開始を前記ダブルトーク判定結果に基づ' いて行うフィルタ係数演算処理と、 演算されたフィル夕係数と受信信号 入力ポートから入力された受信入力信号より疑似エコーを演算する疑似 エコー演算処理と、 この擬似エコーを用いて送信入力信号よりエコーを 除去するエコーキャンセル処理を行うことを特徴とする請求項 1 6に記 載のエコー処理プロセッサ。
2 5 . エコー処理低減部は、 スピーカ増幅値の変化量の変化量に 応じてダブルトーク検知の判定基準を変更し、 ダブルトークの検知を行 うダブルトーク検知処理と、 疑似エコーを用いて送信入力信号のエコー 成分を低減し残差信号を生成するエコーキャンセル手段と、 前記ダブル トーク処理の検知結果に基づいて変化する減衰量で前記残差信号を抑圧 するエコーサプレス処理を行うことを特徴とする請求項 1 6に記載のェ コ一処理プロセッサ。
2 6 . エコー低減処理部は、 エコーを含む送信入力信号を、 スビ 一力増幅値に応じた減衰量で抑圧するエコーサプレス処理を行うことを 特徴とする請求項 1 6から請求項 2 5のいずれかに記載のエコー処理プ ロセッサ。
PCT/JP2000/008863 2000-01-19 2000-12-14 Dispositif de communication de sons et processeur d'echo WO2001054296A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001553677A JP3406590B2 (ja) 2000-01-19 2000-12-14 音声通信装置、およびエコー処理プロセッサ
EP00981723A EP1164712A4 (en) 2000-01-19 2000-12-14 TONE COMMUNICATION DEVICE AND ECHO PROCESSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-10411 2000-01-19
JP2000010411 2000-01-19

Publications (1)

Publication Number Publication Date
WO2001054296A1 true WO2001054296A1 (fr) 2001-07-26

Family

ID=18538434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008863 WO2001054296A1 (fr) 2000-01-19 2000-12-14 Dispositif de communication de sons et processeur d'echo

Country Status (5)

Country Link
US (1) US20020181698A1 (ja)
EP (1) EP1164712A4 (ja)
JP (1) JP3406590B2 (ja)
CN (1) CN1235348C (ja)
WO (1) WO2001054296A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174456A (ja) * 2004-12-14 2006-06-29 Herman Becker Automotive Systems-Wavemakers Inc 受信オーディオを制限するためのシステム
WO2009041446A1 (ja) * 2007-09-28 2009-04-02 Yamaha Corporation エコー除去装置
JP2009177717A (ja) * 2008-01-28 2009-08-06 Nec Electronics Corp 適応等化装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672445B1 (en) * 2002-11-15 2010-03-02 Fortemedia, Inc. Method and system for nonlinear echo suppression
US20050132406A1 (en) * 2003-12-12 2005-06-16 Yuriy Nesterov Echo channel for home entertainment systems
US20050152316A1 (en) * 2004-01-08 2005-07-14 Chien-Hsing Liao CDMA transmitting and receiving apparatus with multiple applied interface functions and a method thereof
WO2007049777A1 (ja) * 2005-10-25 2007-05-03 Nec Corporation 携帯電話機、該携帯電話機に用いられるコーデック回路及び受話音量自動調整方法
JP4727542B2 (ja) * 2006-09-26 2011-07-20 富士通株式会社 電子機器、そのエコーキャンセル方法、そのエコーキャンセルプログラム、記録媒体及び回路基板
WO2009047858A1 (ja) * 2007-10-12 2009-04-16 Fujitsu Limited エコー抑圧システム、エコー抑圧方法、エコー抑圧プログラム、エコー抑圧装置、音出力装置、オーディオシステム、ナビゲーションシステム及び移動体
US9154635B2 (en) 2008-09-26 2015-10-06 Nec Corporation Signal processing method, signal processing device, and signal processing program
JP5369726B2 (ja) * 2009-02-02 2013-12-18 セイコーエプソン株式会社 拍動検出装置、および拍動検出方法
US8774399B2 (en) * 2011-12-27 2014-07-08 Broadcom Corporation System for reducing speakerphone echo
JP6878776B2 (ja) * 2016-05-30 2021-06-02 富士通株式会社 雑音抑圧装置、雑音抑圧方法及び雑音抑圧用コンピュータプログラム
CN107750038B (zh) * 2017-11-09 2020-11-10 广州视源电子科技股份有限公司 音量调节方法、装置、设备及存储介质
CN108235189A (zh) * 2018-02-07 2018-06-29 深圳创维-Rgb电子有限公司 一种语音信号的回声消除装置及电视机
JP7183119B2 (ja) * 2019-06-13 2022-12-05 株式会社デンソーテン 音声信号処理装置
US11127414B2 (en) 2019-07-09 2021-09-21 Blackberry Limited System and method for reducing distortion and echo leakage in hands-free communication
US11817114B2 (en) * 2019-12-09 2023-11-14 Dolby Laboratories Licensing Corporation Content and environmentally aware environmental noise compensation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269451A (ja) * 1986-05-16 1987-11-21 Nec Corp 拡声電話機
JPH0255429A (ja) * 1988-08-20 1990-02-23 Nec Corp エコーキャンセラ装置
JPH02209027A (ja) 1989-02-09 1990-08-20 Fujitsu Ltd 音響エコーキャンセラー
JPH08340281A (ja) 1995-06-12 1996-12-24 Toshiba Corp エコーキャンセラ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2564667B1 (fr) * 1984-05-15 1986-09-19 Trt Telecom Radio Electr Dispositif de commande d'un annuleur d'echo et d'un ecreteur de centre
JPH06216811A (ja) * 1993-01-20 1994-08-05 Toshiba Corp エコーキャンセラを備えた音声通信装置
ZA95599B (en) * 1994-02-28 1996-02-06 Qualcomm Inc Doubletalk detection by means of spectral content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269451A (ja) * 1986-05-16 1987-11-21 Nec Corp 拡声電話機
JPH0255429A (ja) * 1988-08-20 1990-02-23 Nec Corp エコーキャンセラ装置
JPH02209027A (ja) 1989-02-09 1990-08-20 Fujitsu Ltd 音響エコーキャンセラー
JPH08340281A (ja) 1995-06-12 1996-12-24 Toshiba Corp エコーキャンセラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1164712A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174456A (ja) * 2004-12-14 2006-06-29 Herman Becker Automotive Systems-Wavemakers Inc 受信オーディオを制限するためのシステム
WO2009041446A1 (ja) * 2007-09-28 2009-04-02 Yamaha Corporation エコー除去装置
JP2009088814A (ja) * 2007-09-28 2009-04-23 Yamaha Corp エコー除去装置
US8630405B2 (en) 2007-09-28 2014-01-14 Yamaha Corporation Echo removing apparatus
JP2009177717A (ja) * 2008-01-28 2009-08-06 Nec Electronics Corp 適応等化装置

Also Published As

Publication number Publication date
CN1351782A (zh) 2002-05-29
US20020181698A1 (en) 2002-12-05
JP3406590B2 (ja) 2003-05-12
EP1164712A4 (en) 2007-08-08
CN1235348C (zh) 2006-01-04
EP1164712A1 (en) 2001-12-19

Similar Documents

Publication Publication Date Title
US7856097B2 (en) Echo canceling apparatus, telephone set using the same, and echo canceling method
JP2538176B2 (ja) エコ―制御装置
US8315380B2 (en) Echo suppression method and apparatus thereof
US8311234B2 (en) Echo canceller and communication audio processing apparatus
JP5036874B2 (ja) エコー消去装置
US8160239B2 (en) Echo canceller and speech processing apparatus
US6868158B2 (en) Echo processing apparatus
WO2001054296A1 (fr) Dispositif de communication de sons et processeur d&#39;echo
JP4036542B2 (ja) エコーキャンセラ
JP4568439B2 (ja) エコー抑圧装置
JP4457639B2 (ja) エコーキャンセラ
US20090245502A1 (en) Acoustic echo canceler
KR19980086461A (ko) 핸드 프리 전화기
US6185299B1 (en) Adaptive echo cancellation device in a voice communication system
JP4403776B2 (ja) エコーキャンセラ
US8369511B2 (en) Robust method of echo suppressor
US20080118055A1 (en) Echo processing method and device
JP7196002B2 (ja) エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム
JP3321411B2 (ja) エコー除去装置
WO2022202012A1 (ja) エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム
JP3404236B2 (ja) 拡声通話装置
JP3221937B2 (ja) 無線電話装置
JPH09162787A (ja) エコーキャンセラ
JPH10243082A (ja) エコーキャンセラ
JPH09205388A (ja) 適応型雑音除去自動車電話装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00807664.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref document number: 2001 553677

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09926182

Country of ref document: US

Ref document number: 2000981723

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000981723

Country of ref document: EP