WO2001042061A1 - Generateur de gaz - Google Patents

Generateur de gaz Download PDF

Info

Publication number
WO2001042061A1
WO2001042061A1 PCT/JP2000/008630 JP0008630W WO0142061A1 WO 2001042061 A1 WO2001042061 A1 WO 2001042061A1 JP 0008630 W JP0008630 W JP 0008630W WO 0142061 A1 WO0142061 A1 WO 0142061A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
gas
generating agent
housing
gas generator
Prior art date
Application number
PCT/JP2000/008630
Other languages
English (en)
French (fr)
Inventor
Takeshi Ishida
Yoshiyuki Kishino
Original Assignee
Nippon Kayaku Kabushiki-Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki-Kaisha filed Critical Nippon Kayaku Kabushiki-Kaisha
Priority to US10/148,211 priority Critical patent/US6779812B2/en
Priority to EP00979947A priority patent/EP1236624A4/en
Publication of WO2001042061A1 publication Critical patent/WO2001042061A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • B60R2021/2648Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder comprising a plurality of combustion chambers or sub-chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/231Inflatable members characterised by their shape, construction or spatial configuration
    • B60R21/23138Inflatable members characterised by their shape, construction or spatial configuration specially adapted for side protection

Definitions

  • the present invention relates to a gas generator, particularly a gas generator suitable for inflating and deploying an airbag for side collision or for a passenger seat.
  • a gas generator for inflating and deploying a side collision or passenger airbag As an example of a gas generator for inflating and deploying a side collision or passenger airbag, the one shown in Fig. 5 is proposed.
  • the gas generator in Fig. 5 mainly expands and deploys an airbag for side collision, and is a long cylinder ⁇ ! Dog housing 51 is provided. Inside the housing 51, a combustion chamber 52 and a cooling filtration chamber 53 are formed in the axial direction of the housing 51 by a partition ring plate 54. A gas generating agent 55 that generates high-temperature gas by combustion is loaded in the fuel chamber 52, and a high-temperature gas generated by the combustion of the gas generating agent 55 is filtered in the cooling and filtering chamber 53. A cylindrical filter material 56 for cooling is mounted. At the shaft end of the housing 51, an igniter 57 for blowing out a flame into the fuel chamber 52 is mounted.
  • the igniter 57 is energized and ignited by the collision detection signal from the collision sensor, and this flame is ejected into the combustion chamber 52 to ignite and burn the gas generating agent 55.
  • the high-temperature gas generated in the combustion chamber 52 which rapidly generates a large amount of high-temperature gas, flows into the filter material 56 of the cooling filter 3 through the partition ring plate 54, and then flows into the filter material 56. Then, after collecting and cooling the slag, each gas is released from the housing 51 It is discharged into the airbag through the hole 51a.
  • the airbag is rapidly inflated and deployed by a large amount of clean gas released from each gas discharge hole 51a.
  • the housing 51 is made small in diameter in order to cope with the reduction in size and weight, the housing 51 is provided with a gas generating agent 55 for inflating and deploying the airbag. It is necessary to increase the axial length of the fuel 52. If the length of the housing 51 in the axial direction is reduced, it is necessary to increase the diameter of the housing 51 for the same reason.
  • conventional gas generators have a form in which a large amount of gas is constantly released to rapidly deploy and inflate the airbag, regardless of the type of automobile collision (low-speed collision, high-speed collision, etc.). ing. Therefore, the conventional gas generator cannot cope with the soft inflation technology that makes it possible to control the inflation and deployment of the airbag according to the type of vehicle collision.
  • the gas generator of the present invention is designed to reduce the size and weight by effectively utilizing the entire volume of the housing, to collect and cool slag of high-temperature gas over the filter material, and to expand and deploy the airbag. Controllability. Disclosure of the invention
  • the gas generator of the present invention includes a long cylindrical housing. Inside the housing, the first combustion chamber, the third combustion chamber inside the filter material hole, and the second combustion chamber are formed continuously in the axial direction of the housing in the axial direction of the housing. .
  • Each combustion chamber is loaded with a gas generating agent, and at least one of the first combustion chamber and the second combustion chamber is provided with ignition means for igniting the gas generating agent.
  • the ignition means when the ignition means is energized and ignited, this flame is ejected into, for example, the first room. Then, the energy in the housing moves to the first combustion chamber, the third fuel J chamber in the filter material, and the second fuel in this order.
  • the gas generated by the combustion of the gas generating agent is transferred from the first combustion chamber side to the first combustion chamber side through the third combustion chamber in the filter material. Can be flowed over.
  • the gas generating agent in the third combustion chamber is a gas generating function that inflates and deploys the airbag, and a transfer agent that propagates the flame and heat generated in the first combustion chamber to the second combustion chamber. Has functions.
  • the amount of high-temperature gas generated in the housing is reduced by burning the gas generating agent in the order of the first combustion chamber, the third combustion chamber, and the second combustion chamber.
  • it can be a small amount generated in the first combustion chamber, and then a large amount generated in each combustion chamber.
  • the ignition means is disposed in each of the first combustion chamber and the second combustion chamber, and the ignition means is energized and fired with a time difference, thereby controlling the amount of high-temperature gas generated in the housing. You can also. This is compatible with soft inflation technology that enables control of airbag inflation and deployment.
  • the gas generator of the present invention a structure in which a gas generating agent is not loaded in any of the first to third combustion chambers, for example, the third combustion chamber in the filter material can be adopted.
  • the gas generating agent in each combustion chamber is continuously loaded.
  • the gas generating agents in each of the combustion chambers can be continuously ignited and burned.
  • the igniting means is constituted only by an igniter that energizes and ignites.
  • the structure can be simplified without mounting a transfer agent or the like that propagates the flame of the ignition means in the axial direction of the housing.
  • each combustion chamber is formed continuously in the axial direction of the housing 1, and the diameter of the third combustion chamber is made smaller than that of the first combustion chamber and the second combustion chamber.
  • the structure is such that flames and heat easily accumulate indoors.
  • the amount of the gas generating agent loaded in the first combustion chamber is different from that in the second combustion chamber.
  • the generation amount of the high-temperature gas can be achieved by appropriately changing the volume ratio of the first combustion chamber and the second combustion chamber and adjusting the amount of the gas generating agent charged. Specifically, by changing the length of the filter material or the position where the filter material is mounted in the housing, the volume ratio of the second chamber and the second combustion chamber is changed. You.
  • the volume of the first combustion chamber and the volume of the second combustion chamber are made different.
  • the loading amount of the gas generating agent in the first combustion chamber and the second combustion chamber can be adjusted.
  • the amount of gas generating agent charged can also be adjusted.
  • the volumes of the first combustion chamber and the second combustion chamber can be adjusted by changing the length of the filler material or the position where the filler material is mounted in the housing.
  • a partition member is provided on an end face of the filter member.
  • the high-temperature gas generated in the first combustion chamber or the second combustion chamber does not flow directly to the end face of the filter material or to each gas discharge hole, but to the high-temperature gas in the hole of the filter material. 3 can lead to the combustion chamber. Therefore, in the early stage of the combustion, it is possible to cause the flame or the like ejected from the ignition means to be trapped in the first combustion chamber or the second combustion chamber. Almost, and can burn to JI suddenly.
  • gas generator according to the present invention is mounted as an airbag for side collision.
  • airbags for side collisions are installed in the extremely narrow space of an automobile, so they can be used to reduce the size and weight of gas generators, making them ideal for inflating and deploying airbags for side collisions. . BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a sectional view showing a gas generator of the present invention.
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • FIG. 3 is an enlarged view of a main part showing a caulking structure between an outer cylinder and a lid member of the gas generator in FIG.
  • FIG. 4 shows the structure of the present invention.
  • FIG. 9 is a graph showing results of a 60 liter tank test for a gas generator and a conventional gas generator, and showing a relationship between tank internal pressure (kPa) / time (millisecond).
  • FIG. 5 is a sectional view showing a conventional gas generator. BEST MODE FOR CARRYING OUT THE INVENTION
  • the gas generator S shown in FIGS. 1 and 2 mainly inflates and deploys an air bag for side collision.
  • the gas generator S includes a long cylindrical housing 1, a cylindrical filter material 2 mounted in the housing 1, first to third combustion chambers 3 to 5 formed in the housing, and a housing.
  • the gas generating agent 6 is provided in the first to third combustion chambers 3 to 5 in 1, and ignition means 7 for forcibly igniting the gas generating agent 6 is provided.
  • the housing 1 includes an outer cylinder 8 having both ends opened, a holder 9 for closing each open end of the tab Mf 8, and a plug 10.
  • the housing 1 has a structure in which a sealed space P is formed inside by fitting a holder 9 and a plug 10 into each opening end side of the outer cylinder 8 and drawing the outer periphery of the outer cylinder 8. As shown in FIG. 3, this drawing is performed by projecting each opening side of the outer cylinder ⁇ into the holder 9 and the annular groove 12 of the V ⁇ l dog formed in the plug 10. b, and each protrusion 8b is closely attached to the V-shaped dog in each annular groove 12 (see FIG. 3).
  • each annular groove 12 is brought into elastic contact with the inner periphery of the outer cylinder ⁇ and the V-shaped dog in each annular groove 12, and Seal and form a sealed space ⁇ .
  • the holder 9 and the plug 10 are positioned in the outer cylinder 8 and are prevented from coming off by the close contact between the respective projections 8 b of the outer cylinder 8 and the respective annular grooves 12.
  • the outer cylinder 8 of the housing 1 has a sealed space P and an airbag for side collision. A plurality of communicating gas discharge holes 8a are formed.
  • Each gas discharge hole 8a is opened at a middle portion of the outer cylinder 8 to which the filter material 2 is mounted except for each shaft end side of the housing 1, and formed at predetermined intervals in the axial direction and the circumferential direction of the housing 1. Have been.
  • Each gas discharge hole 8a is closed by a burst plate 1i attached to the inner periphery of the outer cylinder 8.
  • the burst plate 11 is formed of, for example, a metal foil such as aluminum, and plays a role of moisture proof and internal pressure adjustment in the housing 1.
  • the filter material 2 is formed in the axial direction of the housing 1 to have a dimension shorter than the distance between the holder 9 and the plug 10, and is inserted into the sealed space! 3 of the housing 1.
  • the filter material 2 is arranged so as to extend in the axial direction of the housing 1 so as to be concentric with the axis of the housing 1.
  • An inner hole 2A is formed in the axial direction of the filter material 2 so as to penetrate in the axial direction of the housing 1.
  • the filter material 2 has a gas discharge hole 8 excluding each shaft end side in the housing 1. It is positioned in the middle part of the outer cylinder 8 where a is formed.
  • the filter material 2 is provided between the large-diameter first and second combustion chambers between the shaft end face of the filter material 2 and the holder 9 and the plug 10 which are the shaft ends of the housing 1.
  • a small-diameter third combustion chamber 5 penetrating in the axial direction of the housing 1 is formed in the inner hole 2A of the filter material 2, and the first and second combustion chambers 3.4 pass through the third combustion chamber 5. Is in communication. Therefore, the inside of the sealed space P of the housing 1 has a structure in which the first combustion chamber 3, the third combustion chamber 5, and the second combustion chamber 4 are successively arranged in the axial direction of the housing 1 from the holder 9 side.
  • filter material 2 [Well, for example, knitted knitted wire mesh ⁇ crimp. It can be manufactured at low cost by forming an aggregate of woven metal wires into a cylindrical shape.
  • the positioning of the filter material 2 is performed by a drawing process applied to the outer periphery of the filter support 14 and the outer cylinder 8.
  • This filter support 14 An inner cylindrical member 15 having a plurality of gas passage holes 15 a, and two partitioning caps # 6 and 17.
  • the inner cylindrical member 15 is inserted around the outer periphery of the filter member 2. Further, the partition caps 16 and 17 are fitted into the inner circumference of the outer cylinder 8 and the outer circumference of the inner cylinder 15 from the respective shaft end sides of the filter material 2.
  • the filter support 14 supports the filter material 2 with the inner cylindrical member 15 and the partition caps 16 and 17, and fits the caps 16 and 17 into the inner periphery of the outer cylinder 8. Restrict the movement of the housing 1 in the radial direction and position it.
  • the filter support 14 is formed by fitting the partitioning caps 6 and 17 between the inner circumference of the outer cylinder 8 and the outer circumference of the inner cylinder material 15 so that the inner circumference of the outer cylinder 8 is
  • An annular gas space P1 is formed between the outer periphery of the member 15 and the outer periphery.
  • the partition caps 16 and 17 are provided with openings 16 A and 17 A communicating with the inner hole 2 A of the filter material 2 by fitting with the outer cylinder 8 and the inner cylinder 15.
  • openings 16 A and 17 A communicating with the inner hole 2 A of the filter material 2 by fitting with the outer cylinder 8 and the inner cylinder 15.
  • the partition caps 16 and 17 transfer the high-temperature gas generated in the large-diameter first combustion chamber 3 or the second combustion chamber 4 to the small-diameter third fuel Jt through the openings 16A and 17A. It has a function to guide it into the chamber 5.
  • each partition cap 16. 17 regulates the amount of high-temperature gas flowing from the large-diameter first and third combustion chambers 4 into the small-diameter third combustion chamber 5, and It exerts an effect of blocking the flame and the like that is jetted into the second combustion chamber 4.
  • each projection 8c is brought into contact with each of the caps 16 and 17 without any gap, and the high-temperature gas generated in each of the combustion chambers 3 and 4 is supplied to the inside of each of the caps 6 and 17 and the outer cylinder 8. It restricts the gas from flowing directly into the gas passage space P1 from the circumference.
  • the gas generating agent 6 generates a high-temperature gas by combustion, and is charged in the first combustion chamber 3, the third combustion chamber 5 in the filter material 2, and the second fuel 4.
  • the gas generating agent 6 is loaded in all the spaces except the filter material 2 in the sealed space P of the housing I, and is continuously arranged in the axial direction of the housing 1.
  • the gas generating agent 6 is prevented from being powdered by vibration by the two cushion materials 18 and 19.
  • the cushion material 18 is located between the cushion presser 20 provided on the holder 9 and the gas generating agent 6 and is mounted in the first fuel chamber 3.
  • This cushion plate 18 has a notch of a dog!
  • the cushion member 19 is located between the plug 10 and the gas generating agent 6 and is mounted in the second fuel chamber 4.
  • an elastic material such as silicon rubber / silicon foam.
  • the ignition means 7 is composed of only an igniter that energizes and ignites, and is mounted on the holder 9 from inside the housing 1.
  • the ignition means 7 is disposed so as to protrude toward the first combustion chamber 3 and is in contact with the cushion member 18.
  • the ignition means 7 energizes and ignites based on the collision detection signal from the collision sensor, ejects this flame into the first combustion chamber 3 and forcibly causes the gas generating agent 6 in the first combustion chamber 3. Ignite.
  • the ignition means 7 When the collision sensor detects that the vehicle has collided, the ignition means 7 is energized and fired. After the flame of the ignition means 7 ruptures and opens the cushion material 1 ⁇ , the flame is ejected into the second combustion chamber 3 to forcibly ignite and burn only the gas generating agent 6 in the first combustion chamber 3. Generates hot gas. At this time, the flame generated by the ignition means 7 and the heat of the high-temperature gas are not directly flown by the partition cap 16 into the shaft end of the filter material 2 and the respective gas discharge holes 8a. You will be led to room 5.
  • the amount of high-temperature gas flowing from the large-diameter first combustion chamber 3 to the small-diameter third combustion chamber 5 is regulated, so that the flame and heat of the high-temperature gas are trapped in the first combustion chamber 3, and the gas generating agent 6 easily and quickly ignites and burns.
  • the high-temperature gas generated in the first combustion chamber 3 flows through the opening 16A of the cap 16 into the third combustion chamber 5 inside the inner hole 2A of the filter material 2, and flows into the filter material 2. Then, after collecting and cooling the slag, it is discharged into the gas passage space P1.
  • the gas generating agent 6 in the third combustion chamber 5 is ignited and burned by the flowing flame and high-temperature gas to generate high-temperature gas. Then, the combustion in the third combustion chamber 5 moves toward the second combustion chamber 4 by sequentially burning the gas generating agent 6 from the first combustion chamber 3 side. Accordingly, the gas generating agent 6 in the third combustion chamber 5 has a gas generating function for inflating and deploying the airbag, and propagates the flame, heat, and the like generated in the first combustion chamber 4 to the second combustion chamber 4. It has a fire transmission function.
  • the airbag starts inflating and deploying slowly only by the first combustion chamber 3 or by a small amount of gas generated in the first and third combustion chambers 3 and 5. Subsequently, as combustion proceeds not only in the first combustion chamber 3 but also in the third combustion chamber 5, there is a slight time difference from the start of combustion in the first combustion chamber 3 and the combustion in the third combustion chamber 5 mainly.
  • the high-temperature gas is ejected from the opening 17A of the partition cap 17 into the second combustion chamber 4 to ignite and burn the gas generating agent 6 in the second combustion chamber 4, thereby generating a high-temperature gas.
  • the high-temperature gas generated in the second combustion chamber 4 flows into the third combustion chamber 5 and flows into the filter material 2, where it is collected and cooled, and then flows out into the gas passage space P1. I do.
  • the gas that has flowed into the gas passage space P1 is homogenized and discharged from each gas discharge hole 8a into the air bag.
  • the airbag is now in a state of rapid inflation and deployment by the large amount of clean gas released from each of the combustion chambers 3-5.
  • the airbag starts inflating and deploying gently by the small amount of gas generated only in the first combustion chamber 3 or in the first and third combustion chambers 5 in the initial stage of deployment. Due to the large amount of gas generated in ⁇ 5, it suddenly expands to J ⁇ .
  • the entire volume of the housing is effectively used, and the filter material 2 and the The gas generating agent 6 can be mounted and loaded. Therefore, in order to reduce the size of the gas generator S, for example, even if the diameter of the housing 1 is reduced, the amount of the gas generating agent 6 that expands and expands the air bag is secured without changing the length of the housing 1. It is possible to do.
  • the gas generating agent 6 in the housing 1 is burned in the order of the first, third, third combustion chamber 5 and second combustion chamber 4, the high-temperature gas can be dispersed and flowed throughout the filter material 2. . Therefore, breakage of the filter material 2 due to thermal melting or the like can be suppressed, and minute slag can be prevented from being discharged into the airbag.
  • the gas generating agent 6 is sequentially burned from the first combustion chamber 3, so that the amount of gas generated in the housing 1 is reduced only in the first combustion 3 or in the first and third combustion stages in the early stage of burning and burning. (3) A small amount generated in the combustion chambers, and then a large amount generated in each of the combustion chambers 3 to 5 in a short time. As a result, it is possible to respond to the soft inflation technology that enables control of the inflation and deployment of the airbag, and the original function of the airbag can be exhibited.
  • control mode of the inflation and deployment of the airbag can be adjusted by appropriately changing the loading and amount of the gas generating agent 6 loaded in each combustion chamber 3-5.
  • the amount of the gas generating agent 6 to be charged into the first and second combustion chambers 3 and 4 can be adjusted, and accordingly, the amount of gas discharged from the first and second combustion chambers 3 and 4 to the airbag can be appropriately changed. It is possible to change the control mode of inflation and deployment of the airbag.
  • the loading amount and the gas amount of the gas generating agent 6 in the third combustion chamber 5 can also be adjusted. Also, by changing the mounting position of the filter material 2 without changing the position of the filter material 2, the volume ratio of the first and second combustion chambers 3 is changed, and the first and second combustion chambers are changed. 3 and 4 gas generant amounts can be adjusted. For example, by mounting the filter member 2 so as to be shifted from the position shown in FIG. 1 to the holder 9 side, the volume of the first m 3 can be reduced and the volume of the second combustion chamber 4 can be increased.
  • the gas generator S according to the present invention has been described with respect to a device for inflating and deploying a side collision airbag, the present invention is not limited to this, and may be applied to a passenger airbag incorporated in an instrument panel. Applicable.
  • a gas generator that inflates and deploys a passenger airbag usually has a long cylindrical housing, and by applying the structure shown in Figs. Weight reduction can be achieved.
  • the gas generating agent 6 is ignited by one ignition means 7, but the ignition means is also attached to the plug 10 of the housing 1 to inflate the airbag.
  • a structure that makes deployment controllable can also be used. Then, the inflation and deployment of the airbag is controlled by appropriately selecting the energization and firing of the two ignition means. That is, by energizing and firing the respective ignition means simultaneously, the airbag is rapidly expanded and deployed by a large amount of gas generated in each combustion chamber.
  • the airbag is gradually expanded and deployed by a small amount of gas generated in the first combustion chamber in the initial stage of deployment, and after a small time difference, a large amount of air generated in each combustion chamber is developed. Rapidly inflate and deploy with this gas.
  • the first combustion chamber 3 is shut off from the third combustion chamber 5 of the filter material at the beginning of combustion. Configuration can be adopted.
  • the first combustion chamber 3 is cut off from the gas discharge holes 8 a and the third combustion chamber 5 inside the shaft end of the filter material 2 by the partition cap 16 and the burst plate 25.
  • the flame and the high-temperature gas ejected from the ignition means 7 are filled with heat. Therefore, the combustion in the first combustion chamber 3 easily and rapidly burns the gas generating agent 6 by effectively utilizing the heat of the high-temperature gas generated by the flame of the ignition means 7 and the combustion of the gas generating agent 6. You can bake.
  • the burst plate 25 is ruptured by the rise of Ji ⁇ in the i-th combustion chamber 3 or by a flame.
  • the ignition means 7 is composed of only the igniter, it is possible to sufficiently ignite and burn the gas generating agent 6 in the first combustion chamber 3 only by the flame of the igniter.
  • the gas generating agent 6 is shown to be charged continuously in the order of the first fuel 3, the third m chamber 5, and the second combustion chamber, but the present invention is not limited to this.
  • the gas generating agent 6 may be loaded discontinuously by providing a partition member between each of the fuel chambers 3 and 5 and between 5 and 4 that can be ruptured by the gas generating agent 6.
  • a structure in which a space is formed between each of the fuel chambers 3 to 5 can be adopted.
  • a structure without loading can also be adopted.
  • the gas generating agent 6 in the third combustion chamber 5 has a function of transmitting high-temperature gas, flame, and the like generated in the first combustion chamber 3 to the second combustion chamber 4, If the high-temperature gas, flame, etc. generated in the combustion chamber 3 can be sufficiently transmitted into the second combustion chamber 4 through the inner hole 2A of the filter material 2, the gas generating agent 6 is loaded into the third combustion chamber 5. Without this, the gas generating agent 6 in the second combustion chamber 4 can be ignited and burned.
  • the pressure rise characteristics were measured in a comparison between the gas generator of the present invention (see FIG. 1) and a conventional gas generator (see FIG. 5).
  • the four pressure characteristics were measured by a 60 liter tank test.
  • the 60-liter tank test means that a gas generator is installed in a 60-liter stainless steel tank, and the tank is sealed.
  • the igniter is energized and ignited to generate gas, and the change in tank internal pressure (rise rate) is measured in relation to the elapsed time (millisecond).
  • FIG. 4 shows test results of the pressure rise characteristics of the gas generator of the present invention and the conventional gas generator.
  • the gas generator of the present invention has a gradual increase rate at the initial stage of combustion of the gas generating agent as compared with the conventional gas generator. Further, from point a after a predetermined time (millisecond) has elapsed, the gas generator of the present invention has reached the maximum pressure value P max with a sharper pressure rise than the conventional gas generator.
  • the gas generating agent was burned in the order of the first combustion chamber, the third combustion chamber, and the second combustion chamber with a small time difference. Further, in the gas generator of the present invention, when the gas generating agent in the first combustion J3 ⁇ 4 chamber is ignited and burned, the high-temperature gas generated in the first combustion chamber flows into the third combustion chamber and the second combustion chamber. In other words, the initial combustion in the first combustion chamber is performed with the entire volume of the nodging, and the pressure rise rate is suppressed.
  • the airbag when the airbag is inflated and deployed, it can be gently inflated and deployed with a small amount of low-pressure gas whose pressure rise rate is suppressed at the initial stage of the deployment of the airbag.
  • the rate of rise and the large amount of gas at the highest pressure will enable rapid expansion and deployment.
  • the gas generator of the present invention is optimal for soft inflation technology.
  • conventional gas generators cannot be applied to soft inflation technology because they have a sharp pressure rise characteristic from the early stage of the combustion of the gas generating agent.
  • the point a in FIG. 4 can be adjusted by, for example, changing the volume ratio of the first and second combustion chambers 3 and 4 or the ratio of the charged amount of the gas generating agent 6, and the gas generator of the present invention can be adjusted. Then, the gas generation mode can be appropriately selected.
  • ADVANTAGE OF THE INVENTION According to this invention, it can respond

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

明 細 書
ガス発生器 技術分野
本発明は、 ガス発生器、特に側面衝突用、 又は助手席用のエアバッグ を膨張展開させるのに好適なガス発生器に関する。 背景技術
側面衝突用、 又は助手席用のエアバッグを膨張展開させるガス発生器 の一例としては、 第 5図に示すものが提案されている。
第 5図のガス発生器は、 主として側面衝突用のエアバッグを膨張展開 させるもので、 長尺円筒^!犬のハウジング 5 1を備えている。 ハウジング 5 1の内部には、仕切リング板 5 4によって、 ハウジング 5 1の軸方向 に燃焼室 5 2と冷却濾過室 5 3とが形成されている。 燃 室 5 2内には 、燃焼により高温ガスを発生するガス発生剤 5 5が装填され、又、 冷却 濾過室 5 3内には、 ガス発生剤 5 5の燃焼により発生した高温ガスを濾 過、 冷却する円筒状のフィルタ材 5 6が装着されている。 又、 ハウジン グ 5 1の軸端部には、 燃尭室 5 2内に火炎を噴出する点火器 5 7が装着 されている。
このガス発生器においては、 衝突センサからの衝突検出信号により点 火器 5 7を通電発火し、 この火炎を燃焼室 5 2内に噴出させて、 ガス発 生剤 5 5を着火燃焼させることで、 多量の高温ガスを急激に発生させる 燃焼室 5 2内で発生した高温ガスは、仕切リング板 5 4内を通して冷 却濾 3のフィルタ材 5 6内側に流出した後、 フィルタ材 5 6内に 流入し、 ここでスラグ捕集と冷却を経て、 ハウジング 5 1の各ガス放出 孔 5 1 aからエアバッグ内に放出される。 エアバッグは、 各ガス放出孔 5 1 aから放出される多量の清浄なガスによって、 急速に膨張展開され る。
ところで、 近年、 ガス発生器の技術分野では、 小型 '軽量化のガス発 生器が要求されつつある。 この観点からして、 従来のガス発生器では、 燃 室 5 2、 冷却濾過室 5 3とを形成し、 フィルタ材 5 6の孔内に何も 装着しな 、無駄な空間を有していることから、 ハウジングの全体容積を 有効に利用して、 小型 '軽量化を図ることにも一定の限度がある。
即ち、 従来のガス発生器では、 小型 '軽量化に対応するため、 ハウジ ング 5 1を小径にすると、 エアバッグを膨張展開させるガス発生剤 5 5 の装 msを確保すべく、 ハウジング 5 1の燃^ 5 2の軸方向の長さを 長くする必要がある。 又、 ハウジング 5 1の軸方向の長さを短くすると 、 同様な理由からハウジング 5 1を大径にする必要がある。
また、 従来のガス発生器では、 自動車衝突の形態 (低速衝突、 高速衝 突など) の如何に拘らず、 常に、 多量のガスを放出してエアバッグを急 速に展開膨張させる形態を有している。 従って、 従来のガス発生器では 、 自動車衝突の形態に応じてエアバッグの膨張展開を制御可能となすソ フトインフレ一ション技術に対応できない。
本発明のガス発生器は、 ハウジングの全体容積を有効に利用して小型 •軽量化を図ること、 高温ガスのスラグ捕集 ·冷却をフィルタ材全体に て行うこと、 及びエアバッグの膨張展開を制御可能とすることにある。 発明の開示
本発明のガス発生器は、 長尺円筒状のハウジングを備えている。 ハウ ジングの内部には、 ハウジングの軸方向にわたって、 第 1 '燃焼室、 フィ ルタ材の孔内の第 3燃焼室及び第 2燃焼室の順に連続して形成してなる 。 各燃焼室内には、 ガス発生剤を装填し、 第 1燃焼室及び第 2燃焼室の 少なくとも一方には、 ガス発生剤を着火させる点火手段を配設する。 これによつて、 フィルタ材内の第 3燃 室にもガス発生剤を装填する ことで、 ハウジングの全体容積を有効に利用して、 フィル夕材、 ガス発 生剤を装着 ·装填できる。 従って、 ガス発生器を小型 ·軽量化するため 、例えば、 ハウジングを小径としても、 ハウジングの軸方向の長さを長 くする必要がなく、 エアバッグの膨張展開させるに十分なガス発生剤の 装填量を確保できる。
又、 本発明のガス発生器では、 点火手段を通電発火すると、 この火炎 が、例えば第 1 '«室内に噴出される。 そして、 ハウジング内での « は、 第 1燃焼室、 フィルタ材内の第 3燃 J¾室及び第 2燃^の順に移つ て行くことになる。 ガス発生剤の燃焼によって発生したガスは、 第 1燃 焼室側から順次、 フィルタ材内の第 3燃 室を通つて第 1燃焼室側に移 つて行くことになるので、 高温ガスをフィルタ全体にわたって流入させ ることがきる。
このこと力、ら、 第 3燃 室内のガス発生剤は、 エアバッグを膨張展開 させるガス発生機能と、 第 1燃焼室内で発生した火炎、 熱などを第 2燃 焼室に伝播する伝火剤機能を備えている。
更に、 本発明のガス発生器では、 第 1燃焼室、 第 3燃焼室及び第 2燃 焼室の順に、 ガス発生剤を燃焼させることで、 ハウジング内に発生する 高温のガス量を、燃焼初期に第 1燃焼室などで発生した少量とし、 その 後、各燃焼室で発生した多量のものにできる。 そして、第 1燃 室及び 第 2燃焼室の夫々に点火手段を配設し、各点火手段を時間差をもって通 電発火することで、 ハウジング内で発生する高温ガスの発生量を制御可 能とすることもできる。 これで、 エアバッグの膨張展開を制御可能とな すソフトインフレ一ション技術に対応できる。 P /JP00/08630
なお、 本発明のガス発生器では、第 1〜第 3燃焼室のうち任意の燃焼 室、 例えば、 フィルタ材内の第 3燃焼室内にガス発生剤を装填しない構 造も採用することができる.。
また、 本発明のガス発生器では、各燃焼室のガス発生剤を連続して装 填してなるものである。
これによつて、少なくとも第 1燃 室、又は第 2燃焼室のガス発生剤 を、 点火手段によって着火させることで、各燃凝室のガス発生剤を連続 して着火燃焼できる。
また、 本発明のガス発生器では、点火手段を、 通電発火する点火具の みで構成したものである。
これによつて、 ハウジングの軸方向に、 点火手段の火炎を伝播させる 伝火剤などを装着することなく、構造の簡素化を図れる。
例えば、 第 1燃焼室のガス発生剤を、点火具の火炎のみで着火させる には、 点火具から噴出される火炎、 熱などを第 1燃 室内にこもらせる 必要がある。 本発明のガス発生器では、 ハウジング 1の軸方向に各燃焼 室を連続して形成し、 第 3燃焼室を第 1燃焼室、 及び第 2燃焼室より小 径とすることで、 第 1燃焼室内において火炎、熱がこもり易い構造とし ている。
また、 本発明のガス発生器では、第 1燃宪室と第 2燃焼室とのガス発 生剤の装填量を異にしたものである。
これによつて、第 1燃焼室、及び第 2燃焼室での高温ガスの発生量を 調整できる。
この高温ガスの発生量は、第 1燃焼室、 及び第 2燃焼室の容積比率を 適宜変更し、 ガス発生剤の装填量を調整することで達成できる。 具体的 には、 フィル夕材の長さ、 又はフィルタ材をハウジング内に装着する位 置を変更することで、 第】 '«室、及び第 2燃焼室の容積比率を変更す る。
また、 本発明のガス発生器では、 第 1燃焼室の容積と、 第 2燃焼室の 容積とを異ならせてなるものである。
これによつて、 第 1燃焼室、及び第 2燃焼室でのガス発生剤の装填量 を調整できる。 そして、 ガス発生剤の装填量を調整することで、 高温ガ スの発生量も調整できることなる。
第 1燃焼室、 及び第 2燃焼室の容積は、 フィル夕材の長さ、又はフィ ル夕材をハウジング内に装着する位置を変更することで調整できる。 また、 本発明のガス発生器では、 フィルタ材の端面に仕切り材を設け たものである。
これによつて、第 1燃 室、又は第 2燃焼室で発生した高温ガスは、 直接フィルタ材の端面、又は各ガス放出孔に直接流出することなく、 フ ィル夕材の孔内の第 3燃 室に導くことができる。 従って、 燃 初期に おいて、 点火手段から噴出される火炎などを第 1燃焼室、 又は第 2燃焼 室内にこもらせることが可能となり、 点火手段の火炎などを有効に利用 して、 ガス発生剤を容易、 急 JIに燃焼できる。
また、 本発明に係るガス発生器は、側面衝突用のエアバッグとして装 着されるものである。
一般的に側面衝突用のエアバッグなどは、 自動車の極めて狭い空間に 組み込まれるので、 ガス発生器の小型 ·軽量化に対応でき、側面衝突用 のェアバッグを膨張展開させるときに最適なものとなる。 図面の簡単な説明
第 1図は、 本発明のガス発生器を示す断面図である。 第 2図は、 第 1 図の A— A断面図である。 第 3図は、 第 1図におけるガス発生器の外筒 と蓋部材とのカシメ構造を示す要部拡大図である。 第 4図は、 本発明の ガス発生器と、 従来のガス発生器に対する 6 0リツトルタンク試験の結 果であって、 タンク内圧 (k P a ) /時間 (ミリ秒) との関係を示すグ ラフ図である。 第 5図は、従来のガス発生器を示す断面図である。 発明を実施するための最良の形態
本発明の実施形態におけるガス発生器について、第 1図〜第 3図を参 照して説明する。
第 1図及び第 2図に示すガス発生器 Sは、 主として側面衝突用のエア バッグを膨張展開させるものである。 このガス発生器 Sは、 長尺円筒状 のハウジング 1と、 ハウジング 1内に装着される円筒状のフィルタ材 2 と、 ハウジング内に形成される第 1〜第 3燃焼室 3〜 5と、 ハウジング 1内の第 1〜第 3燃焼室 3〜 5に装填されるガス発生剤 6と、 ガス発生 剤 6を強制的に着火させる点火手段 7とを備えている。
ハウジング 1は、 両端開口の外筒 8と、 タ Mf 8の各開口端を閉鎖する ホルダ 9及びプラグ 1 0とで構成されている。 このハウジング 1は、外 筒 8内の各開口端側にホルダ 9及びプラグ 1 0を嵌め込み、外筒 8の外 周に絞り加工を施すことで、 内部に密封空間 Pを形成する構造である。 この絞り加工は、 第 3図にも示すように、 外筒 δの各開口側をホルダ 9 、及びプラグ 1 0に形成された V^l犬の環状溝 1 2内に突出させること で突起 8 bを形成し、 さらに各突起 8 bを各環状溝 1 2内の V字腦犬に 密着して沿わせるものである (図 3参照) 。 これで、各環状溝 1 2内に 装着されたシールリング 1 3は、 外筒 δの内周、 及び各環状溝 1 2内の V字开^ I犬に弾接されて、 ハウジング 1内を密封し、密封空間 Ρを形成す る。 又、 ホルダ 9、 及びブラグ 1 0は、外筒 8の各突起 8 bと各環状溝 1 2内との密着によって、 外筒 8内に位置決め、 抜け止めされる。 ハウジング 1の外筒 8には、 密封空間 Pと側面衝突用のエアバッグを 連通する複数のガス放出孔 8 aが形成されている。 各ガス放出孔 8 aは 、 ハウジンジ 1の各軸端側を除く、 フィルタ材 2の装着される外筒 8の 中程部位に開口し、 ハウジング 1の軸方向及び周方向に所定間隔ごとに 形成されている。 又、 各ガス放出孔 8 aは、外筒 8の内周に貼着された バーストプレート 1 iにて閉鎖されている。 バーストプレート 1 1は、 例えば、 アルミなどの金属箔で形成され、 ハウジング 1内の防湿と内圧 調整の役割を果たす。
フィルタ材 2は、 ハウジング 1の軸方向で、 ホルダ 9とプラグ 1 0の 間の 去より短い寸法に形成され、 ハウジング 1の密封空間!3内に挿入 されている。 このフィルダ材 2は、 ハウジング 1の軸心と同心にして、 ハウジング 1の軸方向に延びるように配置される。 フィルタ材 2の軸心 方向には、 ハウジング 1の軸方向に貫通する内孔 2 Aが形成されている 又、 フィルタ材 2は、 ハウジング 1内の各軸端側を除く、各ガス放出 孔 8 aの形成された外筒 8の中程部位に位置決めされる。 これで、 フィ ル夕材 2は、 フィルタ材 2の各軸端面とハウジング 1の各軸端部となる ホルダ 9、及びプラグ 1 0との間にて、大径の第 1及び第 2燃焼室 3, 4を形成する。 又、 フィルタ材 2の内孔 2 Aには、 ハウジング 1の軸方 向に貫通する小径の第 3燃焼室 5が形成され、第 3燃 J¾室 5を通して第 1及び第 2燃焼室 3 . 4を連通している。 従って、 ハウジング 1の密封 空間 P内は、 ホルダ 9側からハウジング 1の軸方向にわたって、第 1燃 焼室 3、 第 3燃焼室 5及び第 2燃焼室 4の順に連続する構造となる。 尚 、 フィルタ材 2【ま、 例えば、 メリヤス編み金網ゃクリンフ。織り金属線材 などの集合体を、 円筒状に成形することで安価に製作される。
そして、 フィルタ材 2の位置決めは、 フィルタ支持体 1 4、 更に外筒 8の外周に施す絞り加工によって行われる。 このフィルタ支持体 1 4は 、 複数のガス通過孔 1 5 aを有する内筒材 1 5、 及び 2つの仕切りキヤ ッフ Ί 6, 1 7とでなる。 内筒材 1 5は、 フィルタ材 2の外周に装入さ れる。 又、 各仕切りキャップ 1 6 , 1 7は、 フィルタ材 2の各軸端側か ら、 外筒 8の内周と内筒材 1 5の外周に嵌め込まれる。
これで、 フィルタ支持体 1 4は、 内筒材 1 5及び各仕切りキャップ 1 6 , 1 7とでフィルタ材 2を支持し、 各キャップ 1 6 , 1 7の外筒 8内 周への嵌め込みによってハウジング 1の径方向への移動を規制して、位 置決めする。
又、 フィルタ支持体 1 4は、 各仕切りキヤッフ Ί 6, 1 7を外筒 8の 内周と内筒材 1 5の外周との間に嵌め込むことで、外筒 8の内周と内筒 材 1 5の外周との間に環状のガス 空間 P 1を形成する。
更に、 各仕切りキャップ 1 6, 1 7は、 外筒 8及び内筒材 1 5との嵌 め込みによって、 フィルタ材 2の内孔 2 Aに連通する開口 1 6 A , 1 7 Aを備え、 フィルタ材 2の内孔 2 Aを除く各軸端内を閉鎖することで、 第 1燃 室 3又は第 2燃 室 4内で発生する高温ガスを、 直接フィルタ 材 2の端面又は各ガス放出孔 8 aに流出することを防止する。 即ち、各 仕切りキャップ 1 6 , 1 7は、 大径の第 1燃焼室 3又は第 2燃焼室 4内 で発生した高温ガスを、各開口 1 6 A, 1 7 Aを通して小径の第 3燃 Jt克 室 5内に導く機能を備えるものである。 これで、各仕切りキャップ 1 6 . 1 7は、 大径の第 1 3、 第 2燃 室 4から小径の第 3燃焼室 5 内に流れる高温ガス量を規制して、第 1燃焼室 3や第 2燃焼室 4に噴出 される火炎などをこもらせる効果を発揮するものである。
そして、 フィルタ材 2をフィルタ支持体 1 4で支持した後、 外筒 8の 外周に絞り加工を施す。 ごの絞り加工は、外筒 8をハウジング 1内に突 出させることで、 フィルタ材 2の各軸端側から各キャップ 1 6 , 1 7に 当接する突起 8 cを形成する。 これで、各突起 8 cは、 ハウジング 1の 軸方向で、 フィルタ材 2及びフィルタ支持体 1 4を挟む状態で支持し、 各キャップ 1 6 , 1 7との当接によってハウジング 1の軸方向への移動 を規制して、位置決めする。 また、各突起 8 cは、各キャップ 1 6, 1 7に隙間なく当接され、各燃焼室 3, 4内で発生した高温ガスが各キャ ッフ Ί 6, 1 7と外筒 8の内周との間から直接ガス通過空間 P 1内に流 れるのを規制する。
ガス発生剤 6は、 燃焼により高温ガスを発生するもので、 第 1燃焼室 3、 フィルタ材 2内の第 3燃焼室 5、 及び第 2燃 4に装填されてい る。 これで、 ガス発生剤 6は、 ハウジング Iの密封空間 Pにおいて、 フ ィルタ材 2を除く全ての空間に装填され、 又ハウジング 1の軸心方向に 連続して配置されることになる。
又、 ガス発生剤 6は、振動による粉状ィ匕を 2つのクッション材 1 8, 1 9によって防止されている。 クッション材 1 8は、 ホルダ 9に設けら れたクッション押え材 2 0とガス発生剤 6との間に位置して、第 1燃 室 3内に装着されている。 このクッション板 1 8には、 十^!犬の切欠き が形成されている。 又、 クッション材 1 9は、 プラグ 1 0とガス発生剤 6との間に位置して、 第 2燃 室 4に内に装着されている。 各クッショ ン材 1 8, 1 9としては、 シリコンゴムゃシリコン発泡体などの弾性材 を用いることが好ましい。
点火手段 7は、通電発火する点火具のみから構成され、 ハウジング 1 内側からホルダ 9に装着されている。 又、 点火手段 7は、第 1燃焼室 3 側に突出するように配設して、 クッション材 1 8に当接されている。 こ れで、点火手段 7は、 衝突センサからの衝突検出信号に基づいて通電発 火し、 この火炎を第 1燃焼室 3内に噴出して、第 1燃焼室 3のガス発生 剤 6を強制的に着火させる。
次に、 ガス発生器 Sの作動を説明する。 衝突センサが自動車の衝突と検出すると、 点火手段 7が通電発火され る。 点火手段 7の火炎は、 クッション材 1 δを破裂、 開口した後、 第】 燃焼室 3内に噴出して、 第 1燃 室 3のガス発生剤 6のみを強制的に着 火燃 させることで、 高温ガスを発生させる。 このとき、 点火手段 7に よる火炎、 高温ガスの熱などは、 仕切りキャップ 1 6によって、 直接、 フィルタ材 2の軸端内、及び各ガス放出孔 8 aに流れることなく、 第 3 燃 J克室 5に導かれることになる。 これで、 大径の第 1燃焼室 3から小径 の第 3燃焼室 5内に流れる高温ガス量が規制され、火炎、高温ガスの熱 が第 1燃焼室 3内にこもる状態となり、 ガス発生剤 6を容易、 急速に着 火燃焼させる。
第 1燃焼室 3内で発生した高温ガスは、 キャップ 1 6の開口 1 6 Aを 通してフィルタ材 2の内孔 2 A内の第 3燃焼室 5内に流れて、 フィルタ 材 2内に流入し、 ここでスラグ捕集と冷却を経て、 ガス通過空間 P 1内 に流出される。
このとき、第 3燃焼室 5のガス発生剤 6は、 流れ込む火炎、 高温ガス によって着火燃焼され、 高温ガスを発生する。 そして、 第 3燃凝室 5で の燃焼は、 第 1燃尭室 3側からガス発生剤 6を順次燃焼させることで、 第 2燃焼室 4に向けて移って行くことになる。 このことから、第 3 '« 室 5のガス発生剤 6は、 エアバッグを膨張展開させるガス発生機能と、 第 1燃焼室 4内で発生した火炎、 熱などを第 2燃焼室 4に伝播する伝火 機能を備えるものである。
ハウジング 1内の燃焼が進んで、密封空間 Pが所定圧力に達すると、 バーストプレート 1 1が破裂して、 ガス通過空間 P 1内で均一にされた 清浄なガスが各ガス放出孔 8 aからエアノ ッグ内に放出される。
これで、 エアバッグは、 第 1燃焼室 3のみ、 又は第 1及び第 3燃焼室 3, 5で発生した少量のガスによつて緩やかに膨張展開を開始する。 続いて、 第 1燃焼室 3のみならず、第 3燃焼室 5での燃焼が進むと、 第 1燃よ尭室 3の燃 開始から微小時間差をもって、 主として第 3燃焼室 5での燃焼による火炎、 高温ガスが仕切りキャップ 1 7の開口 1 7 Aか ら第 2燃焼室 4内に噴出され、 第 2燃焼室 4内のガス発生剤 6を着火燃 焼させることで、 高温ガスを発生させる。 第 2燃焼室 4内で発生した高 温ガスは、 第 3燃 室 5内に流れて、 フィルタ材 2内に流入し、 ここで スラグ捕集と冷却を経て、 ガス通過空間 P 1内に流出する。 ガス通過空 間 P 1内に流出したガスは、均一化され、各ガス放出孔 8 aからエアバ ッグ内に放出される。 これで、 エアバッグは、各燃 室 3〜 5から放出 される多量の清浄なガスによつて急 な膨張展開に移行される。
この結果、 エアバッグは、展開初期において第 1燃焼室 3のみ、 又は 第 1及び第 3燃焼室 5で発生した少量のガスにより緩やかに膨張展開を 開始し、微小時間後から、各燃焼室 3〜 5で発生した多量のガスにより 急 J§に膨張展開することになる。
このように、 本発明のガス発生器 Sでは、 フィルタ材 2の第 3燃焼室 5内にもガス発生剤 6を装填することで、 ハウジングの全体容積を有効 に利用して、 フィルタ材 2やガス発生剤 6の装着 ·装填を行うことがで きる。 従って、 ガス発生器 Sを小型化するため、 例えば、 ハウジング 1 を小径にしても、 ハウジング 1の長さ 去を変更することなく、 ェアバ ッグを膨張展開させるガス発生剤 6の装填量を確保することが可能とな る。
又、 ハウジング 1内のガス発生剤 6は、 第 1 3、第 3燃焼室 5 及び第 2燃焼室 4の順に燃焼されるので、高温ガスを、 フィルタ材 2の 全体に分散して流入させられる。 従って、 フィルタ材 2の熱溶融などに よる破損を抑制でき、微小のスラグがエアバッグ内に放出されることを 防止できる。 更に、 ハウジング 1内では、 第 1燃焼室 3からガス発生剤 6を順次燃 焼させるので、 ハウジング 1内で発生するガス量を、燃、焼初期に第 1燃 3のみ、又は第 1及び第 3燃焼室で発生した少量のものとし、 その 後、 微小時間をもつて各燃焼室 3〜 5で発生した多量のものにできる。 この結果、 エアバッグの膨張展開を制御可能とするソフトインフレ一シ ョン技術に対応でき、 エアバッグ本来の機能を発揮させることが可能と なる。
尚、本発明のガス発生器では、 各燃焼室 3— 5に装填されるガス発生 剤 6の装填、量を適宜変更することで、 エアバッグの膨張展開の制御形態 を調整できる。
即ち、 フィルタ材 2の寸法を長くすることで、 第 1及び第 2燃 室 3 , 4の容積を小さくし、 ガス発生剤 6の装填量も少なくする。 又、 フィ ル夕材 2の^去を短くすることで、 第 1及び第 2燃 室 3 , の容積を 大きくし、 ガス発生剤 6の装填量も多くする。 これで、 第 1及び第 2燃 焼室 3, 4に装填するガス発生剤 6の量を調整でき、 もって第 1及び第 2燃焼室 3 , 4からエアバッグに放出されるガス量も適宜変更でき、 ェ ァバッグの膨張展開の制御形態を変更となせる。 尚、第 3燃焼室 5の容 積比率も、 フィルタ材 2の 去を変えることによって変更できることか ら、 第 3燃焼室 5のガス発生剤 6の装填量、 やガス量も調整できる。 又、 フィルタ材 2の 去を変更することなく、 フィルタ材 2の装着位 置を変更することで、 第 1及び第 2燃焼室 3, の容積比率を変更して 、 第 1及び第 2燃焼室 3 , 4のガス発生剤量を調整できる。 例えば、 フ ィルタ材 2を、 図 1に示す位置からホルダ 9側にずらして装着すること で、 第 1 m 3の容積を小さくし、 第 2燃焼室 4の容積を大きくでき る。 又、 フィルタ材 2を、 プラグ 1 0側にずらすことで、第 1燃焼室 3 の容積を大きくし、 第 2燃焼室 4の容積を小さくできる。 本発明のガス発生器 Sにっき、 側面衝突用のエアバッグを膨張展開さ せるものについて説明したが、 これに限定されるものでなく、 インスル トメントパネル内に組み込まれる助手席用のエアバッグにも適用可能で ある。
助手席用のエアバッグを膨張展開させるガス発生器は、通常、 長尺円 筒状のハウジングを備えており、 これに第 1図〜第 3図で示した構造を 適用することで、 小型 ·軽量化を達成できる。
又、 本発明のガス発生器 Sでは、 1つの点火手段 7によってガス発生 剤 6を着火させるものであるが、 ハウジング 1のプラグ 1 0にも点火手 段を装着することで、 エアバッグの膨張展開を制御可能とする構造も採 用できる。 そして、 2つの点火手段の通電発火を適宜選択することで、 エアバッグの膨張展開を制御する。 即ち、各点火手段を同時に通電発火 することで、 エアバッグを各燃 室内で発生する多量のガスによって急 速に膨張展開させる。 又、各点火手段を時間差をもって通電発火するこ とで、 エアバッグを展開初期において第 1燃焼室で発生した少量のガス によって緩やかに膨張展開させ、 微小時間差後、 各燃焼室で発生した多 量のガスにて急速に膨張展開させる。
更に、 点火手段 7側の仕切りキャップ 1 6の開口 1 6 Aを、 バースト プレート 2 5などで閉鎖することで、 燃焼初期において、第 1燃 室 3 をフィルタ材の第 3燃焼室 5から遮断する構成を採用できる。
これで、 第 1燃焼室 3は、仕切りキャップ 1 6、及びバーストプレー ト 2 5によって、 フィルタ材 2の軸端内、 各ガス放出孔 8 a及び第 3燃 焼室 5から遮断される状態となり、 燃焼初期において、 点火手段 7から 噴出される火炎、高温ガスの熱をこもらせることになる。 従って、 第 1 燃焼室 3での燃焼は、 点火手段 7の火炎、 ガス発生剤 6の燃焼により発 生する高温ガスの熱を有効に利用して、 ガス発生剤 6を容易、 急速に燃 焼できる。 尚、 バーストプレート 2 5は、 第 i燃焼室 3の内 Ji±昇や火 炎によって破裂される。
この結果、 点火手段 7を点火具のみで構成しても、 この点火具の火炎 のみで、 第 1燃焼室 3内のガス発生剤 6を充分に着火燃焼させることが 可能となる。
また、 ガス発生剤 6は、 第 1燃 3、 第 3 m 室 5及び第 2燃焼室 の順に連続して充填するものを示したが、 これに限定させるものでな い。 例えば、 各燃 室 3と 5の間、 5と 4の間に、 ガス発生剤 6の赚 により破裂可能な仕切部材を設けることで、 ガス発生剤 6を不連続に装 填しても良い。 さらに、 各燃 室 3〜 5の間に空間を形成する構造も採 用できる。
さらに、 第 1〜第 3の'賺室 3〜 5の全てに、 ガス発生剤 6を装填す るものについて説明したが、各燃焼室 3〜 5のうち任意の燃焼室にガス 発生剤 6を装填しない構造も採用できる。 特に、 第 3燃凝室 5内のガス 発生剤 6は、第 1燃焼室 3内で発生した高温ガス、 火炎などを第 2燃焼 室 4内に伝播する機能を備えていることから、 第 1燃焼室 3内で発生し た高温ガス、 火炎などをフィルタ材 2の内孔 2 Aを通して、 第 2燃焼室 4内に十分伝播できるなら、第 3燃 室 5内にガス発生剤 6を装填しな くても、 第 2燃焼室 4内のガス発生剤 6を着火燃焼できる。
次に、 本発明のガス発生器 Sであって、 ソフトインフレ一ション技術 の適用性についての試験結果を、 第 4図により説明する。
試験としては、 本発明のガス発生器 (第 1図参照) と、 従来のガス発 生器 (第 5図参照) との比較において、 圧力上昇特性を測定した。 また、 圧力上 4寺性は、 6 0リツトルタンク試験によって測定したも のである。 ここで、 6 0リットルタンク試験とは、容積 6 0 リッ トルの ステンレス製タンク内に、 ガス発生器を装着し、 タンクを密封した後、 点火器を通電発火してガスを発生させることで、 タンク内圧の変化 (上 昇率) を時間経過 (ミリ秒) との関係で測定する。
そして、 本発明のガス発生器、 従来のガス発生器との圧力上昇特性の 試験結果を第 4図に示す。
本発明のガス発生器は、 ガス発生剤の燃焼初期において、 従来のガス 発生器に比して緩やかな庄カ上昇率をもっている。 また、所定時間 (ミ リ秒)経過した a点より、 本発明のガス発生器は、 従来のガス発生器よ り急激な圧力上昇をもつて最高圧力値 P m a Xに達している。
このことは、 本発明のガス発生器において、 ガス発生剤を、微小時間 差をもって第 1燃焼室、 第 3燃焼室及び第 2燃凝室の順に燃:^させたこ とに起因する。 また、 本発明のガス発生器において、 第 1燃 J¾室のガス 発生剤を着火燃焼すると、 第 1燃焼室内で発生した高温ガスは、 第 3燃 焼室内、 及び第 2燃焼室内に流れることになり、 第 1燃焼室内の初期燃 焼はノヽゥジング全体の容積をもつて行われ、 圧力上昇率が抑制されるこ とに起因する。
したがって、 本発明のガス発生器では、 エアバッグを膨張展開させる とき、 エアバッグの展開初期にて少量、 圧力上昇率の抑制された低圧の ガスにて緩やかに膨張展開でき、 その後、 所定の圧力上昇率、 最高圧に された多量のガスにて急速な膨張展開に移行できることになる。
この結果、 本発明のガス発生器では、 ソフトィンフレーション技術に 最適なものとなる。 これと比較して、 従来のガス発生器では、 ガス発生 剤の燃凝初期から急激な圧力上昇特性を有することから、 ソフトインフ レ一ション技術に適用できない。
なお、 第 4図中の a点は、例えば、 第 1及び第 2燃焼室 3, 4の容積 比率又はガス発生剤 6の装填量の比率を変更することによって調整でき 、 本発明のガス発生器では、 ガス発生態様を適宜選択できる。 産業上の利用可能性
本発明により、 ガス発生器の小型 ·軽量化に対応でき、側面衝突用の ェアバッグを膨張展開させるときに最適なものとできる。

Claims

請 求 の 範 囲
1. 両軸端が閉鎖された長尺円筒状のハウジング ( 1 ) と、 各ガス放出 孑し (8 a) が設けられた前記ハウジング ( 1 ) の中程に揷入され、 該ハ ウジング ( 1 ) の軸方向に貫通する孔 (2 A) を有するフィルタ材 (2 ) と、 前記ハウジング ( 1 ) の両軸端側に形成され、 ガス発生剤 (6) が装填されうる大径の第 1燃 室 (3)及び第 2燃;^室 (4 ) と、 前記 フィル夕材 (2) の前記孔 (2 A) 内に形成され、 ガス発生剤 (6) が 装填されうる小径の第 3燃 室 ( 5 ) と、 前記第 1燃焼室 ( 3 ) 及び前 記第 2燃焼室 (4) の少なくとも一方に配設され、前記ガス発生剤 (6 ) を着火させる点火手段 (7) と、 を備えてなることを特徴とするガス
2. 前記第 1燃焼室 ( 3 ) 、前記第 1燃焼室 ( 4 )及び前記第 3燃焼室 (5) の前記ガス発生剤 (6) が連続して装填されていることをキき徴と する請求の範囲第 1項に記載のガス発生器。
3. 前記点火手段 (7) は、通電発火する点火具のみからなることを特 徴とする請求の範囲第 1項に記載のガス発生器。
4. 前記第 1燃焼室 ( 3 ) に装填された前記ガス発生剤 ( 6 ) の量と、 前記第 2燃焼室 (4) に装填された前記ガス発生剤 (6) の量が異なる ことを特徴とする請求の範囲第 1項に記載のガス発生器。
5. 前記第 1燃焼室 ( 3 ) の容積と、 前記第 mm. ( 4 ) の容積とを 異ならせてなることを特徴とする請求の範囲第 1項又は請求の範囲第 4 項に記載のガス発生器。
6. 前記第 1燃焼室 ( 3 ) 、又は前記第 1 . ( 4 ) に対面する、前 記フィルタ材 (2) の端面に仕切り材 ( 1 6, 1 7) を設けたことを特 徴とする請求の範囲第 1項に記載のガス発生器。 61
7. 側面衝突用のエアバッグを展開させるために用いられることを特徴 とする請求の範囲第 1項に記載のガス発生器。
PCT/JP2000/008630 1999-12-10 2000-12-06 Generateur de gaz WO2001042061A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/148,211 US6779812B2 (en) 1999-12-10 2000-12-06 Gas generator
EP00979947A EP1236624A4 (en) 1999-12-10 2000-12-06 GAS GENERATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/351486 1999-12-10
JP35148699A JP2001163171A (ja) 1999-12-10 1999-12-10 ガス発生器

Publications (1)

Publication Number Publication Date
WO2001042061A1 true WO2001042061A1 (fr) 2001-06-14

Family

ID=18417627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008630 WO2001042061A1 (fr) 1999-12-10 2000-12-06 Generateur de gaz

Country Status (4)

Country Link
US (1) US6779812B2 (ja)
EP (1) EP1236624A4 (ja)
JP (1) JP2001163171A (ja)
WO (1) WO2001042061A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052694A1 (ja) * 2002-12-09 2004-06-24 Daicel Chemical Industries, Ltd. エアバッグ用ガス発生器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20313664U1 (de) * 2003-09-03 2004-01-29 Trw Airbag Systems Gmbh Gasgenerator
GB2422650B (en) * 2005-01-27 2007-10-03 Autoliv Dev Improvements in or relating to an air-bag inflator
US20060220362A1 (en) * 2005-03-31 2006-10-05 Hordos Deborah L Gas generator
US9046327B2 (en) 2005-03-31 2015-06-02 Tk Holdings Inc. Gas generator
WO2007005653A2 (en) * 2005-06-30 2007-01-11 Automotive Systems Laboratory, Inc. Autoignition compositions
US20070044675A1 (en) * 2005-08-31 2007-03-01 Burns Sean P Autoignition compositions
US20070084532A1 (en) * 2005-09-30 2007-04-19 Burns Sean P Gas generant
JP2007314050A (ja) 2006-05-26 2007-12-06 Daicel Chem Ind Ltd 点火器を含む装置
US9162933B1 (en) 2007-04-24 2015-10-20 Tk Holding Inc. Auto-ignition composition
US9556078B1 (en) 2008-04-07 2017-01-31 Tk Holdings Inc. Gas generator
JP5260348B2 (ja) * 2009-02-12 2013-08-14 株式会社ダイセル ガス発生器
JP5551382B2 (ja) * 2009-04-15 2014-07-16 日本化薬株式会社 ガス発生器
JP5436036B2 (ja) * 2009-05-12 2014-03-05 株式会社ダイセル ガス発生器
US9073512B1 (en) * 2012-07-23 2015-07-07 Tk Holdings Inc. Gas generating system with gas generant cushion
JP6521834B2 (ja) * 2015-10-27 2019-05-29 日本化薬株式会社 ガス発生器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146843A (ja) * 1990-10-08 1992-05-20 Nippon Koki Kk エアバック展開用ガス発生装置
JPH0747909A (ja) * 1991-03-01 1995-02-21 Nippon Koki Kk エアバッグ展開用ガス発生装置
JPH10315899A (ja) * 1997-03-14 1998-12-02 Livbag Snc 車両安全用の高温ガス発生器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219178A (en) * 1990-10-08 1993-06-15 Nippon Koki Co., Ltd. Air bag inflation gas generator
US5466420B1 (en) * 1994-07-26 1998-10-06 Morton Int Inc Air bag inflator
DE19520847B4 (de) * 1995-06-08 2005-08-18 Honda Giken Kogyo K.K. Vorrichtung zur Gaserzeugung für einen Kraftfahrzeug-Airbag
US5622380A (en) * 1995-09-21 1997-04-22 Automotive Systems Laboratory, Inc. Variable nonazide gas generator having multiple propellant chambers
DE19728438A1 (de) * 1997-07-03 1999-01-07 Temic Bayern Chem Airbag Gmbh Pyrotechnischer Gasgenerator
JP3986184B2 (ja) * 1997-11-05 2007-10-03 日本化薬株式会社 ガス発生器
JPH11157412A (ja) * 1997-11-28 1999-06-15 Nippon Kayaku Co Ltd ガス発生器
JP2963086B1 (ja) * 1997-12-26 1999-10-12 ダイセル化学工業株式会社 エアバッグ用ガス発生器及びエアバッグ装置
JP3220443B2 (ja) * 1998-11-30 2001-10-22 ダイセル化学工業株式会社 エアバッグ用ガス発生器及びエアバッグ装置
EP1090817A4 (en) * 1999-04-28 2005-03-30 Nippon Kayaku Kk GAS GENERATOR
US6149193A (en) * 1999-08-06 2000-11-21 Breed Automotive Technology, Inc. Variable output inflator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146843A (ja) * 1990-10-08 1992-05-20 Nippon Koki Kk エアバック展開用ガス発生装置
JPH0747909A (ja) * 1991-03-01 1995-02-21 Nippon Koki Kk エアバッグ展開用ガス発生装置
JPH10315899A (ja) * 1997-03-14 1998-12-02 Livbag Snc 車両安全用の高温ガス発生器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052694A1 (ja) * 2002-12-09 2004-06-24 Daicel Chemical Industries, Ltd. エアバッグ用ガス発生器

Also Published As

Publication number Publication date
EP1236624A1 (en) 2002-09-04
JP2001163171A (ja) 2001-06-19
US20020180191A1 (en) 2002-12-05
EP1236624A4 (en) 2005-09-14
US6779812B2 (en) 2004-08-24

Similar Documents

Publication Publication Date Title
KR100479307B1 (ko) 차량 탑승자용 안전 구속 시스템의 에어백 팽창 장치
KR100459589B1 (ko) 가스 발생기
KR950009343B1 (ko) 제2단계의 점화를 지연시키는 점화 물질을 사용하는 자동차 가스백의 2단계 팽창기
JP5226853B2 (ja) ガス発生器
WO2001042061A1 (fr) Generateur de gaz
JP3781603B2 (ja) ガス発生器
US7404574B2 (en) Gas generator for airbag
JP4860807B2 (ja) 多段式エアバッグ用ガス発生器
JPWO2003042010A1 (ja) ガス発生器
JP3986184B2 (ja) ガス発生器
JPH1178766A (ja) エアバッグ用ガス発生器
WO2003070528A1 (fr) Generateur de gaz
JP2004359031A (ja) 多段着火式ガス発生器
JPH11157412A (ja) ガス発生器
JP4813735B2 (ja) ガス発生器
JP4526375B2 (ja) エアバッグ用ガス発生器
JP4633918B2 (ja) ガス発生器
JPH1191494A (ja) ガス発生器
JP2002337655A (ja) エアバック用ガス発生器
JP4660018B2 (ja) ガス発生器
US20010026064A1 (en) Method for inflating a gas bag, a gas generator to carry out the method and a vehicle occupant restraint system
JP4533524B2 (ja) ガス発生器
WO2001072560A1 (fr) Générateur de gaz
JPWO2001074632A1 (ja) ガス発生器
JP4612232B2 (ja) ガス発生器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10148211

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000979947

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000979947

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000979947

Country of ref document: EP