WO2001052001A2 - Dispositif pour produire un signal ayant une frequence sensiblement independante de la temperature - Google Patents

Dispositif pour produire un signal ayant une frequence sensiblement independante de la temperature Download PDF

Info

Publication number
WO2001052001A2
WO2001052001A2 PCT/EP2000/012434 EP0012434W WO0152001A2 WO 2001052001 A2 WO2001052001 A2 WO 2001052001A2 EP 0012434 W EP0012434 W EP 0012434W WO 0152001 A2 WO0152001 A2 WO 0152001A2
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
temperature
equal
producing
Prior art date
Application number
PCT/EP2000/012434
Other languages
English (en)
Other versions
WO2001052001A3 (fr
Inventor
Silvio Dalla Piazza
Pierre-André Farine
Roger Bühler
Pascal Heck
Original Assignee
Eta Sa Fabriques D'ebauches
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eta Sa Fabriques D'ebauches filed Critical Eta Sa Fabriques D'ebauches
Priority to JP2001552156A priority Critical patent/JP4939714B2/ja
Priority to US10/169,160 priority patent/US6724266B2/en
Priority to CA002396934A priority patent/CA2396934A1/fr
Publication of WO2001052001A2 publication Critical patent/WO2001052001A2/fr
Publication of WO2001052001A3 publication Critical patent/WO2001052001A3/fr
Priority to HK03108942A priority patent/HK1056616A1/xx

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses
    • G04G3/02Circuits for deriving low frequency timing pulses from pulses of higher frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses
    • G04G3/02Circuits for deriving low frequency timing pulses from pulses of higher frequency
    • G04G3/027Circuits for deriving low frequency timing pulses from pulses of higher frequency by combining pulse-trains of different frequencies, e.g. obtained from two independent oscillators or from a common oscillator by means of different frequency dividing ratios

Definitions

  • the present invention relates to a device for producing a first signal having a first frequency, comprising first generating means for producing a second signal having a second frequency which varies at least substantially parabolically as a function of temperature with a first quadratic coefficient, which has a first maximum value at a first inversion temperature, and which has a first value determined at a reference temperature, second generating means for producing a third signal having a third frequency which also varies at least substantially parabolically as a function of the temperature with a second quadratic coefficient different from said first parabolic coefficient, which has a second maximum value at a second inversion temperature at least substantially equal to said first inversion temperature, and which has a second value determined at said temperature reference ature; and - mixing means for producing a fourth signal having a fourth frequency equal to the difference between said second and said third frequency
  • Such a device is described, for example, in the patents CH 626,500 and CH 631,315
  • the two devices described in these documents comprise a generator circuit which responds to the signal supplied by the mixing circuit to produce correction pulses whose frequency depends of that of this mixing signal, and therefore of the temperature
  • the output signal of these two devices is obtained by adding these correction impulses to the signal supplied, after division of its frequency, by one of the two oscillator circuits
  • the devices described in the documents mentioned above cannot therefore be used in cases where it is necessary to have a signal having not only a frequency independent of the temperature but also a frequency spectrum comprising only a reduced number of lines having fixed positions, also independent of temperature.
  • a signal having these properties is for example necessary when it is necessary to synchronize, in a telecommunication device, a high frequency signal picked up by an antenna with a low frequency signal produced in this device.
  • oscillators comprising a so-called AT cut quartz resonator produce signals whose frequency is very stable as a function of temperature. But, by nature, this frequency is quite high. If it is desired to produce a device supplying a signal having a relatively low frequency from such an oscillator, it is therefore necessary to associate with the latter a frequency divider circuit, which complicates and increases this device. In addition, the electrical energy consumed by such a frequency divider circuit is quite large because of the high frequency of the signal which it receives, which can represent a serious disadvantage when this electrical energy must be supplied by a source of weak dimensions such as the battery of an electronic wristwatch.
  • An object of the present invention is therefore to propose a device of the same kind as those which are described in the patents mentioned above but which does not have their drawbacks also mentioned above, that is to say a device producing an output signal having a frequency at least substantially independent of the temperature but also having a frequency spectrum comprising only a reduced number of lines, the position of these lines also being also substantially independent of the temperature.
  • Another object of the present invention is to provide a device providing a signal having a frequency which has a variation as a function of temperature as low as that of the frequency of the signal supplied by an oscillator comprising an AT cut resonator but which can be much lower than the latter.
  • the frequency of the signal supplied by a device according to the present invention is at least substantially independent of the temperature and does not show any sudden jump when this temperature varies.
  • the frequency spectrum of this signal therefore has only a small number of lines, and the position of these lines is also substantially independent of the temperature.
  • the frequency of the signal supplied by a device according to the present invention can be much lower than that of the signal supplied by an oscillator comprising an AT-cut quartz resonator. It is therefore possible, in many cases, to directly use the signal supplied by a device according to the present invention, without having to lower its frequency using a frequency divider circuit, which reduces the cost price. and the electrical energy consumption of this device. In addition, if a frequency divider circuit is nevertheless associated with a device according to the present invention, its electrical energy consumption will be low since the frequency of the signal supplied by this device is low
  • FIG. 1 is a diagram of an embodiment of the device according to the present invention and a variant thereof
  • the device according to the present invention which is designated as a whole by the reference 1, is intended to supply, to an output terminal designated by the reference O, a periodic signal S1 having a frequency F1 of which they will be shown later that it is at least substantially independent of the temperature
  • the device 1 comprises a first and a second generator circuit, respectively designated by the references 2 and 3, as well as a mixer circuit designated by the reference 4.
  • the person skilled in the art will have no trouble making the generators 2 and 3 in one or the other of the various ways which he knows well. therefore not described in detail HERE It will simply be mentioned that the generators 2 and 3 are arranged so as to provide at their output a signal S2 having a frequency F2 and, respectively, a signal S3 having a frequency F3.
  • the generators 2 and 3 each comprise an oscillator circuit formed, in a conventional manner, by an amplifier, not shown separately, coupled to a piezoelectric resonator whose characteristics will be specified
  • signals S2 and / or S3 can be supplied directly by the oscillator forming part of the respective generator 2 or 3, or be supplied by frequency dividing circuits receiving the signal produced by the respective oscillator and supplying these signals S2 or S3
  • the resonator which is part of the generator 2 and whose characteristics therefore determine the frequency F2 of the signal S2 has been represented with the reference 5
  • the resonator which is part of the generator 3 and whose characteristics therefore determine the frequency F3 of the signal S3 has been represented with the reference 6.
  • the resonator 5 and the resonator 6 both have the form of a quartz tuning fork, but the resonator 5 is arranged so that its branches vibrate in a bending mode, while the resonator 6 is arranged so that its branches vibrate in a twisting mode.
  • the resonators 5 and 6 are arranged so that the frequency F2 of the signal S2 is less than the frequency F3 of the signal S3, and so that these frequencies F2 and F3 are in a determined ratio whose value will be specified below, as well as other characteristics of these resonators 5 and 6.
  • the mixer circuit 4 that the device 1 also includes is also a circuit that a person skilled in the art will have no trouble realizing in one or the other of the various ways that he knows well. This mixing circuit 4 will therefore not be described in detail here either.
  • the mixer circuit 4 has two inputs, one of which is connected to the output of the generator 2 and therefore receives the signal S2 and the other of which is connected to the output of the generator 3 and therefore receives the signal S3.
  • the mixer circuit 4 is arranged so that the frequency F4 of the signal S4 which it supplies at its output is equal to the difference of the frequencies F3 and F2 of the signals S3 and, respectively, S2.
  • the output of the mixer circuit 4 is connected directly to the output 0 of the device 1, so that the signal S1 is constituted by the signal S4 and that, of course, the frequency F1 is identical to the frequency F4.
  • This frequency F1 of the signal S1 is therefore, in this case, equal to the difference of the frequencies F3 and F2.
  • the mixer circuit 4 may include a filter intended to prevent the appearance, in the signal S1, of parasitic components having frequencies different from the frequency F1.
  • a filter intended to prevent the appearance, in the signal S1, of parasitic components having frequencies different from the frequency F1.
  • F2 (T) F2 r (1 + ⁇ (TT r ) + ⁇ ⁇ T-Tr) 2 + ⁇ (TT r ) 3 ) (1) in which
  • T r is a reference temperature which is often chosen to be equal to
  • - F2 r is the frequency of signal S2 at temperature T r ; and ⁇ -i, ⁇ i, and ⁇ -
  • F3 (T) F3 r (1 + ⁇ 2 (TT r ) + ⁇ 2 (TT r ) 2 + ⁇ 2 (TT r ) 3 ) (2)
  • F3 r is the frequency of signal S3 at temperature T r
  • ⁇ 2 , ⁇ 2 . 72 are factors which depend in particular on the geometric, mechanical and electrical characteristics of the resonator 6 and on the value chosen for the reference temperature T r
  • the two coefficients ai and ⁇ 2 , the two coefficients ⁇ i and ⁇ 2 , as well as the two coefficients ⁇ i and ⁇ 2 are generally called, respectively, linear, quadratic and cubic coefficients
  • temperatures Toi and T02 are those which are generally called inversion temperatures of the resonators 5 and, respectively, 6.
  • the characteristics of the resonators 5 and 6 are, in particular determined so that, on the one hand, the frequency F2 (T) is always lower than the frequency F3 (T) and, d ' on the other hand, that the quadratic coefficient ⁇ i is greater than the quadratic coefficient ⁇ 2 .
  • Equations (5) and (6) show that, under these conditions, we have in particular:
  • the frequency F1 of the signal S1 supplied by the mixer circuit 4 is equal to the difference of the frequencies F3 and F2 of the signals S3 and, respectively, S2. According to equations (3) and (4), we therefore have:
  • F1 (T) (F3 r F2 r ) + (F3 r ai ⁇ 2 / ⁇ - F3 r tt1 ⁇ 2 / ⁇ ) (TT r ) + (F3 r ⁇ 2 - F3 r ⁇ 1 ⁇ 2 / ⁇ ) ( TT r ) 2
  • equation (11) is that of a cubic curve having an inflection point located at the temperature T r .
  • equation (11) represents the variation of the frequency F1 of the signal S1 as a function of the temperature T only when the conditions mentioned above are strictly fulfilled, that is to say when the inversion temperatures T01 and T02 are equal, and the ratio of the quadratic coefficients ⁇ i and ⁇ 2 is equal to the inverse of the ratio of the frequencies F2 r and F3 r .
  • the applicant has however determined analytically and verified by tests that even if a device such as device 1 is manufactured using unpaired resonators, such as they leave their respective production lines, the variation in the frequency F1 of the signal S1 produced by this device as a function of the temperature T is always significantly lower than that of the signal supplied by a conventional oscillator comprising a vibrating resonator in a bending or torsion mode.
  • the applicant produced devices according to the present invention using resonators such that the inversion temperatures of the signals S2 and S3 differed by 10 ° C and that the ratio of the coefficients fa and ⁇ 2 was not equal to the inverse ratio of frequencies F2 r and F3 r to within +/- 10%.
  • the frequency of a signal supplied by a conventional oscillator varies, in the same temperature range, between 0 and -160 ppm approximately when the resonator of this oscillator vibrates in a bending mode, and between 0 and -56 ppm approximately when this resonator vibrates in a torsion mode.
  • the frequency F1 of the signal S1 follows a substantially cubic curve when the temperature T varies.
  • the device according to the present invention has substantially the same advantage of stability of the frequency of the signal which it supplies as a function of temperature as an oscillator comprising a resonator of cut AT, without having the drawbacks of the latter.
  • the frequency of the signal supplied by a device according to the present invention varies continuously, without any sudden jump, unlike the frequency of the signals produced by the devices described in the patents CH 626 500 and CH 631,315 mentioned above. It follows that the frequency spectrum of the signal supplied by a device according to the present invention has only a small number of lines and that the position of these lines is substantially independent of the temperature.
  • quadratic coefficients ⁇ and ⁇ 2 and frequency values F2 r and F3 r in an integer ratio making it possible to eliminate the parasitic components of the output signal and to obtain a high purity spectral.
  • This result is for example advantageously obtained by the use of a quartz tuning fork vibrating in bending to produce the signal S2 and whose quadratic coefficient ⁇ i is by experience appreciably -0.038 ppm / ° C, and by the use of a tuning fork quartz vibrating in torsion to produce the signal S3 and whose quadratic coefficient ⁇ 2 is experimentally appreciably -0.0126 ppm / ° C.
  • the ratio ⁇ / ⁇ 2 is substantially equal to 3.
  • frequency values F2 r and F3 r are also chosen in an equivalent ratio, ie for example equal to 131,072 kHz and 393,216 kHz respectively.
  • the frequency of the signal S4 thus obtained at the output of the mixer circuit 4 of FIG. 1 is in such a case substantially equal to 262,144 kHz, that is to say advantageously eight times the frequency of 32,768 kHz which is typically desired in horological applications.
  • a divider by eight circuit can thus advantageously be connected to the output of the mixer circuit 4 in order to derive a signal at the frequency of 32,768 kHz.
  • Such a divider circuit is for example shown, in broken lines, in FIG. 1 in which it is designated by the reference 7.
  • the device according to the present invention unlike the devices described in the patents CH 626 500 and CH 631 315 mentioned above, can not only be arranged so that the signal which it produces is formed by pulses , but also so that this signal is sinusoidal. Many modifications can obviously be made to the device according to the present invention without departing from the scope thereof.
  • the resonators such as the resonators 5 and / or 6 of the device of FIG. 1 can have a shape different from the shape of a tuning fork which they have in this device, for example the shape of bars, or be made of a material piezoelectric other than quartz.
  • These resonators can also be arranged so as to vibrate in another mode, for example an elongation mode. It is however obvious that whatever their form, their material, and / or their mode of vibration, these resonators must be such that the variation as a function of the temperature of the frequency of the signals produced by the generators of which they are part is at less noticeably parabolic.
  • a device according to the present invention may comprise, as already mentioned, a frequency divider circuit 7 disposed between the output of the mixer circuit, circuit 4 of the example described above, and the output of the device, the output O in the same example.
  • the signals S1 and S1 are disposed between the output of the mixer circuit, circuit 4 of the example described above, and the output of the device, the output O in the same example.
  • the various components of the device in particular the circuits generating the signals S2 and S3, must be arranged so that the frequency F4 of the signal S4 is equal to the product of the frequency F1 of the signal S1 by the division factor of the divider of frequency 7, which is of course an integer greater than 1.
  • This result is for example obtained according to the digital example mentioned above in which the frequency values F2 r and F3 r are chosen equal to 131,072 kHz and 393,216 kHz respectively.
  • the signal S4 directly constitutes the signal S1.
  • the frequency F4 of the signal S4 is therefore equal to the product of the frequency F1 by the number 1.
  • the various components of a device according to the present invention must be arranged so that the frequency of the signal S4 produced by the mixer circuit is equal to the product of the frequency of the output signal S1 of the device by an integer equal to or greater than 1.
  • a frequency divider such as the divider 7 of FIG. 1 between the output of the mixer circuit, the circuit 4 of this same FIG. 1, and the output of a device according to the present invention absolutely does not modify the variation as a function of the temperature of the frequency of the signal supplied by this last output.
  • a device according to the present invention therefore always has the same advantages compared to known devices, whether or not it includes a frequency divider between its mixer circuit and its output.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Electric Clocks (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • General Induction Heating (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

Le dispositif (1) comporte un mélangeur (4) qui produit un signal (S4) ayant une fréquence (F4) égale à la différence entre deux fréquences (F2, F3) qui sont celles de deux signaux (S2, S3) produits chacun par un générateur (2, 3) et qui varient paraboliquement en fonction de la température (T) avec des coefficients quadratiques (β1, β2) différents l'un de l'autre. Pour que la fréquence (F4) du signal (S4) produit par le mélangeur (4) soit au moins sensiblement indépendante de la température (T), les générateurs (2, 3) sont agencés de manière que le rapport des coefficients quadratiques (β1, β2) soit égal à l'inverse du rapport des valeurs (F2r, F3r) que les fréquences correspondantes (F2, F3) ont à une température déterminée (Tr).

Description

D I SPOSITI F POU R PRODU I RE U N SI G NAL AYANT UNE FREQUENCE SE NSI BLEME NT I NDEPEN DANTE DE LA TEMPERATURE
La présente invention a pour objet un dispositif pour produire un premier signal ayant une première fréquence, comportant des premiers moyens générateurs pour produire un deuxième signal ayant une deuxième fréquence qui varie au moins sensiblement paraboliquement en fonction de la température avec un premier coefficient quadratique, qui a une première valeur maximale à une première température d'inversion, et qui a une première valeur déterminée à une température de référence, des deuxièmes moyens générateurs pour produire un troisième signal ayant une troisième fréquence qui varie également au moins sensiblement paraboliquement en fonction de la température avec un deuxième coefficient quadratique différent dudit premier coefficient parabolique, qui a une deuxième valeur maximale à une deuxième température d'inversion au moins sensiblement égale à ladite première température d'inversion, et qui a une deuxième valeur déterminée à ladite température de référence; et - des moyens de mélange pour produire un quatrième signal ayant une quatrième fréquence égale à la différence entre ladite deuxième et ladite troisième fréquence
Un tel dispositif est décrit, par exemple, dans les brevets CH 626 500 et CH 631 315 Les deux dispositifs décrits dans ces documents comportent un circuit générateur qui repond au signal fourni par le circuit de mélange pour produire des impulsions de correction dont la fréquence dépend de celle de ce signal de mélange, et donc de la température Le signal de sortie de ces deux dispositifs est obtenu en ajoutant ces impuisions de correction au signal fourni, après division de sa fréquence, par l'un des deux circuits oscillateurs
Il résulte de cette disposition que la fréquence du signal de sortie fourni par ces dispositifs est bien sensiblement indépendante de la température lorsqu'elle est mesurée sur une période assez longue Mais il résulte également de cette disposition que cette fréquence du signal de sortie présente des variations brusques a chaque apparition d'une impulsion de correction En d'autres termes, le spectre de fréquences de ce signal de sortie présente un très grand nombre de raies de largeurs assez importantes, la position de ces raies variant en outre avec la température
Les dispositifs décrits dans les documents mentionnes ci-dessus ne peuvent donc pas être utilises dans les cas où il est nécessaire de disposer d'un signal ayant non seulement une fréquence indépendante de la température mais également un spectre de fréquences ne comportant qu'un nombre réduit de raies ayant des positions fixes, également indépendantes de la température. Un signal présentant ces propriétés est par exemple nécessaire lorsqu'il faut synchroniser, dans un appareil de télécommunication, un signal à haute fréquence capté par une antenne avec un signal à basse fréquence produit dans cet appareil
Il est bien connu que des oscillateurs comportant un résonateur en quartz de coupe dite AT produisent des signaux dont la fréquence est très stable en fonction de la température. Mais, par nature, cette fréquence est assez élevée. Si l'on désire réaliser un dispositif fournissant un signal ayant une fréquence relativement basse à partir d'un tel oscillateur, il est donc nécessaire d'associer à ce dernier un circuit diviseur de fréquence, ce qui complique et renchérit ce dispositif. En outre, l'énergie électrique consommée par un tel circuit diviseur de fréquence est assez importante a cause de la fréquence élevée du signal qu'il reçoit, ce qui peut représenter un grave inconvénient lorsque cette énergie électrique doit être fournie par une source de faibles dimensions telle que la pile d'une montre-bracelet électronique.
Un but de la présente invention est donc de proposer un dispositif du même genre que ceux qui sont décrits dans les brevets mentionnés ci-dessus mais qui ne présente pas leurs inconvénients également mentionnés ci-dessus, c'est-à-dire un dispositif produisant un signal de sortie ayant une fréquence au moins sensiblement indépendante de la température mais ayant de plus un spectre de fréquences ne comportant qu'un nombre réduit de raies, la position de ces raies étant en outre aussi sensiblement indépendante de la température.
Un autre but de la présente invention est de proposer un dispositif fournissant un signal ayant une fréquence qui présente une variation en fonction de la température aussi faible que celle de la fréquence du signal fourni par un oscillateur comportant un résonateur de coupe AT mais qui peut être beaucoup plus basse que cette dernière.
Ces buts sont atteints par le dispositif selon la présente invention dont les caractéristiques sont énumérées dans la revendication 1 ci-jointe Comme cela sera rendu évident plus loin, il découle de ces caractéristiques que la fréquence du signal fourni par un dispositif selon la présente invention est au moins sensiblement indépendante de la température et ne présente aucun saut brusque lorsque cette température varie. Le spectre des fréquences de ce signal ne présente donc qu'un petit nombre de raies, et la position de ces raies est aussi sensiblement indépendante de la température
De plus, il découle de ces caractéristiques que la fréquence du signal fourni par un dispositif selon la présente invention peut être beaucoup plus basse que celle du signal fourni par un oscillateur comprenant un résonateur en quartz de coupe AT. Il est donc possible, dans de nombreux cas, d'utiliser directement le signal fourni par un dispositif selon la présente invention, sans avoir à abaisser sa fréquence à l'aide d'un circuit diviseur de fréquence, ce qui diminue le prix de revient et la consommation d'énergie électrique de ce dispositif. En outre, si un circuit diviseur de fréquence est malgré tout associé à un dispositif selon la présente invention, sa consommation d'énergie électrique sera faible puisque la fréquence du signal fourni par ce dispositif est basse
D'autres buts et avantages de la présente invention seront rendus évidents par la description qui va suivre et qui sera faite à l'aide du dessin annexé dans lequel la figure 1 , unique, est un schéma d'une forme d'exécution du dispositif selon la présente invention et d'une variante de cette dernière
Dans sa forme d'exécution représentée schématiquement et à titre d'exemple non limitatif à la figure 1 , le dispositif selon la présente invention, qui est désigné dans son ensemble par la référence 1 , est destiné à fournir, à une borne de sortie désignée par la référence O, un signal périodique S1 ayant une fréquence F1 dont ils sera montré plus loin qu'elle est au moins sensiblement indépendante de la température
A cet effet, le dispositif 1 comporte un premier et un deuxième circuit générateur, respectivement désignés par les références 2 et 3, ainsi qu'un circuit mélangeur désigné par la référence 4.
Après avoir lu la suite de cette description, l'homme du métier n'aura aucune peine à réaliser les générateurs 2 et 3 de l'une ou de l'autre des diverses manières qu'il connaît bien Ces générateurs 2 et 3 ne seront donc pas décrits en détail ICI On mentionnera simplement que les générateurs 2 et 3 sont agencés de manière à fournir à leur sortie un signal S2 ayant une fréquence F2 et, respectivement, un signal S3 ayant une fréquence F3.
A cet effet, les générateurs 2 et 3 comportent chacun un circuit oscillateur formé, de manière classique, par un amplificateur, non représenté séparément, couplé à un résonateur piezo-électnque dont les caractéristiques seront précisées
Selon les cas, les signaux S2 et/ou S3 peuvent être fournis directement par l'oscillateur faisant partie du générateur 2 ou 3 respectif, ou être fournis par des circuits diviseurs de fréquence recevant le signal produit par l'oscillateur respectif et fournissant ces signaux S2 ou S3 Le résonateur qui fait partie du générateur 2 et dont les caractéristiques déterminent donc la fréquence F2 du signal S2 a été représenté avec la référence 5, et le résonateur qui fait partie du générateur 3 et dont les caractéristiques déterminent donc la fréquence F3 du signal S3 a été représenté avec la référence 6.
Dans le présent exemple, le résonateur 5 et le résonateur 6 ont tous deux la forme d'un diapason en quartz, mais le résonateur 5 est agencé de manière que ses branches vibrent dans un mode de flexion, alors que le résonateur 6 est agencé de manière que ses branches vibrent dans un mode de torsion.
En outre, dans le présent exemple, les résonateurs 5 et 6 sont agencés de manière que la fréquence F2 du signal S2 soit inférieure à la fréquence F3 du signal S3, et que ces fréquences F2 et F3 soient dans un rapport déterminé dont la valeur sera précisée plus loin, de même que d'autres caractéristiques de ces résonateurs 5 et 6.
Le circuit mélangeur 4 que comporte encore le dispositif 1 est aussi un circuit que l'homme du métier n'aura aucune peine à réaliser de l'une ou l'autre des diverses manières qu'il connaît bien. Ce circuit mélangeur 4 ne sera donc pas non plus décrit en détail ici.
On mentionnera simplement que le circuit mélangeur 4 comporte deux entrées dont l'une est reliée à la sortie du générateur 2 et reçoit donc le signal S2 et dont l'autre est reliée à la sortie du générateur 3 et reçoit donc le signal S3.
On mentionnera également que le circuit mélangeur 4 est agencé de manière que la fréquence F4 du signal S4 qu'il fournit à sa sortie soit égale à la différence des fréquences F3 et F2 des signaux S3 et, respectivement, S2.
Dans la forme d'exécution représentée en traits pleins à la figure 1 , la sortie du circuit mélangeur 4 est reliée directement à la sortie 0 du dispositif 1 , de sorte que le signal S1 est constitué par le signal S4 et que, bien entendu, la fréquence F1 est identique à la fréquence F4. Cette fréquence F1 du signal S1 est donc, dans ce cas, égale à la différence des fréquences F3 et F2.
L'homme du métier comprendra que, si nécessaire, le circuit mélangeur 4 peut comporter un filtre destiné à empêcher l'apparition, dans le signal S1 , de composantes parasites ayant des fréquences différentes de la fréquence F1. L'homme du métier sait bien que la constitution des résonateurs 5 et 6 mentionnée ci-dessus a comme conséquence que la variation des fréquences F2 et F3 en fonction de la température, qui sera désignée par T, est donnée par deux équations, bien connues des spécialistes, ayant des formes semblables.
Ainsi, la variation de la fréquence F2 en fonction de la température T est donnée par l'équation suivante :
F2(T) = F2r (1 + αι(T-Tr) + β^T-Tr)2 + γι(T-Tr)3) (1 ) dans laquelle
Tr est une température de référence qui est souvent choisie égale à
25°C, - F2r est la fréquence du signal S2 à la température Tr; et α-i , βi , et γ-| sont des coefficients qui dépendent notamment des caractéristiques géométriques, mécaniques et électriques du résonateur 5 et de la valeur choisie pour la température de référence Tr
De même, la variation de la fréquence F3 en fonction de la température T est donnée par l'équation suivante
F3(T) = F3r (1 + α2(T-Tr) + β2(T-Tr)2 + γ2(T-Tr)3) (2)
dans laquelle Tr est la même température de référence que dans l'équation (1 ),
F3r est la fréquence du signal S3 à la température Tr, et α2, β2. 72 sont des facteurs qui dépendent notamment des caractéristiques géométriques, mécaniques et électriques du résonateur 6 et de la valeur choisie pour la température de référence Tr Les deux coefficients ai et α2, les deux coefficients βi et β2, ainsi que les deux coefficients γi et γ2 sont généralement appelés, respectivement, coefficients linéaires, quadratiques et cubiques
Pour simplifier les considérations qui vont suivre, on admettra dans un premier temps que les coefficients cubiques γi et γ ont des valeurs très faibles, ce qui est
3 3 effectivement le cas, de sorte que les termes γι(T-Tr) et γ2(T-Tr) qui apparaissent dans l'équation (1 ) et, respectivement, dans l'équation (2) ci-dessus peuvent être négligés
Dans ces conditions, les équations (1 ) et (2) deviennent respectivement
F2(T) = F2r (1 + αι(T-Tr) + β^T-Tr)2) (3) et F3(T) = F3r (1 + α2(T-Tr) + β2(T-Tr)2) (4)
Ces équations (3) et (4) montrent que, toujours dans les conditions ci-dessus, les fréquences F2 et F3 varient de manière parabolique en fonction de la température T En outre, ces équations (3) et (4) montrent que les fréquences F2 et F3 ont des valeurs maximales F2o et, respectivement, F3o lorsque la température T a des valeurs Toi et, respectivement, TQ données par les équations suivantes
Figure imgf000008_0001
et T02 = Tr - α2/2β2 (6)
Ces températures Toi et T02 sont celles qui sont généralement appelées températures d'inversion des résonateurs 5 et, respectivement, 6.
Pour une raison qui sera rendue évidente plus loin, les caractéristiques des résonateurs 5 et 6 sont, notamment déterminées de manière que, d'une part, la fréquence F2(T) soit toujours inférieure à la fréquence F3(T) et, d'autre part, que le coefficient quadratique βi soit supérieur au coefficient quadratique β2. L'homme du métier verra que ces conditions, ainsi que d'autres conditions qui seront définies plus loin, peuvent être facilement remplies du fait que le résonateur 5 vibre dans un mode de flexion et que le résonateur 6 vibre dans un mode de torsion.
On admettra également, pour une raison qui sera rendue évidente plus loin, que les caractéristiques des résonateurs 5 et 6 sont déterminées de manière que les températures d'inversion T01 et To2 soient égales. Les équations (5) et (6) montrent que, dans ces conditions, on a notamment :
α2 = ai β2/β (7)
On admettra encore, toujours pour une raison qui sera rendue évidente plus loin, que les caractéristiques de résonateurs 5 et 6 sont également déterminées de manière que le rapport des coefficients quadratiques βi et β2 soit égal à l'inverse du rapport des valeurs F2r et F3r que les fréquences F2(T) et F3(T) ont à la température de référence Tr ou, en d'autres termes, que l'on ait :
βl/β2 = F3r/F2r
ou encore : F2r = F3r β2/βι (8)
Comme on l'a vu ci-dessus, la fréquence F1 du signal S1 fourni par le circuit mélangeur 4 est égale à la différence des fréquences F3 et F2 des signaux S3 et, respectivement, S2. Selon les équations (3) et (4), on a donc :
F1 (T) = (F3rF2r) + (F3r α2 - F2r ≈1 )(T-Tr) + (F3r β2 - F2r fa )(T-Tr)2 (9) En remplaçant 0.2 et F2r, dans les deuxième et troisième termes de l'équation (9), par leurs valeurs respectives données par les équations (7) et (8), on obtient :
F1 (T) = (F3rF2r) + (F3r ai β2/βι - F3r tt1 β2/βι)(T-Tr) + (F3r β2 - F3r β1 β2/βι)(T-Tr)2
On voit que, dans les conditions définies ci-dessus, les facteurs qui multiplient
2 respectivement les termes (T-Tr) et (T-Tr) de l'équation (9) sont nuls. Il en découle que cette équation (9) se réduit à :
F1 (T) = F3rF2r (10)
Comme les fréquences F2r et F3r sont indépendantes de la température T, la fréquence F1 du signal S1 l'est aussi. Les considérations qui viennent d'être faites sont évidemment aussi valables si
3 3 l'on tient compte, malgré leur faible valeur, des termes γι(T-Tr) et γ2(T-Tr) qui font respectivement partie des équations (1 ) et (2) ci-dessus. L'homme du métier verra facilement que, dans un tel cas, la variation de la fréquence F1 du signal S1 en fonction de la température T est donnée par l'équation suivante :
F1 (T) = (F3rF2r) + (F3r γ2 - F2r γι)(T-Trr (1 1 )
Cette équation (11 ) est celle d'une courbe cubique ayant un point d'inflexion situé à la température Tr. L'homme du métier verra facilement que le dernier terme de l'équation (11 ) a des valeurs extrêmement faibles, de sorte que la fréquence F1 du signal S1 est, malgré l'influence de ce terme, pratiquement indépendante de la température T. Il est cependant évident que l'équation (11) ci-dessus ne représente la variation de la fréquence F1 du signal S1 en fonction de la température T que lorsque les conditions mentionnées ci-dessus sont strictement remplies, c'est-à-dire lorsque les températures d'inversion T01 et T02 sont égales, et que le rapport des coefficients quadratiques βi et β2 est égal à l'inverse du rapport des fréquences F2r et F3r.
L'homme du métier sait bien que ces conditions ne peuvent généralement pas être remplies facilement lorsque les résonateurs 5 et 6 sont fabriqués en grandes séries. Pour remplir ces conditions, il est évidemment possible de prendre des mesures spéciales lors de la fabrication de ces résonateurs telles que leur tri en fonction de leurs caractéristiques et leur appariement. Mais de telles mesures augmentent évidemment le prix de revient de ces résonateurs, et donc celui du dispositif qui les emploie.
La déposante a cependant déterminé analytiquement et vérifié par des essais que même si un dispositif tel que le dispositif 1 est fabriqué en utilisant des résonateurs non appariés, tels qu'il sortent de leurs chaînes de fabrication respectives, la variation de la fréquence F1 du signal S1 produit par ce dispositif en fonction de la température T est toujours nettement inférieure à celle du signal fourni par un oscillateur classique comportant un résonateur vibrant dans un mode de flexion ou de torsion. Ainsi, par exemple, la déposante a réalisé des dispositifs selon la présente invention en utilisant des résonateurs tels que les températures d'inversion des signaux S2 et S3 différaient de 10°C et que le rapport des coefficients fa et β2 n'était égal au rapport inverse des fréquences F2r et F3r qu'à +/- 10 % près.
La déposante a constaté que, même dans ces conditions extrêmes, la variation de la fréquence F1 dans un domaine de températures allant de -40°C à +85°C est toujours inférieure à +/- 10 ppm.
A titre de comparaison, on sait que la fréquence d'un signal fourni par un oscillateur classique varie, dans le même domaine de température, entre 0 et -160 ppm environ lorsque le résonateur de cet oscillateur vibre dans un mode de flexion, et entre 0 et -56 ppm environ lorsque ce résonateur vibre dans un mode de torsion. Il faut noter que, de toutes façons, la fréquence F1 du signal S1 suit une courbe sensiblement cubique lorsque la température T varie.
Il en résulte que les différences de la fréquence F1 du signal S1 ont des signes opposés selon que la température T est supérieure ou inférieure à la température de référence Tr, ce qui assure automatiquement une compensation presque parfaite de ces différences lorsque la température T varie de part et d'autre de cette température de référence Tr.
L'homme du métier verra que cette variation de la fréquence F1 en fonction de la température T est similaire à celle de la fréquence du signal fourni par un oscillateur comportant un résonateur du type dit AT. Mais l'homme du métier sait également que cette dernière fréquence est, par nature, assez élevée, et qu'il est très souvent nécessaire d'associer à un tel oscillateur un circuit diviseur de fréquence, avec les divers inconvénients, mentionnés ci-dessus, qui sont liés à la présence d'un tel circuit. On voit par contre facilement que la fréquence du signal fourni par un dispositif selon la présente invention peut être relativement basse puisqu'elle est égale à la différence des fréquences de deux autres signaux, les signaux S2 et S3 dans l'exemple décrit ci-dessus. Il n'est donc souvent pas nécessaire d'associer un circuit diviseur de fréquence à ce dispositif, ce qui élimine les inconvénients liés à la présence d'un tel circuit. Et même si un circuit diviseur de fréquence doit, pour une raison ou une autre, être associé à un dispositif selon la présente invention, sa consommation d'énergie électrique est beaucoup plus faible que dans le cas d'un oscillateur comportant un résonateur de type AT puisque la fréquence du signal qu'il reçoit est beaucoup plus basse que dans ce dernier cas.
On voit donc que le dispositif selon la présente invention présente sensiblement le même avantage de stabilité de la fréquence du signal qu'il fournit en fonction de la température qu'un oscillateur comportant un résonateur de coupe AT, sans présenter les inconvénients de ce dernier.
On voit également que lorsque la température varie, la fréquence du signal fourni par un dispositif selon la présente invention varie de manière continue, sans aucun saut brusque, contrairement à la fréquence des signaux produits par les dispositifs décrits dans les brevets CH 626 500 et CH 631 315 mentionnés ci-dessus. Il en découle que le spectre des fréquences du signal fourni par un dispositif selon la présente invention ne présente qu'un faible nombre de raies et que la position de ces raies est sensiblement indépendante de la température.
En particulier, on notera que l'on choisira de préférence des coefficients quadratiques β et β2 et des valeurs de fréquences F2r et F3r dans un rapport entier permettant d'éliminer les composantes parasites du signal de sortie et d'obtenir une grande pureté spectrale. Ce résultat est par exemple avantageusement obtenu par l'utilisation d'un diapason quartz vibrant en flexion pour produire le signal S2 et dont le coefficient quadratique βi vaut par expérience sensiblement -0.038 ppm/°C, et par l'utilisation d'un diapason quartz vibrant en torsion pour produire le signal S3 et dont le coefficient quadratique β2 vaut par expérience sensiblement -0.0126 ppm/°C. Dans ce cas le rapport βι/β2 vaut sensiblement 3.
Afin de satisfaire l'expression (8) ci-dessus, on choisit par ailleurs des valeurs de fréquences F2r et F3r dans un rapport équivalent, soit par exemple égales à 131.072 kHz et 393.216 kHz respectivement. On notera que la fréquence du signal S4 ainsi obtenu à la sortie du circuit mélangeur 4 de la figure 1 est dans un tel cas sensiblement égale à 262.144 kHz, soit avantageusement huit fois la fréquence de 32.768 kHz qui est typiquement désirée dans des applications horlogères. Un circuit diviseur par huit peut ainsi être avantageusement connecté à la sortie du circuit mélangeur 4 afin de dériver un signal à la fréquence de 32.768 kHz. Un tel circuit diviseur est par exemple représenté, en traits interrompus, à la figure 1 dans laquelle il est désigné par la référence 7. Il faut encore noter que le dispositif selon la présente invention, contrairement aux dispositifs décrits dans les brevets CH 626 500 et CH 631 315 mentionnés ci- dessus, peut non seulement être agencé de manière que le signal qu'il produit soit formé d'impulsions, mais également de manière que ce signal soit sinusoïdal. De nombreuses modifications peuvent évidemment être apportées au dispositif selon la présente invention sans pour autant sortir du cadre de celle-ci.
Ainsi, les résonateurs tels que les résonateurs 5 et/ou 6 du dispositif de la figure 1 peuvent avoir une forme différente de la forme de diapason qu'ils ont dans ce dispositif, par exemple la forme de barreaux, ou être réalisés dans un matériau piézo- électrique autre que le quartz. Ces résonateurs peuvent aussi être agencés de manière à vibrer dans un autre mode, par exemple un mode d'allongement. Il est cependant évident que quels que soient leur forme, leur matériau, et/ou leur mode de vibration, ces résonateurs doivent être tels que la variation en fonction de la température de la fréquence des signaux produits par les générateurs dont ils font partie soit au moins sensiblement parabolique.
De même, toujours par exemple, un dispositif selon la présente invention peut comporter, comme cela a déjà été mentionné, un circuit diviseur de fréquence 7 disposé entre la sortie du circuit mélangeur, le circuit 4 de l'exemple décrit ci-dessus, et la sortie du dispositif, la sortie O dans le même exemple. Dans cette variante du dispositif selon la présente invention, les signaux S1 et
S4 ne sont évidemment plus identiques. En outre, les divers composants du dispositif, notamment les circuits générateurs des signaux S2 et S3, doivent être agencés de manière que la fréquence F4 du signal S4 soit égale au produit de la fréquence F1 du signal S1 par le facteur de division du diviseur de fréquence 7, qui est bien sûr un nombre entier supérieur à 1. Ce résultat est par exemple obtenu selon l'exemple numérique mentionné plus haut dans lequel les valeurs de fréquences F2r et F3r sont choisies égales à 131.072 kHz et 393.216 kHz respectivement.
On rappellera que, dans la première forme d'exécution du dispositif selon la présente invention, qui a été décrite ci-dessus, le signal S4 constitue directement le signal S1. Dans ce cas, la fréquence F4 du signal S4 est donc égale au produit de la fréquence F1 par le nombre 1.
D'une manière générale, on peut donc dire que les divers composants d'un dispositif selon la présente invention doivent être agencés de manière que la fréquence du signal S4 produit par le circuit mélangeur soit égale au produit de la fréquence du signal de sortie S1 du dispositif par un nombre entier égal ou supérieur à 1. Il faut encore noter que la présence éventuelle d'un diviseur de fréquence tel que le diviseur 7 de la figure 1 entre la sortie du circuit mélangeur, le circuit 4 de cette même figure 1 , et la sortie d'un dispositif selon la présente invention ne modifie absolument pas la variation en fonction de la température de la fréquence du signal fourni par cette dernière sortie. Un dispositif selon la présente invention présente donc toujours les mêmes avantages par rapport aux dispositifs connus, qu'il comporte ou non un diviseur de fréquence entre son circuit mélangeur et sa sortie.

Claims

RFVEND ICATIONS
1. Dispositif pour produire un premier signal (S1 ) ayant une première fréquence (F1 ), comportant : des premiers moyens générateurs (2) pour produire un deuxième signal (S2) ayant une deuxième fréquence (F2) qui varie au moins sensiblement paraboliquement en fonction de la température (T) avec un premier coefficient quadratique (βi), qui a une première valeur maximale (F2o) à une première température d'inversion (Toi), et qui a une première valeur déterminée (F2r) à une température de référence (Tr); des deuxièmes moyens générateurs (3) pour produire un troisième signal (S3) ayant une troisième fréquence (F3) qui varie également au moins sensiblement paraboliquement en fonction de la température (T) avec un deuxième coefficient quadratique (β2) différent dudit premier coefficient quadratique (βi), qui a une deuxième valeur maximale (F3o) à une deuxième température d'inversion (To2) au moins sensiblement égale à ladite première température d'inversion (Toi), et qui a une deuxième valeur déterminée (F3r) à ladite température de référence (Tr); et des moyens de mélange (4) pour produire un quatrième signal (S4) ayant une quatrième fréquence (F4) égale à la différence entre ladite troisième (F3) et ladite deuxième fréquence (F2); caractérisé par le fait que lesdits premiers (2) et lesdits deuxièmes moyens générateurs (3) sont agencés de manière que le rapport entre ledit premier (βi) et ledit deuxième coefficient quadratique (β2) soit au moins sensiblement égal au rapport entre ladite deuxième (F3r) et ladite première valeur déterminée (F2r), et de manière que ladite quatrième fréquence (F4) soit égale au produit de ladite première fréquence (F1 ) par un nombre entier égal ou supérieur à 1.
2. Dispositif selon la revendication 1 , caractérisé en ce que le rapport entre ladite deuxième (F3r) et ladite première valeur déterminée (F2r) est sensiblement égal à un nombre entier.
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que celui-ci comporte en outre un circuit diviseur de fréquence (7) connecté à la sortie dudit circuit mélangeur (4) et permettant de dériver ledit premier signal (S1 ) à partir dudit quatrième signal (S4).
4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits premiers moyens générateurs (2) comportent un premier résonateur à quartz (5) agencé pour vibrer en flexion, et en ce que lesdits deuxièmes moyens générateurs (3) comportent un deuxième résonateur à quartz (6) agencé pour vibrer en torsion.
PCT/EP2000/012434 2000-01-10 2000-12-07 Dispositif pour produire un signal ayant une frequence sensiblement independante de la temperature WO2001052001A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001552156A JP4939714B2 (ja) 2000-01-10 2000-12-07 実質的に温度に依存しない周波数を有する信号を生成するためのデバイス
US10/169,160 US6724266B2 (en) 2000-01-10 2000-12-07 Device for producing a signal having a substantially temperature-independent frequency
CA002396934A CA2396934A1 (fr) 2000-01-10 2000-12-07 Dispositif pour produire un signal ayant une frequence sensiblement independante de la temperature
HK03108942A HK1056616A1 (en) 2000-01-10 2003-12-09 Device for producing a signal having a substantially temperature-independent frequency.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00100427.4 2000-01-10
EP00100427A EP1117017B1 (fr) 2000-01-10 2000-01-10 Dispositif pour produire un signal ayant une fréquence sensiblement indépendante de la température

Publications (2)

Publication Number Publication Date
WO2001052001A2 true WO2001052001A2 (fr) 2001-07-19
WO2001052001A3 WO2001052001A3 (fr) 2001-12-20

Family

ID=8167590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/012434 WO2001052001A2 (fr) 2000-01-10 2000-12-07 Dispositif pour produire un signal ayant une frequence sensiblement independante de la temperature

Country Status (10)

Country Link
US (1) US6724266B2 (fr)
EP (1) EP1117017B1 (fr)
JP (1) JP4939714B2 (fr)
KR (1) KR100700431B1 (fr)
CN (1) CN1201211C (fr)
AT (1) ATE442614T1 (fr)
CA (1) CA2396934A1 (fr)
DE (1) DE60042916D1 (fr)
HK (1) HK1056616A1 (fr)
WO (1) WO2001052001A2 (fr)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275292B2 (en) 2003-03-07 2007-10-02 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Method for fabricating an acoustical resonator on a substrate
US7362198B2 (en) * 2003-10-30 2008-04-22 Avago Technologies Wireless Ip (Singapore) Pte. Ltd Pass bandwidth control in decoupled stacked bulk acoustic resonator devices
US6946928B2 (en) * 2003-10-30 2005-09-20 Agilent Technologies, Inc. Thin-film acoustically-coupled transformer
US7358831B2 (en) * 2003-10-30 2008-04-15 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator (FBAR) devices with simplified packaging
US7019605B2 (en) * 2003-10-30 2006-03-28 Larson Iii John D Stacked bulk acoustic resonator band-pass filter with controllable pass bandwidth
US6995622B2 (en) * 2004-01-09 2006-02-07 Robert Bosh Gmbh Frequency and/or phase compensated microelectromechanical oscillator
US7388454B2 (en) * 2004-10-01 2008-06-17 Avago Technologies Wireless Ip Pte Ltd Acoustic resonator performance enhancement using alternating frame structure
US8981876B2 (en) * 2004-11-15 2015-03-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Piezoelectric resonator structures and electrical filters having frame elements
US7202560B2 (en) 2004-12-15 2007-04-10 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Wafer bonding of micro-electro mechanical systems to active circuitry
US7791434B2 (en) * 2004-12-22 2010-09-07 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator performance enhancement using selective metal etch and having a trench in the piezoelectric
US7427819B2 (en) * 2005-03-04 2008-09-23 Avago Wireless Ip Pte Ltd Film-bulk acoustic wave resonator with motion plate and method
US7369013B2 (en) 2005-04-06 2008-05-06 Avago Technologies Wireless Ip Pte Ltd Acoustic resonator performance enhancement using filled recessed region
US7436269B2 (en) * 2005-04-18 2008-10-14 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustically coupled resonators and method of making the same
US8058933B2 (en) * 2005-09-21 2011-11-15 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Low frequency clock generation
TWI402658B (zh) * 2005-05-13 2013-07-21 Avago Technologies General Ip 低頻時鐘產生技術
US7138752B1 (en) 2005-06-09 2006-11-21 Eta Sa Manufacture Horlogere Suisse Small-sized piezoelectric resonator
US7868522B2 (en) * 2005-09-09 2011-01-11 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Adjusted frequency temperature coefficient resonator
US7391286B2 (en) * 2005-10-06 2008-06-24 Avago Wireless Ip Pte Ltd Impedance matching and parasitic capacitor resonance of FBAR resonators and coupled filters
US7675390B2 (en) * 2005-10-18 2010-03-09 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic galvanic isolator incorporating single decoupled stacked bulk acoustic resonator
US7525398B2 (en) * 2005-10-18 2009-04-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustically communicating data signals across an electrical isolation barrier
US7737807B2 (en) 2005-10-18 2010-06-15 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic galvanic isolator incorporating series-connected decoupled stacked bulk acoustic resonators
US7463499B2 (en) * 2005-10-31 2008-12-09 Avago Technologies General Ip (Singapore) Pte Ltd. AC-DC power converter
US7561009B2 (en) * 2005-11-30 2009-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator (FBAR) devices with temperature compensation
US7612636B2 (en) * 2006-01-30 2009-11-03 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Impedance transforming bulk acoustic wave baluns
US20070210724A1 (en) * 2006-03-09 2007-09-13 Mark Unkrich Power adapter and DC-DC converter having acoustic transformer
US7746677B2 (en) 2006-03-09 2010-06-29 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. AC-DC converter circuit and power supply
US7479685B2 (en) * 2006-03-10 2009-01-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Electronic device on substrate with cavity and mitigated parasitic leakage path
US7508286B2 (en) * 2006-09-28 2009-03-24 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. HBAR oscillator and method of manufacture
US20080202239A1 (en) * 2007-02-28 2008-08-28 Fazzio R Shane Piezoelectric acceleration sensor
US7791435B2 (en) * 2007-09-28 2010-09-07 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Single stack coupled resonators having differential output
US7855618B2 (en) * 2008-04-30 2010-12-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator electrical impedance transformers
US7732977B2 (en) * 2008-04-30 2010-06-08 Avago Technologies Wireless Ip (Singapore) Transceiver circuit for film bulk acoustic resonator (FBAR) transducers
US8446079B2 (en) * 2008-05-23 2013-05-21 Statek Corporation Piezoelectric resonator with vibration isolation
US8248185B2 (en) 2009-06-24 2012-08-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator structure comprising a bridge
US8902023B2 (en) 2009-06-24 2014-12-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US8193877B2 (en) * 2009-11-30 2012-06-05 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Duplexer with negative phase shifting circuit
US8796904B2 (en) 2011-10-31 2014-08-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising piezoelectric layer and inverse piezoelectric layer
US9243316B2 (en) 2010-01-22 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of fabricating piezoelectric material with selected c-axis orientation
US8962443B2 (en) 2011-01-31 2015-02-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor device having an airbridge and method of fabricating the same
US9136818B2 (en) 2011-02-28 2015-09-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked acoustic resonator comprising a bridge
US9154112B2 (en) 2011-02-28 2015-10-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge
US9048812B2 (en) 2011-02-28 2015-06-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer
US9425764B2 (en) 2012-10-25 2016-08-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having composite electrodes with integrated lateral features
US9083302B2 (en) 2011-02-28 2015-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator
US9203374B2 (en) 2011-02-28 2015-12-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator comprising a bridge
US9148117B2 (en) 2011-02-28 2015-09-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge and frame elements
US9444426B2 (en) 2012-10-25 2016-09-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having integrated lateral feature and temperature compensation feature
US8575820B2 (en) 2011-03-29 2013-11-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator
US8350445B1 (en) 2011-06-16 2013-01-08 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising non-piezoelectric layer and bridge
US8922302B2 (en) 2011-08-24 2014-12-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator formed on a pedestal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR982491A (fr) * 1943-07-02 1951-06-11 Radio Electr Soc Fr Compensation de la dérive de fréquence d'un oscillateur, piezoélectrique avec la température
CH1527865A4 (fr) * 1965-11-05 1967-11-30
DE2360656A1 (de) * 1973-12-05 1975-07-03 Standard Elektrik Lorenz Ag Elektrische uhr
GB2006520A (en) * 1977-09-07 1979-05-02 Suwa Seikosha Kk Piezo-electric resonator
US4345221A (en) * 1979-05-22 1982-08-17 Societe Suisse Pour L'industrie Horlogere Management Services S.A. Temperature compensated signal generator including two crystal oscillators

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071797A (en) * 1976-01-20 1978-01-31 Societe Suisse Pour L'industrie Horlogere Management Services S.A. Quartz piezo-electric element vibrating in a coupled mode
GB1570659A (en) * 1976-06-30 1980-07-02 Suwa Seikosha Kk Electronic timepiece
JPS537269A (en) * 1976-07-08 1978-01-23 Matsushima Kogyo Kk Electronic clock
CH620087B (de) * 1979-03-09 Suisse Horlogerie Oszillator mit einem hochfrequenz-quarzresonator.
JPS55166083A (en) * 1979-06-13 1980-12-24 Seiko Instr & Electronics Ltd Time standard generating system
JPS5636085A (en) * 1979-09-03 1981-04-09 Seiko Instr & Electronics Ltd Time-base generator
CH626500B (de) * 1980-01-10 Suisse Horlogerie Oszillator mit digitaler temperaturkompensation.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR982491A (fr) * 1943-07-02 1951-06-11 Radio Electr Soc Fr Compensation de la dérive de fréquence d'un oscillateur, piezoélectrique avec la température
CH1527865A4 (fr) * 1965-11-05 1967-11-30
DE2360656A1 (de) * 1973-12-05 1975-07-03 Standard Elektrik Lorenz Ag Elektrische uhr
GB2006520A (en) * 1977-09-07 1979-05-02 Suwa Seikosha Kk Piezo-electric resonator
US4345221A (en) * 1979-05-22 1982-08-17 Societe Suisse Pour L'industrie Horlogere Management Services S.A. Temperature compensated signal generator including two crystal oscillators

Also Published As

Publication number Publication date
WO2001052001A3 (fr) 2001-12-20
CN1201211C (zh) 2005-05-11
EP1117017A1 (fr) 2001-07-18
JP2003529750A (ja) 2003-10-07
ATE442614T1 (de) 2009-09-15
CA2396934A1 (fr) 2001-07-19
HK1056616A1 (en) 2004-02-20
CN1423762A (zh) 2003-06-11
KR20020074192A (ko) 2002-09-28
KR100700431B1 (ko) 2007-03-27
DE60042916D1 (de) 2009-10-22
US6724266B2 (en) 2004-04-20
EP1117017B1 (fr) 2009-09-09
US20030052743A1 (en) 2003-03-20
JP4939714B2 (ja) 2012-05-30

Similar Documents

Publication Publication Date Title
WO2001052001A2 (fr) Dispositif pour produire un signal ayant une frequence sensiblement independante de la temperature
EP2074695B1 (fr) Resonateur en silicium de type diapason
EP0048689B1 (fr) Thermomètre à quartz
CH619335B5 (fr)
EP1265352B1 (fr) Circuit oscillateur différentiel comprenant un résonateur électromécanique
EP1843227A1 (fr) Résonateur couplé système réglant
WO2008139064A2 (fr) Dispositif d'extraction d'horloge a asservissement numerique de phase sans reglage externe
EP2225826B1 (fr) Circuit oscillateur à quartz à polarisation active faible consommation
EP1289121A1 (fr) Circuit oscillateur à inverseur à consommation réduite
EP2514094A1 (fr) Résonateur thermocompense au moins aux premier et second ordres
CH705494A2 (fr) Pièce d'horlogerie à oscillateurs couplés de manière permanente.
EP1424776A1 (fr) Circuit oscillateur commandé en tension pour un dispositif électronique basse puissance
EP0751373B1 (fr) Dispositif de mesure d'une vitesse angulaire
EP0056783B1 (fr) Micro-résonateur piézo-électrique
EP3048730B1 (fr) Dispositif de synthèse de fréquence à boucle de rétroaction
FR2918820A1 (fr) Dispositif de fourniture d'un signal alternatif.
FR2905042A1 (fr) Circuit electronique integre comportant un resonnateur accordable
EP1111770B1 (fr) Dispositif oscillateur à quartz basse fréquence ayant un comportement thermique amélioré
EP0157697A1 (fr) Oscillateur piézo-électrique fonctionnant en mode apériodique
FR2624326A1 (fr) Resonateur piezoelectrique
EP0795953B1 (fr) Dispositif électronique comprenant une base de temps intégrée
EP1342132A1 (fr) Procede d'entretien des oscillations d'un dispositif vibrant et dispositif vibrant mettant en oeuvre ce procede
CH710603B1 (fr) Ressort-spiral d'horlogerie à fréquence réglable.
EP0113264B1 (fr) Oscillateur haute fréquence à défaut d'isochronisme compensé
WO2008139063A2 (fr) Dispositif d'extraction d'horloge et de donnees numeriques sans reglage externe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000991588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027008807

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 552156

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 008183171

Country of ref document: CN

Ref document number: 2396934

Country of ref document: CA

WWW Wipo information: withdrawn in national office

Ref document number: 2000991588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10169160

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027008807

Country of ref document: KR

122 Ep: pct application non-entry in european phase