WO2001049731A1 - Nouveau polypeptide, proteine de regulation 9 de la protease humaine, et polynucleotide codant pour ce polypeptide - Google Patents

Nouveau polypeptide, proteine de regulation 9 de la protease humaine, et polynucleotide codant pour ce polypeptide Download PDF

Info

Publication number
WO2001049731A1
WO2001049731A1 PCT/CN2000/000652 CN0000652W WO0149731A1 WO 2001049731 A1 WO2001049731 A1 WO 2001049731A1 CN 0000652 W CN0000652 W CN 0000652W WO 0149731 A1 WO0149731 A1 WO 0149731A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
polynucleotide
proteolytic enzyme
protein
sequence
Prior art date
Application number
PCT/CN2000/000652
Other languages
English (en)
Chinese (zh)
Inventor
Yumin Mao
Yi Yie
Original Assignee
Fudan University
Shanghai Bio Door Gene Technology Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University, Shanghai Bio Door Gene Technology Ltd. filed Critical Fudan University
Priority to AU21424/01A priority Critical patent/AU2142401A/en
Publication of WO2001049731A1 publication Critical patent/WO2001049731A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a novel polypeptide, human proteolytic enzyme regulatory protein 9, and a polynucleotide sequence encoding the polypeptide. The invention also relates to a preparation method and application of the polynucleotide and polypeptide.
  • E. coli can be infected by obligate parasites, a double-stranded DNA virus, lambda phage.
  • Lambda phage is a mild phage that can proliferate in two states in E. coli. One is a lysed state, where phage DNA autonomously replicates and directs the formation of capsid proteins, packaging, and host cell lysogens. The other is a lysogenic state, where DNA is integrated into the host cell genome and replicated.
  • Bacteriophages are called phages; hosts are called lysosomes and are considered immune.
  • One way to regulate protein activity is by controlling its stability. This can be accomplished by controlling the expression of specific proteolytic enzymes or by synthesizing proteins that specifically inhibit these proteolytic enzymes.
  • cm protein a small phage-encoded polypeptide
  • C II a transcriptional activator
  • the stable C II protein can then activate CI, a protein that codes for the developmental obstacles Transcribed repressor protein genes, which initiate the establishment of lysogen.
  • the cm protein increases the lysogenicity of various lambda phages expressing different cn proteins.
  • C II1 may induce a heat shock response by immobilizing the RNA polymerase, a heat shock specific subunit of ⁇ 32 .
  • cm directly inhibits proteolytic enzymes by binding to stabilized proteins or by binding to specific cellular proteolytic enzymes of these proteins.
  • the central part of the cm protein in different lambda phages is the region with the most similar sequence, and the activity of this protein is necessary and sufficient.
  • C III Its structure is an amphiphilic ⁇ -helix, and the hydrophilic part of the helix contains most basic residues, which is a characteristic of proteins that bind RNA and DNA. Therefore, C III It may be a gene expression regulator, which is involved in regulating the host genes responsible for the degradation of C II and ⁇ 32 proteins, and the conserved helix domain of C III is considered to be the active site for regulating proteolytic enzymes and degrading C II and ⁇ 32 proteins Therefore, it is believed that cm works as a competitive inhibitor of those proteolytic enzymes.
  • polypeptide of the present invention is deduced to be identified as a human proteolytic enzyme regulatory protein 9.
  • human proteolytic enzyme 9 protein plays an important role in important functions of the body as described above, and it is believed that a large number of proteins are involved in these regulatory processes, there has been a need in the art to identify more participation These processes regulate the protein 9 of human proteolytic enzymes, and in particular identify the amino acid sequence of this protein.
  • the isolation of the novel human proteolytic enzyme regulatory protein 9 gene also provides a basis for research to determine the role of this protein in health and disease states. This protein may form the basis for the development of diagnostic and / or therapeutic drugs for diseases, so it is important to isolate its coding for DM.
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a genetically engineered host cell containing a polynucleotide encoding a human proteolytic enzyme regulatory protein 9.
  • Another object of the present invention is to provide antibodies against the human proteolytic enzyme regulatory protein 9 of the polypeptide of the present invention.
  • Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors directed to the polypeptide of the present invention, human proteolytic enzyme regulatory protein 9.
  • Another object of the present invention is to provide a method for diagnosing and treating a disease associated with abnormality of human proteolytic enzyme regulating protein 9. Summary of invention
  • the present invention relates to an isolated polypeptide, which is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID No. 2, or a conservative variant, biologically active fragment or derivative thereof.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID D0: 2.
  • the invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
  • the sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence having positions 720-962 in SEQ ID NO: 1; and (b) a sequence having 1 -1 in SEQ ID NO: 1 763-bit sequence.
  • the present invention further relates to a vector, particularly an expression vector, containing the polynucleotide of the present invention; a host cell genetically engineered with the vector, including a transformed, transduced or transfected host cell; The method for preparing a polypeptide of the present invention by describing a host cell and recovering an expressed product is described.
  • the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
  • the present invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit human proteolytic enzymes regulating protein 9 protein activity, which comprises utilizing the polypeptide of the present invention.
  • the invention also relates to compounds obtained by this method.
  • the invention also relates to a method for in vitro detection of a disease or disease susceptibility related to abnormal expression of a human proteolytic enzyme regulating protein 9 protein, comprising detecting a mutation in the polypeptide or a polynucleotide sequence encoding the same in a biological sample, or detecting The amount or biological activity of a polypeptide of the invention in a biological sample.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
  • the present invention also relates to the use of the polypeptide and / or polynucleotide of the present invention in the preparation of a medicament for treating cancer, developmental disease or immune disease or other diseases caused by abnormal expression of human proteolytic enzyme regulating protein 9.
  • Figure 1 is a comparison diagram of the amino acid sequence homology of the 70-amino acid and domain phage lysogen protein of the human proteolytic enzyme regulatory protein 9 of the present invention from 3 to 72.
  • the upper sequence is the human proteolytic enzyme regulatory protein 9 and the lower sequence is the phage lysogen protein domain.
  • ⁇ "and”: "" and ".” Indicate that the probability of the same amino acid appearing between two sequences decreases in sequence.
  • Figure 2 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of the isolated human proteolytic enzyme regulating protein 9. 9kDa is the molecular weight of the protein. The arrow indicates the isolated protein band.
  • Nucleic acid sequence refers to an oligonucleotide, a nucleotide or a polynucleotide and a fragment or part thereof, and may also refer to a genomic or synthetic DNA or RNA, they can be single-stranded or double-stranded, representing the sense or antisense strand.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
  • amino acid sequence in the present invention relates to the amino acid sequence of a naturally occurring protein molecule, such "polypeptide” or “protein” does not mean to limit the amino acid sequence to a complete natural amino acid related to the protein molecule .
  • a protein or polynucleotide “variant” refers to an amino acid sequence having one or more amino acids or nucleotide changes or a polynucleotide sequence encoding it. The changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence. Variants can have "conservative" changes in which the substituted amino acid has a structural or chemical property similar to the original amino acid, such as the replacement of isoleucine with leucine. Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
  • “Deletion” refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
  • Insertion means that a change in the amino acid sequence or nucleotide sequence results in an increase in one or more amino acids or nucleotides compared to a molecule that exists in nature.
  • Replacement refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
  • Bioactivity refers to a protein that has the structure, regulation, or biochemical function of a natural molecule.
  • immunologically active refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response and to bind specific antibodies in a suitable animal or cell.
  • An "agonist” refers to a molecule that, when combined with human proteolytic enzyme regulatory protein 9, causes a change in the protein to regulate the activity of the protein.
  • An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that binds human proteolytic enzyme regulatory protein 9.
  • Antagonist refers to a molecule that can block or regulate the biological or immunological activity of human proteolytic regulator 9 when combined with human proteolytic regulator 9.
  • Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates, or any other molecule that binds human proteolytic enzymes to regulate protein 9.
  • Regular refers to a change in the function of human proteolytic enzyme regulating protein 9, including an increase or decrease in protein activity, a change in binding characteristics, and any other biological, functional or immune properties of human proteolytic enzyme regulating protein 9. change.
  • substantially pure means substantially free of other proteins, lipids, sugars or other substances with which it is naturally associated.
  • Those skilled in the art can purify human proteolytic enzyme regulatory protein 9 using standard protein purification techniques.
  • the substantially pure human proteolytic enzyme regulating protein 9 produces a single main band on a non-reducing polyacrylamide gel.
  • the purity of the human proteolytic enzyme regulating protein 9 can be analyzed by amino acid sequence.
  • Complementary or “complementarity” refers to multiple base pairing by base pairing under conditions of allowable salt concentration and temperature. Nucleotides naturally bind. For example, the sequence “C-T-G-A” can be combined with the complementary sequence "GAC-T”. The complementarity between two single-stranded molecules may be partial or complete. The degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
  • “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous.
  • Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. This inhibition of hybridization can be detected by performing hybridization (Southern or Northern blotting, etc.) under conditions of reduced stringency. Substantially homologous sequences or hybridization probes can compete and inhibit the binding of completely homologous sequences to the target sequence under conditions of reduced stringency. This does not mean that the conditions of reduced stringency allow non-specific binding, because the conditions of reduced stringency require that the two sequences bind to each other as a specific or selective interaction.
  • Percent identity refers to the percentage of sequences that are identical or similar in the comparison of two or more amino acid or nucleic acid sequences. The percent identity can be determined electronically, such as by the MEGALIGN program (Lasergene software package, DNASTAR, Inc., Madison Wis.). The MEGALIGN program can compare two or more sequences according to different methods, such as the Cluster method (Higgins, DG and PM Sharp (1988) Gene 73: 237-244). The Cluster method arranges groups of sequences into clusters by checking the distance between all pairs. The clusters are then assigned in pairs or groups. The percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula: The number of residues matching between sequence ⁇ and sequence ⁇ 1 ⁇
  • the number of residues in the sequence ⁇ -the number of spacer residues in the sequence-the number of spacer residues in the sequence s can also be determined by the Cluster method or by methods known in the art such as Jotun He in. J., (1990) Methods in enzymology 183: 625-645).
  • Similarity refers to the degree of identical or conservative substitutions of amino acid residues at corresponding positions in the alignment of amino acid sequences.
  • Amino acids used for conservative substitution such as negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having uncharged head groups are Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
  • Antisense refers to a nucleotide sequence that is complementary to a particular DNA or RNA sequence.
  • the "antisense strand” refers to a nucleic acid strand that is complementary to the “sense strand”.
  • Derivative refers to HFP or a chemical modification of its nucleic acid. This chemical modification may be the replacement of a hydrogen atom with an alkyl, acyl or amino group. Nucleic acid derivatives can encode polypeptides that retain the main biological properties of natural molecules.
  • Antibody refers to a complete antibody molecule and its fragments, such as Fa,? ( ⁇ ') 2 and! ⁇ , which can specifically bind to the epitope of human proteolytic enzyme regulatory protein 9.
  • a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
  • isolated refers to the removal of matter from its original environment (for example, its natural environment if it is naturally occurring).
  • a naturally occurring polynucleotide or polypeptide is not isolated when it is present in a living animal, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist in the natural system.
  • Such a polynucleotide may be part of a vector, or such a polynucleotide or polypeptide may be part of a composition. Since the carrier or composition is not part of its natural environment, they are still isolated.
  • isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances existing in the natural state. .
  • isolated human proteolytic enzyme regulating protein 9 means that human proteolytic enzyme regulating protein 9 is substantially free of other proteins, lipids, sugars, or other substances with which it is naturally associated. Those skilled in the art can purify human proteolytic enzyme regulatory protein 9 using standard protein purification techniques. Substantially pure peptides can produce a single main band on a non-reducing polyacrylamide gel. The purity of the human proteolytic enzyme regulating protein polypeptide can be analyzed by amino acid sequence.
  • the present invention provides a new polypeptide, human proteolytic enzyme regulatory protein 9, which basically consists of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
  • the polypeptides of the invention may be naturally purified products, or chemically synthesized products, or produced using recombinant techniques from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells). Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
  • the invention also includes fragments, derivatives and analogs of human proteolytic enzyme regulatory protein 9.
  • fragment refers to a polypeptide that substantially maintains the same biological function or activity of the human proteolytic enzyme regulatory protein 9 of the present invention.
  • a fragment, derivative or analog of the polypeptide of the present invention may be: (I) a kind in which one or more amino acid residues are substituted with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substitution The amino acid may or may not be encoded by a genetic codon; or (II) a type in which a group on one or more amino acid residues is substituted by another group to include a substituent; or ( ⁇ ⁇ ) Such that a mature polypeptide is related to another A compound (such as a compound that extends the half-life of a polypeptide, such as polyethylene glycol); or (IV) a polypeptide sequence (such as a leader sequence or a secretory sequence or a sequence used to fuse additional amino acid sequences into a mature polypeptide) Purify the sequence of this polypeptide or protease sequence). As set forth herein, such fragments, derivatives and analogs are considered to be within the knowledge of those skilled in the art.
  • the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide sequence of the present invention includes a nucleotide sequence of SEQ ID NO: 1.
  • the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a polynucleotide sequence of 1763 bases in length and its open reading frame (720-962) encodes 80 amino acids. This peptide has the characteristic sequence of phage lysogen protein, and it can be deduced that the human proteolytic enzyme regulatory protein 9 has the structure and function represented by phage lysogen protein.
  • the polynucleotide of the present invention may be in the form of DNA or RNA.
  • DNA forms include cDNA, genomic DNA or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • DNA can be coding or non-coding.
  • the coding region sequence encoding the mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
  • a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but different from the coding region sequence shown in SEQ ID NO: 1 in the present invention.
  • the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
  • polynucleotide encoding a polypeptide refers to a polynucleotide that includes the polypeptide and a polynucleotide that includes additional coding and / or non-coding sequences.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
  • This polynucleotide variant can be a naturally occurring allelic variant or a non-naturally occurring variant.
  • These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
  • the invention also relates to a polynucleotide that hybridizes to the sequence described above (having at least 50%, preferably 70% identity between the two sequences).
  • the invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the invention under stringent conditions.
  • “strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 6 (TC; or (2) Add denaturants during hybridization, such as 50% (v / v) formamide, 0.1% calf serum / 0.1% F i co ll, 42 ° C, etc .; or (3) only between the two sequences Between Hybridization occurs only when the identity is at least 95%, and more preferably 97%.
  • the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • nucleic acid fragments that hybridize to the sequences described above.
  • a "nucleic acid fragment” contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 nuclei. Glycylic acid or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques, such as PCR, to identify and / or isolate polynucleotides encoding human proteolytic enzyme regulatory protein 9.
  • polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
  • the specific polynucleotide sequence encoding the human proteolytic enzyme regulatory protein 9 of the present invention can be obtained by various methods.
  • polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
  • the DNA fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the DNA sequence to obtain the double-stranded DNA of the polypeptide.
  • genomic DNA isolation is the least commonly used. Direct chemical synthesis of DNA sequences is often the method of choice. The more commonly used method is the isolation of cDNA sequences.
  • the standard method for isolating the cDNA of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
  • mRNA extraction There are many mature techniques for mRNA extraction, and kits are also commercially available (Qiagene).
  • the construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
  • Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
  • genes of the present invention can be selected from these cDNA libraries by conventional methods. These methods include (but are not limited to): (l) DNA-DNA or DNA-RNA hybridization; (2) the presence or absence of a marker gene function; (3) determination of the level of the human proteolytic enzyme regulatory protein 9 transcript; ( 4) Detecting gene-expressed protein products by immunological techniques or by measuring biological activity. The above methods can be used alone or in combination.
  • the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides.
  • the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
  • the probe used here is usually a DNA sequence chemically synthesized based on the gene sequence information of the present invention.
  • the genes or fragments of the present invention can of course be used as probes.
  • DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
  • immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) can be used to detect the protein product of human proteolytic enzyme-regulated protein 9 gene expression.
  • a method using PCR technology to amplify DNA / RNA is preferably used to obtain the gene of the present invention.
  • the RACE method RACE-rapid cDNA end rapid amplification method
  • the primers used for PCR can be appropriately based on the polynucleotide sequence information of the present invention disclosed herein. Select and synthesize using conventional methods.
  • the amplified DNA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
  • polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be measured by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDM sequence, sequencing needs to be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
  • the present invention also relates to a vector comprising the polynucleotide of the present invention, and a host cell produced by genetic engineering using the vector of the present invention or directly using a human proteolytic enzyme regulatory protein 9 coding sequence, and a recombinant technology to produce the polypeptide of the present invention. method.
  • a polynucleotide sequence encoding a human proteolytic enzyme regulatory protein 9 may be inserted into a vector to constitute a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors expressed in bacteria (Rosenberg, et al.
  • any plasmid and vector can be used to construct a recombinant expression vector.
  • An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
  • Methods known to those skilled in the art can be used to construct expression vectors containing a DNA sequence encoding human proteolytic enzyme regulatory protein 9 and appropriate transcriptional / translational regulatory elements. These methods include in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombination technology (Sambroook, et al. Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
  • the DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide mRNA synthesis. Representative examples of these promoters are: iac or trp promoter of E.
  • eukaryotic promoters include the CV immediate early promoter, HSV thymidine kinase promoter, early and late SV40 promoters, retroviral LTRs, and other known controllable genes in prokaryotic or eukaryotic cells Or a promoter expressed in its virus.
  • the expression vector also includes a ribosome binding site and a transcription terminator for translation initiation. Insertion of enhancer sequences into the vector will enhance its transcription in eukaryotic cells.
  • Enhancers are cis-acting factors expressed by DM, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription.
  • Illustrative examples include SV40 enhancers from 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenovirus enhancers.
  • the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • GFP fluorescent protein
  • tetracycline or ampicillin resistance for E. coli.
  • a polynucleotide encoding a human proteolytic enzyme regulatory protein 9 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to constitute a genetically engineered host cell containing the polynucleotide or the recombinant vector.
  • the term "host cell” refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
  • coli Streptomyces
  • bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells such as fly S2 or Sf 9
  • animal cells such as CH0, COS or Bowes melanoma cells.
  • Transformation of a host cell with a DNA sequence described in the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote, such as E. coli
  • competent cells capable of absorbing DNA can be harvested after the exponential growth phase and treated with the CaCl 2 method.
  • the steps used are well known in the art.
  • the alternative is to use MgC l 2 .
  • transformation can also be performed by electroporation.
  • the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
  • polynucleotide sequence of the present invention can be used to express or produce recombinant human proteolytic enzyme regulatory protein 9 (Scence, 1984; 224: 1431). Generally there are the following steps:
  • step (3) Isolate and purify protein from culture medium or cells.
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell. If necessary, the recombinant protein can be isolated and purified by various separation methods using its physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid
  • polypeptides of the present invention can be directly used in the treatment of diseases, for example, they can be used to treat malignant tumors, adrenal deficiency, skin diseases, various types of inflammation, HIV infection, and immunological diseases.
  • Lambda phage regulatory protein C III directly inhibits proteolytic enzymes by binding to stabilized proteins or by binding to specific cellular proteolytic enzymes of these proteins. Excessive production of CIII may induce a heat shock response by immobilizing RNA polymerase, a heat shock specific subunit of ⁇ 32 . The study found that C III may itself be a gene expression regulator, and the conserved helix domain of C III is considered to be an active site that regulates proteolytic enzymes and degrades C II and ⁇ 32 proteins.
  • Regulatory protein CIII-specific conserved sequences are required to form its active mo t i f. It can be seen that abnormal expression of the specific regulatory protein C lllmot if will cause abnormal function of the polypeptide containing the mo tif of the present invention, and may cause abnormal gene expression regulation, thereby causing errors in genetic information and causing related diseases. Such as tumors, embryonic development disorders, growth and development disorders.
  • the abnormal expression of the human proteolytic enzyme regulating protein 9 of the present invention will produce various diseases, especially various tumors, embryonic developmental disorders, and growth disorders. These diseases include, but are not limited to:
  • Embryonic disorders congenital abortion, cleft palate, limb loss, limb differentiation disorder, hyaline membrane disease, atelectasis, polycystic kidney, double ureter, cryptorchidism, congenital inguinal hernia, double uterus, vaginal atresia, suburethral Fissure, hermaphroditism, atrial septal defect, ventricular septal defect, pulmonary stenosis, arterial duct occlusion, neural tube defect, congenital hydrocephalus, iris defect, congenital cataract, congenital glaucoma or cataract, congenital deafness
  • Tumors of various tissues gastric cancer, liver cancer, lung cancer, esophageal cancer, breast cancer, leukemia, lymphoma, thyroid tumor, uterine fibroids, neuroblastoma, astrocytoma, ependymoma, glioblastoma, Colon cancer, melanoma, adrenal cancer, bladder cancer, bone cancer, osteosarcoma, myeloma, bone marrow cancer, brain cancer, uterine cancer, endometrial cancer, gallbladder cancer, colon cancer, thymic tumor, nasal cavity and sinus tumor, nose Pharyngeal cancer, Laryngeal cancer, Tracheal tumor, Fibroma, Fibrosarcoma, Lipoma, Liposarcoma, Leiomyoma
  • the abnormal expression of the human proteolytic enzyme regulating protein 9 of the present invention will also produce certain hereditary, hematological and immune system diseases.
  • the polypeptide of the present invention and the antagonists, agonists and inhibitors of the polypeptide can be directly used in the treatment of diseases, for example, it can treat various diseases, especially various tumors, embryonic developmental disorders, growth and development disorders, and certain inheritances. Sexual, hematological and immune system diseases.
  • the invention also provides methods for screening compounds to identify agents that increase (agonist) or suppress (antagonist) human protein hydrolase regulator protein 9.
  • Agonists enhance human proteolytic enzyme 9 to stimulate biological functions such as cell proliferation, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
  • mammalian cells or a membrane preparation expressing human proteolytic enzyme 9 can be cultured with labeled human proteolytic enzyme 9 in the presence of a drug. The ability of the drug to increase or block this interaction is then determined.
  • Antagonists of human proteolytic enzyme 9 include selected antibodies, compounds, receptor deletions, and the like. Antagonists of human proteolytic regulator 9 can bind to human proteolytic regulator 9 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot exert its biology Features.
  • human proteolytic regulator 9 When screening compounds as antagonists, human proteolytic regulator 9 can be added to bioanalytical assays to determine whether the compound is a compound by measuring the effect of the compound on the interaction between human proteolytic regulator 9 and its receptor. Antagonist. Receptor deletions and analogs that act as antagonists can be screened in the same way as for screening compounds described above.
  • Polypeptide molecules capable of binding to human proteolytic enzyme regulatory protein 9 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. When screening, generally 9 molecules of human proteolytic enzyme regulatory protein should be labeled.
  • the present invention provides a method for producing an antibody using a polypeptide, a fragment, a derivative, an analog thereof, or a cell thereof as an antigen.
  • These antibodies can be polyclonal or monoclonal antibodies.
  • the invention also provides antibodies against human proteolytic enzyme regulatory protein 9 epitopes. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments and Fab expression libraries. Raw fragment.
  • Polyclonal antibodies can be produced by injecting human proteolytic enzyme regulatory protein 9 directly into immunized animals (such as rabbits, mice, rats, etc.).
  • immunized animals such as rabbits, mice, rats, etc.
  • a variety of adjuvants can be used to enhance the immune response, including but not limited to Freund's Agent.
  • Techniques for preparing monoclonal antibodies to human proteolytic enzyme regulatory protein 9 include, but are not limited to, hybridoma technology (Kohler and Milste in. Nature, 1975, 256: 495-497), triple tumor technology, human beta- Cell hybridoma technology, EBV-hybridoma technology, etc.
  • Chimeric antibodies that bind human constant regions and non-human-derived variable regions can be produced using existing techniques (Morris on e t al, PNAS, 1985, 81: 6851).
  • the existing technology for producing single chain antibodies (U.S. Pat No. 4946778) can also be used to produce single chain antibodies against human proteolytic enzyme regulatory
  • Antibodies against human proteolytic enzyme 9 can be used in immunohistochemical techniques to detect human proteolytic enzyme 9 in biopsy specimens.
  • Monoclonal antibodies that bind to human proteolytic regulator 9 can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • human proteolytic enzyme-modulated protein 9 high-affinity monoclonal antibodies can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of an antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds.
  • This hybrid antibody can be used to kill human proteolytic enzyme regulatory protein 9 positive cell.
  • the antibodies of the present invention can be used to treat or prevent diseases related to human proteolytic enzyme regulating protein 9.
  • Administration of appropriate doses of antibodies can stimulate or block the production or activity of human proteolytic enzyme-regulated protein 9.
  • the invention also relates to a diagnostic test method for quantitative and localized detection of human proteolytic enzyme-regulated protein 9 levels.
  • tests are well known in the art and include FI SH assays and radioimmunoassays.
  • the level of human proteolytic regulator 9 detected in the test can be used to explain the importance of human proteolytic regulator 9 in various diseases and to diagnose diseases in which human proteolytic regulator 9 plays a role.
  • polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
  • Polynucleotides encoding human proteolytic enzyme regulatory protein 9 can also be used for a variety of therapeutic purposes. Gene therapy technology can be used to treat abnormal cell proliferation, development, or metabolism caused by the non-expression or abnormal / inactive expression of human proteolytic enzyme regulatory protein 9.
  • Recombinant gene therapy vectors (such as viral vectors) can be designed Used to express variant human proteolytic regulatory protein 9 to inhibit endogenous human proteolytic enzyme regulatory protein 9 activity.
  • a mutated human proteolytic enzyme regulatory protein 9 may be a shortened human proteolytic enzyme regulatory protein 9 lacking a signaling domain, and although it can bind to a downstream substrate, it lacks signaling activity.
  • the recombinant gene therapy vector can be used for treating diseases caused by abnormal expression or activity of human proteolytic enzyme regulating protein-9.
  • Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, herpes simplex virus, parvovirus and the like can be used to transfer a polynucleotide encoding human proteolytic enzyme regulatory protein 9 into a cell.
  • a method for constructing a recombinant viral vector carrying a polynucleotide encoding a human proteolytic enzyme regulatory protein 9 can be found in the existing literature (Sambrook, etal.).
  • a recombinant polynucleotide encoding human proteolytic enzyme regulatory protein 9 can be packaged into liposomes and transferred into cells.
  • Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RNA and DNA
  • ribozymes that inhibit human proteolytic regulator 9 mRNA are also within the scope of the present invention.
  • a ribozyme is an enzyme-like RNA molecule that specifically decomposes specific RNA. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
  • Antisense RNA, DNA, and ribozymes can be obtained using any existing RNA or DNA synthesis technology, such as solid-phase phosphoramidite chemical synthesis to synthesize oligonucleotides.
  • Antisense RM molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the RNA.
  • This DNA sequence has been integrated downstream of the vector's RNA polymerase promoter.
  • it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the linkage between ribonucleosides using phosphate thioester or peptide bonds instead of phosphodiester bonds.
  • the polynucleotide encoding human proteolytic enzyme regulatory protein 9 can be used for the diagnosis of diseases related to human proteolytic enzyme regulatory protein.
  • the polynucleotide encoding human proteolytic enzyme regulatory protein 9 can be used to detect the expression of human proteolytic enzyme regulatory protein 9 or the abnormal expression of human proteolytic enzyme regulatory protein 9 in a disease state.
  • the DNA sequence encoding human proteolytic enzyme regulatory protein 9 can be used to hybridize biopsy specimens to determine the expression of human proteolytic enzyme regulatory protein 9.
  • Hybridization techniques include Sout hern blotting, Nor t hern blotting, and in situ hybridization. These techniques and methods are publicly available and mature, and related kits are commercially available.
  • a part or all of the polynucleotides of the present invention can be used as probes to be fixed on a microarray (Microcroix) or a DNA chip (also known as a "gene chip") for analyzing differential expression analysis of genes in a tissue and genes. diagnosis.
  • Human proteolytic regulator 9 specific primers can be used for RNA-polymerase chain reaction (RT-PCR) in vitro amplification to detect human proteolytic regulator 9 transcripts. Detection of mutations in the human proteolytic regulator 9 gene can also be used to diagnose human proteolytic enzyme 9-related diseases.
  • Human proteolytic enzyme 9 mutant forms include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to the normal wild-type human proteolytic enzyme 9 DNA sequence. Mutations can be detected using existing techniques such as Southern blotting, DNA sequence analysis, PCR and in situ hybridization. In addition, mutations may affect protein expression. Therefore, Northern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
  • sequences of the invention are also valuable for chromosome identification. This sequence will specifically target a specific position on a human chromosome and can hybridize to it. Currently, specific sites for each gene on the chromosome need to be identified. Currently, only a few chromosome markers based on actual sequence data (repeating polymorphisms) are available for marking chromosome positions. According to the present invention, in order to associate these sequences with disease-related genes, an important first step is to locate these DNA sequences on a chromosome.
  • a PCR primer (preferably 5 to 35 bp) is prepared from the cDNA, and the sequence can be located on the chromosome. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those heterozygous cells containing the human gene corresponding to the primer will produce amplified fragments.
  • PCR localization of somatic hybrid cells is a quick way to localize DNA to specific chromosomes.
  • oligonucleotide primers of the present invention in a similar manner, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and pre-selection of hybridization to construct chromosome-specific cDNA libraries.
  • Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the differences in cDNA or genomic sequences between the affected and unaffected individuals need to be determined. If a mutation is observed in some or all diseased individuals and the mutation is not observed in any normal individuals, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in the chromosome, such as deletions or translocations that are visible at the chromosomal level or detectable using cDNA sequence-based PCR. Based on the resolution capabilities of current physical mapping and gene mapping technologies, The cDNA of the disease-related chromosomal region can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution and one gene per 20 kb).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • Human proteolytic enzyme 9 is administered in an amount effective to treat and / or prevent a particular indication.
  • the amount and range of human proteolytic enzyme regulatory protein 9 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician. Examples
  • Total human fetal brain RNA was extracted by one-step method with guanidine isothiocyanate / phenol / chloroform.
  • Poly (A) mRNA was isolated from total RNA using Quik mRNA Isolation Kit (Qiegene). 2ug poly (A) mRNA is reverse transcribed to form cDNA.
  • the Smart cDNA cloning kit purchased from Clontech was used to insert the cDNA fragments into the multicloning site of the pBSK (+) vector (Clontech) to transform DH5 cc. The bacteria formed a cDNA library.
  • Dye terminate cycle reaction ion sequencing kit Perkin-Elmer
  • ABI 377 automatic sequencer Perkin-Elmer
  • the determined cDNA sequence was compared with an existing public DNA sequence database (Genebank), and it was found that the cDNA sequence of one of the clones 0533 ⁇ 1 was new DNA. Insert a cDNA fragment into the clone by synthesizing a series of primers Segments are measured in both directions.
  • the 0533 ⁇ 1 clone contained a full-length cDNA of 1763bp (as shown in Seq IDN0: l), and a 243bp open reading frame (0RF) from 720bp to 962bp, encoding a new protein (such as Seq ID NO: 2).
  • This clone pBS-0533fll and encoded the protein as human proteolytic enzyme regulatory protein 9.
  • the sequence of the human proteolytic enzyme regulatory protein 9 of the present invention and the protein sequence encoded by the protein proteolytic enzyme of the present invention were analyzed using the profile scan program (Basic local alignment search tool) in GCG [Altschul, SF et al. J. Mol. Biol. 1990; 215: 403-10], performing domain analysis in a database such as prosite.
  • the human proteolytic enzyme regulatory protein 9 of the present invention is homologous with the domain phage lysogen protein at 3-72, and the homology result is shown in Fig. 1.
  • the homology rate is 23% and the score is 13.52; the threshold value is 13.21.
  • Example 3 Cloning of a gene encoding human proteolytic enzyme regulatory protein 9 by RT-PCR
  • CDNA was synthesized using fetal brain total RNA as a template and oligo-dT as a primer for reverse transcription reaction. After purification using Qiagene's kit, the following primers were used for PCR amplification:
  • Primerl 5'-GGTGGAGGTTGTAGTGAGCCGAGA-3 '(SEQ ID NO: 3)
  • Primer2 5'- CCCCCTAAGCTTCGTCTTCTCGCA-3 '(SEQ ID NO: 4)
  • Primerl is a forward sequence starting at lbp of the 5th end of SEQ ID NO: 1;
  • Primer2 is the 3 'end reverse sequence in SEQ ID NO: 1.
  • Amplification conditions 50 ⁇ l reaction volume containing 50 octol / L KC1, 10 mmol / L Tris-HC1, pH 8.5, 1.5 mmol / L MgCl 2 , 20 ( ⁇ mol / L dNTP, lOpmol primer, 1U of Taq DNA polymerase (Clontech).
  • the reaction was performed on a PE9600 DNA thermal cycler (Perkin-Elmer) for 25 cycles under the following conditions: 94 ° C 30sec; 55 ° C 30sec; 72 "C 2min.
  • ⁇ -act in was used as a positive control and template blank was used as a negative control.
  • the tissue is homogenized with 4M guanidinium isothiocyanate-25 ⁇ M sodium citrate, 0.2M sodium acetate (pH4.0).
  • a 32P-labeled probe (about 2 x 10 6 cpm / ml) was hybridized with a nitrocellulose membrane to which RNA was transferred at 42 ° C overnight in a solution containing 50% formamide-25raMKH 2 P0 4 ( pH7.4)-5 x SSC-5 x Denhardt's solution and 20 ( ⁇ g / ml salmon sperm DNA. After hybridization, the filter was washed in 1 SSC-0.1 ° /. SDS at 55 ° C for 30min. Then, use Phosphor Imager was used for analysis and quantification.
  • Example 5 In vitro expression, isolation and purification of recombinant human proteolytic enzyme regulating protein 9
  • Primer3 5-CCCCATATGATGCTTTCATTACTAACACCACTG-3 '(Seq ID No: 5)
  • Primer4 5'- CATGGATCCTTAGGACGTTGGCTGTCCAATTTT- 3' (Seq ID No: 6)
  • the 5 'ends of these two primers contain Ndel and BamHI restriction sites, respectively.
  • the coding sequences of the 5 'and 3' ends of the gene of interest are followed, respectively.
  • the Ndel and BamHI restriction sites correspond to the selectivity within the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865.3). Digestion site.
  • the PCR reaction was performed using the pBS-0533 ⁇ 1 plasmid containing the full-length target gene as a template.
  • the PCR reaction conditions were as follows: a total volume of 50 ⁇ 1 containing 10 pg of pBS-0533fll plasmid, primers Primer-3 and Primer-4 were 10 pmol, and Advantage polymerase Mix (Clontech) 1 ⁇ 1, respectively. Cycle parameters: 94 ° C 20s, 60 ° C 30s, 68 ° C 2 min, a total of 25 cycles. Nd e I and BamH I were used to double digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase.
  • the ligated product was transformed into E. coli DH5cc using the calcium chloride method. After being cultured overnight in LB plates containing kanamycin (final concentration 30 ⁇ ⁇ / ⁇ 1), positive clones were selected by colony PCR method and sequenced. A positive clone (PET-0533 ⁇ 1) with the correct sequence was selected, and the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) plySs (product of Novagen) using the calcium chloride method.
  • the host bacteria BL21 (pET-0533f 11) was cultured at 37 ° C to the logarithmic growth phase, and IPTG was added to a final concentration of lramol / L, Continue incubation for 5 hours. The cells were collected by centrifugation, and the supernatant was collected by centrifugation. The supernatant was collected by centrifugation. Chromatography was performed using an affinity column His. Bind Quick Cartridge (product of Novagen) capable of binding to 6 histidines (6His-Tag). The purified human proteolytic enzyme regulatory protein 9 was obtained.
  • the following peptides specific for human proteolytic enzyme 9 were synthesized using a peptide synthesizer (product of PE): NH 2 -Met-Leu-Ser-Leu-Leu-Thr-Pro-Leu-Gly-Ser-Gln-Ala -Ile-Gln-Thr-COOH (SEQ ID NO: 7).
  • the polypeptide is coupled to hemocyanin and bovine serum albumin to form a complex, respectively.
  • Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in a variety of ways.
  • the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected.
  • the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or pathology. Whether the expression in tissue cells is abnormal.
  • the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEO ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method.
  • Filter hybridization methods include dot blotting, Southern blotting, Northern blotting, and copying methods. They all use the same steps of hybridization after fixing the polynucleotide sample to be tested on the filter.
  • the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer so that the non-specific binding site of the sample on the filter is saturated with the carrier and the synthesized polymer.
  • the pre-hybridization solution is then replaced with a hybridization buffer containing the labeled probe and incubated to hybridize the probe to the target nucleic acid.
  • the unhybridized probes are removed by a series of membrane washing steps.
  • This embodiment utilizes higher-intensity washing conditions (such as lower salt concentration and higher temperature) to reduce the hybridization background and retain only strong specific signals.
  • the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; the second type of probes are partially related to the present invention
  • the polynucleotide SEQ ID NO: 1 is the same or complementary oligonucleotide fragment.
  • the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained. First, the selection of the probe
  • oligonucleotide fragments for use as hybridization probes from the polynucleotide SEQ ID NO: 1 of the present invention should follow the following principles and several aspects to be considered:
  • the preferred range of probe size is 18-50 nucleotides
  • Those that meet the above conditions can be used as primary selection probes, and then further computer sequence analysis, including the primary selection probe and its source sequence region (ie, SEQ ID NO: 1) and other known genomic sequences and their complements The regions are compared for homology. If the homology with the non-target molecular region is greater than 85% or there are more than 15 consecutive bases, the primary probe should not be used;
  • Probe 1 (probel), which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt)
  • Probe 2 which belongs to the second type of probe, is equivalent to the replacement mutation sequence (41Nt) of the gene fragment of SEQ ID NO: 1 or its complementary fragment:
  • PBS phosphate buffered saline
  • step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
  • NC membranes nitrocellulose membranes
  • the 32 P-Probe (the second peak is free ⁇ - 32 P-dATP) is prepared after the collection solution of the first peak is combined.
  • the sample membrane was placed in a plastic bag, and 3 to 10 mg of a pre-hybridization solution (10xDenhardf s; 6xSSC, 0.1 mg / ml CT DNA (calf thymus DNA)) was added. After sealing the mouth of the bag, shake in a 68 C water bath for 2 hours.
  • a pre-hybridization solution (10xDenhardf s; 6xSSC, 0.1 mg / ml CT DNA (calf thymus DNA)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

L'invention concerne un nouveau polypeptide, une protéine de régulation 9 de la protéase humaine, et un polynucléotide codant pour ce polypeptide ainsi qu'un procédé d'obtention de ce polypeptide par des techniques recombinantes d'ADN. L'invention concerne en outre les applications de ce polypeptide dans le traitement de maladies, notamment des tumeurs malignes, de l'hémopathie, de l'infection par VIH, de maladies immunitaires et de diverses inflammations. L'invention concerne aussi l'antagoniste agissant contre le polypeptide et son action thérapeutique ainsi que les applications de ce polynucléotide codant pour la protéine de régulation 9 de la protéase humaine.
PCT/CN2000/000652 1999-12-29 2000-12-25 Nouveau polypeptide, proteine de regulation 9 de la protease humaine, et polynucleotide codant pour ce polypeptide WO2001049731A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU21424/01A AU2142401A (en) 1999-12-29 2000-12-25 A new polypeptide-human protease regulatory protein 9 and the polynucleotide encoding it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN99127227A CN1301766A (zh) 1999-12-29 1999-12-29 一种新的多肽——人蛋白水解酶调节蛋白9和编码这种多肽的多核苷酸
CN99127227.7 1999-12-29

Publications (1)

Publication Number Publication Date
WO2001049731A1 true WO2001049731A1 (fr) 2001-07-12

Family

ID=5284815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000652 WO2001049731A1 (fr) 1999-12-29 2000-12-25 Nouveau polypeptide, proteine de regulation 9 de la protease humaine, et polynucleotide codant pour ce polypeptide

Country Status (3)

Country Link
CN (1) CN1301766A (fr)
AU (1) AU2142401A (fr)
WO (1) WO2001049731A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016436A1 (fr) * 1990-04-13 1991-10-31 Schering Corporation Nouveaux dosages de proteases

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016436A1 (fr) * 1990-04-13 1991-10-31 Schering Corporation Nouveaux dosages de proteases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SULSTON J.E. AND WATERSTON R.: "Toward a complete human genome sequence", GENOME RES., vol. 8, no. 11, 1998, pages 1097 - 1108 *

Also Published As

Publication number Publication date
CN1301766A (zh) 2001-07-04
AU2142401A (en) 2001-07-16

Similar Documents

Publication Publication Date Title
WO2002026972A1 (fr) Nouveau polypeptide, proteine humaine 20.13 de liaison de l'acide polyadenylique, et polynucleotide codant ce polypeptide
WO2001090169A1 (fr) Nouveau polypeptide, antigene nucleaire de proliferation cellulaire (pcna) 13, et polynucleotide codant ce polypeptide
WO2001047968A1 (fr) Nouveau polypeptide, hexokinase 12, et polynucleotide codant pour ce polypeptide
WO2001049731A1 (fr) Nouveau polypeptide, proteine de regulation 9 de la protease humaine, et polynucleotide codant pour ce polypeptide
WO2001047983A1 (fr) Nouveau polypeptide, facteur de liberation de la corticotrophine 13, et polynucleotide codant pour ce polypeptide
WO2001048000A1 (fr) Nouveau polypeptide, fibronectine 10 de type ii, et polynucleotide codant pour ce polypeptide
WO2001048195A1 (fr) Nouveau polypeptide, proteine rcc1 10, et polynucleotide codant pour ce polypeptide
WO2001072793A1 (fr) Nouveau polypeptide, proteine humaine de regulation 12 de la proteine hydrolase, et polynucleotide codant pour ce polypeptide
WO2001048159A1 (fr) Nouveau polypeptide, dihydroorotase 9, et polynucleotide codant pour ce polypeptide
WO2001046437A1 (fr) Nouveau polypeptide, region de liaison d'arn-eucaryote rnp-1-21, et polynucleotide codant pour ce polypeptide
WO2002033077A1 (fr) Nouveau polypeptide, une proteine de regulation 10.01 etant associee au developpement humain et polynucleotide la codant
WO2001073068A1 (fr) Nouveau polypeptide, l1-12, et polynucleotide codant pour ce polypeptide
WO2001064733A1 (fr) Nouveau polypeptide, facteur humain 22 lie a la transcription inverse, et polynucleotide codant pour ce polypeptide
WO2001046409A1 (fr) Nouveau polypeptide, proteine ribosomale s7 9, et polynucleotide codant pour ce polypeptide
WO2001049725A1 (fr) NOUVEAU POLYPEPTIDE, FACTEUR σ-54 13, ET POLYNUCLEOTIDE CODANT POUR CE POLYPEPTIDE
WO2001049723A1 (fr) Nouveau polypeptide, atp synthetase 9, et polynucleotide codant pour ce polypeptide
WO2001049860A1 (fr) Nouveau polypeptide, helicase 9, et polynucleotide codant pour ce polypeptide
WO2001083776A1 (fr) Nouveau polypeptide, hormone de croissance humaine 11, et polynucleotide codant pour ce polypeptide
WO2001047994A1 (fr) Nouveau polypeptide, proteine 10 utilisant pep, et polynucleotide codant pour ce polypeptide
WO2001047997A1 (fr) Nouveau polypeptide, stathmine 8, et polynucleotide codant pour ce polypeptide
WO2002012324A1 (fr) Nouveau polypeptide, proteine 13 humaine associee a la transcription inverse orf2 du facteur l1, et polynucleotide codant ce polypeptide
WO2001047965A1 (fr) Nouveau polypeptide, proteine rcc1 11, et polynucleotide codant pour ce polypeptide
WO2002012305A1 (fr) Nouveau polypeptide, avidine 9, et polynucleotide codant ce polypeptide
WO2001049853A1 (fr) Phosphoribosyle glycinamide synthase 9 et polynucleotide codant ce polypeptide
WO2001047987A1 (fr) Nouveau polypeptide, gene $g(s)-54, et polynucleotide codant pour ce polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP