WO2001051587A1 - Dispositif de distillation seche/de reduction de volume pour dechets - Google Patents

Dispositif de distillation seche/de reduction de volume pour dechets Download PDF

Info

Publication number
WO2001051587A1
WO2001051587A1 PCT/JP2001/000198 JP0100198W WO0151587A1 WO 2001051587 A1 WO2001051587 A1 WO 2001051587A1 JP 0100198 W JP0100198 W JP 0100198W WO 0151587 A1 WO0151587 A1 WO 0151587A1
Authority
WO
WIPO (PCT)
Prior art keywords
superheated steam
waste
volume
dry distillation
steam generator
Prior art date
Application number
PCT/JP2001/000198
Other languages
English (en)
French (fr)
Inventor
Ryoichi Okamoto
Hiromu Shishido
Norio Omoda
Original Assignee
Ryoichi Okamoto
Hiromu Shishido
Norio Omoda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryoichi Okamoto, Hiromu Shishido, Norio Omoda filed Critical Ryoichi Okamoto
Priority to AU25535/01A priority Critical patent/AU2553501A/en
Priority to CA002366447A priority patent/CA2366447A1/en
Priority to EP01900764A priority patent/EP1170354A4/en
Priority to KR1020017011706A priority patent/KR20020009577A/ko
Publication of WO2001051587A1 publication Critical patent/WO2001051587A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/203Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Definitions

  • the present invention relates to carbonization by heat-treating various kinds of waste, in particular, organic waste such as food waste or agricultural garbage, excrement such as livestock, wood waste, paper waste, fiber waste, waste tire, etc. It relates to an apparatus for reducing the volume of waste that is reduced in volume.
  • organic waste such as food waste or agricultural garbage
  • excrement such as livestock, wood waste, paper waste, fiber waste, waste tire, etc.
  • It relates to an apparatus for reducing the volume of waste that is reduced in volume.
  • a first heating apparatus for indirectly heating waste in a pyrolysis furnace and a supply of air to the pyrolysis furnace are provided.
  • a second heating device for directly heating the waste in the furnace, a pyrolysis furnace for converting the waste into low-temperature pyrolysis gas and solid pyrolysis residue, and a low-temperature pyrolysis gas and solid heat In a method for operating a waste heat treatment facility provided with a high-temperature furnace for burning decomposition residues, a first heating device is used for basic heating of garbage waste, and a second heating device is used for auxiliary heating according to demand. Through the introduction of air into the internal chamber of the pyrolysis furnace, the waste can be efficiently converted into low-temperature carbonized gas and solid pyrolysis residue.
  • the heating fuel such as oil or natural gas is used.
  • the problem is that running costs are high because of the necessity.
  • the low-temperature carbonized gas obtained by heat-treating the waste and the solid pyrolysis residue are burned, and the waste heat is used to heat the waste. If air pollution is generated when the low-temperature carbonized gas and the solid pyrolysis residue are burned, special equipment is required to treat this. There is a problem.
  • the present invention has been made in view of the above points, and has various configurations with a simple configuration. It is an object of the present invention to provide an apparatus for reducing the volume of waste, which can effectively reduce the volume of the material. Disclosure of the invention
  • the present invention provides a superheated steam generator for generating superheated steam, a dry distillation reduced vessel for heating waste to reduce dry distillation volume by using superheated steam supplied from the superheated steam generator, and a superheated steam generator.
  • a heating gas supply means for supplying exhaust gas of the engine as a heat source for heating is provided.
  • the present invention provides a superheated steam generator for generating superheated steam, a dry distillation reduced vessel for heating organic waste by the superheated steam supplied from the superheated steam generator to reduce the dry distillation volume, and a dry distillation reduced vessel Heating gas supply means for supplying a combustible gas generated by incomplete combustion of the carbide generated in the above as a heat source for heating the superheated steam generator.
  • FIG. 1 is an explanatory view showing a first embodiment of a device for reducing the amount of dry distillation of waste according to the present invention.
  • FIG. 2 is an explanatory diagram showing a specific configuration of a cyclone type combined flow dryer.
  • FIG. 3 is an explanatory diagram showing a specific configuration of the rotary dryer.
  • FIG. 4 is an explanatory diagram showing a second embodiment of the apparatus for reducing the volume of dry distillation of waste according to the present invention.
  • FIG. 5 is an explanatory view showing a third embodiment of a waste carbonization volume reduction device according to the present invention.
  • FIG. 1 shows a first embodiment of an apparatus for reducing the volume of dry distillation of waste according to the present invention.
  • the apparatus for reducing the volume of dry distillation includes a superheated steam generator 1 for generating superheated steam, a dry distillation volume reduction vessel 2 for heating the waste 5 with the superheated steam supplied from the superheated steam generator 1 to dry-evaporate the waste 5, and Heated gas supply means 4 consisting of an exhaust passage for supplying high-temperature exhaust gas derived from engine 3 as a heat source for heating superheated steam generator 1, and waste to supply waste 5 to dry distillation reduction container 2 Supply means 6.
  • the superheated steam generator 1 is provided with a conduction pipe 9 for conducting hot water derived from a Lager system 8 provided in a cooling water system of an engine 3 serving as a driving source of a generator ⁇ , and a conduction pipe 9 derived from the conduction pipe 9.
  • the exhaust gas of the engine 3 supplied from the gas supply means 4 and the combustion gas of the burner 11 are heated to generate superheated steam.
  • the hot water conduit 9 is disposed at the first heating section 9a disposed at the rear end (boiler) of the superheated steam generator 1 and at the front end (super heater) of the superheated steam generator 1. And the heated water is heated when passing through the first heating section 9a, for example, at 100 ° C. under normal pressure that satisfies the gas state equation. Steam is generated, and the saturated steam is further heated when passing through the second heating section 9b, so that superheated steam that is superheated to 250 to 500 ° C under normal pressure is generated. It has become.
  • the dry distillation reduced container 2 is composed of a dry distillation reduced container main body 12 into which the waste 5 supplied from the waste supply means 6 is carried in, and a high-temperature discharged from the superheated steam generator 1 through a discharge pipe 25.
  • 14 and separation / recovery means 15 for separating and recovering useful components in the high-temperature gas.
  • the superficially reduced steam container main body 12 was superheated steam supplied from the superheated steam generator 1 through the superheated steam supply pipe 10 and was superheated to, for example, 250 ° C. to 500 ° C. under normal pressure.
  • Non-oxidizing waste 5 in an oxygen-free or low-oxygen atmosphere with low-pressure superheated steam above normal pressure It is thermally decomposed in a reductive manner, and is dried if necessary.
  • the above-mentioned low-pressure superheated steam at or above normal pressure refers to superheated steam whose supply pressure exceeds normal pressure (atmospheric pressure) or a low-pressure region of more than 1 atm and up to about 2 atm.
  • non-oxidative and reductive means that mainly reductive pyrolysis is performed in an atmosphere of superheated steam. In introducing the waste 5, a small amount of air is considered to be mixed with the raw material, and the present invention does not exclude such a low oxygen atmosphere.
  • the temperature of the superheated steam can be set to an appropriate value depending on the type or state of the waste 5 within a range of more than 100 to 1200 ° C under normal pressure. If the temperature is too low, the time required to thermally decompose the waste 5 will be prolonged, and if the temperature is high, the equipment will be easily burned. It is preferable to specify The pyrolysis may be stopped before the organic waste is added to the complete carbide.
  • the waste carried from the waste supply means 6 into the dry distillation reduction container main body 12 is heated by the superheated steam supplied from the superheated steam supply pipe 10. And carbonized gas, and the carbonized gas generated when the volume of the waste 5 is reduced, the superheated steam supplied to the container 12 and the jacket 13 are supplied.
  • the high-heat gas combined with the discharged exhaust gas is led out to the reflux means 14 and the separation and recovery means 15.
  • the recirculation means 14 is composed of a dimist 16 that collects and removes droplets in the high-heat gas derived from the dry distillation reduction vessel 2, and the high-temperature gas derived from the A reflux pipe 17 for refluxing into the generator 1 and a reflux pipe 17 A first on-off valve 18 provided, a supply pipe 19 for supplying the high-temperature gas derived from the demister 16 into the conduction pipe 9, and a second on-off valve provided on the supply pipe 19 20.
  • the first open / close valve 18 of the reflux pipe 17 is closed and By opening the second on-off valve 20 of the supply pipe 19 and supplying the high-temperature gas derived from the above-mentioned DIMIS 16 into the conduction pipe 9, the hot water in the conduction pipe 9 is supplied. Direct heating is used to generate superheated steam early.
  • the heating of the waste in the carbonization reduction container 2 progresses to generate carbonization gas.
  • the first open / close valve 18 of 7 is opened, and the second open / close valve 20 of the supply pipe 19 is closed, so that the high-temperature gas derived from the demister 16 flows into the casing of the superheated steam generator 1.
  • the superheated steam generator 1 is effectively heated while preventing impurities in the dry distillation gas from being mixed into the hot water in the conduit 9.
  • the high-temperature gas derived from the carbonization-reducing container 2 includes a carbonization gas containing useful components such as methanol, acetic acid, oil, and moisture generated by pyrolysis of the waste 5. Therefore, by distilling the hot gas through the separation / recovery means 15, the useful component is separated and recovered from the carbonized gas, and the gas component after the useful component is separated is released into the atmosphere.
  • the superheated steam generator 1 may be configured to be heated by refluxing the gas component after the inclusions are separated to the superheated steam generator 1.
  • the above-mentioned waste supply means 6 includes first and second dryers 2 1 and 2 2 which are pre-heated and dried by hot air before various kinds of waste 5 are supplied to the dry distillation reduction container 2.
  • a crusher 23 that pre-crushes and granulates the waste 5 in the distillation vessel 2 and a carrying mechanism such as a screw conveyor (not shown) that carries the crushed waste 5 into the above-mentioned dry distillation vessel 2.
  • the waste 5 include food (raw garbage), soy sauce cake, sake cake, unnecessary materials such as okara, agricultural products, animals, plants, trees (wood waste), seafood, paper, fiber, and other waste, and wastewater.
  • Typical examples are sludge from processing, manure discarded at livestock and birds, organic plastics discarded at factories, etc., and organic waste such as waste tires, styrofoam, and food trays. Not limited to this, various industrial wastes are included in the target.
  • the first dryer 21 includes a conical container 24 with a constriction, and heat formed from exhaust gas discharged from the superheated steam generator 1 through an exhaust pipe 25.
  • a hot air supply means 26 for supplying wind along the inner peripheral surface of the conical container 24;
  • a waste carrying means 27 for carrying waste 5 along the inner peripheral surface of the conical container 24; It consists of a cyclone-type composite flow dryer having
  • the second dryer 22 includes an inclined rotary cylinder 28 provided with a lifting blade (not shown) for lifting waste, and an inclined rotary cylinder 28. It comprises a rotary dryer having hot air supply means 29 for supplying hot air comprising exhaust gas derived from the superheated steam generator 1 therein.
  • the waste 5 is previously removed by the first and second dryers 21 and 22 of the waste supply means 6. After the drying treatment, the dried waste 5 is crushed by the crusher 23 in advance, and then the crushed waste 5 is carried into the reduced distillation container 2 by a carrying-in mechanism.
  • the hot water derived from the Rage 1 of the engine 3 is introduced into the conduit 9 and supplied to the superheated steam generator 1, and the high-temperature exhaust gas derived from the engine 3 is heated gas.
  • the supply means 4 supplies the combustion gas into the superheated steam generator 1 and, if necessary, ignites the burner 11 to supply the combustion gas into the superheated steam generator 1 so that the gas in the conduction pipe 9 is reduced.
  • the hot water is heated to generate superheated steam that is superheated to a temperature of, for example, 250 T: to 50 (TC) under normal pressure.
  • the superheated steam generated in the superheated steam generator 1 is normally The above-mentioned waste is supplied by supplying the superheated steam from the above-mentioned superheated steam supply pipe 10 into the dry distillation reduction vessel 2 at a pressure higher than the pressure, and blowing the superheated steam onto the waste 5 in this dry distillation volume reducer 2 to heat it.
  • carbonized gas and carbonized gas By thermal decomposition, the carbide And the like.
  • the superheated steam generator 1 that generates superheated steam by heating the water consisting of the hot water derived from Laje Night 8 as described above, and the superheated steam supplied from the superheated steam generator 1 generates waste. 5 and a heating gas supply means 4 for supplying exhaust gas of the engine 3 as a heat source for heating the superheated steam generator 1. After heating the moisture with the exhaust gas supplied into the superheated steam generator 1 to generate superheated steam, the superheated steam is supplied into the dry distillation reduced vessel 2 and the The waste 5 is supplied to the inside, and the waste 5 is heated by the above-mentioned superheated steam to reduce the amount of dry distillation, so that various types of waste 5 can be effectively reduced in dry distillation with a simple configuration. .
  • the superheated steam is generated by heating the moisture with the exhaust gas of the engine 3 which has been conventionally released into the atmosphere, the heat energy of the engine 3 is effectively used to generate the superheated steam. Steam can be generated. Since the superheated steam is supplied into the dry distillation reduction vessel 2 to heat the waste 5, the waste 5 is rapidly and effectively thermally decomposed by the steam condensation heat transfer effect and the like, and the carbonized material is heated. And the like, and it is possible to effectively reduce the volume of the distillate by drying it.
  • the carbonized material such as the carbonized material produced by carbonizing the waste 5 can be effectively used as fertilizer, building material, activated carbon, or the like.
  • the dry distillate composed of the above-mentioned carbides and the like is sufficiently reduced in volume, the workability in the case of discarding the same can be improved.
  • odor components such as ammonia, mercaptan, hydrogen sulfide, methyl disulfide, trimethylamine, acetoaldehyde or styrene, which are generated when the volume of the waste 5 is reduced by the superheated steam in the reduced distillation container 2, are removed by heat.
  • odor can be effectively deodorized by decomposition.
  • the waste 5 supplied to the dry distillation reduction container 2 is configured to be dried in advance by the first and second dryers 21 and 22.
  • the efficiency of treating waste 5 can be effectively improved as compared with the case where the waste containing water is directly heated to reduce the volume of the dry distillation.
  • a conical container 24 having a constriction a hot air supply means 26 for supplying hot air along the inner peripheral surface of the conical container 24,
  • a first dryer 21 composed of a cyclone-type combined flow dryer having a waste carrying means 27 for carrying waste 5 along the inner peripheral surface
  • the above-mentioned waste carrying means 27 is provided.
  • the waste 5 carried into the conical container 24 is swirled along the inner peripheral surface of the conical container 24 together with the hot air supplied from the hot air supply means 26.
  • the hot air can be efficiently brought into contact with 5 to perform effective drying treatment.
  • an inclined rotary cylinder 28 having a lifting blade for lifting the waste 5, a hot air supply means 29 for supplying hot air into the inclined rotary cylinder 28, and
  • a second dryer 22 composed of a rotary dryer having the following is provided, the waste 5 carried into the inclined rotary cylinder 28 is discharged according to the rotation of the inclined rotary cylinder 28 as described above. Since it can be efficiently heated by the hot air supplied from the hot air supply means 29 while being lifted up by the raising blades, it is suitable for continuously drying a large amount of relatively low-moisture particulates etc. ing.
  • the exhaust pipe 25 from the superheated steam generator 1 is used as a heat source for heating the hot air supply means 26, 29 provided in the first and second dryers 21, 22. If configured to use hot exhaust gases derived through There is an advantage that the waste 5 carried into the dryers 21 and 22 can be dried by effectively utilizing the heat energy of the exhaust gas from the furnace.
  • the hot air supply means 26, 29 provided in the first and second dryers 21, 22 is configured to use a hot gas derived from the carbonization reduction vessel 2 as a heat source for heating.
  • the waste heat carried into the first and second dryers 21 and 22 can be effectively used by effectively utilizing the heat energy of the hot gas derived from the dry distillation reduction container 2. 5 can be effectively dried.
  • the crusher 23 for previously crushing the waste 5 supplied to the dry distillation reduction container 2 is provided, the waste 5 previously crushed by the crusher 23 is subjected to the above-mentioned carbonization.
  • the arrangement order and scale of the first and second dryers 21 and 22 and the crusher 23 are not limited to the above embodiment, and various changes are possible. (2) A structure in which some or all of the dryers 21 and 22 and the crusher 23 are omitted may be employed.
  • the superheated steam generator 1 is provided with a conduction pipe 9 for hot water derived from a radiator 8 provided in a cooling water system of the engine 3, and the hot water is heated in the superheated steam generator 1.
  • tap water or the like may be supplied to the superheated steam generator 1 and the tap water may be heated to generate superheated steam.
  • the hot water derived from the cooling water system of engine 3 is heated by the exhaust gas of engine 3 to generate superheated steam for reducing the volume of waste 5 by carbonization.
  • the required heat energy can be saved as compared with the case where the cold water composed of tap water or the like is heated to generate superheated steam, so that there is an advantage that the superheated steam can be efficiently generated. is there.
  • the burner 11 serving as a heating means for generating the superheated steam is provided in the superheated steam generation g1, both the exhaust gas discharged from the engine 3 and the combustion gas of the above-mentioned parner 11 are used.
  • superheated steam for reducing the volume of the waste 5 by dry distillation can be effectively generated in the superheated steam generator 1.
  • a recirculation means 14 for recycling the high-heat gas derived from the carbonization reduction vessel 2 to the superheated steam generator 1 to reuse it as a heating heat source for generating superheated steam was provided.
  • the high-temperature gas derived from the dry distillation container 2 is returned to the superheated steam generator 1 to superheat the waste gas. Since it can be reused as a heat source for heating for generating steam, the heat energy of the high-temperature gas can be effectively used. Moreover, the odor component contained in the high-temperature gas can be effectively deodorized by heating and decomposing the odor component with the superheated steam or the like in the superheated steam generator 1. Even if a part leaks to the outside, it is possible to prevent the occurrence of a situation in which workers and the like are uncomfortable due to the odor.
  • the separation and collection means 15 for separating and collecting useful components from the carbonized gas generated when the waste 5 is reduced in volume by the carbonization reduction container 2 is provided.
  • the useful components in the carbonized gas such as methanol, acetic acid, oil and water, generated when the volume of the waste 5 is reduced by the carbonization by the volume reduction vessel 2 are separated and recovered from the carbonized gas by the separation and recovery means 15. It can be used effectively.
  • the burner 11 when the combustible component consisting of methanol and oil collected by the separation / recovery means 15 is used as fuel for the burner 11, the burner 11 is used to make effective use of the combustible component. Both the combustion gas of the burner 11 and the exhaust gas discharged from the engine 3 effectively heat the moisture in the superheated steam generator 1 to reduce the superheated steam while saving fuel costs. It has the advantage that it can be generated efficiently.
  • a low-pressure superheated steam that is superheated to a temperature of 250: up to 500 ° C. under normal pressure is supplied from the superheated steam generator 1 to the dry distillation reduction vessel 2, If the waste 5 is configured to be thermally decomposed in an oxygen-free or low-oxygen atmosphere, as in the case of using superheated steam at a low pressure, steam may leak or continuous input of raw materials may occur. There is an advantage that the above-mentioned waste 5 can be efficiently reduced in dry distillation volume by a simple device without causing problems such as difficulty.
  • the carbide generated in the dry distillation reduction vessel 2 may be supplied into the superheated steam generator 1 and burned by the burner 11, and even in such a configuration, the burner 1 may be used. .1
  • the fuel gas is effectively heated by the superheated steam generator 1 by both the combustion gas of the burner 11 and the exhaust gas discharged from the engine 3 while saving the fuel cost of 1.1.
  • Superheated steam can be generated efficiently.
  • the exhaust gas of the engine 3 serving as a drive source of the generator 7 is used as a heat source for heating the superheated steam generator 1
  • a drive source such as a pump, a blower or a compressor
  • the exhaust gas of the engine 3 may be supplied as a heat source for heating the superheated steam generator 1, but as shown in the above embodiment, the exhaust gas of the engine 3 serving as the drive source of the generator 7 is
  • the generator 7 can be supplied to the motorized portion of the dry distillation volume reduction device according to the present invention, for example, to the waste supply means 6, etc., so that the waste supply means 6, etc. can be driven without requiring external power. There is an advantage.
  • FIG. 4 shows a second embodiment of the apparatus for reducing the volume of dry distillation of waste according to the present invention.
  • the waste distillation volume reduction device consists of a superheated steam generator 1 that generates superheated steam---2, and an organic waste 51 heated by the superheated steam supplied from the superheated steam generator 1 to dry distillation.
  • the superheated steam generator 1 includes a conduction pipe 9 for conducting hot water supplied through a heat exchanger 32 of a rotary engine 31 that drives a generator 7, and reduces the generated superheated steam by dry distillation.
  • the superheated steam supply pipe 1 ⁇ ⁇ ⁇ to be supplied to the vessel 2, the burner 11 that burns the combustible gas supplied from the heating gas supply means 41, and the hot water supplied from the conduit 9 are used for
  • it has a super heater 34 that generates superheated steam that is superheated to 250 ° C. under normal pressure.
  • the dry distillation reduction container 2 is configured in substantially the same manner as in the first embodiment. That is, the dry distillation reduced container 22 is composed of a dry distillation reduced container main body (not shown) into which the organic waste 51 supplied from the waste supply means 6 is carried in, and a discharge pipe 2 from the superheated steam generator 1. A jacket (not shown) for heating the carbonization-reducing vessel main body with the high-temperature exhaust gas led out through 5; Means for refluxing a part to the burner 10 of the superheated steam generator 1, separation and recovery means 15 comprising a condenser for separating and recovering useful components in the dry distillation gas, and the dry distillation reducing vessel A scrubber for removing harmful substances in the exhaust gas derived from the main body is provided.
  • the above-mentioned dry distillation reduced container 2 is provided with superheated steam supplied from the superheated steam generator 1 through the superheated steam supply pipe 10, that is, at a pressure equal to or higher than the normal pressure superheated to, for example, 250 to 500 under normal pressure.
  • Organic waste 51 is thermally decomposed in a non-oxygen or low-oxygen atmosphere by low-pressure superheated steam in a non-oxidizing and Z-reducing manner to produce carbides 52 and carbonized gas. .
  • the carbides 52 generated in the dry distillation reduction vessel 2 2 are cooled by the cooling device 37, at least a part of u 3 at least is supplied to the heating gas generating means 41. .
  • the above-mentioned waste supply means 6 includes a crusher 23 that crushes and granulates the organic waste 5 1 in advance before supplying it to the dry distillation reduction vessel 2, and an organic waste 5 1 after crushing.
  • a drying device 36 is provided, which is heated and dried, and then carried into the dry distillation reduction container 2. Drying of the organic waste 51 is preferably carried out with 150 ° C. to 50 O: normal pressure superheated steam. For organic waste having a normal water content, drying is performed for 3 minutes to 4 minutes. With a heating time of about 0 minutes, the water content becomes almost 0% by mass.
  • organic waste which has a particularly high water content, consumes a large amount of heat for drying, significantly increases the time required for drying, and includes a temperature of about 350 ° C. In some cases, it takes about 140 minutes to reduce the water volume to almost 0% by mass. Therefore, it is desirable to use high-temperature superheated steam to shorten the drying time.
  • any of a method in which the drying step is performed using superheated steam and then pyrolysis is separately performed using superheated steam, and a method in which drying and thermal decomposition are continuously performed using superheated steam in the same apparatus may be adopted.
  • Organic waste with low water content may be dried at room temperature or hot air.
  • the drying step and the pyrolysis step are performed using separate devices, the organic waste should be transferred to the dry distillation volume reduction device when the water content in the organic waste becomes about 20% or less. It may be.
  • the drying time can be appropriately determined depending on the amount of water contained and the amount of raw material conveyed by a batch-type device or a transfer device.
  • the heating gas supply means 41 includes a gasification furnace 38 for incompletely burning the charged carbides 52 and gasifying the same, and a waste oil supplied from a waste oil tank 39 for purifying the gasification furnace 3 And a waste oil adding means 40 for adding waste oil to the above-mentioned carbide 52 by supplying the waste oil to the above-mentioned carbide 52.
  • the combustible gas generated by incomplete combustion of the waste oil-added carbide 52 is purified. After being refined by the device 42, a part thereof is supplied as fuel for the rotary engine 31, and the remainder is supplied to the gas burner 10 of the superheated steam generator 1.
  • each sample having the raw material shape shown in the table below is put into the dry distillation reduction container 1, and dried with normal pressure superheated steam heated to 35 CTC. After pyrolysis and carbonization, the weight loss (mass%), which is the ratio of the mass of the obtained carbide to the mass of the input raw material, was measured, and the data shown in Table 1 below was obtained.
  • a superheated steam generator 1 for generating superheated steam as described above; a superficial steam supplied from the superheated steam generator 1; A heating gas supply means 41 for supplying a combustible gas generated by incomplete combustion of the carbide 52 generated in the carbonization reduction vessel 2 as a heating heat source of the superheated steam generator 1
  • the organic waste 51 can be subjected to dry distillation to reduce the volume thereof, thereby producing a carbide 52 having excellent characteristics as a heat source for heating the superheated steam generator 1.
  • the superheated steam is efficiently generated in the superheated steam generator 1 without wasting fuel such as petroleum or natural gas.
  • fuel such as petroleum or natural gas.
  • the separation and recovery means 15 comprising a condenser for separating and recovering the useful component (vinegar solution) in the dry distillation gas generated in the dry distillation reducing vessel 2
  • the separation and recovery means 15 comprising a condenser for separating and recovering the useful component (vinegar solution) in the dry distillation gas generated in the dry distillation reducing vessel 2
  • the condensation temperature of the separation / recovery means 15 comprising the condenser to various values, various useful components contained in the carbonized gas are recovered separately from the other components. In the case of a configuration, there is an advantage that the utility value can be enhanced.
  • the vinegar liquid collected by the separation / collection means 15 may be supplied to a methane fermentation tank for wastewater treatment and used as a weight loss for methane fermentation. Further, it is desirable that the exhaust gas after the useful components are separated and recovered by the separation and recovery means 15 be discharged into the atmosphere after the odor components are removed by the odor component treatment device.
  • the heating gas supply means 41 is configured to perform incomplete combustion in a state in which the waste oil is added to the carbide 51, so that the combustible gas generated by the vaporization of the waste oil is removed.
  • superheated steam that has been superheated to a temperature of 250 t: to 500 under normal pressure is carbonized from the superheated steam generator 1 at a low pressure equal to or higher than normal pressure (for example, lower than 2 atm). And supply organic waste 5 1 in oxygen-free or low-oxygen atmosphere.
  • a low pressure equal to or higher than normal pressure (for example, lower than 2 atm).
  • organic waste 5 1 in oxygen-free or low-oxygen atmosphere.
  • harmful substances such as dioxin and carbon dioxide and odorous components that cause environmental pollution are generated, as in the case where organic waste is incinerated in the presence of oxygen.
  • the organic waste 51 can be effectively reduced in dry distillation volume without the problem described above.
  • a simple device can be used without causing problems such as leakage of steam or difficulty in continuously feeding raw materials.
  • the volume of the organic waste 51 can be efficiently reduced by dry distillation.
  • a dryer such as a cycle-type combined flow dryer and a rotary dryer for drying organic wastes 51, and a crusher are also used.
  • the structure may be provided, or may be a structure provided with a compression molding granulator for compressing and granulating the organic waste 51.
  • this organic waste is dehydrated by a dewatering device, and then supplied to the drying device via a quantitative feeder.
  • the dewatered organic waste may be sufficiently dried, granulated by the compression molding granulator, and supplied to the dry distillation reduction container 2.
  • FIG. 5 shows a third embodiment of the apparatus for reducing the volume of dry distillation of waste according to the present invention.
  • the apparatus for reducing the volume of dry distillation of waste comprises the above-described superheated steam generator 1, the reduced-carbonization vessel 2, a heating gas supply means (not shown), and a hopper for charging waste into the reduced-carbonization vessel 2.
  • 4 and a bucket conveyor 4 4 for transferring waste into the hopper 4 3 are mounted on the loading platform 6 1 of the vehicle 6, and a dry distillation reduction container 2 is installed above the superheated steam generator 1. By doing so, the superheated steam generator 1 and the dry distillation reduction container 2 are integrally formed.
  • the dry distillation reduction device When these are integrally formed, for example, by installing the dry distillation reduction container 2 above the superheated steam generator 1, the dry distillation reduction device can be configured simply and compactly. At the same time, since the dry distillation reduction container 2 can be heated by the radiant heat released from the superheated steam generator 1, the dry distillation reduction of the waste can be efficiently performed.
  • the superheated steam generator 1, the carbonization reducing vessel 2, and the heating gas supply means (not shown) are mounted on the bed 61 of the vehicle 6 as described above, It is very easy to place the dry distillation apparatus at any position The advantage is that you can move u
  • the equipment is installed on a marine plant, the above waste is subjected to dry distillation reduction at sea, and the power, hot water, waste dry distillation reduced volume waste, vinegar, etc. generated at that time are used effectively.
  • You may comprise.
  • the above-mentioned electric power is used as driving electric power for the above-mentioned carbonization volume reduction device, water quality improvement device or seawater circulation device, etc.
  • the above-mentioned hot water is used for raising seaweeds and other seedlings.
  • the vinegar may be used to make seaweed seedlings and other floors, and the vinegar solution may be used as fertilizer for seagrass seedlings.
  • the apparatus for reducing the volume of dry distillation of the waste according to the present invention effectively utilizes the exhaust gas of the engine discharged into the atmosphere or the carbide of the waste originally discarded.
  • the steam can be generated, and this superheated steam is useful for heating the waste to effectively treat the waste by reducing the volume of carbonization, especially for treating the organic waste efficiently. Suitable for.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

明細書 廃棄物の乾留減容装置 技術分野
この発明は、各種の廃棄物、特に不要となった食物もしくは農作物の生ゴミ、 家畜等の排泄物、 木屑、 紙屑、 繊維屑もしくは廃タイヤ等からなる有機性廃棄 物を加熱処理することにより乾留減容させる廃棄物の乾留減容装置に関するも のである。 背景技術
従来、 例えば、 特開平 1 1 一 2 9 4 7 3 6号公報に示すように、 熱分解炉内 の廃棄物を間接的に加熱する第 1の加熱装置及び空気を供給することによって 熱分解炉内の廃棄物を直接的に加熱する第 2の加熱装置を備え、 さらにこの廃 棄物を低温乾留ガスと固形の熱分解残留物とに変換する熱分解炉と、 低温乾留 ガス及び固形の熱分解残留物を燃焼する高温炉とを備えた廃棄物熱処理設備の 運転方法において、 麁棄物の基本加熱を第 1の加熱装置により行い、 需要に応 じた補助加熱を第 2の加熱装置を介して、 空気を熱分解炉の内部室に導入する ことにより、 上記廃棄物を低温乾留ガスと固形の熱分解残留物とに効率よく変 換できるようにすることが行われている。
上記のように廃棄物を間接的及び直接的に加熱して低温乾留ガスと固形の熱 分解残留物とに変換するように構成した場合には、 石油または天然ガス等から なる加熱用の燃料が必要であるために、 ランニングコス卜が高く付くという問 題がある。 また、 燃料費を節約するために、 上記廃棄物を熱処理することによ つて得られた低温乾留ガスと固形の熱分解残留物とを燃焼させ、 この燃焼熱を 利用して上記廃棄物の加熱を行うように構成した場合には、 上記低温乾留ガス 及び固形の熱分解残留物の燃^!時に大気汚染物質が生成されるため、 これを処 理するための特別の設備が必要である等の問題がある。
本発明は、 上記の点に鑑みてなされたものであり、 簡単な構成で種々の廃棄 物を効果的に乾留減容することができる廃棄物の乾留減容装置を提供すること を目的としている。 発明の開示
本発明は、 過熱蒸気を生成する過熱蒸気生成器と、 この過熱蒸気生成器から 供給された過熱蒸気によつて廃棄物を加熱して乾留減容させる乾留減容器と、 上記過熱蒸気生成器の加熱用熱源としてエンジンの排気ガスを供給する加熱ガ ス供給手段とを備えたものである。 この構成によって、 エンジンから排出され る排気ガスを利用して水分を加熱することにより生成された過熱蒸気が乾留減 容器に供給され、 この乾留減容器内において廃棄物が上記過熱蒸気により加熱 されて乾留減容されることになる。
また, 本発明は、 過熱蒸気を生成する過熱蒸気生成器と、 この過熱蒸気生成 器から供給された過熱蒸気により有機性廃棄物を加熱して乾留減容させる乾留 減容器と、 この乾留減容器において生成された炭化物を不完全燃焼させること により発生した可燃ガスを上記過熱蒸気生成器の加熱用熱源として供給する加 熱ガス供給手段とを備えたものである。 この構成によって上記有機性廃棄物を 乾留減容することにより炭化物を生成するとともに、 この炭化物を不完全燃焼 させることにより発生した可燃ガスを利用して上記過熱蒸気を効率よく生成す ることが可能となる。 図面の簡単な説明
第 1図は、 本発明に係る廃棄物の乾留減容装置の第 1実施形態を示す説明図 である。 第 2図は、 サイクロン型複合流乾燥器の具体的構成を示す説明図であ る。 第 3図は、 回転乾燥器の具体的構成を示す説明図である。 第 4図は、 本発 明に係る廃棄物の乾留減容装置の第 2実施形態を示す説明図である。 第 5図は、 本発明に係る廃棄物の乾留減容装置の第 3実施形態を示す説明図である。 発明を実施するための最良の形態
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 第 1図は、 本発明に係る廃棄物の乾留減容装置の第 1実施形態を示している。 この乾留減容装置は、 過熱蒸気を生成する過熱蒸気生成器 1と、 この過熱蒸気 生成器 1から供給された過熱蒸気により廃棄物 5を加熱して乾留滅容させる乾 留減容器 2と、 上記過熱蒸気生成器 1の加熱用熱源としてエンジン 3から導出 された高温の排気ガスを供給する排気通路からなる加熱ガス供給手段 4と、 上 記乾留減容器 2に廃棄物 5を供給する廃棄物供給手段 6とを備えている。
上記過熱蒸気生成器 1は、 発電機 Ίの駆動源となるエンジン 3の冷却水系統 に設けられたラジェ一夕 8から導出された温水を導通させる導通管 9と、 この 導通管 9から導出された過熱蒸気を上記乾留減容器 2に供給する過熱蒸気供給 管 1 0と、 石油または天然ガス等の燃料を燃焼させるバーナー 1 1とを有し、 上記導通管 9を通過する温水を、 上記加熱ガス供給手段 4から供給されたェン ジン 3の排気ガスと、 上記バーナー 1 1の燃焼ガスとにより加熱して過熱蒸気 を生成するように構成されている。
上記温水の導通管 9は、 過熱蒸気生成器 1の後端部 (ボイラ) 側に配設され た第 1加熱部 9 aと、 過熱蒸気生成器 1の前端部 (スーパーヒータ) 側に配設 された第 2加熱部 9 bとを有し、 上記温水が第 1加熱部 9 aを通過する際に加 熱されることにより、 例えば気体状態式を満足する常圧下で 1 0 0 °Cの飽和蒸 気が生成され、 この飽和蒸気が第 2加熱部 9 bを通過する際にさらに加熱され ることにより、 常圧下で 2 5 0 〜 5 0 0 °Cに過熱された過熱蒸気が生成され るようになっている。
上記乾留減容器 2は. 廃棄物供給手段 6から供給された廃棄物 5が搬入され る乾留減容器本体 1 2と、 上記過熱蒸気生成器 1から排出管 2 5を介して導出 された高温の排出ガスによって上記乾留減容器本体 1 2を加熱するジャケット 1 3と、 上記乾留減容器本体 1 2及びジャケット 1 3から導出された高熱ガス の一部を上記過熱蒸気生成器 1に還流させる還流手段 1 4と、 上記高熱ガス中 の有用成分を分離して回収する分離回収手段 1 5とを有している。
上記乾留減容器本体 1 2は、 過熱蒸気生成器 1から過熱蒸気供給管 1 0を介 して供給された過熱蒸気、 常圧下で例えば 2 5 0 °C〜 5 0 0 °Cに過熱された常 圧以上の低圧過熱蒸気により、 無酸素又は低酸素の雰囲気で廃棄物 5を非酸化 的 Z還元的に熱分解し, また必要により乾燥を行うものである。 上記常圧以上 の低圧過熱蒸気とは、 その供給圧力が、 常圧 (大気圧) 力、、 もしくは 1気圧を 超え、 2気圧程度までの低圧領域に設定された過熱蒸気をいう。
上記のように過熱蒸気の供給圧力を、 常圧もしくは 1気圧を超える値 (常圧 以上) に設定することにより、 空気が上記乾留減容器本体 1 2に混入されるこ とがなく、 酸素が含まれなレ ^過熱蒸気のみによつて廃棄物 5が熱せられるため、 非酸化的/還元的条件で乾燥や熱分解が行われる。 ここで、 非酸化的 還元的 とは、 過熱蒸気の雰囲気下で、 主に、 還元的熱分解が行われることを意味する。 なお、 廃棄物 5の導入に当たっては、 若干量の空気が原料とともに混入するこ とが考えられ、 本発明では、 このような低酸素の雰囲気を排除するものではな い。 一方、 上記過熱蒸気の供給圧力を 2気圧程度までの低圧に設定することに より、 上記乾留減容装置本体 1 2外に過熱蒸気が漏出することが防止されると ともに、 廃棄物 5の連続投入が可能となる。
また, 上記過熱蒸気の温度は、 常圧下で 1 0 0 超〜 1 2 0 0 °C程度の範囲 内で、 廃棄物 5の種類または状態等に応じて適宜に値に設定可能であるが. 温 度が低すぎると廃棄物 5を熱分解するのに要する時間が長くなり、 温度が高く なると装置に焼損が生じ易いため、 常圧下で 2 5 0で〜 5 0 o r:の範囲内に設 定することが好ましい。 なお、 有機性廃棄物が完全な炭化物に添加される手前 の段階で、 その熱分解を停止させるようにしてもよい。
そして. 上記廃棄物供給手段 6から乾留減容器本体 1 2内に搬入された廃棄 物 5力 過熱蒸気供給管 1 0から供給された過熱蒸気によって加熱されること により、 乾留減容されて炭化物等と乾留ガスとが生成されるとともに、 この廃 棄物 5の乾留減容時に発生した乾留ガスと、 上記乾留減容器本体 1 2内に供給 された過熱蒸気及び上記ジャケッ 卜 1 3内に供給された排出ガスとがー体とな つた高熱ガスが上記還流手段 1 4及び分離回収手段 1 5に導出されるようにな つている。
上記還流手段 1 4は、 乾留減容器 2から導出された高熱ガス中の液滴を捕集 して除去するディミス夕一 1 6と, このディミスター 1 6から導出された高熱 ガスを上記過熱蒸気生成器 1内に還流させる還流管 1 7と、 この還流管 1 7に 設けられた第 1開閉弁 1 8と、 上記ディミスター 1 6から導出された高熱ガス を上記導通管 9内に供給する供給管 1 9と、 この供給管 1 9に設けられた第 2 開閉弁 2 0とを備えている。
上記乾留減容装置の作動開始直後における冷間時には、 上記乾留減容器 2内 で廃棄物 5の熱分解が進行していないため、 上記還流管 1 7の第 1開閉弁 1 8 を閉止するとともに、 供給管 1 9の第 2開閉弁 2 0を開放して、 上記ディミス 夕一 1 6から導出された高熱ガスを上記導通管 9内に供給することにより、 こ の導通管 9内の温水を直接的に加熱して早期に過熱蒸気を生成するようにして いる。
一方、 上記乾留減容装置の作動を開始して所定時間が経過した温間時には、 上記乾留減容器 2内で廃棄物の加熱が進行して乾留ガスが生成されているため、 上記還流管 1 7の第 1開閉弁 1 8を開放するとともに、 供給管 1 9の第 2開閉 弁 2 0を閉止して、 上記ディミスター 1 6から導出された高熱ガスを過熱蒸気 生成器 1のケーシング内に還流させることにより、 上記乾留ガス中の不純物が 導通管 9内の温水に混入するのを防止しつつ、 上記過熱蒸気生成器 1を効果的 に加熱するようにしている。
また、 上記乾留減容器 2から導出された高熱ガス中には、 廃棄物 5が熱分解 することにより生成されたメタノール、 酢酸、 油分または水分等の有用成分を 含有する乾留ガスが含まれているため、 上記高熱ガスを分離回収手段 1 5おい て蒸留することにより、 上記乾留ガスから有用成分を分離して回収するととも に、 この有用成分が分離された後のガス成分を大気中に放出させるように構成 されている。 なお、 上記含有物が分離された後のガス成分を上記過熱蒸気生成 器 1に還流させることにより、 この過熱蒸気生成器 1を加熱するように構成し てもよい。
上記廃棄物供給手段 6には、 各種の廃棄物 5を乾留減容器 2に供給する前に, 熱風により予め加熱して乾燥処理する第 1 , 第 2乾燥器 2 1, 2 2と、 上記乾 留減容器 2において廃棄物 5を予め破砕処理して粒状化する破砕機 2 3と、 破 砕後の廃棄物 5を上記乾留減容器 2内に搬入する図示を省略したスクリユーコ ンベア等の搬入機構とが設けられている。 上記廃棄物 5としては、 例えば、 食物 (生ゴミ) 、 醤油粕、 酒粕、 おから等 の不要物、 農産物、 動物、 植物、 樹木 (木材屑) 、 魚介、 紙、 繊維等の廃棄物、 廃水処理に由来する汚泥、 畜鳥合で廃棄される糞尿類、 工場などで廃棄される 有機プラスチック、 廃タイヤ、 発泡スチロール、 食品トレィ等の有機性廃棄物 が代表的なものとして例示されるが、 これらに限らず、 各種の産業廃棄物等が その対象に含まれる。
上記第 1乾燥器 2 1は、第 2図に示すように、下窄まりの円錐状容器 2 4と、 上記過熱蒸気生成器 1から排出管 2 5を介して導出された排出ガスからなる熱 風を上記円錐状容器 2 4の内周面に沿って供給する熱風供給手段 2 6と, 上記 円錐状容器 2 4の内周面に沿って廃棄物 5を搬入する廃棄物搬入手段 2 7とを 有するサイクロン型複合流乾燥器により構成されている。
また, 上記第 2乾燥器 2 2は、 第 3図に示すように、 廃棄物を搔き上げる搔 き上げ翼 (図示せず) を備えた傾斜回転円筒 2 8と、 この傾斜回転円筒 2 8内 に上記過熱蒸気生成器 1から導出された排出ガスからなる熱風を供給する熱風 供給手段 2 9とを有する回転乾燥器により構成されている。
上記構成の乾留減容装置を使用して廃棄物 5の乾留減容処理を行う場合には、 上記廃棄物供給手段 6の第 1 , 第 2乾燥器 2 1 , 2 2により廃棄物 5を予め乾 燥処理するとともに、 乾燥処理された廃棄物 5を上記破砕機 2 3により予め破 砕処理した後、 この破砕された廃棄物 5を搬入機構により乾留減容器 2内に搬 入する。 また、 上記エンジン 3のラジェ一夕 8から導出された温水を導通管 9 内に導出して上記過熱蒸気生成器 1に供給し、 かつ上記エンジン 3から導出さ れた高温の排気ガスを加熱ガス供給手段 4によって上記過熱蒸気生成器 1内に 供給するとともに、 必要に応じて上記バーナー 1 1を点火して燃焼ガスを上記 過熱蒸気生成器 1内に供給することにより、 上記導通管 9内の温水を加熱して、 常圧下で例えば 2 5 0 T:〜 5 0 (TCの温度に過熱された過熱蒸気を生成する。 そして. 上記過熱蒸気生成器 1内において生成された過熱蒸気を、 常圧以上 の低圧で上記過熱蒸気供給管 1 0から乾留減容器 2内に供給し、 この'乾留減容 器 2内において上記廃棄物 5に過熱蒸気を吹きつけて加熱することにより、 上 記廃棄物 5を乾留して炭化物等の乾留物と乾留ガスとに熱分解し、 この炭化物 等の乾留物を充分に減容した状態で回収する。 また、 上記乾留ガスの一部を高 熱ガスとして還流手段 1 4により過熱蒸気生成器 1に還流して再利用するとと もに、 上記乾留ガスの残りを分離回収手段 1 5に導出し、 この分離回収手段 1 5により上記乾留ガス中の有用成分を分離して回収する。
上記のようにラジェ一夕 8から導出された温水からなる水分を加熱して過熱 蒸気を生成する過熱蒸気生成器 1と、 こ、の過熱蒸気生成器 1から供給された過 熱蒸気により廃棄物 5を加熱して乾留減容させる乾留減容器 2と、 上記過熱蒸 気生成器 1の加熱用熱源としてエンジン 3の排気ガスを供給する加熱ガス供給 手段 4とを設け、 この加熱ガス供給手段 4により上記過熱蒸気生成器 1内に供 給された排気ガスにより上記水分を加熱して過熱蒸気を生成した後、' この過熱 蒸気を上記乾留減容器 2内に供給するとともに、 この乾留減容器 2内に廃棄物 5を供給してこの廃棄物 5を上記過熱蒸気により加熱して乾留減容させるよう に構成したため、 簡単な構成で種々の廃棄物 5を効果的に乾留減容することが できる。
すなわち、 従来は大気中に放出されていたエンジン 3の排気ガスにより上記 水分を加熱することにより過熱蒸気を生成するように構成したため、 上記ェン ジン 3の熱エネルギーを有効に利用して上記過熱蒸気を生成することができる。 そして, この過熱蒸気を上記乾留減容器 2内に供給して廃棄物 5を加熱するよ うに構成したため, 蒸気の凝縮伝熱効果等により上記廃棄物 5を迅速かつ効果 的に熱分解して炭化物等の乾留物と乾留ガスとを生成することができるととも に、 上記乾留物を乾燥させて効果的に減容することができる',
したがって、 上記廃棄物 5を乾留することにより生成された炭化物等の乾留 物を肥料、 建築用材料または活性炭等として有効に利用することができる。 ま た、 上記炭化物等からなる乾留物は、 充分に減容されているため、 これを廃棄 する場合等における作業性を改善することができる。 しかも、 上記乾留減容器 2内において廃棄物 5を過熱蒸気により乾留減容する際に発生するアンモニア、 メルカブタン、 硫化水素、 二硫化メチル、 トリメチルァミン、 ァセトアルデヒ ドまたはスチレン等の臭気成分を、 熱分解することにより効果的に無臭化する ことができるという利点がある。 なお、 上記乾留減容装置によって牧草等を乾留減容する際に、 この牧草等が 炭化物になる前にその過熱を停止させることにより、 乾燥飼料を生成すること も可能である。 また、 発泡スチロール等からなる廃棄物を乾留減容装置によつ て乾留減容することにより、 ィンゴット状の乾留減容物を生成することもでき る。 さらに、 F R P廃材等からなる廃棄物を上記乾留減容装置によって乾留減 容することにより、 炭化物およびガラス繊維等からなる乾留減容物を生成し, これらを再利用するように構成してもよい。
また, 上記実施形態では、 乾留減容器 2に供給される廃棄物 5を第 1 . 第 2 乾燥器 2 1, 2 2により予め乾燥処理するように構成したため、 上記乾留減容 器 2内において水分を含んだ廃棄物を直接加熱して乾留減容処理する場合に比 ベ、 廃棄物 5の処理効率を効果的に向上させることができる。
特に、 上記実施形態に示すように、 下窄まりの円錐状容器 2 4と, この円錐 状容器 2 4の内周面に沿って熱風を供給する熱風供給手段 2 6と、 上記円錐状 容器の内周面に沿って廃棄物 5を搬入する廃棄物搬入手段 2 7とを有するサイ クロン型複合流乾燥器からなる第 1乾燥器 2 1を設けた場合には、 上記廃棄物 搬入手段 2 7により円錐状容器内 2 4に搬入された廃棄物 5を、 上記熱風供給 手段 2 6から供給された熱風とともに上記円錐状容器 2 4の内周面に沿って旋 回させることにより, 上記廃棄物 5に熱風を効率よく接触させて効果的に乾燥 処理することができる。
また、 上記実施形態に示すように、 廃棄物 5を搔き上げる搔き上げ翼を備え た傾斜回転円筒 2 8と、 この傾斜回転円筒 2 8内に熱風を供給する熱風供給手 段 2 9とを有する回転乾燥器からなる第 2乾燥器 2 2を設けた場合には、 上記 傾斜回転円筒 2 8内に搬入された廃棄物 5を、 この傾斜回転円筒 2 8の回転に 応じて上記搔き上げ翼により搔き上げつつ、 上記熱風供給手段 2 9から供給さ れた熱風により効率よく加熱することができるため、 比較的水分の少ない粒状 体等を大量に連続して乾燥処理するのに適している。
特に, 上記実施形態に示すように, 第 1 , 第 2乾燥器 2 1 , 2 2に設けられ た熱風供給手段 2 6 , 2 9の加熱用熱源として過熱蒸気生成器 1から排出管 2 5を介して導出される高温の排出ガスを使用するように構成した場合には、 こ の排出ガスの熱エネルギーを有効に利用して乾燥器 2 1, 2 2内に搬入された 廃棄物 5を乾燥処理することができるという利点がある。
なお、 上記第 1 , 第 2乾燥器 2 1, 2 2に設けられた熱風供給手段 2 6, 2 9の加熱用熱源として乾留減容器 2から導出される高熱ガスを使用するように 構成してもよく、 この場合においても、 上記乾留減容器 2から導出される高熱 ガスの熱エネルギーを有効に利用することにより、 上記第 1 , 第 2乾燥器内 2 1, 2 2に搬入された廃棄物 5を効果的に乾燥処理することが可能である。 さらに、 上記実施形態では、 乾留減容器 2に供給される廃棄物 5を予め破碎 処理する破砕機 2 3を設けたため、 この破碎機 2 3により予め破砕処堙された 廃棄物 5を、 上記乾留減容器 2内において効率よく加熱して効果的に乾留減容 することができるという利点がある。 なお、 上記第 1, 第 2乾燥器 2 1 , 2 2 及び破砕機 2 3の配列順序及び規模等は上記実施形態に限定されることなく、 種々の変更が可能であり、 上記第 1, 第 2乾燥器 2 1 , 2 2及び破碎機 2 3の 一部または全部を省略した構造としてもよい。
また、 上記過熱蒸気生成器 1に、 エンジン 3の冷却水系統に設けられたラジ エー夕 8等から導出された温水の導通管 9を設け、 過熱蒸気生成器 1内におい て上記温水を加熱することにより過熱蒸気を生成するようにした上記実施形態 に代え、 上記過熱蒸気生成器 1に水道水等を供給してこの水道水を加熱するこ とにより過熱蒸気を生成するようにしてもよい。 しかし、 上記のようにェンジ ン 3の冷却水系統から導出された温水を、 エンジン 3の排気ガスによって加熱 することにより、 廃棄物 5を乾留減容するための過熱蒸気を生成するように構 成した場合には、 上記水道水等からなる冷水を加熱して過熱蒸気を生成する場 合に比べて必要とする熱エネルギーを節約することができるので、 効率よく過 熱蒸気を生成できるという利点がある。
上記実施形態では > 過熱蒸気生成用の加熱手段となるバーナー 1 1を過熱蒸 気生成 g 1に設けたため、 エンジン 3から排出される排気ガスと、 上記パーナ — 1 1の燃焼ガスとの両方により、 上記導通管 9を導通する温水等を加熱する ことにより、 上記廃棄物 5を乾留減容するための過熱蒸気を過熱蒸気生成器 1 内で効果的に生成することができる。 また、 上記実施形態に示すように、 乾留減容器 2から導出された高熱ガスを 過熱蒸気生成器 1に還流させることにより過熱蒸気生成用の加熱用熱源として 再利用する還流手段 1 4を設けた場合には、 乾留減容器 2内において廃棄物 5 の乾留減容が行われた後に、 この乾留減容器 2から導出された高熱ガスを, 上 記過熱蒸気生成器 1に還流することにより、 過熱蒸気生成用の加熱用熱源とし て再利用することができるため、 上記高熱ガスの熱エネルギーの有効利用を図 ることができる。 しかも、 上記高熱ガス中に含有された臭気成分を、 上記過熱 蒸気生成器 1内で過熱蒸気等により加熱して熱分解することにより効果的に脱 臭処理することができるため、 上記高熱ガスの一部が外部に漏出した場合にお いても, 作業者等が臭気によつて不快感を受けるという事態の発生を防止する ことができる。
また、 上記実施形態では、 乾留減容器 2により廃棄物 5を乾留減容する睽に 発生した乾留ガスから有用成分を蒸留する等により分離して回収する分離回収 手段 1 5を設けたため、 上記乾留減容器 2により廃棄物 5を乾留減容する際に 発生した乾留ガス中の有用成分、例えばメタノール, 酢酸、 油分及び水分等を、 上記分離回収手段 1 5により上記乾留ガスから分離して回収し、 その有効利用 を図ることができる。
例えば、 上記分離回収手段 1 5により回収されたメタノール及び油分等から なる可燃成分を上記バーナー 1 1の燃料として使用するように構成した場合に は, 上記可燃成分の有効利用を図ってバーナー 1 1の燃料費を節約しつつ、 こ のバーナー 1 1の燃焼ガスと、 エンジン 3から排出される排気ガスとの両方に より、 上記過熱蒸気生成器 1において水分を効果的に加熱して過熱蒸気を効率 よく生成できるという利点がある。
特に、 上記実施形態示すように、 常圧下で 2 5 0 :〜 5 0 0 °Cの温度に過熱 した常圧以上の低圧過熱蒸気を、 過熱蒸気生成器 1から乾留減容器 2に供給し、 無酸素または低酸素の雰囲気で廃棄物 5を熱分解するように構成した場合には、 髙圧の過熱蒸気を使用した場合のように、 蒸気の漏れが発生したり、 原料の連 続投入が困難になったりする等の問題を生じることなく、 簡単な装置によって 上記廃棄物 5を効率よく乾留減容化できるという利点がある。 しかも、 酸素の存在下で廃棄物を焼却処理した場合のように、 ダイォキシン 等の有害物質や環境汚染の原因となる二酸化炭素および臭気成分等が発生する という問題を生じることなく、 上記廃棄物 5を効果的に乾留減容することがで きる。 例えば硬質塩化ビニル製の雨樋からなる廃棄物を、 上記乾留減容装置に よって乾留減容させ、 この乾留減容物中に存在するダイォキシン類濃度を測定 する実験を行ったところ、 0 . 1 7 n g / g— d r yの乾留減容物中のダイォ キシン類濃度は、 0 . 0 0 1 4 n g— T E QZ g— d r yであった。 この値は、 厚生省の定めた 「廃棄物焼却炉に係わるばいじん等処理基準」 の規制値 3 n g — T E Q/ g— d r yに比べて, 極めて微量であり、 上記乾留減容物中にダイ ォキシンがほとんど含まれていないことが確認された。
上記実験における飼料採取方法および分析方法は、 平成 9年 1 2月 1日厚生 省告示第 2 3 4号の Γダイォキシン類の濃度の算出方法」 、 および平成 9年 2 月 2 6日影環第 3 8号の 「廃棄物処理におけるダイォキシン類標準測定分析マ ニュアル」 (平成 9年 2月厚生省衛生局水道環境部環境整備課) に準拠した。 また、 上記ダイォキシン類は、 2 , 3 , 7 , 8位置塩素置換ダイォキシンおよ びフラン異性体 1 7種、 ならびに 4一 7塩化ダイォキシンおよびフラン同族体 8種 ίこついて分析を行った。
なお、 上記乾留減容器 2において生成された炭化物を上記過熱蒸気生成器 1 内に供給してバーナー 1 1により燃焼させるようにしてもよく、 このように構 成した場合においても. バ一ナ一.1 1の燃料費を節約しつつ、 このパーナ一 1 1の燃焼ガスと、 エンジン 3から排出される排気ガスとの両方により、 上記過 熱蒸気生成器 1で水分を効果的に加熱して過熱蒸気を効率よく生成することが できる。
上記発電機 7の駆動源となるエンジン 3の排気ガスを上記過熱蒸気生成器 1 の加熱用熱源として利用するように構成した上記実施形態に代え、 ポンプ、 ブ ロワ一またはコンプレツサ等の駆動源となるェンジンの排気ガスを上記過熱蒸 気生成器 1の加熱用熱源として供給するように構成してもよいが、 上記実施形 態に示すように、 発電機 7の駆動源となるエンジン 3の排気ガスを上記過熱蒸 気生成器 1の加熱用熱源として利用するように構成した場合には、 上記発電機 7の電力を本発明に係る乾留減容装置の電動部、 例えば廃棄物供給手段 6等に 供給することができるため、 外部電力を必要とすることなく、 上記廃棄物供給 手段 6等を駆動できるという利点がある。
また、 上記過熱蒸気生成器 1により生成された過熱蒸気の一部をタービン発 電機に供給し、 このタービン発電機を上記過熱蒸気によって駆動するように構 成してもよい。 このように構成した場合には、 上記過熱蒸気を有効に利用して 上記タービン発電機を駆動することができるとともに、 このタービン発電機の 電力により上記乾留減容装置の電動部を駆動することができる等の利点がある。 第 4図は, 本発明に係る廃棄物の乾留減容装置の第 2実施形態を示している。 この廃棄物の乾留減容装置は, 過熱蒸気 - -— 2を生成する過熱蒸気生成器 1と、 この 過熱蒸気生成器 1から供給された過熱蒸気により有機性廃棄物 5 1を加熱して 乾留減容させる乾留減容器 2と、 この乾留減容器 2において生成された炭化物 5 2を不完全燃焼させることにより発生した可燃ガスを上記過熱蒸気生成器 1 の加熱用熱源として供給する加熱ガス供給手段 4 1と、 上記乾留減容器.2に有 機性廃棄物 5 1を供給する廃棄物供給手段 6とを備えている。
上記過熱蒸気生成器 1は、 発電機 7を駆動するロータリエンジン 3 1の熱交 換機 3 2を介して供給された温水を導通させる導通管 9と、 生成された過熱蒸 気を上記乾留減容器 2に供給する過熱蒸気供給管 1 ϋと、 加熱ガス供給手段 4 1から供給された可燃ガスを燃焼させるバーナー 1 1と、 上記導通管 9から供 給された温水を、 上記□一タリエンジン 3 1の排気ガスおよび上記バーナー 1 1の燃焼ガスにより加熱して常圧下で 1 0 0 °Cの飽和蒸気を生成するボイラー 3 3と、 このボイラー 3 3において生成された飽和蒸気を加熱して常圧下で例 えば 2 5 0 t:〜 5 0 0 °Cに過熱された過熱蒸気を生成するスーパーヒータ 3 4 とを有している。
上記乾留減容器 2は、 第 1実施形態と略同様に構成されている。 すなわち、 上記乾留減容器 2 2は, 廃棄物供給手段 6から供給された有機性廃棄物 5 1が 搬入される乾留減容器本体 (図示せず〉 と、 上記過熱蒸気生成器 1から排出管 2 5を介して導出された高温の排気ガスにより上記乾留減容器本体を加熱する ジャケット (図示せず) と、 上記乾留減容器本体から導出された乾留ガスの一 部を上記過熱蒸気生成器 1のバーナー 1 0に還流させる還流手段 1 4.と、 上記 乾留ガス中の有用成分を分離して回収する凝縮器からなる分離回収手段 1 5と、 上記乾留減容器本体から導出された排気ガス中の有害物質を除去するスクラバ 一 3 5とが設けられている。
そして、 上記乾留減容器 2は、 過熱蒸気生成器 1から過熱蒸気供給管 1 0を 介して供給された過熱蒸気, つまり常圧下で例えば 2 5 0 〜 5 0 0 に過熱 された常圧以上の低圧過熱蒸気により、 無酸素又は低酸素の雰囲気で有機性廃 棄物 5 1を非酸化的 Z還元的に熱分解して、 炭化物 5 2と乾留ガスとを生成す るように構成されている。 上記乾留減容器 2 2おいて生成された炭化物 5 2は、 冷却装置 3 7により冷却された後、 少な u 3くとも一部が上記加熱ガス生成手段 4 1に供給されるようになっている。
上記廃棄物供給手段 6には、 有機性廃棄物 5 1を乾留減容器 2に供給する前 に、 予め破砕処理し.て粒状化する破砕機 2 3と、 破砕後の有機性廃棄物 5 1を 加熱して乾燥させた後に、 上記乾留減容器 2内に搬入する乾燥装置 3 6とが設 けられている。 上記有機性廃棄物 5 1の乾燥は、 1 5 0で〜 5 0 O :の常圧過 熱蒸気で行うことが好ましく, 通常の含水率を有する有機性廃棄物であれば、 3分〜 4 0分程度の加熱時間で含水量がほぼ 0質量%になる。 これに対して含 有水分が特に多い有機性廃棄物は、 使用する熱量の多くが乾燥に費やされ、 乾 燥に要する時間も大幅に長くなり、 3 5 0 °C程度の温度では、 含水量をほぼ 0 質量%にするのに 1 4 0分程度を要する場合もあるため、 高温過熱蒸気を使用 して乾燥時間を短縮化することが望ましい。
なお、 上記乾燥工程を過熱蒸気で行い、 その後、 別途過熱蒸気で熱分解を行 う方法、 過熱蒸気で乾燥および熱分解を同一装置で連続的に行う方法、 いずれ を採用してもよい。 含水量の少ない有機性廃棄物は、 常温乾燥や、 熱風乾燥を 行ってもよい。 なお、 乾燥工程と熱分解工程を別々の装置で行う場合、 有機性 廃棄物中の水分量が 2 0 %程度以下になった時点で、 この有機性廃棄物を乾留 減容装置に移送するようにしてもよい。 上記乾燥時間は、 含有水分量と, 回分 式の装置あるいは移送装置により搬送される原料の量によって適宜決定するこ とができる。 上記加熱ガス供給手段 4 1には、 投入された炭化物 5 2を不完全燃焼させて ガス化させるガス化炉 3 8と、 廃油タンク 3 9から供給された廃油を精製して 上記ガス化炉 3 8に供給することにより、 上記炭化物 5 2に廃油を添加する廃 油添加手段 4 0とを有し、 この廃油が添加された炭化物 5 2を不完全燃焼させ ることにより発生した可燃ガスを精製装置 4 2により精製した後、 その一部を 上記ロータリエンジン 3 1の燃料として供給するとともに, 残りを上記過熱蒸 気生成器 1のガスバーナー 1 0に供給するように構成されている。
第 4図に示す乾留減容装置を使用し、 下記表に示した原料形状を有する各サ ンプルを乾留減容器 1に投入し、 3 5 CTCに過熱された常圧過熱蒸気による乾 燥と、 熱分解 ·炭化とを行い、 投入した原料の質量に対する得られた炭化物の 質量の割合である減量率 (質量%) を測定したところ、 下記表 1に示すような データが得られた。
原料水 原料見掛比重 原料投入 蒸気温度 /¾化時間 製品排出 製品見掛比 減量率 サンプル名 種別 原料形状
分(%) (ton/m3) K(kg /"ノ、\
( CJ (分) 置(kg) ¾(ton/m ) (%) 木材チップ 炭化 チップ状 24. 5 0. 18 2 350 40 0. 38 0. 11 19. 0 竹材チップ 炭化 チップ状 43. 1 0. 32 4 350 50 0. 70 0. 14 17. 5 珐寞 炭化 粒状 20. 1 0. 38 3. 5 350 . 35 1. 06 0. 24 30. 2 牛 ¾ 炭化 粒伏 11. 0 0. 28 5 350 30 2. 52 0. 24 50. 4 おから 炭化 フレーク状 69. 2 0. 70 5 350 90 0. 36 0. 36 7. 2 酒粕 炭化 チップ状 51. 0 0. 40 10 350 75 2. 00 0. 26 29. 0 番油粕 炭化 フレーク状 44. 1 0. 41 10 350 40 2. 70 0. 22 27. 0 米糖 炭化 粉状 12. 0 0. 40 3 350 30 1. 10 0. 25 36. 6 やしがら 炭化 半球状 11. 9 0. 15 1 . 350 25 0. 32 0. 20 32. 0 刈芝 炭化 かント状 11. 4 0.029 1 350 20 0. 36 0. 01 36. 0 魚残渣 炭化 68. 4 0. 80 7 350 120 ,1. 74 0. 42 24. 8 生ゴミ ft化 ペレット状 60. 2 0 34 10 350 90 1. 10 0. 24 11. 0 脱水汚泥 炭化 泥状 79. 3 0 56 10 350 90 0. 84 0. 28 8. 4 食品トレィ 炭化 皿状 7. 3 0. 04 1. 5 350 20 0. 30 0. 08 20. 0 紙パルプ t 简状 12. 6 0. 24 2. 4 350 30 0 80 0. 075 33. 3 染色廃液 炭化 液状 66. 1 0. 54 4 350 50 0. 32 0. 18 8. 0
上記データから, 原料中の水分量が 0 . 3 0 %未満のサンプルでは、 3 0分 以下の時間で、 水分量が多い場合でも、 1 2 0分以下の時間で、 原料を乾燥す るとともに完全に炭化して、 その容量および重量を大幅に減量化できることが 確認された。 また、 熱風を使用した場合に比べて有機性廃棄物を効率よく乾留 減容し、 製造された炭化物の形状が崩れる等の問題を生じることなく、 肥料、 飼料、 脱臭■消臭剤、 除湿■調湿材、 浄化剤、 土壌改良材、 吸着剤、 電磁波シ ールド材等としても利用可能な炭化物を適正に製造することができた。
しかも, 酸素の存在下で有機性廃棄物を焼却処理した場合のように、 ダイォ キシン等の有害物質や環境汚染の原因となる二酸化炭素および臭気成分等の発 生を抑制することができるとともに、 高圧の過熱蒸気を使用した場合のように、 蒸気の漏れが発生したり、 原料の連続投入が困難になったりする等の問題を生 じることなく、 簡単な装置によって上記炭化物を効率よく製造することができ た。
また、 上記乾留減容装置により, サンプルとして 「おから」 を乾留減容する ことにより生成された炭化物 5 2の成分と, 上記分離回収手段 (凝縮器) 1 5 により回収された酢液の成分とを分析したところ、 それぞれ下記表 2および表 3に示すようなデータが得られた。
表 2 項目 単位 分析データ 備考
pH 8.93 蒸留水 3倍希釈値。 電気伝導度(EC) mS/ cm 270 蒸留水 5倍希釈値。 水分 % 0.1 現物中の含量。 灰分 % 34.2 乾物中の含量。 有機物 % 65.8 乾物中の含量。
^李且 % 46.9 乾物中の含量。 総発熱量 kj/kg 19.800 乾物測定値。
窒素全量 (N ) % 5.1 乾物中の含量。 リン酸全量 ( P2。5) % 0.5 乾物中の含量。 カリウム全量 (K20) % · 9.7 乾物中の含量。 鉄全量 ( Fe203) % 0.05 乾物中の含量。 アルミニウム全量(AI2O3) % 0.01以下 乾物中の含量。 カルシウム全量(CaO) % 0.01 乾物中の含量。 マグネシウム全量 (MgO) % 0.01以下 乾物中の含量。
表 3
Figure imgf000020_0001
さらに、 上記乾留減容装置により、 サンブルとして 「牛糞等の畜産廃棄物 J を乾留減容することにより生成された炭化物 5 2の成分と、 上記分離回収手段 (凝縮器) 1 5により回収された酢液の成分とを分析したところ、 それぞれ下 記表 4および表 5に示すようなデ一夕が得られた。 表 4 項目 単位 分析データ 備考
pH 9.10 蒸留水 3倍希釈値。 電気伝導度(EC) mS/ cm 1000 蒸留水 5倍希釈値。 水分 % 12.0 現物中の含量。 灰分 % 8.3 乾物中の含量。 有機物 % 91.7 乾物中の含量。 炭素量 % 70.2 乾物中の含量。 総発熱量 kJ/kg 29,600 乾物測定値。
窒素全量(N ) % 4.9 乾物中の含量。 リン酸全量(Ρ2θ5) % 5.9 乾物中の含量。 カリウム全量 (ΚζΟ) % 6.8 乾物中の含量。 鉄全量 (Fe203) % 0.75 乾物中の含量。 アルミニウム全量(AI2O3) % 0.01以下 乾物中の含量。 カルシウム全量(CaO) ' % 0.45 乾物中の含量。 マグネシウム全量(MgO) % 0.01以下 乾物中の含量。
表 5
2
o
Figure imgf000022_0001
上記のように過熱蒸気を生成する過熱蒸気生成器 1と、 この過熱蒸気生成器 1から供給された過熱蒸気により有機性廃棄物 5 1を加熱して乾留減容させる 乾留減容器 2と、 この乾留減容器 2において生成された炭化物 5 2を不完全燃 焼させることにより発生した可燃ガスを上記過熱蒸気生成器 1の加熱用熱源と して供給する加熱ガス供給手段 4 1とを備えた乾留減容装置によれば、 簡単な 構成で上記有機性廃棄物 5 1を乾留減容して、 上記過熱蒸気生成器 1の加熱用 熱源として優れた特性を有する炭化物 5 2を生成することができる。
したがって、 上記炭化物 5 2を燃料として使用することにより、 石油または 天然ガス等の燃料を浪費することなく、 上記過熱蒸気生成器 1 おいて過熱蒸 気を効率よく生成し、 この過熱蒸気によって上記有機性廃棄物 5 1を加熱する ことにより、 これを効果的に乾留減容することができるとともに, 最終的に廃 棄される灰の量を極めて少なくすることができ、 しかも有害物質や環境汚染物 質の発生を効果的に抑制することができる。
また, 上記実施形態に示すように、 乾留減容器 2において生成された乾留ガ ス中の有用成分 (酢液) を分離して回収する凝縮器からなる分離回収手段 1 5 を設けた場合には、 上記有用成分の有効利用を図る とができるとともに、 乾 留ガス中の有害物質等が廃棄されることによる汚染の発生を効果的に防止する ことができる。 特に、 上記凝縮器からなる分離回収手段 1 5の凝縮温度を種々 の値に設定することにより、 上記乾留ガス中に含有された種々の有用成分を、 それぞれ他の成分と分けて回収するように構成レた場合には、 その利用価値を 高めることができるという利点がある。
なお、 上記分離回収手段 1 5により回収された酢液を、 廃水処理用のメタン 発酵槽に供給し、 メタン発酵用の減量として使用するように構成してもよい。 また、 上記分離回収手段 1 5において有用成分が分離回収された後の排出ガス は, 臭気成分処理装置によって臭気成分を除去のた後に、 大気中に排出するよ うに構成することが望ましい。
さらに、 上記実施形態では, 上記炭化物 5 1に廃油を添加した状態で、 上記 加熱ガス供給手段 4 1において不完全燃焼させるように構成したため、 上記廃 油が気化することにより生成された可燃ガスを利用することにより, 上記炭化 物を効率よく気化させることができるとともに、 過熱蒸気生成器 1等に供給さ れる可燃ガスの熱エネルギーを顕著に増大させることができる。
また. 上記実施形態示すように、 常圧下で 2 5 0 t:〜 5 0 0 の温度に過熱 した過熱蒸気を、 常圧以上の低圧 (例えば 2気圧未満) で過熱蒸気生成器 1か ら乾留減容器 2に供給し、 無酸素または低酸素の雰囲気で有機性廃棄物 5 1を 熱分解するように構成した場合には, 酸素の存在下で有機性廃棄物を焼却処理 した場合のように、 ダイォキシン等の有害物質や環境汚染の原因となる二酸化 炭素および臭気成分等が発生するという問題を生じることなく、 上記有機性廃 棄物 5 1を効果的に乾留減容することができる。 しかも, 例えば 2気圧以上の 高圧の過熱蒸気を使用した場合のように、 蒸気の漏れが発生したり、 原料の連 続投入が困難になったりする等の問題を生じることなく、 簡単な装置によって 上記有機性廃棄物 5 1を効率よく乾留減容化できるという利点がある。
なお、 この第 2実施形態においても、 上記第 1実施形態と同様に、 有機性廃 棄物 5 1を乾燥させるサイク口ン型複合流乾燥器および回転乾燥器等の乾燥器 や、 破砕機を設けた構造としてもよく、 あるいは有機性廃棄物 5 1を圧縮して 造粒する圧縮成型造粒器等を設けた構造としてもよい。 例えば, 木質系以外の 水分含有量の多い有機性廃棄物を乾留減容する場合に、 この有機性廃棄物を脱 水器により脱水処理した後, 定量供給機を介して上記乾燥器に供給し、 上記脱 水処理した有機廃棄物を充分に乾燥させた状態で、 上記圧縮成型造粒器により 造粒して上記乾留減容器 2に供給するようにしてもよい。
図 5は、 本発明に係る廃棄物の乾留減容装置の第 3実施形態を示している。 この廃棄物の乾留減容装置は、 上記過熱蒸気生成器 1と、 乾留減容器 2と、 加 熱ガス供給手段 (図示せず) と, 上記乾留減容器 2内に廃棄物を投入するホッ パー 4 3と、 このホッパー 4 3内に廃棄物を移送するバケツトコンベア 4 4と を、 車両 6の荷台 6 1上に搭載するとともに、 上記過熱蒸気生成器 1の上方に 乾留減容器 2を設置することにより、 この過熱蒸^:生成器 1と乾留減容器 2と を一体に形成したものである。
このように過熱蒸気生成器 1の上方に乾留減容器 2を設置する等により、 こ れらを一体に形成した場合には、 ·上記乾留減容装置を簡易かつコンパクトに構 成することができるとともに、 上記過熱蒸気生成器 1から放出される放射熱に よって上記乾留減容器 2を加熱できるので、 上記廃棄物の乾留減容を効率よく 実行することができる。 また, 上記のように過熱蒸気生成器 1と、 乾留減容器 2と、 加熱ガス供給手段 (図示せず) とを、 車両 6の荷台 6 1上に搭載した場 合には、 この車両 6とともに上記乾留滅容装置を、 任意の位置に極めて容易に 移動することができるという利点がある u
さらに、 上記過熱蒸気生成器 1、 乾留減容器 2、 加熱ガス供給手段 4, 4 1、 上記乾留減容器 2内に廃棄物を供給する廃棄物供給手段 6および発電機 7等を 有する乾留減容装置を、 海上プラント上に設置し、 上記廃棄物を海上において 乾留減容処理し、 その際に生成された電力、 温水、 廃棄物の乾留減容物および 酢液等の有効利用を図るように構成してもよい。 例えば上記電力を、 上記乾留 減容装置、 水質改善装置または海水循環装置等の駆動電力として使用するとと もに、 上記温水を利用して海草等の育苗を行い、 上記廃棄物の乾留減容物を海 草育苗等の床づくりに使用し、 さらに酢液を海草育苗の肥料として利用するよ うに構成してもよい。 2
3 産業上の利用可能性
以上のように本発明に係る廃棄物の乾留減容装置は, 通常は大気中に放出さ れるエンジンの排気ガス、 または本来.は廃棄される上記廃棄物の炭化物を有効 に利用して上記過熱蒸気を生成することができ、 この過熱蒸気により廃棄物を 加熱して効果的に乾留減容して上記廃棄物を処理するのに有用であり、 特に有 機性廃棄物を効率よく処理するのに適している。

Claims

請求の範囲 .
1 . 過熱蒸気を生成する過熱蒸気生成器と. この過熱蒸気生成器から供給さ れた過熱蒸気により廃棄物を加熱して乾留減容させる乾留減容器と. 上記過熱 蒸気生成器の加熱用熱源としてエンジンの排気ガスを供給する加熱ガス供給手 段とを備えたことを特徴とする廃棄物の乾留減容装置。
2 . 乾留減容器に供給される廃棄物を予め乾燥処理する乾燥器を備えたこと を特徴とする請求項 1記載の廃棄物の乾留減容装置。
3 . 上記乾燥器は、 下窄まりの円錐状容器と、 この円錐状容器の内周面に沿 つて熱風を供給する熱風供給手段と, 上記円錐状容器の内周面に沿つて廃棄物 を搬入する廃棄物搬入手段とを有するサイクロン型複合流乾燥器により構成さ れたことを特徴とする請求項 2記載の廃棄物の乾留減容装置。
4. 上記乾燥器は、廃棄物を搔き上げる搔き上げ翼を備えた傾斜回転円筒と、 この傾斜回転円筒内に熱風を供給する熱風供給手段とを有する回転乾燥器によ り構成されたことを特徴とする請求項 2記載の廃棄物の乾留減容装置。
5 . 上記熱風供給手段の加熱用熱源として過熱蒸気生成器から導出される排 出ガスを使用するように構成したことを特徴とする請求項.3または 4記載の廃 棄物の乾留減容装置。
6 . 上記熱風供給手段の加熱用熱源として乾留減容器から導出される高熱ガ スを使用するように構成したことを特徴とする請求項 3または 4記載の廃棄物 の乾留減容装置。
7 . 上記乾留減容器に供給される廃棄物を予め破砕処理する破砕機を備えた ことを特徴とする請求項 1〜 6の何れかに記載の廃棄物の乾留減容装置。
8 . 上記過熱蒸気生成器に、 エンジンの冷却水系統から導出された温水の導 通管を設け、 この導通管を通過する温水を加熱することにより過熱蒸気を生成 するように構成したことを特徴とする請求項 1〜 7の何れかに記載の廃棄物の 乾留減容装置。
9 . 過熱蒸気生成用の加熱用手段となるバーナーを上記過熱蒸気生成器に設 けたことを特徴とする請求項 1〜 8の何れかに記載の廃棄物の乾留減容装置。
1 0 . 乾留減容器に供給された過熱蒸気を過熱蒸気生成器に還流させること により過熱蒸気生成用の加熱用熱源として再利用する還流手段を備えたことを 特徴とする請求項 1〜 9の何れかに記載の廃棄物の乾留減容装置。
1 1 . 乾留減容器により廃棄物を乾留減容する際に発生した乾留ガスから回 収された可燃成分を上記バーナーの燃料として使用するように構成したことを 特徴とする請求項 9〜 1 0の何れかに記載の廃棄物の乾留減容装置。
1 2 . 乾留減容器により廃棄物を乾留減容することにより生成された炭化物 を上記過熱蒸気生成器内に供給してバーナーにより燃焼させるように構成した ことを特徴とする請求項 9〜 1 1の何れかに記載の廃棄物の乾留減容装置。
1 3 . 発電機の駆動源となるエンジンの排気ガスを上記過熱蒸気生成器の加 熱用熱源として利用するように構成したことを特徴とする請求項 1〜 1 2の何 れかに記載の廃棄物の乾留減容装置。
1 4 . 過熱蒸気生成器により生成された過熱蒸気の一部をタービン発電機に 供給してこのタービン発電機を駆動するように構成したことを特徴とする請求 項 1〜 1 3の何れかに記載の廃棄物の乾留減容装置。
1 5 . 過熱蒸気を生成する過熱蒸気生成器と、 この過熱蒸気生成器から供給 された過熱蒸気により有機性廃棄物を加熱して乾留減容させる乾留減容器と、 この乾留減容器において生成された炭化物を不完全燃焼させることにより発生 した可燃ガスを上記過熱蒸気生成器の加熱用熱源として供給する加熱ガス供給 手段とを備えたことを特徴とする廃棄物の乾留減容装置。
1 6 . 上記炭化物に廃油を添加して不完全燃焼させるように構成したことを 特徴とする請求項 1 5記載の廃棄物の乾留減容装置。
1 7 . 過熱蒸気生成器において常圧下で 2 5 0 °C〜 5 0 0での温度に過熱さ れた常圧以上の低圧過熱蒸気を乾留減容器に供給し、 無酸素または低酸素の雰 囲気で廃棄物を熱分解するように構成したことを特徴とする請求項 1〜 1 6の 何れかに記載の廃棄物の乾留減容装置。
1 8 . 乾留減容器により廃棄物を乾留減容する際に発生した乾留ガスから有 用成分を分離して回収する分離回収手段を備えたことを特徴とする請求項 1〜 1 7の何れかに記載の廃棄物の乾留減容装置。
1 9 . 過熱蒸気生成器と、 乾留減容器とを一体に形成したことを特徴とする 請求項 1〜 1 8記載の何れかに記載の廃棄物の乾留減容装置。
2 0 . 過熱蒸気生成器と、 乾留減容器と、 加熱ガス供給手段とを、 車両の荷 台上に搭載したことを特徴とする請求項 1〜 ]. 8記載の何れかに記載の廃棄物 の乾留減容装置。
PCT/JP2001/000198 2000-01-14 2001-01-15 Dispositif de distillation seche/de reduction de volume pour dechets WO2001051587A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU25535/01A AU2553501A (en) 2000-01-14 2001-01-15 Dry-distilling/volume reducing device for wastes
CA002366447A CA2366447A1 (en) 2000-01-14 2001-01-15 Dry distillation and volume reduction apparatus for waste
EP01900764A EP1170354A4 (en) 2000-01-14 2001-01-15 DRY DISTILLATION / VOLUME REDUCTION DEVICE FOR WASTE
KR1020017011706A KR20020009577A (ko) 2000-01-14 2001-01-15 폐기물의 건류/용적감소장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000/10193 2000-01-14
JP2000010193 2000-01-14

Publications (1)

Publication Number Publication Date
WO2001051587A1 true WO2001051587A1 (fr) 2001-07-19

Family

ID=18538233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000198 WO2001051587A1 (fr) 2000-01-14 2001-01-15 Dispositif de distillation seche/de reduction de volume pour dechets

Country Status (7)

Country Link
US (1) US20030098227A1 (ja)
EP (1) EP1170354A4 (ja)
KR (1) KR20020009577A (ja)
CN (1) CN1358221A (ja)
AU (1) AU2553501A (ja)
CA (1) CA2366447A1 (ja)
WO (1) WO2001051587A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263617A (ja) * 2001-03-07 2002-09-17 Ryoichi Okamoto 廃棄物処理装置
JP2003024920A (ja) * 2001-07-19 2003-01-28 Hokuriku Electric Power Co Inc:The 木質系廃棄物の処理装置及びその運転方法
JP2003275732A (ja) * 2002-03-25 2003-09-30 Hiroshi Shishido 未利用バイオマス・水産物ゼロエミッションのシステム
WO2008136157A1 (ja) * 2007-04-24 2008-11-13 Orient Instrument Computer Co., Ltd. 廃棄物処理自動車および廃棄物処理装置
KR101360962B1 (ko) 2012-04-27 2014-02-12 미래엔진 주식회사 소형의 엔진을 이용한 펠릿 제조 장치
CN107841317A (zh) * 2017-11-01 2018-03-27 张家港市天源机械制造有限公司 连续式化工固体废弃物无氧炭化炉

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474067B2 (en) * 2000-02-03 2002-11-05 Chugoku Maintenance Co., Ltd. Apparatus and method for resource recovery from organic substance
US7354557B2 (en) * 2002-01-10 2008-04-08 Shigeo Muramatsu Smokeless porous carbon production method and its production system
JP4330488B2 (ja) * 2004-05-12 2009-09-16 達實 小野 過熱蒸気を利用した加熱処理装置
US20060101881A1 (en) * 2004-07-19 2006-05-18 Christianne Carin Process and apparatus for manufacture of fertilizer products from manure and sewage
US7694523B2 (en) 2004-07-19 2010-04-13 Earthrenew, Inc. Control system for gas turbine in material treatment unit
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US7024796B2 (en) * 2004-07-19 2006-04-11 Earthrenew, Inc. Process and apparatus for manufacture of fertilizer products from manure and sewage
US7024800B2 (en) * 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
US7610692B2 (en) 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
US20080179228A1 (en) * 2007-01-30 2008-07-31 Vankouwenberg Raymond E Wastewater evaporator with waste oil burner
FR2931089B1 (fr) * 2008-05-19 2011-10-28 Eric Gregoire Procede de traitement des dechets organiques, notamment domestiques
TWI513409B (zh) * 2009-03-13 2015-12-21 Asahi Group Holdings Ltd 具有0 mV以下之氧化還原電位之源自微生物的還原性混合物及其製造方法
EE00887U1 (et) * 2009-05-26 2010-01-15 OÜ Novus Inventum Autonoomsel energial t””tav teisaldatav pelletite tootmiskompleks
US8449724B2 (en) * 2009-08-19 2013-05-28 Andritz Technology And Asset Management Gmbh Method and system for the torrefaction of lignocellulosic material
KR101140553B1 (ko) * 2009-10-14 2012-05-02 주식회사 케이이앤피 러버 스크랩 및 러버 플레이크의 열적 성분 분해 시스템
DE102010017175A1 (de) * 2010-05-31 2011-12-01 EnBW Energie Baden-Württemberg AG Reaktoranlage und Verfahren zur Erzeugung eines kohlenstoffangereicherten Feststoffprodukts mittels Erhöhung des Kohlenstoffgehalts
KR101137758B1 (ko) * 2011-08-24 2012-04-25 지앤피바이오텍 주식회사 음식물쓰레기 처리 및 바이오오일 추출장치
JP2013047593A (ja) * 2011-08-29 2013-03-07 Hildebrand Kk バイオマスボイラーシステム
CN102757803B (zh) * 2012-07-03 2014-06-25 北京神雾环境能源科技集团股份有限公司 废轮胎流化床蒸气低温干馏系统及方法
CN102766475B (zh) * 2012-07-05 2014-08-20 北京神雾环境能源科技集团股份有限公司 一种基于过热蒸气介质的流化床粉煤干燥、干馏方法及系统
CN103162298A (zh) * 2013-02-07 2013-06-19 惠东县同力兴环保科技有限公司 垃圾或污泥的处理方法
CN103453751B (zh) * 2013-08-30 2015-10-21 合肥禾盛新型材料有限公司 一种高热废气能源利用系统
WO2016008036A1 (en) * 2014-07-16 2016-01-21 Iq Energy Inc. Process for treating waste feedstock and gasifier for same
US20170313945A1 (en) * 2014-10-23 2017-11-02 Rima Industries S.A.L (Holding Company) Method and apparatus for rapid dry carbonization of organic waste, apparatus and catalytic system associated to the method
EP3239274B1 (en) * 2014-12-24 2020-06-24 Takahashi Seisakusho Inc. Water gas generation system and method for supplying combustion gas to said system
CN106032896B (zh) * 2015-03-16 2018-01-09 侯梦斌 一种介入过热蒸气的热处理设备与工艺
US10436525B2 (en) 2016-05-12 2019-10-08 Golden Renewable Energy, LLC Cyclonic cooling system
US20170361268A1 (en) 2016-06-21 2017-12-21 Golden Renewable Energy Char separator
US10961062B2 (en) * 2016-06-21 2021-03-30 Golden Renewable Energy, LLC Bag press feeder assembly
CN109563415A (zh) * 2016-06-21 2019-04-02 戈登可再生能源有限公司 袋压力机进给器组件
WO2017221180A1 (en) 2016-06-21 2017-12-28 Golden Renewable Energy, LLC Char separator and method
US10731082B2 (en) 2016-07-05 2020-08-04 Braven Environmental, Llc System and process for converting waste plastic into fuel
CN106167712A (zh) * 2016-07-14 2016-11-30 长沙加中环保科技有限公司 一种微波辅助热解固体有机废物的系统和方法
CN106244186B (zh) * 2016-08-31 2018-08-07 广东新生环保科技股份有限公司 一种有机高分子废弃物料处理装置
CN108251141A (zh) * 2018-03-23 2018-07-06 郑州龙威电子科技有限公司 一种木屑残渣能源化处理系统
CN110718315A (zh) * 2019-10-23 2020-01-21 江苏中海华核环保有限公司 一种废树脂环保热解处理装置及其处理方法
CN113548781B (zh) * 2021-08-03 2022-05-27 北京科技大学 梯级利用船舶余热进行水热碳化的粪污快速资源化装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129473A (en) * 1975-05-02 1976-11-11 Sanyo Electric Co Apparatus for pyrolyzing plastic waste
JPS5249668A (en) * 1975-10-16 1977-04-20 Sanyo Electric Co Ltd Device for decomposing a solid organic waste thermally
JPH07331248A (ja) * 1994-06-08 1995-12-19 Eizo Takami 連続式乾留装置
JPH10216674A (ja) * 1997-02-07 1998-08-18 Hitachi Zosen Corp 塩素含有プラスチック廃棄物の処理方法およびその装置
JPH11128870A (ja) * 1997-10-24 1999-05-18 Osaka Gas Engineering Kk 廃棄物の炭化方法
JPH11223476A (ja) * 1998-02-10 1999-08-17 Makoto Ogose 有機物の炭化処理方法及び装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE556062C (de) * 1926-06-29 1932-08-06 Metallgesellschaft Ag Verfahren zum Schwelen von wasserreichen Brennstoffen
FR987941A (fr) * 1943-05-03 1951-08-21 Perfectionnements aux installations motrices à gazogène et à leurs organes
DE4103605A1 (de) * 1991-02-07 1992-08-13 Siemens Ag Verfahren und einrichtung zum heizen einer schweltrommel
US5976484A (en) * 1997-09-23 1999-11-02 Teng; Chien-Lang Intermittent continuous method for recovering refined activated carbon from waste tires and the like and the device therefor
DE19925316A1 (de) * 1999-05-27 2000-11-30 Technip Benelux B V Verfahren und Anlage zur autothermen Vergasung von festen Brennstoffen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129473A (en) * 1975-05-02 1976-11-11 Sanyo Electric Co Apparatus for pyrolyzing plastic waste
JPS5249668A (en) * 1975-10-16 1977-04-20 Sanyo Electric Co Ltd Device for decomposing a solid organic waste thermally
JPH07331248A (ja) * 1994-06-08 1995-12-19 Eizo Takami 連続式乾留装置
JPH10216674A (ja) * 1997-02-07 1998-08-18 Hitachi Zosen Corp 塩素含有プラスチック廃棄物の処理方法およびその装置
JPH11128870A (ja) * 1997-10-24 1999-05-18 Osaka Gas Engineering Kk 廃棄物の炭化方法
JPH11223476A (ja) * 1998-02-10 1999-08-17 Makoto Ogose 有機物の炭化処理方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1170354A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263617A (ja) * 2001-03-07 2002-09-17 Ryoichi Okamoto 廃棄物処理装置
JP2003024920A (ja) * 2001-07-19 2003-01-28 Hokuriku Electric Power Co Inc:The 木質系廃棄物の処理装置及びその運転方法
JP4642283B2 (ja) * 2001-07-19 2011-03-02 北陸電力株式会社 木質系廃棄物の処理装置及びその運転方法
JP2003275732A (ja) * 2002-03-25 2003-09-30 Hiroshi Shishido 未利用バイオマス・水産物ゼロエミッションのシステム
WO2008136157A1 (ja) * 2007-04-24 2008-11-13 Orient Instrument Computer Co., Ltd. 廃棄物処理自動車および廃棄物処理装置
KR101360962B1 (ko) 2012-04-27 2014-02-12 미래엔진 주식회사 소형의 엔진을 이용한 펠릿 제조 장치
CN107841317A (zh) * 2017-11-01 2018-03-27 张家港市天源机械制造有限公司 连续式化工固体废弃物无氧炭化炉
CN107841317B (zh) * 2017-11-01 2024-04-19 张家港市天源机械制造有限公司 连续式化工固体废弃物无氧炭化炉

Also Published As

Publication number Publication date
EP1170354A1 (en) 2002-01-09
CA2366447A1 (en) 2001-07-19
US20030098227A1 (en) 2003-05-29
KR20020009577A (ko) 2002-02-01
EP1170354A4 (en) 2004-04-21
AU2553501A (en) 2001-07-24
CN1358221A (zh) 2002-07-10

Similar Documents

Publication Publication Date Title
WO2001051587A1 (fr) Dispositif de distillation seche/de reduction de volume pour dechets
CN101352721B (zh) 一种连续化处理生活垃圾的方法
US6474067B2 (en) Apparatus and method for resource recovery from organic substance
CN203265240U (zh) 一种生活垃圾制取燃气和燃气发电的设备
US20110239620A1 (en) Method for processing organic waste and a device for carrying out said method
WO2018018615A1 (zh) 一种利用高含水率有机废弃物制备燃气的方法和系统
CN101713304A (zh) 一种生活垃圾湿解预处理干馏气化循环发电的方法
CN107699294B (zh) 一种绿岛式城乡有机废物无害化资源化处理工艺
KR101152613B1 (ko) 바이패스 라인이 구비된 슬러지 또는 폐기물 처리 시스템
CN109028079B (zh) 一种生物质废物热解气化及其余热梯级利用的系统
CN107225142A (zh) 一种节能型垃圾干馏制燃气和燃气发电的方法
CN101508902A (zh) 生物质燃料循环气化装置及其方法
CN102719279B (zh) 一种微波碳热裂解城市生活垃圾制备燃气的工艺
CN108585405A (zh) 一种热固载体污泥增压自供能热解装置及方法
KR100581136B1 (ko) 음식물쓰레기의 탄화 처리방법
CN218665673U (zh) 超导高效无害化污泥处理装置
TWI767608B (zh) 一種將食品污泥製成固態生質燃料的方法
CN109385311A (zh) 生活垃圾热解炭气化处理系统及方法
WO2015087568A1 (ja) 鶏糞処理方法及び鶏糞処理システム
CN206143142U (zh) 处理生活垃圾的系统
CN210826081U (zh) 一种城市生活垃圾双床热解气化装置
KR101005850B1 (ko) 가연성 또는 유기성 폐기물의 건조 및 탄화 장치
JP2002263617A (ja) 廃棄物処理装置
CN106670209A (zh) 处理生活垃圾的系统和方法
CN201367415Y (zh) 生物质燃料循环气化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01800068.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2366447

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09936679

Country of ref document: US

Ref document number: 1020017011706

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001900764

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 25535/01

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2001900764

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2366447

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2001 551162

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001900764

Country of ref document: EP