WO2001053815A2 - Verfahren zur bestimmung redoxaktiver stoffe - Google Patents

Verfahren zur bestimmung redoxaktiver stoffe Download PDF

Info

Publication number
WO2001053815A2
WO2001053815A2 PCT/EP2001/000404 EP0100404W WO0153815A2 WO 2001053815 A2 WO2001053815 A2 WO 2001053815A2 EP 0100404 W EP0100404 W EP 0100404W WO 0153815 A2 WO0153815 A2 WO 0153815A2
Authority
WO
WIPO (PCT)
Prior art keywords
redox
analyte
measuring
electrodes
working
Prior art date
Application number
PCT/EP2001/000404
Other languages
English (en)
French (fr)
Other versions
WO2001053815A3 (de
Inventor
Paul Jeroschewski
Harald Grabow
Original Assignee
Paul Jeroschewski
Harald Grabow
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Jeroschewski, Harald Grabow filed Critical Paul Jeroschewski
Priority to AU37304/01A priority Critical patent/AU3730401A/en
Priority to EP01909627A priority patent/EP1252505A2/de
Publication of WO2001053815A2 publication Critical patent/WO2001053815A2/de
Publication of WO2001053815A3 publication Critical patent/WO2001053815A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/49Systems involving the determination of the current at a single specific value, or small range of values, of applied voltage for producing selective measurement of one or more particular ionic species

Definitions

  • the invention relates to a method for the detection and quantitative determination of gaseous and dissolved substances which can be oxidized or reduced by means of redox mediators in electrochemical measuring cells.
  • Electrochemical measuring cells are widely used in substance analysis, the most important measuring principles being potentiometry, voltammetry / polarography, coulometry and conductometry.
  • the amperometric variant which is derived from voltammetry, uses as the measurement signal the electric current at a given electrode potential that occurs in the oxidation or reduction of the substance to be determined (analyte) in an electrochemical measuring cell.
  • analyte there is a direct linear relationship between the measurement signal and the analyte concentration down to the lower micromolar concentration range.
  • Clark sensor for determining oxygen [DE-Pat. 2851447 C2, EP Pat. 0205399 A2, ML Hitchman. Measurement of Dissolved Oxygen.
  • the redox mediator reacts in a rapid, homogeneous redox reaction with the analyte in front of the electrode surface in order to be regenerated by an electrochemical reduction or oxidation, ie the electron transfer in the measuring cell takes place via the redox mediator.
  • Such measuring cells allow measurements that would be difficult or impossible at all in the absence of the redox mediator.
  • An example of this is the amperometric H 2 S determination using ferric / ferrocyanide as a redox mediator [DE-Pat. 19637253 AI, P. Jeroschewski, M. Söllig, H. Berge: Amperometric determination of hydrogen sulfide, Z. Chem. 28 (1988) 75].
  • a fundamental problem of amperometric measuring cells is their flow dependency, which results from the analyte consumption during the measuring process.
  • Stable measurement signals can only be achieved if diffusion barriers, e.g. in the form of a capillary lare [UK Pat. 1571282, UK Pat. 2049952 A] or constant transport conditions on the sensor surface can be set by stirring or inflow.
  • diffusion barriers e.g. in the form of a capillary lare [UK Pat. 1571282, UK Pat. 2049952 A]
  • constant transport conditions on the sensor surface can be set by stirring or inflow.
  • such relationships cannot easily be achieved, such as, for example, measurements with a high spatial resolution in sediments or biofilms.
  • This problem can be circumvented by using amperometric microsensors, since the spherical diffusion and the extremely low material conversions mean that drawing effects are negligibly small and are no longer significant [P. Jeroschewski, C. Steuckart, M.
  • An increase in the measurement signal can be achieved if a plurality of microelectrodes connected in parallel are arranged in an array [WE Morf, NF de Rooij: Sensors and Actuators B 44 (1997) 538-541], provided that the distance between the microelectrodes is sufficiently large to ensure undisturbed hemispherical diffusion. Under these conditions, the measurement signal results from the sum of the current at the individual microelectrodes in the array. However, the basic currents of the individual microelectrodes also add up. Another possibility for significantly increasing the measurement signal is to use the redox recycling effect, which occurs on interdigital microelectrode arrays [O. Niwa, M. Morita, H. Tabei: Anal. Chem.
  • the invention is based on the problem that with microsensors - due to the extremely low material conversions - only a very small measuring current occurs in the picoampere range, the reliable measurement of which under real measuring conditions is not trivial and rather complex. As a result, the limit of quantification is reached at a concentration of approx. 1 ⁇ mol / L.
  • the electrical amplification of the measuring current does not make sense, since at these very small concentrations it is superimposed by a disturbing basic current.
  • Increasing the measuring current by means of a large number of microelectrodes does not fundamentally improve the signal / noise ratio compared to a single microelectrode, but only shifts the measuring range for the current signal to values that are more manageable in terms of measuring technology.
  • the magnification of the measurement signal by a redox recycling presupposes that the analyte itself forms a reversible redox pair and the electrode potentials of the measurement electrodes are checked.
  • the direct contact of the measuring solution with the electrodes of the measuring cell can easily lead to disturbances in the electrochemical reactions due to components of the matrix, as a result of which the use of such measuring systems is restricted or previous separation operations are necessary. If the analyte does not form a reversible redox pair, one could work with a suitable redox mediator to use the redox recycling effect; for continuous measurements, however, the redox mediator would have to be constantly replaced in a defined manner.
  • the electrochemical measuring cell consists of interdigital microelectrodes or capillary gap electrodes as working electrodes, a protective electrode and a counter electrode and contains a uniform electrolyte solution with a redox mediator.
  • the measuring cell has openings in the micrometer range which are closed with a membrane that is permeable to the analyte relative to the measuring sample in order to largely suppress matrix interferences. They are geometrically arranged in such a way that a spherical diffusion of the analyte at each individual opening ensures that there is no mutual interference is.
  • the electrodes of the measuring cell are polarized with the help of several voltage sources from the control unit in a certain time sequence with predetermined direct voltages without an external potential control and a current is recorded as a measuring signal at certain time intervals, which results from a reaction of the analyte with the redox mediator and the analyte concentration is proportional. This results in working modes I and II.
  • this measuring arrangement allows the use of the advantages of amperometric microsensors with a redox mediator (working mode II) that have already been described, but on the other hand it can reduce the limit of determination of these sensors by using time-dependent redox cycling on the interdigital microelectrode array or in a signal enlargement is reached in the capillary gap cell (working mode I).
  • working mode II the measuring device can be adapted to the respective requirements in a very large concentration range and the limit of determination can be reduced.
  • Fig. 1 shows a capillary gap electrode arrangement in connection with an electronic control device
  • Fig. 2 shows the graphical representation of the time course of measurement parameters and measurement variables and the corresponding assignment of the operating states of the measuring arrangement for different concentrations.
  • the electrochemical capillary gap cell 1 contains two electrodes 2 and 3 arranged in parallel, the distance between them is only a few micrometers and the thickness is large compared to their distance. They are covered on the outside with a layer 4 which is permeable to neutral molecules (for example silicone rubber or hydrophobic microporous PTFE membrane), as a result of which the gap 5 between the electrodes is closed off from the measuring medium. At this point the analyte enters the measuring cell.
  • neutral molecules for example silicone rubber or hydrophobic microporous PTFE membrane
  • the undersides of the electrodes 2 and 3 in the interior of the measuring cell are provided with an insulating layer 6, so that only the surfaces in the capillary gap 5 are electrochemically active. Furthermore, a protective electrode 7 and a counter electrode 8 and an electrolyte solution 9, in which a redox mediator is dissolved, are located in the measuring cell.
  • the capillary gap 5 is filled with the redox mediator-containing electrolyte solution 9.
  • the control unit 10 comprises two controllable direct voltage sources 11 and 12 for the polarization of the electrodes and a time control 16 which controls the time sequence of the electrode polarization and the measurement of the currents I 1 and I "via the switches 13, 14 and 15.
  • Fig. 2 shows the graphic Representation of the temporal course of measuring parameters and measured variables and the corresponding assignment of the operating states of the measuring arrangement for different concentrations.
  • switches 13 are in the closed state
  • switches 14 and 15 are in the open state.
  • the measurement phase t 3 which in turn is characterized by the closed switch 13 and the open switches 14 and 15, for the case 0 ⁇ c a ⁇ c max, the analyte enters the gap 5 and reacts with a component of the redox mediator. eg O x , redox cycling takes place in gap 5 (FIG. 3A), the scope of which increases with the amount of analyte entering gap 5.
  • the measurable result is a current I 1 which increases with time, the maximum value at the end of phase t 3 being a measure of the analyte concentration. Its size is from the current concentration ratio of the oxidized to the reduced form of the redox mediator c (Ox) / c (Red) of the redox mediator components Ox and Red. This concentration ratio is determined by the chemical reaction of the analyte with a component of the redox mediator, so that the current I 1 is the measurement signal proportional to the concentration
  • the DC voltage 12 is present on the protective electrode 7 and on the counter electrode 8, as a result of which interfering components from the interior of the electrolyte solution are converted electrochemically on the protective electrode and thus have no influence on the concentration ratio of the oxidized to the reduced form of the redox mediator c (Ox) / c ( Red) can exert in the electrode gap 5.
  • the reset phase t 4 is realized by opening switch 13 and closing switches 14 and 15.
  • both working electrodes 2 and 3 and the protective electrode 7 are polarized by the voltage 12 to an electrode potential at which the proportion of redox mediato that has formed through the reaction with the analyte, e.g. Red, is converted back again (FIG. 3B ), so that the concentration ratios of the redox mediator as in the beginning of the measurement phase t 3 are again in the gap 5.
  • the current I ⁇ is used to monitor the measuring device. In principle, however, it can also be used for obtaining measured values, since the amount of redox mediator converted during the measuring phase is proportional to the analyte concentration.
  • the measuring phase t 5 in which the switch positions are as in the previous measuring phases, the case is shown that the analyte concentration c a assumes the value c max and the measuring current I 1 reaches a certain threshold value I IS at the end of the period of t ,
  • the threshold value I IS is selected so that the current signal is still in the linear range of the current-concentration relationship. Reaching the threshold value I IS is evaluated by the control unit 10 and the subsequent reset phase t 6 is carried out with the switch positions as in the previous reset phases.
  • the measuring system is then switched by the control unit 10 to the working mode II in order to be able to carry out measurements at larger analyte concentrations c a > c max .
  • the measuring cell is used as an amperometric microsensor with a redox mediator.
  • This mode II is characterized by the open switch 13 and the closed switches 14 and 15.
  • the concentration-proportional measurement signal is then the current I ", which results from the electrochemical Oxidation or reduction of a component of the redox mediator, which is formed by a homogeneous redox reaction of the mediator with the analyte, results on both electrodes 2 and 3 of the capillary gap 5. No redox cycling occurs here.
  • Working mode II is important for higher analyte concentrations. If the analyte concentration drops and the current I "reaches a lower threshold value l" s , the control unit 10 switches the measuring device
  • the transition from working mode I to mode II and vice versa is expediently carried out with hysteresis in order to avoid unstable operating states which could result at the switchover limit.
  • the measuring device thus adapts optimally to the respective concentration ratios.

Abstract

Die Erfindung betrifft ein Verfahren zur Bestimmung redoxaktiver Stoffe durch Kombination einer membranbedeckten, elektrochemischen Messzelle mit Redoxmediator und einer Steuereinheit. Die Messzelle enthält mehrere Arbeitselektroden in grosser räumlicher Nähe sowie Schutz- und Gegenelektroden. Die Steuereinheit umfasst mehrere regelbare Gleichspannungsquellen zur Polarisation der Elektroden und eine Zeitsteuerung, die die Zeitabfolge der Elektrodenpolarisation und der Messung der Ströme steuert. Der Analyt reagiert in der Messzelle mit dem Redoxmediator, wobei für sehr geringe Analytkonzentrationen in einem Arbeitsmodus I an den als Anode und Kathode polarisierten Arbeitselektroden ein Redoxrecycling ausgelöst wird. Der dabei fliessende Strom wird durch das Redoxrecycling verstärkt und ist der Analytkonzentration proportional. Bei höheren Analytkonzentrationen wird durch eine automatische Änderung der Elektrodenpolarisation ein Arbeitsmodus II realisiert, bei dem die Messzelle als bekannter amperometrischer Sensor mit Redoxmediator arbeitet. Damit zeichnet sich dieses Verfahren durch eine sehr tiefe Bestimmungsgrenze und einen sehr grossen dynamischen Messbereich aus.

Description

Verfahren zur Bestimmung redoxaktiver Stoffe
Die Erfindung betrifft ein Verfahren zum Nachweis und zur quantitativen Bestimmung von gasförmigen und gelösten Stoffen, die oxidierbar oder reduzierbar sind, mit Hilfe von Re- doxmediatoren in elektrochemischen Meßzellen.
Elektrochemische Meßzellen werden in breitem Umfang in der Stoffanalytik eingesetzt, wobei als wichtigste Meßprinzipien die Potentiometrie, Voltamrnetrie/Polarographie, Coulome- trie und Konduktometrie zu nennen sind. Die amperometrische Variante, die sich von der Voltammetrie ableitet, nutzt als Meßsignal den elektrischen Strom bei einem vorgegebenen Elektrodenpotential, der bei der Oxidation bzw. Reduktion des zu bestimmenden Stoffes (Analyt) in einer elektrochemischen Meßzelle auftritt. Bei dieser Variante besteht ein direkter linearer Zusammenhang zwischen dem Meßsignal und der Analytkonzentration bis in den unteren mikromolaren Konzentrationsbereich hinein. Ein Beispiel hierfür ist der weit verbreitete Clark-Sensor zur Sauerstoffbestimmung [DE-Pat. 2851447 C2, EP-Pat. 0205399 A2, M.L. Hitchman. Measurement of Dissolved Oxygen. John Wiley, 2. edition, 1978.]. Grundsätzliche Voraussetzungen für die Anwendung der amperometrischen Methode sind die folgenden Bedingungen: (i) Der Analyt muß unter den vorliegenden Bedingungen elektrochemisch aktiv sein, d.h. an der Meßelektrode oxidiert oder reduziert werden; (ii) die Elektrodenreaktionen müssen schnell ablaufen; (iii) die Elektrodenoberflächen dürfen durch den elektrochemischen Prozeß oder andere Vorgänge in der Meßzelle nicht blockiert werden (keine Pas- sivierung oder Deckschichtbildung an den Elektroden). Nicht immer sind diese Voraussetzungen voll erfüllt, so daß unter Umständen ein reversibles Redoxpaar als Redoxmediator eingesetzt werden muß [US-Pat. 3795589, US-Pat. 5030334]. Der Redoxmediator reagiert in einer schnellen homogenen Redoxreaktion mit dem Analyten vor der Elektrodenoberfläche, um dann seinerseits durch eine elektrochemische Reduktion bzw. Oxidation regeneriert zu werden, d.h. die Elektronenübertragung in der Meßzelle erfolgt über den Redoxmediator. Solche Meßzellen gestatten Messungen, die in Abwesenheit des Redoxmediators nur schlecht oder gar nicht möglich wären. Ein Beispiel hierfür ist die amperometrische H2S-Bestimmung mit Hilfe von Ferri-/Ferrocyanid als Redoxmediator [DE-Pat. 19637253 AI, P. Jeroschewski, M. Söllig, H. Berge: Amperometrische Bestimmung von Schwefelwasserstoff, Z. Chem. 28 (1988) 75]. Ein grundsätzliches Problem amperometrischer Meßzellen ist ihre Strömungsabhängigkeit, die aus dem Analytverbrauch beim Meßvorgang resultiert. Zeitlich stabile Meßsignale können nur erreicht werden, wenn durch Diffusionsbarrieren, z.B. in Form einer Kapil- lare [UK-Pat. 1571282, UK-Pat. 2049952 A] oder durch Rühren bzw. Anströmen konstante Transportverhältnisse an der Sensoroberfläche eingestellt werden. Bei bestimmten Meßaufgaben lassen sich solche Verhältnisse jedoch nicht ohne weiteres realisieren, wie z.B. bei Messungen mit einer hohen Ortsauflösung in Sedimenten oder Biofilmen. Durch Verwendung von amperometrischen Mikrosensoren kann dieses Problem umgangen werden, da durch die sphärische Diffusion und die äußerst geringen Stoffumsätze Zehrungseffekte vernachlässigbar klein sind und nicht mehr ins Gewicht fallen [P. Jeroschewski, C. Steuckart, M. Kühl: An Amperometric Microsensor for the Determination of H2S in Aquatic Environments, Anal. Chem. 68 (1996) 4351 - 4357]; jedoch sind die Meßströme unter diesen Bedingungen sehr gering und liegen im Pikoamperebereich. Die Bestimmungsgrenze amperometrischer Mikrosensoren liegt im mikromolaren Konzentrationsbereich. Sie ist durch den Aufbau der Meßzelle (sehr geringe Elektrodenoberfläche) gegeben, der neben dem Gehalt des Analyten den Umfang der elektrochemischen Reaktion bestimmt. Unterhalb des mikromolaren Konzentrationsbereiches ist der Umfang der elektrochemischen Reaktion so gering, daß sich das Meßsignal nicht mehr signifikant vom Grundstrom der Meßzelle unterscheidet. Unter diesen Bedingungen sind keine sinnvollen Messungen mehr möglich. Eine Vergrößerung des Meßsignals kann erreicht werden, wenn eine Vielzahl von parallel geschalteten Mikroelektroden zu einem Array angeordnet wird [W. E. Morf, N. F. de Rooij: Sensors and Actuators B 44 (1997) 538-541], vorausgesetzt, der Abstand der Mikroelektroden ist ausreichend groß, um eine ungestörte hemisphärische Diffusion zu gewährleisten. Unter diesen Bedingungen ergibt sich das Meßsignal aus der Summe des Stromes an den einzelnen Mikroelektroden im Array. Allerdings addieren sich auch die Grundströme der einzelnen Mikroelektroden. Eine weitere Möglichkeit zur wesentlichen Vergrößerung des Meßsignals besteht in der Nutzung des Re- doxrecyclingeffektes, der an interdigitalen Mikroelektrodenarrays [O. Niwa, M. Morita, H. Tabei: Anal. Chem. 62 (1990) 447-452] oder in Kapillarspaltzellen mit Elektrodenabständen von wenigen Mikrometern [S. A. Brooks, R. T. Kennedy: J. Electroanal. Chem. 436 (1997) 27-34] in Gegenwart eines reversiblen Redoxpaares realisiert werden kann. Wegen des sehr geringen Diffusionsweges erfolgt ein rascher Stoffaustausch der oxidierten und reduzierten Form des Redoxpaares zwischen den als Anode und Kathode geschalteten Mikroelektroden (Feedback-Diffusion). Die Elektrodenpotentiale von Anode und Kathode müssen dabei mit Hilfe einer Potentialkontrolle auf eine bestimmte Potentialdifferenz eingestellt werden, die das gewünschte Redoxrecychng ermöglicht. Eine analytische Nutzung des Redoxrecy- clings zur Vergrößerung des Meßsignals und zur Verringerung der Bestimmungsgrenze ist auf diese Weise unmittelbar möglich, wenn der Analyt selbst ein reversibles Redoxpaar bilden kann [O. Niwa: Electroanalysis 7 (1995) 606-613 und J. Polonsky, M. Rievaj, D. Bustin: Chem. Anal. (Warsaw) 42 (1997) 445-450].
Der Erfindung liegt das Problem zugrunde, daß bei Mikrosensoren - bedingt durch die äußerst geringen Stoffumsätze - nur ein sehr geringer Meßstrom im Pikoamperebereich auftritt, dessen zuverlässige Messung unter realen Meßbedingungen nicht trivial und ziemlich aufwendig ist. Dadurch wird die Bestimmungsgrenze bei einer Konzentration von ca. 1 μmol/L erreicht. Die elektrische Verstärkung des Meßstromes ist nicht sinnvoll, da er bei diesen sehr kleinen Konzentrationen von einem störenden Grundstrom überlagert ist. Die Erhöhung des Meßstromes durch eine Vielzahl von Mikroelektroden verbessert das Signal/Rauschverhältnis gegenüber einer einzelnen Mikroelektrode nicht grundsätzlich, sondern verschiebt nur den Meßbereich für das Stromsignal zu meßtechnisch besser beherrschbaren Werten. Die Vergrößerung des Meßsignals durch ein Redoxrecychng setzt voraus, daß der Analyt selbst ein reversibles Redoxpaar bildet und die Elektrodenpotentiale der Meßelektroden kontrolliert werden. Der direkte Kontakt der Meßlösung mit den Elektroden der Meßzelle kann leicht zu Störungen der elektrochemischen Reaktionen durch Komponenten der Matrix führen, wodurch die Anwendung solcher Meßsysteme eingeschränkt ist oder vorhergehende Trennoperationen erforderlich sind. Bildet der Analyt kein reversibles Redoxpaar, könnte man zur Nutzung des Redoxrecyclingeffektes mit einem geeigneten Redoxmediator arbeiten; für kontinuierliche Messungen müßte der Redoxmediator aber in definierter Weise ständig ausgetauscht werden.
Erfindungsgemäß werden die genannten Probleme durch die Merkmale des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den weiteren Ansprüchen.
Nach der Erfindung kommt ein Verfahren mit einer elektrochemischen Meßzelle und einer Steuereinheit zur Anwendung. Die elektrochemische Meßzelle besteht aus interdigitalen Mikroelektroden bzw. Kapillarspaltelektroden als Arbeitselektroden, einer Schutzelektrode sowie einer Gegenelektrode und enthält eine einheitliche Elektrolytlösung mit einem Redoxmediator. Die Meßzelle besitzt Öffnungen im Mikrometerbereich, die mit einer für den Analyten permeablen Membran gegenüber der Meßprobe verschlossen sind, um Matrixstörungen weitgehend zu unterdrücken. Sie sind geometrisch so angeordnet, daß eine sphärische Diffusion des Analyten an jeder einzelnen Öffnung ohne eine gegenseitige Beeinflussung gewährleistet ist. Die Elektroden der Meßzelle werden mit Hilfe mehrerer Spannungsquellen aus der Steuereinheit in einer bestimmten zeitlichen Abfolge mit vorgegebenen Gleichspannungen ohne eine äußere Potentialkontrolle polarisiert und dabei wird in bestimmten Zeitintervallen ein Strom als Meßsignal registriert, der aus einer Reaktion des Analyten mit dem Redoxmediator resultiert und der Analytkonzentration proportional ist. Daraus ergeben sich die Arbeitsmodi I und II. Diese Meßanordnung gestattet einerseits die Nutzung der bereits beschriebenen Vorteile amperometrischer Mikrosensoren mit Redoxmediator (Arbeitsmodus II), vermag aber andererseits die Bestimmungsgrenze dieser Sensoren dadurch zu verringern, daß durch ein zeitabhängiges Redoxcycling an dem interdigitalen Mikroelektrodenarray oder in der Kapillarspaltzelle eine Signalvergrößerung erreicht wird (Arbeitsmodus I). Durch die Wahl des Arbeitsmodus und des Zeitintervalls für das Redoxcycling kann die Meßeinrichtung den jeweiligen Erfordernissen in einem sehr großen Konzentrationsbereich angepaßt und die Bestimmungsgrenze verringert werden. Im Arbeitsmodus I ergibt sich die Verringerung der Bestimmungsgrenze aus dem Redoxcycling des Redoxmediators (Fig. 3A), was im Prinzip einer Verstärkung des Meßstromes durch Feedbackdiffusion entspricht und durch Integration über die Zeitdauer des Redoxrecyclingprozesses erreicht wird (Anreicherungseffekt). Liegt eine größere Analytkonzentration vor, schaltet die Meßeinrichtung automatisch in den Arbeitsmodus II um und arbeitet als membranbedeckter amperometrischer Mikrosensor. Die Kombination von Arbeitsmodus I und II gestattet quantitative Bestimmungen in einem sehr großen dynamischen Konzentrationsbereich von fünf bis sechs Zehnerpotenzen mit einer einzigen Meßeinrichtung. Die erreichbare Bestimmungsgrenze ist dabei sehr gut und liegt im nanomo- laren Bereich.
Im folgenden wird ein Ausführungsbeispiel des Meßprinzips der Erfindung beschrieben. In der zugehörigen Zeichnung zeigen:
Fig. 1 eine Kapillarspaltelektrodenanordnung in Verbindung mit einer elektronischen Steuereinrichtung
Fig. 2 die graphische Darstellung des zeitlichen Verlaufes von Meßparametern und Meßgrößen und die entsprechende Zuordnung der Betriebszustände der Meßanordnung für verschiedene Konzentrationen.
Fig. 3 die Meßphase und Rückstellphase im Arbeitsmodus I. In Fig. 1 sind die Meßzelle und Steuereinrichtung nur in ihrer prinzipiellen Anordnung dargestellt: Die elektrochemische Kapillarspaltzelle 1 enthält zwei parallel angeordnete Elektroden 2 und 3, deren Abstand nur wenige Mikrometer und deren Dicke groß gegenüber ihrem Abstand ist. Sie sind nach außen mit einer für neutrale Moleküle durchlässigen Schicht 4 (z.B. Silikongummi oder hydrophobe mikroporöse PTFE-Membran) bedeckt, wodurch der Spalt 5 zwischen den Elektroden gegenüber dem Meßmedium verschlossen wird. An dieser Stelle erfolgt der Eintritt des Analyten in die Meßzelle. Die Unterseiten der Elektroden 2 und 3 im Inneren der Meßzelle sind mit einer isolierenden Schicht 6 versehen, so daß nur die Flächen in dem Kapillarspalt 5 elektrochemisch aktiv sind. Weiterhin befinden sich in der Meßzelle eine Schutzelektrode 7 und eine Gegenelektrode 8 sowie eine Elektrolytlösung 9, in der ein Redoxmediator gelöst ist. Der Kapillarspalt 5 ist mit der redoxmediatorhaltigen Elektrolytlösung 9 gefüllt.
Die Steuereinheit 10 umfaßt zwei regelbare Gleichspannungsquellen 11 und 12 zur Polarisation der Elektroden und eine Zeitsteuerung 16, die die Zeitabfolge der Elektrodenpolarisation und der Messung der Ströme I1 und I" über die Schalter 13, 14 und 15 steuert. Fig. 2 zeigt die graphische Darstellung des zeitlichen Verlaufes von Meßparametern und Meßgrößen und die entsprechende Zuordnung der Betriebszustände der Meßanordnung für verschiedene Konzentrationen. Während der Meßphase t, befinden sich Schalter 13 in geschlossenem, Schalter 14 und 15 in offenem Zustand. Damit ist die Spannung 11 an den Arbeitselektroden 2 und 3 wirksam. Wenn zur Zeit t,ca = 0 (ca = Analytkonzentration) ist und damit nur die eine Form des Redoxmediators im Spalt 5 vorliegt, findet zwischen den Arbeitselektroden 2 und 3 kein Redoxcycling statt und das Instrument I1 registriert keinen Stromfluß.
Wird nun während des Zeittaktes t2 die Rückstellphase betrieben, die durch Öffnen des Schalters 13 und gleichzeitiges Schließen der Schalter 14 und 15 gekennzeichnet ist, wird die Spannung 11 an den Arbeitselektroden 2 und 3 unwirksam. Da im Spalt 5 wegen c = 0 keine Umwandlung des Redoxmediators erfolgte, wird auch kein Strom Iκ auftreten. In der Meßphase t3, die wiederum durch den geschlossenen Schalter 13 und die geöffneten Schalter 14 und 15 gekennzeichnet ist, wird für den Fall 0 < ca < cmax durch Übergang des Analyten in den Spalt 5 und Reaktion mit einer Komponente des Redoxmediators, z.B. Ox, ein Redoxcycling im Spalt 5 ablaufen (Fig. 3A), dessen Umfang mit der Analytmenge, die in den Spalt 5 eintritt, zunimmt. Meßbares Ergebnis ist ein mit der Zeit ansteigender Strom I1, dessen Höchstwert am Ende der Phase t3 ein Maß für die Analytkonzentration ist. Seine Größe ist von dem aktuellen Konzentrationsverhältnis der oxidierten zur reduzierten Form des Redoxmediators c(Ox)/c(Red) der Redoxmediatorkomponenten Ox und Red abhängig. Dieses Konzentrationsverhältnis wird durch die chemische Reaktion des Analyten mit einer Komponente des Redoxmediators bestimmt, so daß der Strom I1 das konzentrationsproportionale Meßsignal
darstellt. Gleichzeitig liegt an der Schutzelektrode 7 und an der Gegenelektrode 8 die Gleichspannung 12, wodurch störende Komponenten aus dem Inneren der Elektrolytlösung an der Schutzelektrode elektrochemisch umgewandelt werden und damit keinen Einfluß auf das Konzentrationsverhältnis der oxidierten zur reduzierten Form des Redoxmediators c(Ox)/c(Red) im Elektrodenspalt 5 ausüben können.
Für fortlaufende Messungen ist nach einem bestimmten Zeitintervall eine Rückstellung des Konzentrationsverhältnisses c(Ox)/c(Red) auf einen vorgegebenen Ausgangswert erforderlich. Die Rückstellphase t4 wird durch Öffnen von Schalter 13 und Schließen von Schalter 14 und 15 realisiert. In der Rückstellphase werden beide Arbeitselektroden 2 und 3 sowie die Schutzelektrode 7 durch die Spannung 12 auf ein Elektrodenpotential polarisiert, bei dem der Redoxmediato ranteil, der sich durch die Reaktion mit dem Analyten gebildet hat, z.B. Red, wieder zurück verwandelt wird (Fig. 3B), so daß im Spalt 5 wieder die Konzentrationsverhältnisse des Redoxmediators wie zu Beginn der Meßphase t3 vorliegen. In der Rückstellphase dient der Strom Iκ zur Überwachung der Meßeinrichtung. Er kann aber auch prinzipiell für eine Meßwertgewinnung genutzt werden, da die während der Meßphase umgewandelte Menge des Redoxmediators proportional zur Analytkonzentration ist.
In der Meßphase t5, bei der die Schalterpositionen wie in den vorausgegangenen Meßphasen sind, ist der Fall dargestellt, daß die Analytkonzentration ca den Wert cmax annimmt und der Meßstrom I1 zum Ende der Periode von t, einen bestimmten Schwellwert IIS erreicht. Der Schwellwert IIS wird so gewählt, daß das Stromsignal noch im linearen Bereich der Strom- Konzentrations-Beziehung liegt. Das Erreichen des Schwellwertes IIS wird von der Steuereinheit 10 ausgewertet und die sich anschließende Rückstellphase t6 mit den Schalterstellungen wie in den vorangegangenen Rückstellphasen ausgeführt. Anschließend wird das Meßsystem durch die Steuereinheit 10 in den Arbeitsmodus II umgeschaltet, um Messungen bei größeren Analytkonzentrationen ca > cmax durchführen zu können. Im Arbeitsmodus II wird die Meßzelle als amperometrischer Mikrosensor mit Redoxmediator genutzt. Dieser Modus II ist durch den offenen Schalter 13 und die geschlossenen Schalter 14 und 15 gekennzeichnet. Das konzentrationsproportionale Meßsignal ist dann der Strom I", der aus der elektrochemischen Oxidation bzw. Reduktion einer Komponente des Redoxmediators, die sich durch eine homogene Redoxreaktion des Mediators mit dem Analyten gebildet hat, an beiden Elektroden 2 und 3 des Kapillarspaltes 5 resultiert. Hierbei tritt kein Redoxcycling auf. Der Arbeitsmodus II hat Bedeutung für höhere Analytkonzentrationen. Sinkt die Analytkonzentration und erreicht der Strom I" einen unteren Schwellwert l"s , so schaltet die Steuereinheit 10 die Meßeinrichtung
wieder in den Arbeitsmodus I zurück. Zweckmäßigerweise wird der Übergang vom Arbeitsmodus I in den Modus II und umgekehrt mit Hysterese ausgeführt, um instabile Betriebszu- stände, die sich an der Umschaltgrenze ergeben könnten, zu vermeiden. Damit paßt sich die Meßeinrichtung den jeweiligen Konzentrationsverhältnissen optimal an.

Claims

Patentansprüche
1. Verfahren zur Bestimmung redoxaktiver Stoffe durch eine Redoxaktion eines Analyten mit einer Komponente eines Redoxmediators in membranbedeckten, ungeteilten elektrochemischen Meßzellen (1) mit Arbeits-, Schutz- und Gegenelektroden (2, 3, 7, 8), dadurch gekennzeichnet, daß sich in einem Arbeitsmodus I für sehr geringe Analytkonzentrationen aus einem durch den Analyten ausgelösten Redoxcyclingsprozeß des Redoxmediators an mehreren in großer räumlicher Nähe zueinander befindenden als Anode und Kathode geschalteten Arbeitselektroden (2, 3) und in einem Arbeitsmodus II für höhere Analytkonzentrationen aus der elektrochemischen Rückreaktion der durch den Analyten umgewandelten Redoxmediatorkomponente an als Anode oder Kathode geschalteten Arbeitselektroden (2, 3) ein konzentrationsproportionales Stromsignal ergibt.
2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, daß durch eine Steuereinheit (10) nach einem variabel vorwählbaren Zeitregime die Polarisationsspannungen für die Elektroden in der Meßzelle (1) bereitgestellt und die Stromsignale erfaßt werden und daß abhängig von der Analytkonzentration der Arbeitsmodus I mit einer Meß- und einer Rückstellphase und der Arbeitsmodus II automatisch gewählt werden.
3. Verfahren nach Patentanspruch 1 und 2, dadurch gekennzeichnet, daß in dem Arbeitsmodus I durch Eintritt eines Analyten in die Meßzelle (1) in einer zeitlich variablen Meßphase zwischen den als Anode und Kathode geschalteten Arbeitselektroden (2, 3) ein Redoxcycling stattfindet, dessen Umfang mit der in die Meßzelle (1) eintretenden Analytmenge zunimmt und sich damit bezüglich der Meßgröße ein Anreicherungseffekt mit einer Signalverstärkung ergibt und in einer sich an die Meßphase anschließenden, zeitlich variablen Rückstellphase das Konzentrationsverhältnis c(Ox)/c(Red) des Redoxmediators durch Anlegen einer Gleichspannung (U12) an die Arbeits- und Schutzelektroden einerseits und die Gegenelektroden andererseits auf einen Ausgangswert zurückgestellt wird.
4. Verfahren nach Patentanspruch 1, 2 und 3, dadurch gekennzeichnet, daß der aus dem Redoxcycling resultierende Strom (I1), vorzugsweise am Ende der Meßphase oder die Strommenge in der Rückstellphase als konzentrationsproportionale Größen gemessen werden.
5. Verfahren nach Patentanspruch 1 und 2, dadurch gekennzeichnet, daß im Arbeitsmodus II die Meßzelle (1) als bekannter amperometrischer Sensor mit Schutzelektrode und Redoxmediator arbeitet.
6. Verfahren nach Patentanspruch 1 bis 5, dadurch gekennzeichnet, daß der Arbeitsmodus II durch die Steuereinheit (10) in Abhängigkeit vorwählbarer Stromschwellwerte automatisch eingeschaltet oder ausgeschaltet wird und damit ein sehr großer dynamischer Bestimmungsbereich realisiert wird.
PCT/EP2001/000404 2000-01-19 2001-01-16 Verfahren zur bestimmung redoxaktiver stoffe WO2001053815A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU37304/01A AU3730401A (en) 2000-01-19 2001-01-16 Method for detecting redox-active substances
EP01909627A EP1252505A2 (de) 2000-01-19 2001-01-16 Verfahren zur bestimmung redoxaktiver stoffe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10001923.4 2000-01-19
DE2000101923 DE10001923C1 (de) 2000-01-19 2000-01-19 Verfahren zur Bestimmung redoxaktiver Stoffe

Publications (2)

Publication Number Publication Date
WO2001053815A2 true WO2001053815A2 (de) 2001-07-26
WO2001053815A3 WO2001053815A3 (de) 2002-02-14

Family

ID=7627883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/000404 WO2001053815A2 (de) 2000-01-19 2001-01-16 Verfahren zur bestimmung redoxaktiver stoffe

Country Status (4)

Country Link
EP (1) EP1252505A2 (de)
AU (1) AU3730401A (de)
DE (1) DE10001923C1 (de)
WO (1) WO2001053815A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380123C (zh) * 2001-08-01 2008-04-09 生命扫描有限公司 用于分析物浓度测定的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005007539A1 (de) * 2005-02-17 2006-08-31 Universität Rostock Einrichtung zur Bestimmung redoxaktiver Stoffe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD220134A1 (de) * 1983-12-22 1985-03-20 Univ Rostock Mehrfachelektrode
DD275924A1 (de) * 1988-10-03 1990-02-07 Junkalor Dessau Amperometrische messzelle zur bestimmung von schwefelwasserstoff in gasen und fluessigkeiten
EP0418404A1 (de) * 1989-09-15 1991-03-27 Hewlett-Packard GmbH Methode zur Bestimmung der optimalen Arbeitsbedingungen in einem elektrochemischen Detektor und elektrochemischer Detektor, diese Methode benutzend
EP0569908A2 (de) * 1992-05-11 1993-11-18 Nippon Telegraph And Telephone Corporation Elektrochemisches Nachweisverfahren und Vorrichtung dazu
FR2692675A1 (fr) * 1992-06-19 1993-12-24 Zellweger Uster Ag Procédé et dispositif de dosage ampérométrique en continu des nitrates/nitrites d'un milieu aqueux.
US5366609A (en) * 1993-06-08 1994-11-22 Boehringer Mannheim Corporation Biosensing meter with pluggable memory key
WO1997000441A1 (en) * 1995-06-19 1997-01-03 Memtec America Corporation Electrochemical cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795589A (en) * 1970-11-30 1974-03-05 H Dahms Methods for electrochemical analysis
GB1571282A (en) * 1976-03-11 1980-07-09 City Tech Gas sensor
CH627278A5 (de) * 1978-01-19 1981-12-31 Orbisphere Corp
GB2049952B (en) * 1979-05-17 1983-03-30 City Tech Diffusion barrier gas sensor
DE3689131T2 (de) * 1985-06-10 1994-03-03 Orbisphere Corp Amperometrische Zelle und Verwendungsverfahren.
EP0543770B1 (de) * 1988-03-31 1997-08-13 ORBISPHERE LABORATORIES (INC.), Wilmington, Succursale de Collonge-Bellerive Ozondetektion
DE19637253A1 (de) * 1996-09-13 1998-03-19 Amt Analysenmestechnik Gmbh Miniaturisierter, membranbedeckter elektrochemischer Sensor zur Bestimmung von Gasen und/oder zur Bestimmung von in Flüssigkeiten gelösten Gasen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD220134A1 (de) * 1983-12-22 1985-03-20 Univ Rostock Mehrfachelektrode
DD275924A1 (de) * 1988-10-03 1990-02-07 Junkalor Dessau Amperometrische messzelle zur bestimmung von schwefelwasserstoff in gasen und fluessigkeiten
EP0418404A1 (de) * 1989-09-15 1991-03-27 Hewlett-Packard GmbH Methode zur Bestimmung der optimalen Arbeitsbedingungen in einem elektrochemischen Detektor und elektrochemischer Detektor, diese Methode benutzend
EP0569908A2 (de) * 1992-05-11 1993-11-18 Nippon Telegraph And Telephone Corporation Elektrochemisches Nachweisverfahren und Vorrichtung dazu
FR2692675A1 (fr) * 1992-06-19 1993-12-24 Zellweger Uster Ag Procédé et dispositif de dosage ampérométrique en continu des nitrates/nitrites d'un milieu aqueux.
US5366609A (en) * 1993-06-08 1994-11-22 Boehringer Mannheim Corporation Biosensing meter with pluggable memory key
WO1997000441A1 (en) * 1995-06-19 1997-01-03 Memtec America Corporation Electrochemical cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIWA O ET AL: "ELECTROCHEMICAL BEHAVIOR OF REVERSIBLE REDOX SPECIES AT INTERDIGITATED ARRAY ELECTRODES WITH DIFFERENT GEOMETRIES: CONSIDERATION OF REDOX CYCLING AND COLLECTION EFFICIENCY" ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. COLUMBUS, US, Bd. 62, Nr. 5, 1990, Seiten 447-452, XP000943524 ISSN: 0003-2700 in der Anmeldung erw{hnt *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380123C (zh) * 2001-08-01 2008-04-09 生命扫描有限公司 用于分析物浓度测定的方法和装置

Also Published As

Publication number Publication date
EP1252505A2 (de) 2002-10-30
AU3730401A (en) 2001-07-31
DE10001923C1 (de) 2001-09-13
WO2001053815A3 (de) 2002-02-14

Similar Documents

Publication Publication Date Title
DE3822911C2 (de) Elektrodenauffrischanordnung für einen Biosensor
DE69735302T2 (de) Gas sensor
EP0823049B1 (de) Verfahren und vorrichtung zum fortlaufenden nachweis wenigstens einer substanz in einem gasförmigen oder flüssigen gemisch mittels einer sensorelektrode
DE2224703C3 (de) Elektrochemische Meßeinrichtung
DE3805773A1 (de) Enzymelektrodensensoren
DE4424355C2 (de) Verfahren zur elektrochemischen Analyse
DE102012101254A1 (de) Messanordnung und Verfahren zur Erfassung einer Analytkonzentration in einem Messmedium
DE4223228C2 (de) Verfahren zur Bestimmung von Persäuren
DE4021929C2 (de) Sensor
EP1164186B1 (de) Verfahren zur Untersuchung von membranumschlossenen Biokompartimenten
EP1738159B1 (de) Fet-basierter gassensor
EP0282441B1 (de) Verfahren zur Bestimmung des chemischen Sauerstoffbedarfs von Wasser
DE102005037436A1 (de) Verfahren und System zur Konzentrationsbestimmung eines Analyt-Enzym-Komplexes oder Analyt-Enzym-Konjugats, insbesondere zur elektrochemischen Detektion des Analyten, und zugehörige Messvorrichtung
DE19847706A1 (de) Elektrochemischer Gas-Sensor
DE10001923C1 (de) Verfahren zur Bestimmung redoxaktiver Stoffe
DE102005007539A1 (de) Einrichtung zur Bestimmung redoxaktiver Stoffe
WO1991016624A1 (de) Verfahren zur bestimmung von gaskonzentrationen und gassensor mit festem elektrolyten
WO1996005509A1 (de) Verfahren und vorrichtung zur bestimmung von gelösten stoffen
EP0780685B1 (de) Amperometrischer Zweielektrodensensor.
DE2656936A1 (de) Coulometrisches titriergeraet
DE4232729C2 (de) Mikrobezugselektrode zur Erzeugung eines konstanten Bezugs- oder Referenzpotentials
DE2454339A1 (de) Vorrichtung zur relativen messung der konzentration einer probe in einem fluid
DE19515162C2 (de) Polarographischer ppb-Sauerstoffgassensor
DE19511138C2 (de) Verfahren und Vorrichtung zur Messung von Gasen
DE4240068C1 (de) Elektrochemischer Sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001909627

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001909627

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001909627

Country of ref document: EP