WO2001052270A1 - Procede de modulation pour l'orientation a grand angle de plans de polarisation dans des faisceaux lumineux dans la plage spectrale des ultraviolets lointains et des rayons x et dispositif permettant de mettre en oeuvre ledit procede - Google Patents

Procede de modulation pour l'orientation a grand angle de plans de polarisation dans des faisceaux lumineux dans la plage spectrale des ultraviolets lointains et des rayons x et dispositif permettant de mettre en oeuvre ledit procede Download PDF

Info

Publication number
WO2001052270A1
WO2001052270A1 PCT/DE2000/004628 DE0004628W WO0152270A1 WO 2001052270 A1 WO2001052270 A1 WO 2001052270A1 DE 0004628 W DE0004628 W DE 0004628W WO 0152270 A1 WO0152270 A1 WO 0152270A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
membrane
light beams
magnetic field
incidence
Prior art date
Application number
PCT/DE2000/004628
Other languages
German (de)
English (en)
Inventor
Hans-Christoph Mertins
Franz Schäfers
Andreas Gaupp
Original Assignee
Berliner Elektronenspeichering - Gesellschaft Für Synchrotronstrahlung M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berliner Elektronenspeichering - Gesellschaft Für Synchrotronstrahlung M.B.H. filed Critical Berliner Elektronenspeichering - Gesellschaft Für Synchrotronstrahlung M.B.H.
Priority to AU35333/01A priority Critical patent/AU3533301A/en
Publication of WO2001052270A1 publication Critical patent/WO2001052270A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect

Definitions

  • Modulation method for large-angle alignment of polarization planes in light beams in the vacuum ultraviolet and X-ray spectral range and device for carrying out the method are described in detail below.
  • the invention relates to a modulation method for time-related, variable alignment under a large-angle relative inclusion angle ⁇ of polarization planes of linearly or elliptically polarized light beams in the vacuum ultraviolet and X-ray spectral range with respect to a target surface by variable magnetic and optical action on the light beams in a modulation line and on a device for carrying out the method.
  • the microscopy and spectroscopy of magnetic domains or structures of magneto-optically active samples are becoming increasingly important in basic and application-oriented research, for example in the development of storage media for fast computers as well as in the study of non-magnetic substances, the intrinsic linear dichroism show how Langmuir Blodget films or polymers under tension.
  • the use of synchrotron radiation in the vacuum ultraviolet (VUV) and X-ray spectral range, which has to be carried out in the vacuum range, is of increasing importance, which has great advantages over the classic use of visible radiation. Due to the smaller wavelength of synchrotron radiation, for example, the spatial resolution increases to the nm range - a necessary prerequisite for the characterization and development of new types of nanostructures.
  • MCD Magnetic Circular Dichroism
  • MLD Magnetic Linear dichroism
  • MCD microscopy After MCD microscopy has developed successfully in recent years, there are now promising approaches for MLD microscopy.
  • the use of the MLD effect also allows the mapping of antiferromagnetic domains and thus expands the possibilities that are given by the MCD effect. This fact is e.g. of interest for the investigation of magnetic superlattices in oscillating interlayer couplings in magnetic layer systems.
  • Microscopy using the MLD effect enables the representation of the magnetic structures by determining the difference image (difference of the failure intensities if the incident intensities were the same) from two images, with parallel or perpendicular orientation between sample magnetization and polarization plane of the radiation used have been included.
  • the samples are “scanned” for image acquisition and the difference image is recorded from each sample location within a short time ( ⁇ 1 sec) (compare “X-Ray Microscopy and Spectromicroscopy”, J. Thieme et al., Springer-Verlag Berlin-Heidelberg 1998).
  • a mechanical sample rotation such as is also done in scanning microscopy, creates a local offset between the sample location and the scanning light beam, which is significantly larger than the spatial resolution of an individual microscope image, which leads to a reduction in the spatial resolution of the difference image.
  • the shifting of the magnet series allows the plane of polarization of the emitted light to be rotated, but the intensity of the incident radiation cannot be kept constant. This means that when using such aligned radiation to generate difference images, these do not reflect the magnetic structure of the sample to be examined.
  • the shifting of the magnet series takes a few minutes and is therefore very slow, which on the one hand leads to an intolerable increase in the measurement time.
  • an undulator as a highly specialized measurement setup is extremely expensive and generally not readily available.
  • Both light beams are spatially separated and pass through a simple chopper in the form of a rotating pinhole before they hit a sample location as the target area.
  • the chopper acts optically on the two light beams and modulates the alignment of the polarization planes in a time pattern.
  • this very new, but known modulation method is based on an extremely expensive arrangement, the cost per undulator is approximately DM 1 million.
  • the two parallel light beams have to be temporally within the desired resolution of approx. 30 nm at the location of the sample and energetically stable, which is currently not possible.
  • Another possibility for rotating the plane of polarization is to use the Faraday effect. If linearly polarized light passes through a magnetized film, the plane of polarization can undergo a rotation. This is a known effect in the visible spectral range.
  • the amount of Faraday rotation depends on the material used, the light energy or the wavelength of the light and the component of the magnetization of the film, which is parallel to the direction of light. A maximum Faraday rotation can currently be observed in a narrowband energy range near a resonance energy of the material used.
  • the direction of the Faraday rotation depends on the orientation of the magnetization and light direction (parallel / anti-parallel). In the VUV and X-ray area, this effect has recently been observed by scientists as part of basic research (see below).
  • tuneable polariser used in this context refers to the fact that the multilayer mirror can be used for different wavelengths of the X-rays used.
  • the method according to the invention therefore provides that the alignment is achieved exclusively by utilizing the Faraday effect, in that the light beams on the modulation path are guided through a thin membrane made of a magneto-optical membrane material which shows the Faraday effect and which a magnetic field B 0 .... B S which is continuously variable in strength from zero to the material-dependent saturation and in the orientation and whose angle of incidence ⁇ is below the right angle to the direction of propagation of the Light rays can be rotated, and the large-angle relative inclusion angle ⁇ can be continuously modulated for two polarization planes of the light rays
  • the aim of the modulation method according to the invention is the highly precise, temporal alignment of the polarization plane under a relative inclusion angle ⁇ on a target surface, usually a sample to be examined.
  • the linear or elliptically polarized light undergoes a rotation of its plane of polarization during transmission through the membrane showing the Faraday effect in the VUV and X-ray range.
  • the two orientations between the polarization plane of the scanning beam and the preferred direction of the fixed sample can thus be achieved by rotating the plane of polarization of the light.
  • microscopy and spectroscopy using the MLD effect are, in addition to a simple process sequence, in particular that the rotation of the polarization plane allows the microscopic information to be recorded at exactly the same point on the sample with constant light intensity during the measurement , An offset of the measuring point by a mechanical rotation of the sample or by a radiation offset is thus avoided and a higher spatial resolution of the measurements is achieved.
  • Microscopy using the MLD effect requires linearly polarized Synchrotron radiation, which is offered to a far greater extent than circularly polarized radiation. The invention thus makes it possible to expand the field of application of microscopy and spectroscopy in order to obtain material-specific information using the MLD effect from the visible to the VUV and X-ray spectral range.
  • the linearly or elliptically polarized light on the modulation path experiences a rotation of the polarization plane around the Faraday rotation angles ⁇ - ⁇ and ⁇ 2 through a suitable magneto-optical action in the membrane.
  • Their amounts are primarily determined by the two magnetic field strengths Bx and B 2 set one after the other on the membrane and additionally also by the angle of incidence ⁇ between the incident light rays and the membrane due to the general relationship
  • the changeable magnetic field lies within the membrane with the thickness d.
  • This consists of a material showing the Faraday effect with the Faraday constant k.
  • the relative inclusion angle ⁇ to be achieved is the relevant parameter.
  • all sensible combinations of settings based on the superposition principle are possible for its implementation.
  • it is particularly advantageous if the two magnetic field strengths B 1 and B 2 are identical in terms of magnitude below the magnetic saturation or are above it with any amounts, but have opposite signs. The equality of the amounts below the saturation or their arbitrary position above the saturation results in a match between the intensities of the light beams in the two selected orientations of the polarization planes.
  • the first setting is then to be selected, for example, parallel to a main axis, for example with regard to sample magnetization, of the material to be examined, the second setting is then made at right angles to it.
  • the effective thickness d * of the membrane can then be selected by changing the angle of incidence ⁇ in accordance with formula (1) such that the maximum necessary angle of rotation ⁇ p ⁇ ⁇ is reached when a magnetic field of strength Bi is present.
  • the second rotation angle ⁇ 2 to be set must satisfy the condition I ⁇ i - ⁇ 2
  • the method according to the invention is simple to implement and implement in terms of apparatus.
  • the modulation element contains the thin membrane necessary for the method, which consists of a magneto-optical membrane material which shows the Faraday effect, has a controllable electromagnet surrounding the membrane for the variable generation of a magnetic field in the membrane and is rotatably mounted for varying the angle of incidence ⁇ between the light rays and the membrane.
  • the setting of the two Faraday rotation angles ⁇ i and ⁇ 2 by generating corresponding magnetic fields Bi and B 2 by means of a suitable coil energization is a technically simple possibility of polarization modulation.
  • the rotatable mounting of the membrane in the modulation element brings about its simple and controllable controllable rotation option for varying the angle of incidence ⁇ in order to be able to change and adjust the effective thickness d * of the membrane.
  • This results in the advantages that the membrane as a transmission element has the necessary thickness on the one hand in order to lead to the desired Faraday rotation angle. However, it is also not thicker than absolutely necessary, so that the absorption of the transmitted radiation can be kept as small as possible.
  • the electromagnet is provided with a rotatable, U-shaped iron core which has the thin membrane between its poles and a coil winding on its yoke side.
  • the iron core becomes a stable and versatile supporting structure for the modulation element, which enables it to be manufactured particularly cost-effectively.
  • the special description section for further design details.
  • FIG. 1 shows a diagram for measured Faraday rotations
  • FIG. 2 shows a diagram for the measured dependence of the Faraday rotation on the angle of incidence and FIG. 3 shows a modulation device according to the invention.
  • FIG. 3 For a more detailed explanation of the diagram in FIG. 1, an exemplary embodiment for the design of a suitable membrane as a transmission element will first be described in connection with FIG. 3.
  • This exemplary embodiment describes measurement results which have been achieved on a membrane MF, consisting of a 277 nm thick magneto-optically active cobalt layer (Co), vapor-deposited on a 100 nm thick Si 3 N 4 layer.
  • the orientation of the polarization plane PP was determined using a reflection multilayer based on the Rabinovitch principle.
  • the diagram according to FIG. 1 shows a measurement of the orientation of the polarization plane on the basis of the Faraday rotation for cobalt (Co) as the membrane material.
  • a polarization analyzer is rotated by the azimuth angle ⁇ .
  • the photon energy is 774 eV at the Co 2p 3/2 absorption edge (see small diagram).
  • the diagram according to FIG. 2 shows the dependence of the relative inclusion angle ⁇ due to the Faraday rotation on the angle of incidence ⁇ into the membrane material. The measurement results were achieved with light from the photon energy at the Co 2p 3/2 absorption edge at which the Faraday rotation is at a maximum.
  • FIG. 3 schematically shows an exemplary embodiment of a device for carrying out the method.
  • a modulation element is located on a modulation path MD along the linearly polarized radiation LPB in which the orientation of its polarization plane PP can be continuously modulated ME (polarization modulator).
  • ME polarization modulator
  • This has a U-shaped iron core FC, between the poles of which a membrane MF (magnetic film) is arranged.
  • a coil winding C of an electromagnet EM is wound around the yoke region CA, with the aid of which magnetic fields of different strengths B and orientation + B, -B can be generated in the membrane MF.
  • the modulation element ME is rotatably mounted and aligned at an angle of incidence ⁇ to the incident light beams LPB.
  • the light beams LPB transmitted through the magnetized membrane MF experience large-angle Faraday rotations ⁇ i, ⁇ 2 of the polarization plane PP in clockwise or counterclockwise direction.
  • any large-angle relative inclusion angle ⁇ can be set continuously.
  • a right-angled orientation for the structural analysis of a sample P with a magnetization direction M is shown.
  • B magnetic field strength (B 0 ... B S , +/- B, B 1 f B 2 )

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Dans les procédés de microscopie et de spectroscopie, des différences sont déterminées entre deux informations de mesure qui sont captées avec une orientation différente entre la sonde magnéto-optiquement active et le plan de polarisation du faisceau d'exploration. Selon le présent procédé de modulation, pour conserver une haute résolution, la rotation du plan de polarisation a donc lieu exclusivement sur la base de l'effet de Faraday. Pour ce faire, les faisceaux de lumière (LPB) sont conduits à travers une membrane (MF) mince rotative pouvant être magnétisée constituée d'une matière (K) présentant l'effet de Faraday. Le plan de polarisation (PP) est amené à tourner à raison de certains angles de rotation (ζ1, ζ2) dont la grandeur peut être réglée en continu par des intensités de champ magnétique (B1, B2) et l'angle d'incidence (υ) entre les faisceaux lumineux (LPB) et la membrane (MF). L'orientation du champ magnétique (+/-B) détermine le sens de rotation. La superposition correspondante permet ainsi d'obtenir rapidement, simplement et avec une haute résolution de grands angles de confinement (ζ) relatifs voulus.
PCT/DE2000/004628 1999-12-20 2000-12-20 Procede de modulation pour l'orientation a grand angle de plans de polarisation dans des faisceaux lumineux dans la plage spectrale des ultraviolets lointains et des rayons x et dispositif permettant de mettre en oeuvre ledit procede WO2001052270A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU35333/01A AU3533301A (en) 1999-12-20 2000-12-20 Modulation method for the large-angle orientation of polarization planes in light beams within the vacuum ultraviolet and x-ray spectral region and device for carrying out said method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19963537.4 1999-12-20
DE1999163537 DE19963537C2 (de) 1999-12-20 1999-12-20 Modulationsverfahren zur großwinkligen Ausrichtung von Polarisationsebenen in Lichtstrahlen im Vakuum-Ultravioletten- und Röntgen-Spektralbereich und Vorrichtung zur Verfahrensdurchführung

Publications (1)

Publication Number Publication Date
WO2001052270A1 true WO2001052270A1 (fr) 2001-07-19

Family

ID=7934844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004628 WO2001052270A1 (fr) 1999-12-20 2000-12-20 Procede de modulation pour l'orientation a grand angle de plans de polarisation dans des faisceaux lumineux dans la plage spectrale des ultraviolets lointains et des rayons x et dispositif permettant de mettre en oeuvre ledit procede

Country Status (3)

Country Link
AU (1) AU3533301A (fr)
DE (1) DE19963537C2 (fr)
WO (1) WO2001052270A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413515B1 (en) 1996-03-12 2002-07-02 Ovogenix Immunpharma Gmbh Avian, vitelline antibodies directed against HIV antigens
EA011117B1 (ru) * 2006-03-28 2008-12-30 Сергей Владимирович ПЛЕТНЕВ Способ гидромагнитотерапии (варианты) и устройство для осуществления способа

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KORTRIGHT J B ET AL: "Optics for element-resolved soft X-ray magneto-optical studies", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, JAN. 1999, ELSEVIER, NETHERLANDS, vol. 191, no. 1-2, pages 79 - 89, XP000998709, ISSN: 0304-8853 *
KORTRIGHT J B ET AL: "Soft-X-ray Faraday rotation at Fe L/sub 2,3/ edges", PHYSICAL REVIEW B (CONDENSED MATTER), 15 APRIL 1995, USA, vol. 51, no. 15, pages 10240 - 10243, XP000992827, ISSN: 0163-1829 *
MERTINS H -CH ET AL: "Faraday rotation at the 2p edges of Fe, Co, and Ni", PHYSICAL REVIEW B (CONDENSED MATTER), 1 JAN. 2000, APS THROUGH AIP, USA, vol. 61, no. 2, pages R874 - R877, XP002167645, ISSN: 0163-1829 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413515B1 (en) 1996-03-12 2002-07-02 Ovogenix Immunpharma Gmbh Avian, vitelline antibodies directed against HIV antigens
EA011117B1 (ru) * 2006-03-28 2008-12-30 Сергей Владимирович ПЛЕТНЕВ Способ гидромагнитотерапии (варианты) и устройство для осуществления способа

Also Published As

Publication number Publication date
DE19963537C2 (de) 2003-12-24
AU3533301A (en) 2001-07-24
DE19963537A1 (de) 2001-07-05

Similar Documents

Publication Publication Date Title
DE3423958C2 (fr)
EP2552310B1 (fr) Procédé d'imagerie par de petites particules magnétiques et dispositif utilisé à cet effet
DE2827429A1 (de) Magnetische duennfilmstruktur mit ferro- und antiferromagnetischem austausch- vorspannungsfilm
DE102020202097B3 (de) MPI-Bildgebungsvorrichtung, Verfahren zur Erzeugung eines Magnetfelds mit einem Gradienten und einer feldfreien Linie mittels einer MPI-Bildgebungsvorrichtung
EP3563143B1 (fr) Procédé et dispositif pour l'hyperpolarisation d'un échantillon de matériau
DE2748501C3 (de) Verfahren und Vorrichtung zur Erstellung von Texturtopogrammen
DE102019216041A1 (de) Hybrid-Bildgebungsvorrichtung, Verfahren zur Auslegung einer Magnetanordnung, Verfahren zur kombinierten Aufnahme von MPI und/oder CT-Daten und/oder MRI-Daten
DE19963537C2 (de) Modulationsverfahren zur großwinkligen Ausrichtung von Polarisationsebenen in Lichtstrahlen im Vakuum-Ultravioletten- und Röntgen-Spektralbereich und Vorrichtung zur Verfahrensdurchführung
DE102015016021A1 (de) Verfahren und Anordnung zur Bestimmung von statischen elektrischen und/oder statischen magnetischen Feldern und der Topologie von Bauteilen mittels einer auf Quanteneffekten beruhenden Sensortechnologie
EP1368673A1 (fr) Procede de calcul de modulation de frequence et d'amplitude pour des impulsions electromagnetiques adiabatiques
EP0572465B1 (fr) Systeme multicouche pour palpeurs magnetoresistifs et procede pour sa fabrication
EP0396710B1 (fr) Procede d'excitation selective de signaux rmn
Kortright et al. Magnetization imaging using scanning transmission x-ray microscopy
DE4027049C2 (de) Verfahren zum flächenhaften Überprüfen von Strompfaden in einem elektronischen oder elektrischen Bauteil
DE102020002259A1 (de) Effektpigment, Druckfarbe, Sicherheitselement und Datenträger
Guhr et al. Magnetization reversal in exchange biased nanocap arrays
AT408700B (de) Magnetooptisches schaltelement mit einem faraday-rotator
DE102016014192A1 (de) Vorrichtung zur Bewegung von magnetischen Partikeln in einem Raum mittels magnetischer Kräfte
DE102004025937A1 (de) Vorrichtung und Verfahren zur Untersuchung von magnetichen Eigenschaften von Objekten
Fischer et al. Magnetic imaging with soft X-ray microscopies
DE2036002A1 (de) Verfahren zur Polarisation atomarer Strahlenbündel
DE2045219A1 (de) Ferromagnetische Dunnschichten aus Europiumoxyd mit starker, bei relativ hohen Curietemperaturen auftretender magneto optischer Faraday Rotation
DE2839216A1 (de) Magneto-optischer modulator
WO2023187073A1 (fr) Procédé de génération d'un jeton de données quantiques
WO2002003402A1 (fr) Dispositif destine a orienter le sens de magnetisation de couches magnetiques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP