WO2001039883A1 - Verfahren zur herstellung von dmc-katalysatoren - Google Patents

Verfahren zur herstellung von dmc-katalysatoren Download PDF

Info

Publication number
WO2001039883A1
WO2001039883A1 PCT/EP2000/011835 EP0011835W WO0139883A1 WO 2001039883 A1 WO2001039883 A1 WO 2001039883A1 EP 0011835 W EP0011835 W EP 0011835W WO 0139883 A1 WO0139883 A1 WO 0139883A1
Authority
WO
WIPO (PCT)
Prior art keywords
iii
dmc
catalyst
dmc catalyst
organic complex
Prior art date
Application number
PCT/EP2000/011835
Other languages
English (en)
French (fr)
Inventor
Jörg Hofmann
Bernd Klinksiek
Stephan Ehlers
Thorsten Fechtel
Franz Föhles
Pieter Ooms
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7931323&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001039883(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US10/148,555 priority Critical patent/US6780813B1/en
Priority to CA002392819A priority patent/CA2392819C/en
Priority to JP2001541609A priority patent/JP5005144B2/ja
Priority to HU0203666A priority patent/HUP0203666A2/hu
Priority to PL355412A priority patent/PL201666B1/pl
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to EP00981310A priority patent/EP1244519B2/de
Priority to AU18602/01A priority patent/AU1860201A/en
Priority to DE50012324T priority patent/DE50012324D1/de
Priority to MXPA02005478A priority patent/MXPA02005478A/es
Priority to ES00981310T priority patent/ES2258985T5/es
Priority to BRPI0015970-0A priority patent/BR0015970B1/pt
Publication of WO2001039883A1 publication Critical patent/WO2001039883A1/de
Priority to HK03107016A priority patent/HK1054710A1/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/11Complex cyanides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's

Definitions

  • the invention relates to an improved process for the preparation of double metal cyanide (DMC) catalysts for the production of polyether polyols by poly-addition of alkylene oxides to starter compounds having active hydrogen atoms.
  • DMC double metal cyanide
  • Double metal cyanide (DMC) catalysts for the polyaddition of alkylene oxides to starter compounds having active hydrogen atoms have long been known (see, for example, US Pat. Nos. 3,404,109, 3,929,505, 3,941,849 and
  • DMC catalysts are usually obtained by combining an aqueous solution of a metal salt with the aqueous solution of a metal cyanide salt in the presence of an organic complex ligand, e.g. of an ether.
  • an organic complex ligand e.g. of an ether.
  • aqueous solutions of zinc chloride (in excess) and potassium hexacyanocobaltate are mixed and then dimethoxyethane (glyme) is added to the dispersion formed. After filtration and washing of the catalyst with aqueous glyme solution, an active catalyst of the general formula becomes
  • the usual method for producing DMC catalysts is to mix aqueous solutions of a metal salt and a metal cyanide salt in the presence of one or more organic complex ligands in a stirred reactor to form a catalyst dispersion.
  • intensive stirring under high shear is generally required.
  • the disadvantage here is that when using large stirred reactors, a high energy expenditure is necessary due to the low power densities, and there is a very uneven power density distribution.
  • the power density of stirred reactors is usually around 10 4 W / m 3 .
  • a further disadvantage is that foam is generated in the reactor during intensive stirring, which leads to a reduction in the catalyst yield and activity.
  • US Pat. No. 5,891,818 describes an improved process for the preparation of DMC catalysts with increased catalyst yield and activity and reduced particle size, in which the DMC catalyst dispersion is prepared in a stirred reactor, part of the catalyst dispersion circulating and into the Sprayed reactor headspace and the circulating current is passed through a "high shear in-line mixer".
  • a high shear in-line mixer e.g. to understand a high-speed rotor-stator mixer.
  • a disadvantage of this process is that the foam formation cannot be completely suppressed and that the entire contents of the reactor have to be circulated a number of times through the "high shear in-line mixer" in order to achieve uniform catalyst activity and particle size.
  • the energy required for stirring is very high and the combination of a stirred reactor with a circulation loop, a "high shear in-line mixer” and spray nozzles is expensive.
  • DMC catalysts with a further increased activity, reduced particle size and narrower particle size distribution can be obtained if the DMC catalyst dispersion is prepared using a mixing nozzle, preferably a jet disperser.
  • a mixing nozzle preferably a jet disperser.
  • Further advantages of this process compared to the process variant described in US Pat. No. 5,891,818 are the lower energy consumption during shearing, the higher power density (approx. 10 13 W / m 3 ) in comparison to the use of a stirred tank, the problem-free transferability to a larger scale and the significantly simplified equipment structure due to the omission of the stirred reactor.
  • Polyether polyols which are obtained by DMC catalysts which are produced by this process also have a reduced viscosity compared to polyether polyols which are obtained by DMC catalysts by the process described in US Pat. No. 5,891,818 be manufactured.
  • the present invention therefore relates to an improved process for the preparation of DMC catalysts, in which solutions of water-soluble salts of Zn (II), Fe (II), Ni (II), Mn (II), Co (II), Sn (II ), Pb (II), Fe (III), Mo (IV), Mo (VI), AI (III), V (V), V (IV), Sr (II), W (IV), W (VI ), Cu (II) or Cr (III) with solutions of water-soluble salts or acids containing cyanide ions of Fe (II), Fe (III), Co (II), Co (III), Cr (II), Cr (III) , Mn (II), Mn (III), Ir (III), Ni (II), Rh (III), Ru (II), V (IV) or
  • V (V) can be mixed using a mixing nozzle, preferably a jet disperser.
  • the double metal cyanide compounds contained in the DMC catalysts suitable for the process according to the invention are the reaction products of water-soluble metal salts and water-soluble metal cyanide salts.
  • Water-soluble metal salts suitable for the preparation of the double metal cyanide compounds preferably have the general formula (I)
  • M is selected from the metals Zn (II), Fe (II), Ni (II), Mn (II), Co (II),
  • X are the same or different, preferably the same anions, preferably selected from the group of halides, hydroxides, sulfates, carbonates, cyanates, thiocyanates, isocyanates, isothiocyanates, carboxylates, oxalates or nitrates.
  • the value for n is 1, 2, or 3.
  • water-soluble metal salts examples include zinc chloride, zinc bromide, zinc acetate, zinc acetylacetonate, zinc benzoate, zinc nitrate, iron (II) sulfate, iron (II) bromide, iron (II) chloride, cobalt (II) chloride, cobalt (II) thiocyanate, nickel ( II) chloride and nickel (II) nitrate. Mixtures of various water-soluble metal salts can also be used.
  • Water-soluble metal cyanide salts suitable for the preparation of the double metal cyanide compounds preferably have the general formula (II)
  • M ' is selected from the metals Fe (II), Fe (III), Co (II), Co (III), Cr (II), Cr (III), Mn (II), Mn (III), Ir ( III), Ni (II), Rh (III), Ru (II), V (IV) and V (V).
  • M ' is particularly preferably selected from the metals Co (II), Co (III), Fe (II), Fe (III), Cr (III), Ir (III) and Ni (II).
  • the water-soluble metal cyanide salt can contain one or more of these metals.
  • Y are the same or different, preferably the same
  • A are the same or different, preferably the same anions, selected from the group of halides, hydroxides, sulfates, carbonates, cyanates, thiocyanates, isocyanates, isothiocyanates, carboxylates, oxalates or nitrates.
  • Both a, and b and c are integers, the values for a, b and c being chosen such that the electroneutrality of the metal cyanide salt is given; a is preferably 1, 2, 3 or 4; b is preferably 4, 5 or 6; c preferably has the value 0.
  • Suitable water-soluble metal cyanide salts are potassium hexacyanocobaltate (III), potassium hexacyanoferrate (II), potassium hexacyanoferrate (III), calcium hexacyanocobaltate (III) and lithium hexacyanocobaltate (III).
  • the corresponding acids can also be used. These can be obtained, for example, by cation exchange from the alkali metal or alkaline earth metal cyanide salts, for example by means of cation exchange resins.
  • Preferred double metal cyanide compounds which are contained in the DMC catalysts are compounds of the general formula (III)
  • M is as defined in formula (I) and M 'as defined in formula (II), and x, x', y and z are integers and are selected so that the electroneutrality of the double metal cyanide compound is given.
  • Suitable double metal cyanide compounds are zinc hexacyanocobalate (III), zinc hexacyanoiridate (III), zinc hexacyanoferrate (III) and cobalt (II) hexacyano cobaltate (III). Further examples of suitable double metal cyanide compounds are e.g. US-A 5 158 922 (column 8, lines 29-66). Zinc hexacyanocobaltate (III) is particularly preferably used.
  • organic complex ligands a) contained in the DMC catalysts suitable for the process according to the invention are known in principle and are described in detail in the prior art (see, for example, US Pat. No. 5,158,922 column 6, lines 9-65, US Pat. No. 3,404,109) , US-A 3 829 505, US-A 3 941 849, EP-A0 700 949, EP-A 761 708,
  • organic complex ligands a) are water-soluble, organic compounds with heteroatoms, such as oxygen, nitrogen, phosphorus or sulfur, which can form complexes with the double metal cyanide compound.
  • Suitable organic complex ligands are e.g. Alcohols, aldehydes, ketones, ethers, esters, amides, ureas,
  • organic complex ligands are water-soluble aliphatic alcohols, such as ethanol, isopropanol, n-butanol, isobutanol, sec-butanol and tert-butanol. Tert-butanol is particularly preferred.
  • the organic complex ligand a) is either added during the catalyst preparation or immediately after the dispersion of the double metal cyanide compound has formed.
  • the organic complex ligand a) is usually used in excess.
  • DMC catalysts which, in addition to the organic complex ligands a) mentioned above, also contain a further organic complex-forming component b).
  • This component b) can be selected from the same classes of compounds as complex ligand a).
  • Component b) is preferably a polyether, polyester, polycarbonate, glycidyl ether,
  • Glycoside carboxylic acid esters of polyhydric alcohols, polyalkylene glycol sorbitan esters, a bile acid or its salt, ester or amide, a cyclodextrin, organic
  • DMC catalysts with such ligand combinations are e.g. described in EP-A 700 949, EP-A 761 708, WO 97/40086, WO 98/08073, WO 98/16310, WO 99/01203, WO 99/19062, WO 99/19063 or the Germans
  • the DMC catalysts suitable for the process according to the invention may optionally also contain water and or one or more water-soluble metal salts of the formula (I) from the preparation of the double metal cyanide compound.
  • the DMC catalyst dispersion is produced using a mixing nozzle (for example a smooth jet nozzle, Levos nozzle, Bosch nozzle and the like), preferably using a jet disperser.
  • a mixing nozzle for example a smooth jet nozzle, Levos nozzle, Bosch nozzle and the like
  • a jet disperser for example a jet disperser.
  • Fig. 1 shows the schematic structure of a simple smooth jet nozzle.
  • the educt stream 1 is first accelerated in the nozzle 3 and sprayed into the slowly flowing educt stream 2 at high flow velocity. In this case, educt stream 2 is accelerated and educt stream 1 is braked. Part of the kinetic energy of educt jet 1 is converted into heat during this process and is therefore no longer available for the mixing process.
  • the two educt streams are then mixed via the turbulent decay of the resulting beam into vortices of different sizes (vortex cascade). In this way, differences in concentration can be reduced significantly more quickly than with the stirred kettle, since significantly higher and more homogeneous power densities can be achieved.
  • the average power density P is calculated using the following formula:
  • V Volume of the nozzle bore
  • a jet disperser as shown in FIG. 2 or 3 should preferably be used for the method according to the invention.
  • the jet disperser can be constructed in such a way (FIG. 2) that two nozzles 5 and 6 are arranged one behind the other.
  • the educt stream 1 is initially greatly accelerated in the nozzle 5 by the narrowing of the cross section.
  • the accelerated jet sucks in the second component due to the high flow velocity.
  • the distance between the nozzles will preferably be chosen so that in the mixing chamber 4, due to the short dwell time, only nucleation takes place, but no crystal growth.
  • the decisive factor for the optimal design of the jet disperser is therefore the speed of the solid.
  • the crystal growth takes place only in the process s.
  • the diameter of the nozzles 6 should preferably be selected so that the partially mixed educt streams are accelerated further there. Due to the additional shear forces that occur in the nozzles 6, compared to method 1, the state of homogeneous mixing is achieved in a shorter time by a faster vortex disintegration. In contrast to method 1, it is possible, even in the case of precipitation reactions with a very high nucleation rate, to achieve the state of ideal mixing of the starting materials, so that the setting of defined stoichiometric compositions during the
  • Nozzle diameters from 5000 ⁇ m to 50 ⁇ m, preferably 2000 ⁇ m to 200 ⁇ m, have proven to be favorable with pressure losses in the nozzle from 0.1 bar to 1000 bar or power densities in the range from 1 * 10 7 W / m 3 to 1 * 10 13 W / m 3 .
  • This mixing process will be referred to as Method 2 below.
  • a multi-stage jet disperser is shown in FIG. Following the nozzle 6, the dispersion is passed through the nozzle 7 again.
  • Nozzle diameter is the same as for nozzle 6.
  • Manufacture diameters from 10 ⁇ m to 0.1 ⁇ m.
  • the comminution can also be achieved by circulating the dispersion.
  • the use of such nozzles is identified in the following with method 3.
  • Other mixing elements for the production of dispersions, as described in EP-A 101 007, WO 95/30476 or German patent application 199 28 123.8, or combinations of these mixing elements can also be used.
  • the energy dissipation in the nozzles and the crystallization enthalpy can heat the dispersion. Since the temperature can have a significant influence on the crystal formation process, a heat exchanger can be installed behind the mixing element for the isothermal process control.
  • a problem-free scale-up is possible, for example, by using a larger number of holes, connecting several mixing elements in parallel, or increasing the free nozzle area.
  • the latter is not achieved by increasing the nozzle diameter, since in this way there is the possibility of a core flow occurring, which results in a deterioration in the mixing result.
  • the DMC catalyst dispersion is prepared using a mixing nozzle, preferably a jet disperser.
  • a mixing nozzle preferably a jet disperser.
  • FIGS. 4 and 5 show a continuous process for the production of the DMC catalyst dispersion.
  • the DMC catalyst dispersion is prepared by the process according to the invention usually in aqueous solution by reacting ⁇ ) metal salts, in particular of the formula (I) with ⁇ ) metal cyanide salts, in particular of the formula (II) or the corresponding acids, ⁇ ) organic complex ligands a) , and if necessary ⁇ ) one or more further organic complex-forming components b).
  • aqueous solutions of the metal salt for example zinc chloride, employed in a stoichiometric excess (at least 50 mol% relative to the metal cyanide salt), and the metal cyanide's eg Kaliumhexa- hexacyanocobaltate (or the corresponding acid) in the presence of the organic Complex ligands a), which can be, for example, tert-butanol, are reacted, a dispersion being formed.
  • this DMC catalyst dispersion is produced using a mixing nozzle, preferably a jet disperser.
  • the production of the DMC catalyst dispersion in a semi-batch process using a jet disperser in combination with a loop reactor is explained below.
  • Either the aqueous metal salt solution from container B2 can be circulated and the aqueous metal cyanide solution can be metered in from container B1, or vice versa.
  • a dispersion of the DMC compound is formed.
  • the dispersion of the DMC compound can be prepared by method 1, 2 or 3, preferably by method 2 or 3. The advantage of these methods is the possibility of maintaining a constant during the entire precipitation process
  • the dispersion formed is preferably circulated through the jet disperser for a few minutes to several hours.
  • the nozzle diameters are preferably between 2000 ⁇ m to 200 ⁇ m with pressure losses in the nozzle between 0.1 bar and 1000 bar.
  • the organic complex ligand a) can be present in the aqueous solution of the metal salt and / or the metal cyanide salt, or it is the Precipitation of the dispersion obtained double metal cyanide compound metered in directly (via container B1 or B2).
  • a further organic complex-forming component b) is then preferably metered in via the container B1 or B2 to the dispersion circulating in the circuit through the jet disperser.
  • the further organic complex-forming component b) is preferably used in a mixture of water and organic complex ligand a).
  • the cycle and a subsequent recirculation preferably take place with pressure losses in the nozzle between 0.001 bar and 10 bar.
  • the DMC catalyst dispersion can also be produced in a continuous process, as is shown by way of example in FIG. 5.
  • the aqueous solutions of the metal salt and the metal cyanide salt are reacted according to method 1, 2 or 3 in the mixing element Ml, a dispersion being formed.
  • the organic complex ligand a) can be present in the aqueous solution of the metal salt and / or the metal cyanide salt.
  • the mixing stage M2 is omitted in FIG. 5.
  • the further organic complex-forming component b) - preferably in a mixture of water and organic complex ligand a) - can then be added in the mixing element M3 and recirculated to increase the residence time.
  • the catalyst is isolated from the dispersion by known techniques, such as centrifugation or filtration. In a preferred embodiment, the isolated catalyst is then mixed with an aqueous solution of the organic
  • the amount of the organic complex ligand a) in the aqueous washing solution is preferably 40 to 80% by weight, based on the total solution. It is further preferred to add a little more organic complex-forming component b) to the aqueous washing solution, preferably 0.5 to 5% by weight, based on the total solution.
  • the washing or redispersing step can be carried out in a conventional stirred reactor. However, it is preferred to carry out the redispersion by recirculation through the jet disperser. This further increases the catalyst activity.
  • the circulation times in the redispersion are preferably between a few minutes and several hours.
  • the catalyst is also advantageous to wash the catalyst more than once in order to further increase its activity. For this, e.g. the first wash can be repeated.
  • non-aqueous solutions for further washing processes, e.g. a mixture of organic complex ligand a) and the further organic complex-forming component b).
  • the further washing steps are also preferably carried out by recycling the jet disperser.
  • the washed catalyst is then dried, if appropriate after pulverization, at temperatures of generally 20-100 ° C. and at pressures generally from 0.1 mbar to normal pressure (1013 mbar).
  • the present invention furthermore relates to the use of the DMC catalysts prepared by the process according to the invention in a drive to the production of polyether polyols by polyaddition of alkylene oxides to starter compounds having active hydrogen atoms.
  • the DMC catalysts prepared by the process according to the invention can often be used in very low concentrations (25 ppm and less, based on the amount of the polyether polyol to be prepared). If the polyether polyols prepared in the presence of the DMC catalysts prepared by the process according to the invention are used for the production of polyurethanes, it is possible to dispense with removing the catalyst from the polyether polyol without adversely affecting the product qualities of the polyurethane obtained.
  • a solution of 52 g of potassium hexacyanocobalate in 910 g of distilled water is circulated in a loop reactor which contains a jet disperser according to FIG. 2 (4 bores with a diameter of 0.7 mm).
  • a solution of 162.5 g of zinc chloride in 260 g of distilled water is added.
  • the pressure drop in the jet disperser is 2.0 bar.
  • a mixture of 650 g of tert-butanol and 650 g of distilled water is metered in and the dispersion is circulated for 16 minutes with a pressure drop in the jet disperser of 2.0 bar.
  • a mixture of 13 g of cholic acid sodium salt, 13 g of tert-butanol and 1300 g of distilled water is metered in and the dispersion is then at 10 min
  • Example 2 The procedure was as in Example 1, but the two washing steps were not by circulating in the loop reactor through the jet disperser, but by
  • a solution of 162.5 g of zinc chloride in 260 g of distilled water is added to a solution of 52 g of potassium hexacyanocobaltate in 910 g of distilled water with stirring (900 rpm).
  • a mixture of 650 g of tert-butanol and 650 g of distilled water is added and the dispersion is stirred at 900 rpm for 16 minutes.
  • a mixture of 13 g of cholic acid sodium salt, 13 g of tert-butanol and 1300 g of distilled water is then added and the mixture is stirred at 900 rpm for 8 min.
  • the solid is isolated by filtration and then washed with a mixture of 13 g of cholic acid sodium salt, 910 g of tert-butanol and 390 g of distilled water for 8 minutes with stirring (900 rpm). The solid is filtered again and finally again with a mixture of 6.5 g of cholic acid sodium salt and 1300 g of tert-butanol for 8 min with stirring
  • Example 3 The procedure was as in Example 3 (comparative example), but, as described in US Pat. No. 5,891,818, the DMC catalyst dispersion was prepared in a stirred reactor and the dispersion was circulated in a circulation loop through a "high-shear in-line mixer" ,
  • Table 1 show that the process according to the invention gives DMC catalysts having a reduced particle size and a narrower particle size distribution (polydispersity) (Examples 1 and 2), compared to DMC catalysts which have been prepared by processes of the prior art ( Comparative Examples 3 and 4).
  • the course of the reaction was followed using time-conversion curves (propylene oxide consumption [g] vs. reaction time [min]).
  • the induction time was determined from the point of intersection of the tangent to the steepest point of the time-turnover curve with the extended baseline of the curve.
  • the propoxylation times relevant for the catalyst activity correspond to the period between catalyst activation (end of the induction period) and the end of the propylene oxide metering.
  • Polyether polyol OH number (mg KOH / g): 30.3
  • Catalyst C (25 ppm) shows no activity under the reaction conditions described above.

Abstract

Die Erfindung betrifft ein verbessertes Verfahren zur Herstellung von Doppelmetallcyanid(DMC)-Katalysatoren für die Herstellung von Polyetherpolyolen durch Polyaddition von Alkylenoxiden an aktive Wasserstoffatome aufweisende Starterverbindungen, bei dem die Herstellung der DMC-Katalysatordispersion unter Einsatz einer Mischdüse, bevorzugt eines Strahldispergators erfolgt. Die so hergestellten DMC-Katalysatoren besitzen bei der Polyetherpolyol-Herstellung erhöhte Aktivität, reduzierte Teilchengröße und engere Teilchengrößenverteilung.

Description

Verfahren zur Herstellung von DMC-Katalysatoren
Die Erfindung betrifft ein verbessertes Verfahren zur Herstellung von Doppelmetall- cyanid(DMC)-Katalysatoren für die Herstellung von Polyetherpolyolen durch Poly- addition von Alkylenoxiden an aktive Wasserstoffatome aufweisende Starterverbindungen.
Doppelmetallcyanid (DMC)-Katalysatoren für die Polyaddition von Alkylenoxiden an aktive Wasserstoffatome aufweisende Starterverbindungen sind seit langem be- kannt (siehe beispielsweise US-A 3 404 109, US-A 3 829 505, US-A 3 941 849 und
US-A 5 158 922). Der Einsatz dieser DMC-Katalysatoren für die Herstellung von Polyetherpolyolen bewirkt insbesondere eine Reduzierung des Anteils an mono- funktionellen Polyethern mit endständigen Doppelbindungen, sogenannten Monoolen, im Vergleich zu der konventionellen Herstellung von Polyetherpolyolen mittels Alkali-Katalysatoren, wie Alkalihydroxiden. Die so erhaltenen Polyether- polyole können zu hochwertigen Polyurethanen (z.B. Elastomere, Schäume, Beschichtungen) verarbeitet werden.
DMC-Katalysatoren werden gewöhnlich erhalten, indem man eine wässrige Lösung eines Metallsalzes mit der wässrigen Lösung eines Metallcyanidsalzes in Gegenwart eines organischen Komplexliganden, z.B. eines Ethers, umsetzt. In einer typischen Katalysatorpräparation werden beispielsweise wässrige Lösungen von Zinkchlorid (im Überschuss) und Kaliumhexacyanocobaltat gemischt und anschließend Di- methoxyethan (Glyme) zur gebildeten Dispersion gegeben. Nach Filtration und Wa- sehen des Katalysators mit wässriger Glyme-Lösung wird ein aktiver Katalysator der allgemeinen Formel
Zn3[Co(CN)6]2 x ZnCl2 y H2O z Glyme
erhalten (siehe z.B. EP-A 700 949). Das übliche Verfahren zur Herstellung von DMC-Katalysatoren besteht darin, in einem Rührreaktor wässrige Lösungen eines Metallsalzes und eines Metallcyanid- salzes in Gegenwart eines oder mehrerer organischer Komplexliganden unter Bildung einer Katalysatordispersion zu mischen. Um eine hohe Katalysatoraktivität zu erreichen, ist i.a. intensives Rühren unter hoher Scherung erforderlich. Nachteilig hierbei ist, dass bei Verwendung großer Rührreaktoren aufgrund niedriger Leistungsdichten ein hoher Energieaufwand notwendig ist, und eine stark ungleichmäßige Leistungsdichteverteilung vorliegt. Üblicherweise liegt die Leistungsdichte von Rührreaktoren bei etwa 104 W/m3. Nachteilig ist weiterhin, dass bei intensivem Rüh- ren Schaumbildung im Reaktor auftritt, was zu einer Reduktion von Katalysatorausbeute und -aktivität führt.
In US-A 5 891 818 wird ein verbessertes Verfahren zur Herstellung von DMC-Katalysatoren mit erhöhter Katalysatorausbeute und Aktivität sowie reduzierter Teil- chengröße beschrieben, bei dem die DMC-Katalysatordispersion in einem Rührreaktor hergestellt wird, wobei ein Teil der Katalysatordispersion zirkuliert und in den Reaktorkopfraum gesprüht und der zirkulierende Strom durch einen "high shear in-line mixer" geführt wird. Darunter ist z.B. ein hochtouriger Rotor-Stator-Mischer zu verstehen. Nachteilig bei diesem Verfahren ist, dass die Schaumbildung nicht vollständig unterdrückt werden kann und dass ein mehrmaliges Zirkulieren des gesamten Reaktorinhalts durch den "high shear in-line mixer" erforderlich ist, um gleichmäßige Katalysatoraktivität und Teilchengröße zu erreichen. Weiterhin ist der für das Rühren erforderliche Energieaufwand sehr hoch und die Kombination eines Rührreaktors mit einer Zirkulationsschleife, einem "high shear in-line mixer" und Sprühdüsen apparativ aufwendig.
Es wurde jetzt gefunden, dass DMC-Katalysatoren mit weiter erhöhter Aktivität, reduzierter Teilchengröße und engerer Teilchengrößenverteilung erhalten werden können, wenn die Herstellung der DMC-Katalysatordispersion unter Einsatz einer Mischdüse, bevorzugt eines Strahldispergators erfolgt. Weitere Vorteile dieses Verfahrens im Vergleich zu der in US-A 5 891 818 beschriebenen Verfahrensvariante sind der niedrigere Energieaufwand bei der Scherung, die höhere Leistungsdichte (ca. 1013 W/m3) im Vergleich zur Verwendung eines Rührkessels, die problemlose Übertragbarkeit in einen größeren Maßstab sowie der deutlich vereinfachte apparative Aufbau durch Wegfall des Rührreaktors. Polyetherpolyole, die durch DMC-Kataly- satoren erhalten werden, die nach diesem Verfahren hergestellt werden, weisen zudem eine reduzierte Viskosität auf im Vergleich zu Polyetherpolyolen, die durch DMC-Katalysatoren erhalten werden, die nach dem in US-A 5 891 818 beschriebenen Verfahren herstellt werden.
Gegenstand der vorliegenden Erfindung ist daher ein verbessertes Verfahren zur Herstellung von DMC-Katalysatoren, bei dem Lösungen wasserlöslicher Salze von Zn (II), Fe (II), Ni (II), Mn (II), Co (II), Sn (II), Pb (II), Fe (III), Mo (IV), Mo (VI), AI (III), V (V), V (IV), Sr (II), W (IV), W (VI), Cu (II) oder Cr (III) mit Lösungen wasserlöslicher, Cyanidionen enthaltender Salze oder Säuren von Fe(II), Fe(III), Co(II), Co(III), Cr(II), Cr(III), Mn(II), Mn(III), Ir(III), Ni(II), Rh(III), Ru(II), V(IV) oder
V(V) unter Einsatz einer Mischdüse, bevorzugt eines Strahldispergators, vermischt werden.
Die in den für das erfindungsgemäße Verfahren geeigneten DMC-Katalysatoren ent- haltenen Doppelmetallcyanid-Verbindungen sind die Reaktionsprodukte wasserlöslicher Metallsalze und wasserlöslicher Metallcyanidsalze.
Zur Herstellung der Doppelmetallcyanid- Verbindungen geeignete wasserlösliche Metallsalze besitzen bevorzugt die allgemeine Formel (I)
M(X)n (I),
wobei M ausgewählt wird aus den Metallen Zn (II), Fe (II), Ni (II), Mn (II), Co (II),
Sn (II), Pb (II), Fe (III), Mo (IV), Mo (VI), AI (III), V (V), V (IV), Sr (II), W (IV), W (VI), Cu (II) und Cr (III). Besonders bevorzugt sind Zn (II), Fe (II), Co (II) und Ni
(II). X sind gleiche oder verschiedene, vorzugsweise gleiche Anionen, bevorzugt aus- gewählt aus der Gruppe der Halogenide, Hydroxide, Sulfate, Carbonate, Cyanate, Thiocyanate, Isocyanate, Isothiocyanate, Carboxylate, Oxalate oder Nitrate. Der Wert für n ist 1, 2 oder 3.
Beispiele geeigneter wasserlöslicher Metallsalze sind Zinkchlorid, Zinkbromid, Zinkacetat, Zinkacetylacetonat, Zinkbenzoat, Zinknitrat, Eisen(II)sulfat, Eisen(II)- bromid, Eisen(II)chlorid, Cobalt(II)chlorid, Cobalt(II)thiocyanat, Nickel(II)chlorid und Nickel(II)nitrat. Es können auch Mischungen verschiedener wasserlöslicher Metallsalze eingesetzt werden.
Zur Herstellung der Doppelmetallcyanid-Verbindungen geeignete wasserlösliche Metallcyanidsalze besitzen bevorzugt die allgemeine Formel (II)
(Y)a M,(CN)b (A)c (II),
wobei M' ausgewählt wird aus den Metallen Fe(II), Fe(III), Co(II), Co(III), Cr(II), Cr(III), Mn(II), Mn(III), Ir(III), Ni(II), Rh(III), Ru(II), V(IV) und V(V). Besonders bevorzugt wird M' ausgewählt aus den Metallen Co(II), Co(III), Fe(II), Fe(III), Cr(III), Ir(III) und Ni(II). Das wasserlösliche Metallcyanidsalz kann eines oder meh- rere dieser Metalle enthalten. Y sind gleiche oder verschiedene, vorzugsweise gleiche
Alkalimetallkationen oder Erdalkalimetallkationen. A sind gleiche oder verschiedene, vorzugsweise gleiche Anionen, ausgewählt aus der Gruppe der Halogenide, Hydroxide, Sulfate, Carbonate, Cyanate, Thiocyanate, Isocyanate, Isothiocyanate, Carboxylate, Oxalate oder Nitrate. Sowohl a, als auch b und c sind ganzzahlig, wobei die Werte für a, b und c so gewählt sind, dass die Elektroneutralität des Metall- cyanidsalzes gegeben ist; a ist vorzugsweise 1, 2, 3 oder 4; b ist vorzugsweise 4, 5 oder 6; c besitzt bevorzugt den Wert 0. Beispiele geeigneter wasserlöslicher Metallcyanidsalze sind Kaliumhexacyanocobaltat(III), Kaliumhexacyanoferrat(II), Kalium- hexacyanoferrat(III), Calciumhexacyanocobaltat(III) und Lithiumhexacyanoco- baltat(III). Anstelle der Alkali- oder Erdalkalimetallcyanidsalze können auch die korrespondierenden Säuren eingesetzt werden. Diese lassen sich beispielsweise durch Kationenaustausch aus den Alkali- oder Erdalkalimetallcyanidsalzen erhalten, z.B. mittels Kationenaustauscherharzen.
Bevorzugte Doppelmetallcyanid- Verbindungen, die in den DMC-Katalysatoren enthalten sind, sind Verbindungen der allgemeinen Formel (III)
Mx[M\,(CN)y]z (III),
worin M wie in Formel (I) und M' wie in Formel (II) definiert ist, und x, x', y und z ganzzahlig und so gewählt sind, dass die Elektroneutralität der Doppelmetallcyanid- verbindung gegeben ist. Vorzugsweise ist x = 3, x' = 1, y = 6 und z = 2, M = Zn(II), Fe(II), Co(II) oder Ni(II) und M' = Co(III), Fe(III), Cr(III) oder Ir(III).
Beispiele geeigneter Doppelmetallcyanidverbindungen sind Zinkhexacyanocobal- tat(III), Zinkhexacyanoiridat(III), Zinkhexacyanoferrat(III) und Cobalt(II)hexacyano- cobaltat(III). Weitere Beispiele geeigneter Doppelmetallcyanid- Verbindungen sind z.B. US-A 5 158 922 (Spalte 8, Zeilen 29 - 66) zu entnehmen. Besonders bevorzugt verwendet wird Zinkhexacyanocobaltat(III).
Die in den für das erfindungsgemäße Verfahren geeigneten DMC-Katalysatoren enthaltenen organischen Komplexliganden a) sind im Prinzip bekannt und ausführlich im Stand der Technik beschrieben (siehe z.B. US-A 5 158 922 Spalte 6, Zeilen 9-65, US-A 3 404 109, US-A 3 829 505, US-A 3 941 849, EP-A0 700 949, EP-A 761 708,
JP-A 4 145 123, US-A 5 470 813, EP-A 743 093 und WO 97/40086). Bevorzugte organische Komplexliganden a) sind wasserlösliche, organische Verbindungen mit Heteroatomen, wie Sauerstoff, Stickstoff, Phosphor oder Schwefel, die mit der Doppelmetallcyanid- Verbindung Komplexe bilden können. Geeignete organische Kom- plexliganden sind z.B. Alkohole, Aldehyde, Ketone, Ether, Ester, Amide, Harnstoffe,
Nitrile, Sulfide und deren Mischungen. Bevorzugte organische Komplexliganden sind wasserlösliche aliphatische Alkohole, wie Ethanol, Isopropanol, n-Butanol, iso- Butanol, sek.-Butanol und tert.-Butanol. Besonders bevorzugt ist tert.-Butanol.
Der organische Komplexligand a) wird entweder während der Katalysatorpräparation zugegeben oder unmittelbar nach Bildung der Dispersion der Doppelmetallcyanid- verbindung. Gewöhnlich wird der organische Komplexligand a) im Überschuss eingesetzt.
Bevorzugt für das erfindungsgemäße Verfahren sind DMC-Katalysatoren, die neben den oben angeführten organischen Komplexliganden a) noch eine weitere organische komplexbildende Komponente b) enthalten. Diese Komponente b) kann aus den gleichen Klassen von Verbindungen ausgewählt werden wie Komplexligand a).
Bevorzugt ist Komponente b) ein Polyether, Polyester, Polycarbonat, Glycidylether,
Glycosid, Carbonsäureester mehrwertiger Alkohole, Polyalkylenglykolsorbitanester, eine Gallensäure oder deren Salz, Ester oder Amid, ein Cyclodextrin, organisches
Phosphat, Phosphit, Phosphonat, Phosphonit, Phosphinat oder Phosphinit, eine ionische Oberflächen- bzw. grenzflächenaktive Verbindung oder ein α,ß-ungesättigter
Carbonsäureester. DMC-Katalysatoren mit derartigen Ligandenkombinationen sind z.B. beschrieben in EP-A 700 949, EP-A 761 708, WO 97/40086, WO 98/08073, WO 98/16310, WO 99/01203, WO 99/19062, WO 99/19063 oder der Deutschen
Patentanmeldung 19905611.0.
In den für das erfindungsgemäße Verfahren geeigneten DMC-Katalysatoren können gegebenenfalls noch Wasser und oder ein oder mehrere wasserlösliche Metallsalze der Formel (I) aus der Herstellung der Doppelmetallcyanid- Verbindung enthalten sein.
Erfindungsgemäß erfolgt die Herstellung der DMC-Katalysatordispersion unter Einsatz einer Mischdüse (z.B. einer Glattstrahldüse, Levosdüse, Boschdüse und ähn- lichem), bevorzugt unter Einsatz eines Strahldispergators. Der prinzipielle Aufbau und die Wirkungsweise geeigneter Mischorgane soll im folgenden beschrieben werden. Fig. 1 zeigt den schematischen Aufbau einer einfachen Glattstrahldüse. Der Eduktstrom 1 wird zunächst in der Düse 3 beschleunigt und mit hoher Strömungsgeschwindigkeit in den langsam fließenden Eduktstrom 2 verdüst. Dabei wird Eduktstrom 2 beschleunigt und Eduktstrom 1 abgebremst. Ein Teil der kinetischen Energie von Eduktstrahl 1 wird bei diesem Vorgang in Wärme umgewandelt und steht somit für den Vermischungsvorgang nicht mehr zur Verfügung. Die Vermischung der beiden Eduktströme erfolgt anschließend über den turbulenten Zerfall des resultierenden Strahls in Wirbel unterschiedlicher Größe (Wirbelkas- kade). Im Vergleich zum Rührkessel können auf diese Weise Konzentrationsunterschiede deutlich schneller abgebaut werden, da deutlich größere und homogenere Leistungsdichten erzielt werden können. Die mittlere Leistungsdichte P berechnet sich dabei nach der folgenden Formel:
p _. AP * V V mit: Δp: Druckverlust in der Düse
V : Volumenstrom
V: Volumen der Düsenbohrung
Der Einsatz solcher Düsen soll im folgenden als Methode 1 bezeichnet werden.
Bevorzugt sollte für das erfindungsgemäße Verfahren jedoch ein Strahldispergator wie er in Fig. 2 oder Fig. 3 dargestellt ist, eingesetzt werden. Der Strahldispergator kann so aufgebaut sein (Fig. 2), dass zwei Düsen 5 und 6 hintereinander angeordnet sind. Der Eduktstrom 1 wird in der Düse 5 durch die Querschnittsverengung zunächst stark beschleunigt. Der beschleunigte Strahl saugt dabei aufgrund der hohen Strömungsgeschwindigkeit die zweite Komponente an. Der Abstand der Düsen wird bevorzugt so gewählt werden, dass in der Mischkammer 4 aufgrund der kurzen Verweilzeit nur Keimbildung jedoch kein Kristall Wachstum erfolgt. Maßgeblich für die optimale Auslegung des Strahldispergators ist somit die Keimbildungsgeschwindig- keit des Feststoffs. Günstigerweise wird eine Verweilzeit von 0,0001 s bis 0,15 s, vorzugsweise 0,001 s bis 0,1 s eingestellt. Das Kristallwachstum erfolgt erst im Ablauf s. Der Durchmesser der Düsen 6 sollte bevorzugt so gewählt werden, dass dort eine weitere Beschleunigung der teilweise gemischten Edukteströme erfolgt. Auf- grund der dadurch in den Düsen 6 zusätzlich auftretenden Scherkräfte wird im Vergleich zur Methode 1 der Zustand der homogenen Vermischung durch einen schnelleren Wirbelzerfall in kürzerer Zeit erreicht. Dadurch ist es im Gegensatz zu Methode 1 selbst bei Fällungsreaktionen mit sehr hoher Keimbildungsgeschwindigkeit möglich, den Zustand einer idealen Vermischung der Edukte zu erreichen, so dass die Einstellung von definierten stöchiometrischen Zusammensetzungen während der
Fällungsreaktion möglich ist. Als günstig haben sich Düsendurchmesser von 5000 μm bis 50 μm, vorzugsweise 2000 μm bis 200 μm erwiesen bei Druckverlusten in der Düse von 0,1 bar bis 1000 bar oder Leistungsdichten im Bereich von 1*107 W/m3 bis 1*1013 W/m3. Dieser Vermischungsvorgang soll im folgenden mit Methode 2 bezeichnet werden.
Je nach gewünschter Partikelgröße können noch n Düsen (mit n = 1 - 5) nachgeschaltet werden, so dass man einen mehrstufigen Strahldispergator erhält. In Fig. 3 ist ein solcher mehrstufiger Strahldispergator gezeigt. Im Anschluss an die Düse 6 wird die Dispersion noch einmal durch die Düse 7 geführt. Für die Auslegung der
Düsendurchmesser gilt das gleiche wie für Düse 6.
Der zusätzliche Vorteil weiterer Dispergatoren gegenüber der Methode 2 besteht darin, dass durch die großen Scherkräfte in den Düsen bereits gebildete Partikel me- chanisch zerkleinert werden können. Auf diese Weise ist es möglich, Partikel mit
Durchmessern von 10 μm bis 0,1 μm herzustellen. Anstelle mehrerer hintereinander geschalteter Düsen kann die Zerkleinerung aber auch durch Kreislaufführung der Dispersion erreicht werden. Der Einsatz solcher Düsen wird im folgenden mit Methode 3 gekennzeichnet. Andere Mischorgane zur Herstellung von Dispersionen, wie sie in EP-A 101 007, WO 95/30476 oder der Deutschen Patentanmeldung 199 28 123.8 beschrieben sind, oder Kombinationen dieser Mischorgane können ebenfalls eingesetzt werden.
Durch die Energiedissipation in den Düsen und durch die Kristallisationsenthalpie kann es zu einer Erwärmung der Dispersion kommen. Da die Temperatur einen wesentlichen Einfluss auf den Kristallbildungsprozeß haben kann, kann für die isotherme Prozessführung hinter dem Mischorgan ein Wärmeübertrager eingebaut werden.
Ein problemloses Scale-up ist beispielsweise möglich durch den Einsatz einer größeren Zahl von Bohrungen, die Parallelschaltung mehrerer Mischorgane oder die Vergrößerung der freien Düsenfläche. Letzteres wird jedoch nicht durch eine Erhöhung des Düsendurchmessers erreicht, da auf diese Weise die Möglichkeit des Auftretens eines Kernstroms besteht, wodurch eine Verschlechterung des Mischergebnisses resultiert. Bei Düsen mit großen freien Düsenflächen sind deswegen bevorzugt Schlitze mit entsprechender Fläche einzusetzen.
Die Herstellung der DMC-Katalysatordispersion erfolgt erfindungsgemäß unter Ein- satz einer Mischdüse, bevorzugt eines Strahldispergators. Beispiele geeigneter Apparaturen sind in Fig. 4 und 5 gezeigt. Fig. 4 zeigt ein semi-batch- Verfahren unter Einsatz eines Schlaufenreaktors, Fig.5 ein kontinuierliches Verfahren zur Herstellung der DMC-Katalysatordispersion.
Die Herstellung der DMC-Katalysatordispersion nach dem erfindungsgemäßen Verfahren erfolgt üblicherweise in wässriger Lösung durch Umsetzung von α) Metallsalzen, insbesondere der Formel (I) mit ß) Metallcyanidsalzen, insbesondere der Formel (II) oder den korrespondierenden Säuren, γ) organischen Komplexliganden a), und gegebenenfalls δ) einer oder mehrerer weiterer organischer komplexbildender Komponenten b).
Bevorzugt werden dabei zunächst die wässrigen Lösungen des Metallsalzes, z.B. Zinkchlorid, eingesetzt im stöchiometrischen Uberschuss (mindestens 50 Mol-% bezogen auf das Metallcyanidsalz), und des Metallcyanidsalze's, z.B. Kaliumhexa- cyanocobaltat (oder der korrespondierenden Säure), in Gegenwart des organischen Komplexliganden a), der z.B. tert.-Butanol sein kann, umgesetzt, wobei sich eine Dispersion bildet. Erfindungsgemäß erfolgt die Herstellung dieser DMC- Katalysatordispersion unter Einsatz einer Mischdüse, bevorzugt eines Strahldispergators.
Die Herstellung der DMC-Katalysatordispersion im Semibatch verfahren unter Verwendung eines Strahldispergators in Kombination mit einem Schlaufenreaktor (gemäß Fig. 4) wird im folgenden erläutert. Hierbei kann entweder die wässrige Metall- Salzlösung aus dem Behälter B2 im Kreis geführt und die wässrige Metallcyanid- lösung aus Behälter Bl zudosiert werden, oder umgekehrt. Bei der Vereinigung beider Ströme im Mischorgan M kommt es zur Bildung einer Dispersion der DMC-Ver- bindung. Die Herstellung der Dispersion der DMC- Verbindung kann nach Methode 1, 2 oder 3 erfolgen, bevorzugt nach Methode 2 oder 3. Der Vorteil dieser Methoden besteht in der Möglichkeit, während des gesamten Fällungsvorgangs ein konstantes
Eduktverhältnis zu realisieren.
Bevorzugt wird die gebildete Dispersion nach der Fällung noch einige Minuten bis mehrere Stunden im Kreislauf durch den Strahldispergator geführt.
Die Düsendurchmesser liegen dabei bevorzugt zwischen 2000 μm bis 200 μm bei Druckverlusten in der Düse zwischen 0,1 bar bis 1000 bar.
Der organische Komplexligand a) kann dabei in der wässrigen Lösung des Metall- salzes und/ oder des Metallcyanidsalzes vorhanden sein, oder er wird der nach Aus- fällung der Doppelmetallcyanid- Verbindung erhaltenen Dispersion unmittelbar zudosiert (über Behälter Bl oder B2).
Bevorzugt wird der im Kreislauf durch den Strahldispergator zirkulierenden Disper- sion anschließend noch eine weitere organische komplexbildende Komponente b) über Behälter Bl oder B2 zudosiert. Die weitere organische komplexbildende Komponente b) wird dabei bevorzugt in einer Mischung aus Wasser und organischem Komplexliganden a) eingesetzt.
Die Dosierung der weiteren organischen komplexbildenden Komponente b) in den
Kreislauf und ein anschließendes Rezirkulieren findet bevorzugt unter Druckverlusten in der Düse zwischen 0,001 bar und 10 bar statt.
Erfindungsgemäß kann die DMC-Katalysatordispersion auch in einem kontinuier- liehen Verfahren, wie es beispielhaft in Fig. 5 gezeigt ist, hergestellt werden. Die wässrigen Lösungen des Metallsalzes und des Metallcyanidsalzes werden nach Methode 1, 2 oder 3 im Mischorgan Ml umgesetzt, wobei sich eine Dispersion bildet. Der organische Komplexligand a) kann dabei in der wäßrigen Lösung des Metallsalzes und/ oder des Metallcyanidsalzes vorhanden sein. In diesem Fall entfällt in Fig. 5 die Mischstufe M2. Möglich ist auch die Zugabe des organischen Komplexliganden a) nach der Ausfällung der Doppelmetallcyanid-Verbindung über das Mischorgan M2. Zur Erhöhung der Verweilzeit der Dispersion kann diese über das Mischorgan M2 im Kreislauf gefahren werden. Im Anschluss kann im Mischorgan M3 die weitere organische komplexbildende Komponente b) - bevorzugt in einer Mischung aus Wasser und organischem Komplexliganden a) - zugegeben und zur Erhöhung der Verweilzeit rezirkuliert werden.
Die Isolierung des Katalysators aus der Dispersion erfolgt durch bekannte Techniken, wie Zentrifugation oder Filtration. In einer bevorzugten Ausführungsvariante wird der isolierte Katalysator anschließend mit einer wässrigen Lösung des organischen
Komplexliganden a) gewaschen (z.B. durch Redispergieren und anschließende er- neute Isolierung durch Filtiation oder Zentrifugation). Auf diese Weise können wasserlösliche Nebenprodukte wie Kaliumchlorid, aus dem erfmdungsgemäßen Katalysator entfernt werden.
Bevorzugt beträgt die Menge des organischen Komplexliganden a) in der wässrigen Waschlösung 40 bis 80 Gew.-%, bezogen auf die Gesamtlösung. Bevorzugt ist es weiterhin, der wässrigen Waschlösung etwas an weiterer organischer komplexbildender Komponente b) zuzufügen, bevorzugt 0,5 bis 5 Gew.-%, bezogen auf die Gesamtlösung.
Der Wasch- bzw. Redispergierschritt kann in einem konventionellen Rührreaktor durchgeführt werden. Bevorzugt ist es aber, die Redispergierung durch Kreislaufführung durch den Strahldispergator vorzunehmen. Dadurch wird die Katalysatoraktivität weiter gesteigert. Die Zirkulationszeiten bei der Redispergierung liegen be- vorzugt zwischen einigen Minuten und mehreren Stunden.
Außerdem ist es vorteilhaft, den Katalysator mehr als einmal zu waschen, um dessen Aktivität weiter zu erhöhen. Hierzu kann z.B. der erste Waschvorgang wiederholt werden. Bevorzugt ist es aber, für weitere Waschvorgänge nichtwässrige Lösungen zu verwenden, z.B. eine Mischung aus organischem Komplexliganden a) und der weiteren organischen komplexbildenden Komponente b). Auch die weiteren Waschschritte werden bevorzugt durch Kreislaufführung durch den Strahldispergator vorgenommen.
Der gewaschene Katalysator wird anschließend, gegebenenfalls nach Pulverisierung, bei Temperaturen von im allgemeinen 20 - 100°C und bei Drücken von im allgemeinen 0,1 mbar bis Normaldruck (1013 mbar) getrocknet.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der nach dem erfindungsgemäßen Verfahren hergestellten DMC-Katalysatoren in einem Ver- fahren zur Herstellung von Polyetherpolyolen durch Polyaddition von Alkylenoxiden an aktive Wasserstoffatome aufweisende Starterverbindungen.
Die nach dem erfindungsgemäßen Verfahren hergestellten DMC-Katalysatoren kön- nen wegen ihrer außerordentlich hohen Aktivität häufig in sehr niedrigen Konzentrationen eingesetzt werden (25 ppm und weniger, bezogen auf die Menge des herzustellenden Polyetherpolyols). Werden die in Gegenwart der nach dem erfindungsgemäßen Verfahren hergestellten DMC-Katalysatoren hergestellten Polyetherpolyole zur Herstellung von Polyurethanen verwendet, kann auf eine Entfernung des Kata- lysators aus dem Polyetherpolyol verzichtet werden, ohne dass die Produktqualitäten des erhaltenen Polyurethans nachteilig beeinflusst werden.
Beispiele
Katalysatorherstellung
Beispiel 1: Katalysator A
In einem Schlaufenreaktor, der einen Strahldispergator gemäß Fig.2 (4 Bohrungen mit Durchmesser 0,7 mm) enthält, wird eine Lösung aus 52 g Kaliumhexacyanoco- baltat in 910 g destilliertem Wasser zirkuliert. Hierzu wird eine Lösung aus 162,5 g Zinkchlorid in 260 g destilliertem Wasser zudosiert. Der Druckverlust im Strahldispergator beträgt dabei 2,0 bar. Unmittelbar nach der Fällung wird eine Mischung aus 650 g tert.-Butanol und 650 g destilliertem Wasser zudosiert und die Dispersion 16 min bei einem Druckverlust im Strahldispergator von 2,0 bar zirkuliert. Dann wird eine Mischung aus 13 g Cholsäure-Natriumsalz, 13 g tert.-Butanol und 1300 g destilliertem Wasser zudosiert und die Dispersion anschließend 10 min bei einem
Druckverlust im Strahldispergator von 0,1 bar zirkuliert. Der Feststoff wird durch eine Filtration isoliert und anschließend mit einer Mischung aus 13 g Cholsäure-Natriumsalz, 910 g tert.-Butanol und 390 g destilliertem Wasser durch Zirkulieren im Schlaufenreaktor bei einem Druckverlust im Strahldispergator von 2,0 bar 8 min ge- waschen. Der Feststoff wird erneut filtriert und abschließend noch einmal mit einer
Mischung aus 6,5 g Cholsäure-Natriumsalz und 1300 g tert.-Butanol durch Zirkulieren im Schlaufenreaktor bei einem Druckverlust im Strahldispergator von 2,0 bar 8 min gewaschen. Nach Filtration wird der Katalysator bei 100°C 5 h im Hochvakuum getrocknet.
Beispiel 2: Katalysator B
Es wurde verfahren wie in Beispiel 1, jedoch wurden die beiden Waschschritte nicht durch Zirkulieren im Schlaufenreaktor durch den Strahldispergator, sondern durch
Rühren (900 U/min) in einem konventionellen Rührreaktor durchgeführt. Beispiel 3 (Vergleich): Katalysator C
Herstellung des DMC-Katalysators in einem konventionellen Rührreaktor
In einem konventionellen Rührreaktor gibt man zu einer Lösung von 52 g Kalium- hexacyanocobaltat in 910 g destilliertem Wasser unter Rühren (900 U/min) eine Lösung aus 162,5 g Zinkchlorid in 260 g destilliertem Wasser. Unmittelbar danach wird eine Mischung aus 650 g tert.-Butanol und 650 g destilliertem Wasser zugegeben und die Dispersion 16 min bei 900 U/min gerührt. Dann wird eine Mischung aus 13 g Cholsäure-Natriumsalz, 13 g tert.-Butanol und 1300 g destilliertem Wasser zugegeben und 8 min bei 900 U/min gerührt. Der Feststoff wird durch eine Filtration isoliert und anschließend mit einer Mischung aus 13 g Cholsäure-Natriumsalz, 910 g tert.- Butanol und 390 g destilliertem Wasser 8 min unter Rühren (900 U/min) gewaschen. Der Feststoff wird erneut filtriert und abschließend noch einmal mit einer Mischung aus 6,5 g Cholsäure-Natriumsalz und 1300 g tert.-Butanol 8 min unter Rühren
(900 U/min) gewaschen. Nach Filtration wird der Katalysator bei 100°C 5 h im Hochvakuum getrocknet.
Beispiel 4 (Vergleich): Katalysator D
Es wurde verfahren wie in Beispiel 3 (Vergleichsbeispiel), jedoch wurde, wie in US-A 5 891 818 beschrieben, die DMC-Katalysatordispersion in einem Rührreaktor hergestellt und die Dispersion in einer Zirkulationsschleife durch einen "high-shear in-line mixer" zirkuliert.
Die Teilchengrößen und Teilchengrößenverteilungen der gefällten und mit Liganden behandelten DMC-Katalysatordispersionen wurden durch Laserkorrelationsspektroskopie bestimmt. Die Ergebnisse gehen aus Tabelle 1 hervor: Tabelle 1:
Beispiel Mittlere Teilchengröße Polydispersität
1, 2 2,57 μm 0,213
3 (Vergleichsbeispiel) 4,51 μm 0,254
4 (Vergleichsbeispiel) 2,78 μm 0,248
Die Ergebnisse in Tabelle 1 zeigen, dass durch das erfindungsgemäße Verfahren DMC-Katalysatoren mit reduzierter Teilchengröße und engerer Teilchengrößenverteilung (Polydispersität) erhalten werden (Beispiele 1 und 2), im Vergleich zu DMC- Katalysatoren, die nach Verfahren des Standes der Technik hergestellt wurden (Vergleichsbeispiele 3 und 4).
Herstellung von Polyetherpolyolen
Allgemeine Durchführung
In einem 500 ml Druckreaktor werden 50 g Polypropylenglykol-Starter (Molekulargewicht = 1 000 g/mol) und 5 mg Katalysator (25 ppm, bezogen auf die Menge des herzustellenden Polyetherpolyols) unter Schutzgas (Argon) vorgelegt und unter Rühren auf 105°C aufgeheizt. Anschließend wird Propylenoxid (ca. 5 g) auf einmal zudosiert, bis der Gesamtdruck auf 2,5 bar angestiegen ist. Weiteres Propylenoxid wird erst dann wieder zudosiert, wenn ein beschleunigter Druckabfall im Reaktor beobachtet wird. Dieser beschleunigte Druckabfall zeigt an, dass der Katalysator aktiviert ist. Anschließend wird das restliche Propylenoxid (145 g) kontinuierlich bei einem konstanten Gesamtdruck von 2,5 bar zudosiert. Nach vollständiger Propylen- oxid-Dosierung und 2 Stunden Nachreaktionszeit bei 105°C werden flüchtige Anteile bei 90°C (1 mbar) abdestilliert und anschließend auf Raumtemperatur abgekühlt. Die erhaltenen Polyetherpolyole wurden durch Ermittlung der OH-Zahlen, der Doppelbindungsgehalte und der Viskositäten charakterisiert.
Der Reaktionsverlauf wurde anhand von Zeit-Umsatz-Kurven (Propylenoxid- Verbrauch [g] vs. Reaktionszeit [min]) verfolgt. Aus dem Schnittpunkt der Tangente an den steilsten Punkt der Zeit-Umsatz-Kurve mit der verlängerten Basislinie der Kurve wurde die Induktionszeit bestimmt. Die für die Katalysatoraktivität maßgeblichen Propoxylierungszeiten entsprechen dem Zeitraum zwischen Katalysatoraktivierung (Ende der Induktionsperiode) und dem Ende der Propylenoxid-Dosierung.
Beispiel 5: Herstellung von Polyetherpolyol mit Katalysator A (25 ppm)
Propoxylierungszeit: 42 min Polyetherpolyol: OH-Zahl (mg KOH/g): 29,7
Doppelbindungsgehalt (mMol/kg): 6
Viskosität 25°C (mPas): 846
Beispiel 6: Herstellung von Polyetherpolyol mit Katalysator B (25 ppm)
Propoxylierungszeit: 68 min
Polyetherpolyol: OH-Zahl (mg KOH/g): 30,3
Doppelbindungsgehalt (mMol/kg): 6 Viskosität 25°C (mPas): 869 Beispiel 7 (Vergleich): Herstellung von Polyetherpolyol mit Katalysator C (25 ppm)
Katalysator C (25 ppm) zeigt unter den oben beschriebenen Reaktionsbedingungen keine Aktivität.
Beispiel 8 (Vergleich): Herstellung von Polyetherpolyol mit Katalysator D (25 ppm)
Propoxylierungszeit: 109 min Polyetherpolyol: OH-Zahl (mg KOH/g): 30,8
Doppelbindungsgehalt (mMol/kg): 7
Viskosität 25°C (mPas): 876
Ein Vergleich der Beispiele 5 und 6 mit den Vergleichsbeispielen 7 und 8 zeigt, dass durch das erfindungsgemäße Verfahren DMC-Katalysatoren mit deutlich erhöhter
Aktivität (d.h. deutlich reduzierten Propoxylierungszeiten) erhalten werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung von DMC-Katalysatoren, bei dem Lösungen wasserlöslicher Salze von Zn(II), Fe(II), Ni(II), Mn(II), Co(II), Sn(II), Pb(II), Fe(III), Mo(IV), Mo(VI), Al(III), V(V), V(IV), Sr(II), W(IV), W(VI), Cu(II) oder Cr(III) mit Lösungen wasserlöslicher, Cyanidionen enthaltender Salze oder Säuren von Fe(II), Fe(III), Co(II), Co(III), Cr(II), Cr(III), Mn(II), Mn(III), Ir(III), Ni(II), Rh(III), Ru(II), V(IV) oder V(V) unter Einsatz einer Mischdüse vermischt werden.
2. Verfahren zur Herstellung von DMC-Katalysatoren nach Anspruch 1, bei dem die Lösungen unter Einsatz eines Strahldispergators vermischt werden.
3. Verfahren nach Anspruch 1 oder 2, bei dem der DMC-Katalysator aus der durch Vermischung der Lösungen gebildeten Katalysatordispersion isoliert und anschließend unter Einsatz eines Strahldispergators in wässriger oder wasserfreier Ligandenlösung redispergiert wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem der DMC-Katalysator als Doppelmetallcyanid- Verbindung Zinkhexacyanocobaltat(III) enthält.
5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem der DMC-Katalysator als organischen Komplexliganden tert.-Butanol enthält.
6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem der DMC-Katalysator eine organische komplexbildende Komponente enthält, die ein Polyether, Polyester, Polycarbonat, Glycidylether, Glycosid, Carbonsäureester mehrwertiger Alkohole, Polyalkylenglykolsorbitanester, eine Gallensäure oder deren Salz, Ester oder Amid, ein Cyclodextrin, organisches Phosphat, Phosphit, Phosphonat, Phosphonit, Phosphinat oder Phosphinit, eine ionische oberflächen- bzw. grenzflächenaktive Verbindung oder ein α,ß-ungesättigter Carbonsäureester ist.
7. DMC-Katalysator, erhältlich gemäß einem der Ansprüche 1 bis 6.
8. Verwendung eines gemäß einem der Ansprüche 1 bis 6 hergestellten DMC- Katalysators zur Herstellung von Polyetherpolyolen.
PCT/EP2000/011835 1999-12-03 2000-11-21 Verfahren zur herstellung von dmc-katalysatoren WO2001039883A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BRPI0015970-0A BR0015970B1 (pt) 1999-12-03 2000-11-21 processo para preparação de catalisadores dmc.
AU18602/01A AU1860201A (en) 1999-12-03 2000-11-21 Method for producing dmc catalysts
JP2001541609A JP5005144B2 (ja) 1999-12-03 2000-11-21 Dmc触媒を製造する方法
HU0203666A HUP0203666A2 (en) 1999-12-03 2000-11-21 Method for producing dmc catalysts
PL355412A PL201666B1 (pl) 1999-12-03 2000-11-21 Sposób wytwarzania katalizatorów DMC oraz ich zastosowanie
US10/148,555 US6780813B1 (en) 1999-12-03 2000-11-21 Process for producing DMC catalysts
EP00981310A EP1244519B2 (de) 1999-12-03 2000-11-21 Verfahren zur herstellung von dmc-katalysatoren
CA002392819A CA2392819C (en) 1999-12-03 2000-11-21 Method for producing dmc catalysts
DE50012324T DE50012324D1 (de) 1999-12-03 2000-11-21 Verfahren zur herstellung von dmc-katalysatoren
MXPA02005478A MXPA02005478A (es) 1999-12-03 2000-11-21 Procedimiento para la preparacion de catalizadores dmc.
ES00981310T ES2258985T5 (es) 1999-12-03 2000-11-21 Procedimiento para la preparación de catalizadores de DMC
HK03107016A HK1054710A1 (en) 1999-12-03 2003-09-29 Method for producing dmc catalysts.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19958355A DE19958355A1 (de) 1999-12-03 1999-12-03 Verfahren zur Herstellung von DMC-Katalysatoren
DE19958355.2 1999-12-03

Publications (1)

Publication Number Publication Date
WO2001039883A1 true WO2001039883A1 (de) 2001-06-07

Family

ID=7931323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/011835 WO2001039883A1 (de) 1999-12-03 2000-11-21 Verfahren zur herstellung von dmc-katalysatoren

Country Status (20)

Country Link
US (1) US6780813B1 (de)
EP (1) EP1244519B2 (de)
JP (1) JP5005144B2 (de)
KR (1) KR100798236B1 (de)
CN (1) CN1165375C (de)
AT (1) ATE318652T1 (de)
AU (1) AU1860201A (de)
BR (1) BR0015970B1 (de)
CA (1) CA2392819C (de)
CZ (1) CZ299202B6 (de)
DE (2) DE19958355A1 (de)
ES (1) ES2258985T5 (de)
HK (1) HK1054710A1 (de)
HU (1) HUP0203666A2 (de)
MX (1) MXPA02005478A (de)
PL (1) PL201666B1 (de)
PT (1) PT1244519E (de)
RU (1) RU2264258C2 (de)
TW (1) TW572782B (de)
WO (1) WO2001039883A1 (de)

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105944A1 (en) * 2003-05-22 2004-12-09 Dow Global Technologies Inc. Nano-scale dmc catalyst particles
WO2005118135A1 (en) * 2004-05-26 2005-12-15 Basf Corporation Method of synthesizing a double metal cyanide catalyst
EP1632517A1 (de) * 2003-06-04 2006-03-08 Asahi Glass Company Ltd. Mischmetallcyanidkomplexkatalysator, herstellungsverfahren dafür und verwendung davon
WO2006037541A2 (de) * 2004-10-05 2006-04-13 Basf Aktiengesellschaft Verfahren zur kontinuierlichen herstellung von dmc-katalysatoren
WO2007082596A1 (de) * 2005-12-02 2007-07-26 Basf Se Verfahren zur herstellung von multimetallcyanidverbindungen
WO2011018471A1 (de) 2009-08-13 2011-02-17 Basf Se Verfahren zur herstellung von multimetallcyanidverbindungen
WO2011089120A1 (de) 2010-01-20 2011-07-28 Bayer Materialscience Ag Verfahren zur aktivierung von doppelmetallcyanidkatalysatoren zur herstellung von polyethercarbonatpolyolen
DE102010008410A1 (de) 2010-02-18 2011-08-18 Bayer MaterialScience AG, 51373 Verfahren zur Herstellung von Polyethercarbonatpolyolen
WO2011117332A1 (de) 2010-03-24 2011-09-29 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen
WO2011144523A1 (de) 2010-05-18 2011-11-24 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen
WO2012032028A1 (de) 2010-09-09 2012-03-15 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP2441788A1 (de) 2010-10-14 2012-04-18 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherpolyolen
EP2465890A1 (de) 2010-12-17 2012-06-20 Bayer MaterialScience AG Verfahren zur Herstellung von Polyethercarbonatpolyolen mit primären Hydroxyl-Endgruppen und daraus hergestellte Polyurethanpolymere
WO2012084760A1 (de) 2010-12-20 2012-06-28 Bayer Materialscience Ag Verfahren zur herstellung von polyetheresterpolyolen
WO2012084762A1 (de) 2010-12-20 2012-06-28 Bayer Materialscience Ag Verfahren zur herstellung von polyetherpolyolen
WO2012130760A1 (de) 2011-03-28 2012-10-04 Bayer Materialscience Ag Verfahren zur herstellung von polyurethan-weichschaumstoffen
EP2530101A1 (de) 2011-06-01 2012-12-05 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherpolyolen
WO2013000915A1 (de) 2011-06-30 2013-01-03 Bayer Intellectual Property Gmbh Verfahren zur herstellung von hochmolekularen polyetherpolyolen
EP2548908A1 (de) 2011-07-18 2013-01-23 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherpolyolen
EP2548906A1 (de) 2011-07-18 2013-01-23 Bayer MaterialScience AG Verfahren zur Aktivierung von Doppelmetallcyanidkatalysatoren zur Herstellung von Polyetherpolyolen
EP2548907A1 (de) 2011-07-18 2013-01-23 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherpolyolen
EP2548905A1 (de) 2011-07-18 2013-01-23 Bayer MaterialScience AG Verfahren zur Aktivierung von Doppelmetallcyanidkatalysatoren zur Herstellung von Polyetherpolyolen
EP2604641A1 (de) 2011-12-16 2013-06-19 Bayer Intellectual Property GmbH Verfahren zur Herstellung von Polyetherestercarbonatpolyolen
EP2604642A1 (de) 2011-12-16 2013-06-19 Bayer Intellectual Property GmbH Verfahren zur Herstellung von Polyethercarbonatpolyolen
WO2013092506A1 (de) 2011-12-20 2013-06-27 Bayer Materialscience Ag Hydroxy-aminopolymer und dessen verwendung in polyharnstoffpolyurethan-gewebeklebstoffen
WO2013092504A1 (de) 2011-12-20 2013-06-27 Bayer Materialscience Ag Isocyanatfunktionelles präpolymer für einen biologisch abbaubaren gewebeklebstoff
WO2013092501A1 (de) 2011-12-20 2013-06-27 Bayer Intellectual Property Gmbh Hydroxy-aminopolymere und verfahren zu deren herstellung
EP2671893A1 (de) 2012-06-06 2013-12-11 Bayer MaterialScience AG Verfahren zur Herstellung von Omega-Hydroxy-Aminopolymeren
EP2703425A1 (de) 2012-08-27 2014-03-05 Bayer MaterialScience AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
EP2703426A1 (de) 2012-08-27 2014-03-05 Bayer MaterialScience AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
EP2730602A1 (de) 2012-11-09 2014-05-14 Bayer MaterialScience AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
WO2014072336A1 (de) 2012-11-09 2014-05-15 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP2845873A1 (de) 2013-09-05 2015-03-11 Bayer MaterialScience AG Radikalische Vernetzung von Polyethercarbonatpolyolen enthaltend elektronenarme und elektronenreiche Doppelbindungen
EP2845872A1 (de) 2013-09-05 2015-03-11 Bayer MaterialScience AG Niederviskose Polyethercarbonatpolyole mit Seitenketten
EP2845871A1 (de) 2013-09-05 2015-03-11 Bayer MaterialScience AG Vernetzung von Doppelbindungen enthaltenden Polyethercarbonatpolyolen durch Addition von Mercaptanen
EP2851384A1 (de) 2013-09-20 2015-03-25 Bayer MaterialScience AG Verzweigte Polyethercarbonatpolyole und Verfahren zu deren Herstellung
EP2865700A1 (de) 2013-10-23 2015-04-29 Bayer MaterialScience AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
EP2876121A1 (de) 2013-11-22 2015-05-27 Bayer MaterialScience AG Einsatz von Urethan-Alkoholen zur Herstellung von Polyetherpolyolen
EP2886572A1 (de) 2013-12-17 2015-06-24 Bayer MaterialScience AG Einsatz von Urethan-Alkoholen zur Herstellung von Polyethercarbonatpolyolen
EP2894180A1 (de) 2014-01-08 2015-07-15 Bayer MaterialScience AG Polymerpolyole mit einem Polyether-Carbonat-Polyol als das Basispolyol
EP3023447A1 (de) 2014-11-18 2016-05-25 Covestro Deutschland AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
EP3050907A1 (de) 2015-01-28 2016-08-03 Covestro Deutschland AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
WO2016137746A1 (en) 2015-02-25 2016-09-01 Covestro Llc Alkoxysilane-group modified polyurethanes and low modulus sealants formed therefrom
EP3098250A1 (de) 2015-05-26 2016-11-30 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
EP3098251A1 (de) 2015-05-26 2016-11-30 Covestro Deutschland AG Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyetherpolyolen
EP3098252A1 (de) 2015-05-26 2016-11-30 Covestro Deutschland AG Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyethercarbonatpolyolen
WO2017032768A1 (de) 2015-08-26 2017-03-02 Covestro Deutschland Ag Verfahren zur herstellung von hochmolekularen polyoxyalkylenpolyolen
EP3219741A1 (de) 2016-03-18 2017-09-20 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2017194709A1 (de) 2016-05-13 2017-11-16 Covestro Deutschland Ag Verfahren zur herstellung von polyoxyalkylenpolyolen
EP3260483A1 (de) 2016-06-22 2017-12-27 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2018026571A1 (en) 2016-08-05 2018-02-08 Covestro Llc Systems and processes for producing polyether polyols
WO2018069348A1 (de) 2016-10-12 2018-04-19 Covestro Deutschland Ag Verfahren zur herstellung von elastomeren
WO2018069350A1 (de) 2016-10-12 2018-04-19 Covestro Deutschland Ag Verfahren zur herstellung eines mehrfachbindungen enthaltenden präpolymers als elastomer-vorstufe
US9957354B2 (en) 2013-09-05 2018-05-01 Covestro Deutschland Ag Higher functional polyether carbonate polyols obtained using branching molecules
EP3336130A1 (de) 2016-12-19 2018-06-20 Covestro Deutschland AG Verfahren zur herstellung von polyetherthiocarbonatpolyolen
EP3385295A1 (de) 2017-04-05 2018-10-10 Covestro Deutschland AG Flammgeschützte phosphorfunktionelle polyethercarbonatpolyole und verfahren zu deren herstellung
EP3424967A1 (de) 2017-07-07 2019-01-09 Covestro Deutschland AG Verfahren zur herstellung von funktionalisierten polyoxyalkylenpolyolen
EP3461852A1 (de) 2017-09-28 2019-04-03 Covestro Deutschland AG Verfahren zur herstellung eines mehrfachbindungen enthaltenden polymers als elastomer-vorstufe
EP3473658A1 (de) 2017-10-18 2019-04-24 Covestro Deutschland AG Diblockcopolymere und deren verwendung als tenside
WO2019076862A1 (de) 2017-10-18 2019-04-25 Covestro Deutschland Ag Diblockcopolymere und deren verwendung als tenside
EP3489278A1 (de) 2017-11-23 2019-05-29 Covestro Deutschland AG Hochmolekulare polyoxyalkylene mit tiefer glastemperatur hergestellt nach der grafting-through-methode
EP3502162A1 (de) 2017-12-19 2019-06-26 Covestro Deutschland AG Verfahren zur herstellung von polyetheresterpolyolen
EP3527606A1 (de) 2018-02-16 2019-08-21 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
EP3587469A1 (de) 2018-06-22 2020-01-01 Covestro Deutschland AG Verfahren zur herstellung von polyol
EP3597690A1 (de) 2018-07-19 2020-01-22 Covestro Deutschland AG Heterocyclen-funktionelle polyether oder polyethercarbonate und verfahren zu deren herstellung
EP3604320A1 (de) 2018-08-01 2020-02-05 Covestro Deutschland AG Phosphorfunktionelle polyoxyalkylenpolyole und verfahren zu deren herstellung
EP3608018A1 (de) 2018-08-08 2020-02-12 Covestro Deutschland AG Verfahren zur herstellung von doppelmetallcyanid-katalysatoren
EP3608348A1 (de) 2018-08-07 2020-02-12 Covestro Deutschland AG Verfahren zur herstellung eines organooxysilyl-vernetzten polymers
EP3617248A1 (de) 2018-08-30 2020-03-04 Covestro Deutschland AG Verfahren zur abtrennung von gasförmigen bestandteilen
EP3643730A1 (de) 2018-10-26 2020-04-29 Covestro Deutschland AG Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-blockcopolymeren
EP3670571A1 (de) 2018-12-21 2020-06-24 Covestro Deutschland AG Verfahren zur herstellung eines polyester-polyetherpolyol-blockcopolymers
EP3670568A1 (de) 2018-12-21 2020-06-24 Covestro Deutschland AG Verfahren zur herstellung eines polyesters
EP3670557A1 (de) 2018-12-21 2020-06-24 Covestro Deutschland AG Verfahren zur herstellung eines polyoxyalkylenpolyesterpolyols
EP3683251A1 (de) 2019-01-15 2020-07-22 Covestro Deutschland AG Verfahren zur herstellung von diol
EP3747927A1 (de) 2019-06-05 2020-12-09 Covestro Deutschland AG Verfahren zur kontinuierlichen herstellung von polyoxyalkylenpolyolen
EP3750940A1 (de) 2019-06-11 2020-12-16 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2020249433A1 (de) 2019-06-11 2020-12-17 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP3760663A1 (de) 2019-07-05 2021-01-06 Covestro Deutschland AG Verfahren zur herstellung von polyetherestercarbonatpolyolen
EP3763768A1 (de) 2019-07-12 2021-01-13 Covestro Deutschland AG Polyethercarbonatpolyole mit enger segmentlängenverteilung
EP3771724A1 (de) 2019-07-31 2021-02-03 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2021018753A1 (de) 2019-07-31 2021-02-04 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP3831867A1 (de) 2019-12-04 2021-06-09 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2021110691A1 (de) 2019-12-04 2021-06-10 Covestro Intellectual Property Gmbh & Co. Kg Verfahren zur herstellung von polyethercarbonatpolyolen
EP3838938A1 (de) 2019-12-18 2021-06-23 Covestro Deutschland AG Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-copolymeren
WO2021148272A1 (de) 2020-01-21 2021-07-29 Covestro Deutschland Ag Verfahren zur herstellung von doppelmetallcyanid-katalysatoren
WO2021165283A2 (de) 2020-02-22 2021-08-26 Covestro Deutschland Ag Verfahren zur herstellung von doppelmetallcyanid-katalysatoren
EP3878885A1 (de) 2020-03-10 2021-09-15 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
EP3882297A1 (de) 2020-03-17 2021-09-22 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
EP3885390A1 (de) 2020-03-25 2021-09-29 Covestro Deutschland AG Verfahren zur herstellung eines etheresterols
EP3889204A1 (de) 2020-04-02 2021-10-06 Covestro Deutschland AG Verfahren zur herstellung eines polyoxyalkylencarbonatpolyols
EP3922660A1 (de) 2020-06-08 2021-12-15 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
EP3922659A1 (de) 2020-06-08 2021-12-15 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
EP3922661A1 (de) 2020-06-12 2021-12-15 Covestro Deutschland AG Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-copolymeren
EP3988600A1 (de) 2020-10-20 2022-04-27 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatalkoholen
WO2022189318A1 (de) 2021-03-12 2022-09-15 Covestro Deutschland Ag Verfahren zur aufreinigung von cyclischen carbonaten
WO2022258570A1 (de) 2021-06-10 2022-12-15 Covestro Deutschland Ag Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-copolymeren
EP4151669A1 (de) 2021-09-15 2023-03-22 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
EP4302874A1 (de) 2022-07-04 2024-01-10 Covestro Deutschland AG Verfahren zur herstellung von doppelmetallcyanid-katalysatoren

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905611A1 (de) * 1999-02-11 2000-08-17 Bayer Ag Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
BR0110117B1 (pt) * 2000-04-20 2012-07-10 processo para produção de catalisadores de dmc.
CN101142152B (zh) * 2005-03-14 2012-04-25 株式会社村田制作所 分散设备、陶瓷浆料制备方法、叠层陶瓷电子元件及其制造方法
KR20070112793A (ko) * 2005-03-22 2007-11-27 쉘 인터내셔날 리써취 마트샤피지 비.브이. 개선된 이중 금속 시아나이드 착물 촉매의 제조방법, 이중금속 시아나이드 촉매 및 이러한 촉매의 용도
DE102006006696A1 (de) * 2006-02-14 2007-08-23 Clariant International Limited Polyalkylenglykol-Schmiermittelbasisöle mit enger Molmassenverteilung
US7977501B2 (en) 2006-07-24 2011-07-12 Bayer Materialscience Llc Polyether carbonate polyols made via double metal cyanide (DMC) catalysis
DE102006049803A1 (de) * 2006-10-23 2008-04-30 Clariant International Limited Hydroxyfunktionelle, copolymerisierbare Polyalkylenglykol-Makromonomere, deren Herstellung und Verwendung
DE102007045230A1 (de) 2007-09-21 2009-04-09 Clariant International Limited Polycarboxylatether als Dispergiermittel für anorganische Pigmentformulierungen
JP2009154132A (ja) * 2007-12-27 2009-07-16 Tomihisa Naito 微粒化装置
JP2016521788A (ja) 2013-06-13 2016-07-25 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag ポリエーテルカーボネイト−ポリオキシメチレンブロック共重合体
US10358526B2 (en) 2014-09-23 2019-07-23 Covestro Deutschland Ag Moisture-curing polyether carbonate containing alkoxysilyl groups
EP3622003A1 (de) 2017-05-10 2020-03-18 Dow Global Technologies LLC Polyetherpolymerisierungsverfahren
EP4273185A1 (de) 2022-05-04 2023-11-08 PCC Rokita SA Verfahren zur herstellung eines polyetherdiolproduktes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0101007A2 (de) * 1982-08-14 1984-02-22 Bayer Ag Herstellung von pharmazeutischen oder kosmetischen Dispersionen
US5470813A (en) * 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
WO1997040086A1 (en) * 1996-04-19 1997-10-30 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
WO1999019063A1 (de) * 1997-10-13 1999-04-22 Bayer Aktiengesellschaft Kristalline doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
US5900384A (en) * 1996-07-18 1999-05-04 Arco Chemical Technology L.P. Double metal cyanide catalysts

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1063525A (en) 1963-02-14 1967-03-30 Gen Tire & Rubber Co Organic cyclic oxide polymers, their preparation and tires prepared therefrom
US3829505A (en) 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same
US3941849A (en) 1972-07-07 1976-03-02 The General Tire & Rubber Company Polyethers and method for making the same
US4253610A (en) * 1979-09-10 1981-03-03 Larkin Joe M Abrasive blast nozzle
US4406664A (en) * 1980-01-22 1983-09-27 Gulf & Western Industries, Inc. Process for the enhanced separation of impurities from coal and coal products produced therefrom
AU570489B2 (en) * 1983-07-05 1988-03-17 Union Carbide Corporation Alkoxylation using calcium catalysts
JP2884614B2 (ja) * 1989-09-01 1999-04-19 旭硝子株式会社 複合金属シアン化物錯体触媒の製造方法
US5159092A (en) * 1989-09-22 1992-10-27 Buss Ag Process for the safe and environmentally sound production of highly pure alkylene oxide adducts
JP2653236B2 (ja) 1990-10-05 1997-09-17 旭硝子株式会社 ポリエーテル化合物の製造方法
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
US5712216A (en) 1995-05-15 1998-01-27 Arco Chemical Technology, L.P. Highly active double metal cyanide complex catalysts
DE4416343C2 (de) 1994-05-09 1996-10-17 Karlsruhe Forschzent Statischer Mikro-Vermischer
US5482908A (en) 1994-09-08 1996-01-09 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5545601A (en) 1995-08-22 1996-08-13 Arco Chemical Technology, L.P. Polyether-containing double metal cyanide catalysts
US5714428A (en) 1996-10-16 1998-02-03 Arco Chemical Technology, L.P. Double metal cyanide catalysts containing functionalized polymers
US5891818A (en) * 1997-07-31 1999-04-06 Arco Chemical Technology, L.P. Cyanide complex catalyst manufacturing process
DE19913260C2 (de) 1999-03-24 2001-07-05 Bayer Ag Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
DE19928123A1 (de) 1999-06-19 2000-12-28 Karlsruhe Forschzent Statischer Mikrovermischer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0101007A2 (de) * 1982-08-14 1984-02-22 Bayer Ag Herstellung von pharmazeutischen oder kosmetischen Dispersionen
US5470813A (en) * 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
WO1997040086A1 (en) * 1996-04-19 1997-10-30 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5900384A (en) * 1996-07-18 1999-05-04 Arco Chemical Technology L.P. Double metal cyanide catalysts
WO1999019063A1 (de) * 1997-10-13 1999-04-22 Bayer Aktiengesellschaft Kristalline doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen

Cited By (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105944A1 (en) * 2003-05-22 2004-12-09 Dow Global Technologies Inc. Nano-scale dmc catalyst particles
CN100450616C (zh) * 2003-05-22 2009-01-14 陶氏环球技术公司 纳米级dmc催化剂颗粒
US7645717B2 (en) 2003-05-22 2010-01-12 Dow Global Technologies, Inc. Nano-scale DMC catalyst particles
EP1632517A1 (de) * 2003-06-04 2006-03-08 Asahi Glass Company Ltd. Mischmetallcyanidkomplexkatalysator, herstellungsverfahren dafür und verwendung davon
EP1632517A4 (de) * 2003-06-04 2006-08-02 Asahi Glass Co Ltd Mischmetallcyanidkomplexkatalysator, herstellungsverfahren dafür und verwendung davon
US7169956B2 (en) 2003-06-04 2007-01-30 Asahi Glass Company, Limited Double metal cyanide complex catalyst, its production process and its utilization
WO2005118135A1 (en) * 2004-05-26 2005-12-15 Basf Corporation Method of synthesizing a double metal cyanide catalyst
WO2006037541A2 (de) * 2004-10-05 2006-04-13 Basf Aktiengesellschaft Verfahren zur kontinuierlichen herstellung von dmc-katalysatoren
WO2006037541A3 (de) * 2004-10-05 2006-06-15 Basf Ag Verfahren zur kontinuierlichen herstellung von dmc-katalysatoren
US8119825B2 (en) 2005-12-02 2012-02-21 Basf Aktiengesellschaft Method for the production of multimetal cyanide compounds
WO2007082596A1 (de) * 2005-12-02 2007-07-26 Basf Se Verfahren zur herstellung von multimetallcyanidverbindungen
WO2011018471A1 (de) 2009-08-13 2011-02-17 Basf Se Verfahren zur herstellung von multimetallcyanidverbindungen
WO2011089120A1 (de) 2010-01-20 2011-07-28 Bayer Materialscience Ag Verfahren zur aktivierung von doppelmetallcyanidkatalysatoren zur herstellung von polyethercarbonatpolyolen
US8933192B2 (en) 2010-01-20 2015-01-13 Bayer Intellectual Property Gmbh Process for the activation of double metal cyanide catalysts for the preparation of polyether carbonate polyols
WO2011101403A1 (de) 2010-02-18 2011-08-25 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen mit doppelmetallcyanidkatalysatoren und in gegenwart von metallsalzen
US9080010B2 (en) 2010-02-18 2015-07-14 Bayer Intellectual Property Gmbh Process for preparing polyether carbonate polyols with double metal cyanide catalysts and in the presence of metal salts
DE102010008410A1 (de) 2010-02-18 2011-08-18 Bayer MaterialScience AG, 51373 Verfahren zur Herstellung von Polyethercarbonatpolyolen
WO2011117332A1 (de) 2010-03-24 2011-09-29 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen
US9382417B2 (en) 2010-03-24 2016-07-05 Covestro Deutschland Ag Process for the preparation of polyether carbonate polyols
WO2011144523A1 (de) 2010-05-18 2011-11-24 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen
US8946466B2 (en) 2010-05-18 2015-02-03 Bayer Intellectual Property Gmbh Method for producing polyether carbonate polyols
WO2012032028A1 (de) 2010-09-09 2012-03-15 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen
DE102010040517A1 (de) 2010-09-09 2012-03-15 Bayer Materialscience Aktiengesellschaft Verfahren zur Herstellung von Polyetherpolyolen
US9045592B2 (en) 2010-09-09 2015-06-02 Bayer Intellectual Property Gmbh Process for the preparation of polyether carbonate polyols
WO2012049162A1 (de) 2010-10-14 2012-04-19 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen
US9062156B2 (en) 2010-10-14 2015-06-23 Bayer Intellectual Property Gmbh Process for the production of polyether carbonate polyols
EP2441788A1 (de) 2010-10-14 2012-04-18 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherpolyolen
WO2012080192A1 (de) 2010-12-17 2012-06-21 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen mit primären hydroxyl-endgruppen und daraus hergestellte polyurethanpolymere
EP2465890A1 (de) 2010-12-17 2012-06-20 Bayer MaterialScience AG Verfahren zur Herstellung von Polyethercarbonatpolyolen mit primären Hydroxyl-Endgruppen und daraus hergestellte Polyurethanpolymere
WO2012084762A1 (de) 2010-12-20 2012-06-28 Bayer Materialscience Ag Verfahren zur herstellung von polyetherpolyolen
WO2012084760A1 (de) 2010-12-20 2012-06-28 Bayer Materialscience Ag Verfahren zur herstellung von polyetheresterpolyolen
WO2012130760A1 (de) 2011-03-28 2012-10-04 Bayer Materialscience Ag Verfahren zur herstellung von polyurethan-weichschaumstoffen
EP2530101A1 (de) 2011-06-01 2012-12-05 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherpolyolen
WO2012163944A1 (de) 2011-06-01 2012-12-06 Bayer Intellectual Property Gmbh Verfahren zur herstellung von polyetherpolyolen
WO2013000915A1 (de) 2011-06-30 2013-01-03 Bayer Intellectual Property Gmbh Verfahren zur herstellung von hochmolekularen polyetherpolyolen
US9249259B2 (en) 2011-07-18 2016-02-02 Bayer Intellectual Property Gmbh Method for activating double metal cyanide catalysts for producing polyether polyols
EP2548906A1 (de) 2011-07-18 2013-01-23 Bayer MaterialScience AG Verfahren zur Aktivierung von Doppelmetallcyanidkatalysatoren zur Herstellung von Polyetherpolyolen
WO2013010987A1 (de) 2011-07-18 2013-01-24 Bayer Intellectual Property Gmbh Verfahren zur aktivierung von doppelmetallcyanidkatalysatoren zur herstellung von polyethercarbonatpolyolen
WO2013011014A1 (de) 2011-07-18 2013-01-24 Bayer Intellectual Property Gmbh Verfahren zur aktivierung von doppelmetallcyanidkatalysatoren zur herstellung von polyetherpolyolen
EP2548908A1 (de) 2011-07-18 2013-01-23 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherpolyolen
WO2013011015A1 (de) 2011-07-18 2013-01-24 Bayer Intellectual Property Gmbh Verfahren zur herstellung von polyetherpolyolen
EP2548905A1 (de) 2011-07-18 2013-01-23 Bayer MaterialScience AG Verfahren zur Aktivierung von Doppelmetallcyanidkatalysatoren zur Herstellung von Polyetherpolyolen
EP2548907A1 (de) 2011-07-18 2013-01-23 Bayer MaterialScience AG Verfahren zur Herstellung von Polyetherpolyolen
US9315622B2 (en) 2011-07-18 2016-04-19 Covestro Deutschland Ag Process for the production of polyether carbonate polyols
US9309356B2 (en) 2011-07-18 2016-04-12 Bayer Intellectual Property Gmbh Method for activating double metal cyanide catalysts for the production of polyether carbonate polyols
WO2013010986A1 (de) 2011-07-18 2013-01-24 Bayer Intellectual Property Gmbh Verfahren zur herstellung von polyethercarbonatpolyolen
US9120894B2 (en) 2011-07-18 2015-09-01 Bayer Intellectual Property Gmbh Method for producing polyether polyols
US9228054B2 (en) 2011-12-16 2016-01-05 Bayer Intellectual Property Gmbh Method for producing polyether carbonate polyols
WO2013087583A1 (de) 2011-12-16 2013-06-20 Bayer Intellectual Property Gmbh Verfahren zur herstellung von polyethercarbonatpolyolen
WO2013087582A2 (de) 2011-12-16 2013-06-20 Bayer Intellectual Property Gmbh Verfahren zur herstellung von polyetherestercarbonatpolyolen
EP2604642A1 (de) 2011-12-16 2013-06-19 Bayer Intellectual Property GmbH Verfahren zur Herstellung von Polyethercarbonatpolyolen
EP2604641A1 (de) 2011-12-16 2013-06-19 Bayer Intellectual Property GmbH Verfahren zur Herstellung von Polyetherestercarbonatpolyolen
US9375509B2 (en) 2011-12-20 2016-06-28 Medical Adhesive Revolution Gmbh Isocyanate-functional prepolymer for a biologically degradable fabric adhesive
US9580540B2 (en) 2011-12-20 2017-02-28 Adhesys Medical Gmbh Hydroxy amino polymer and use thereof in polyurea/polyurethane tissue adhesives
EP3385294A1 (de) 2011-12-20 2018-10-10 Adhesys Medical GmbH Isocyanatfunktionelles präpolymer für einen biologisch abbaubaren gewebeklebstoff
EP3786207A1 (de) 2011-12-20 2021-03-03 Adhesys Medical GmbH Isocyanatfunktionelles präpolymer für einen biologisch abbaubaren gewebeklebstoff
WO2013092506A1 (de) 2011-12-20 2013-06-27 Bayer Materialscience Ag Hydroxy-aminopolymer und dessen verwendung in polyharnstoffpolyurethan-gewebeklebstoffen
US9757492B2 (en) 2011-12-20 2017-09-12 Adhesys Medical Gmbh Hydroxy amino polymer and use thereof in polyurea/polyurethane tissue adhesives
WO2013092501A1 (de) 2011-12-20 2013-06-27 Bayer Intellectual Property Gmbh Hydroxy-aminopolymere und verfahren zu deren herstellung
WO2013092504A1 (de) 2011-12-20 2013-06-27 Bayer Materialscience Ag Isocyanatfunktionelles präpolymer für einen biologisch abbaubaren gewebeklebstoff
US9468701B2 (en) 2011-12-20 2016-10-18 Adhesys Medical Gmbh Isocyanate-functional prepolymer for a biologically degradable fabric adhesive
EP2671893A1 (de) 2012-06-06 2013-12-11 Bayer MaterialScience AG Verfahren zur Herstellung von Omega-Hydroxy-Aminopolymeren
EP2703425A1 (de) 2012-08-27 2014-03-05 Bayer MaterialScience AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
US9676905B2 (en) 2012-08-27 2017-06-13 Covestro Deutschland Ag Polyether carbonate polyol production method
US9273183B2 (en) 2012-08-27 2016-03-01 Covestro Deutschland Ag Polyether carbonate polyol production method
EP2703426A1 (de) 2012-08-27 2014-03-05 Bayer MaterialScience AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
EP2730602A1 (de) 2012-11-09 2014-05-14 Bayer MaterialScience AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
WO2014072336A1 (de) 2012-11-09 2014-05-15 Bayer Materialscience Ag Verfahren zur herstellung von polyethercarbonatpolyolen
WO2015032717A1 (de) 2013-09-05 2015-03-12 Bayer Materialscience Ag Niederviskose polyethercarbonatpolyole mit seitenketten
EP2845872A1 (de) 2013-09-05 2015-03-11 Bayer MaterialScience AG Niederviskose Polyethercarbonatpolyole mit Seitenketten
EP2845873A1 (de) 2013-09-05 2015-03-11 Bayer MaterialScience AG Radikalische Vernetzung von Polyethercarbonatpolyolen enthaltend elektronenarme und elektronenreiche Doppelbindungen
US9708446B2 (en) 2013-09-05 2017-07-18 Covestro Deutschland Ag Cross-linking of polyether carbonate polyols containing double-bonds, by adding mercapto-compounds
US9957354B2 (en) 2013-09-05 2018-05-01 Covestro Deutschland Ag Higher functional polyether carbonate polyols obtained using branching molecules
EP2845871A1 (de) 2013-09-05 2015-03-11 Bayer MaterialScience AG Vernetzung von Doppelbindungen enthaltenden Polyethercarbonatpolyolen durch Addition von Mercaptanen
US10179835B2 (en) 2013-09-05 2019-01-15 Covestro Deutschland Ag Radical crosslinking of polyether carbonate polyols that have electron-poor and electron-rich double bonds
US9957353B2 (en) 2013-09-05 2018-05-01 Covestro Deutschland Ag Low viscosity polyether carbonate polyols having side chains
EP2851384A1 (de) 2013-09-20 2015-03-25 Bayer MaterialScience AG Verzweigte Polyethercarbonatpolyole und Verfahren zu deren Herstellung
EP2865700A1 (de) 2013-10-23 2015-04-29 Bayer MaterialScience AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
US10125217B2 (en) 2013-10-23 2018-11-13 Covestro Deutschland Ag Method for producing polyether carbonate polyols
EP2876121A1 (de) 2013-11-22 2015-05-27 Bayer MaterialScience AG Einsatz von Urethan-Alkoholen zur Herstellung von Polyetherpolyolen
US9714216B2 (en) 2013-11-22 2017-07-25 Covestro Deutschland Ag Use of urethane alcohols for preparation of polyether polyols
EP2886572A1 (de) 2013-12-17 2015-06-24 Bayer MaterialScience AG Einsatz von Urethan-Alkoholen zur Herstellung von Polyethercarbonatpolyolen
US9957352B2 (en) 2013-12-17 2018-05-01 Covestro Deutschland Ag Use of urethane alcohols for preparing polyether carbonate polyols
WO2015091246A1 (de) 2013-12-17 2015-06-25 Bayer Materialscience Ag Einsatz von urethan-alkoholen zur herstellung von polyethercarbonatpolyolen
EP2894180A1 (de) 2014-01-08 2015-07-15 Bayer MaterialScience AG Polymerpolyole mit einem Polyether-Carbonat-Polyol als das Basispolyol
WO2016079065A1 (de) 2014-11-18 2016-05-26 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP3023447A1 (de) 2014-11-18 2016-05-25 Covestro Deutschland AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
EP3050907A1 (de) 2015-01-28 2016-08-03 Covestro Deutschland AG Verfahren zur Herstellung von Polyethercarbonatpolyolen
WO2016120289A1 (de) 2015-01-28 2016-08-04 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
WO2016137746A1 (en) 2015-02-25 2016-09-01 Covestro Llc Alkoxysilane-group modified polyurethanes and low modulus sealants formed therefrom
WO2016188838A1 (de) 2015-05-26 2016-12-01 Covestro Deutschland Ag Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyetherpolyolen
WO2016188992A1 (de) 2015-05-26 2016-12-01 Covestro Deutschland Ag Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyethercarbonatpolyolen
WO2016188991A1 (de) 2015-05-26 2016-12-01 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP3098252A1 (de) 2015-05-26 2016-11-30 Covestro Deutschland AG Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyethercarbonatpolyolen
EP3098251A1 (de) 2015-05-26 2016-11-30 Covestro Deutschland AG Einsatz von alkoholen, die mindestens zwei urethangruppen enthalten, zur herstellung von polyetherpolyolen
EP3098250A1 (de) 2015-05-26 2016-11-30 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2017032768A1 (de) 2015-08-26 2017-03-02 Covestro Deutschland Ag Verfahren zur herstellung von hochmolekularen polyoxyalkylenpolyolen
EP3219741A1 (de) 2016-03-18 2017-09-20 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2017158114A1 (de) 2016-03-18 2017-09-21 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
WO2017194709A1 (de) 2016-05-13 2017-11-16 Covestro Deutschland Ag Verfahren zur herstellung von polyoxyalkylenpolyolen
WO2017220520A1 (de) 2016-06-22 2017-12-28 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP3260483A1 (de) 2016-06-22 2017-12-27 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2018026571A1 (en) 2016-08-05 2018-02-08 Covestro Llc Systems and processes for producing polyether polyols
WO2018069350A1 (de) 2016-10-12 2018-04-19 Covestro Deutschland Ag Verfahren zur herstellung eines mehrfachbindungen enthaltenden präpolymers als elastomer-vorstufe
WO2018069348A1 (de) 2016-10-12 2018-04-19 Covestro Deutschland Ag Verfahren zur herstellung von elastomeren
EP3336130A1 (de) 2016-12-19 2018-06-20 Covestro Deutschland AG Verfahren zur herstellung von polyetherthiocarbonatpolyolen
WO2018114837A1 (de) 2016-12-19 2018-06-28 Covestro Deutschland Ag Verfahren zur herstellung von polyetherthiocarbonatpolyolen
EP3385295A1 (de) 2017-04-05 2018-10-10 Covestro Deutschland AG Flammgeschützte phosphorfunktionelle polyethercarbonatpolyole und verfahren zu deren herstellung
WO2018185069A1 (de) 2017-04-05 2018-10-11 Covestro Deutschland Ag Flammgeschützte phosphorfunktionelle polyethercarbonatpolyole und verfahren zu deren herstellung
EP3424967A1 (de) 2017-07-07 2019-01-09 Covestro Deutschland AG Verfahren zur herstellung von funktionalisierten polyoxyalkylenpolyolen
WO2019007771A1 (de) 2017-07-07 2019-01-10 Covestro Deutschland Ag Verfahren zur herstellung von funktionalisierten polyoxyalkylenpolyolen
EP3461852A1 (de) 2017-09-28 2019-04-03 Covestro Deutschland AG Verfahren zur herstellung eines mehrfachbindungen enthaltenden polymers als elastomer-vorstufe
WO2019063582A1 (de) 2017-09-28 2019-04-04 Covestro Deutschland Ag Verfahren zur herstellung eines mehrfachbindungen enthaltenden polymers als elastomer-vorstufe
EP3473658A1 (de) 2017-10-18 2019-04-24 Covestro Deutschland AG Diblockcopolymere und deren verwendung als tenside
WO2019076862A1 (de) 2017-10-18 2019-04-25 Covestro Deutschland Ag Diblockcopolymere und deren verwendung als tenside
EP3489278A1 (de) 2017-11-23 2019-05-29 Covestro Deutschland AG Hochmolekulare polyoxyalkylene mit tiefer glastemperatur hergestellt nach der grafting-through-methode
WO2019101702A1 (de) 2017-11-23 2019-05-31 Covestro Deutschland Ag Hochmolekulare polyoxyalkylene mit tiefer glastemperatur hergestellt nach der grafting-through-methode
EP3502162A1 (de) 2017-12-19 2019-06-26 Covestro Deutschland AG Verfahren zur herstellung von polyetheresterpolyolen
WO2019121205A1 (de) 2017-12-19 2019-06-27 Covestro Deutschland Ag Verfahren zur herstellung von polyetheresterpolyolen
EP3527606A1 (de) 2018-02-16 2019-08-21 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2019158592A1 (de) 2018-02-16 2019-08-22 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP3587469A1 (de) 2018-06-22 2020-01-01 Covestro Deutschland AG Verfahren zur herstellung von polyol
EP3597690A1 (de) 2018-07-19 2020-01-22 Covestro Deutschland AG Heterocyclen-funktionelle polyether oder polyethercarbonate und verfahren zu deren herstellung
WO2020016201A1 (de) 2018-07-19 2020-01-23 Covestro Deutschland Ag Heterocyclen-funktionelle polyether oder polyethercarbonate und verfahren zu deren herstellung
EP3604320A1 (de) 2018-08-01 2020-02-05 Covestro Deutschland AG Phosphorfunktionelle polyoxyalkylenpolyole und verfahren zu deren herstellung
EP3608348A1 (de) 2018-08-07 2020-02-12 Covestro Deutschland AG Verfahren zur herstellung eines organooxysilyl-vernetzten polymers
WO2020030538A1 (de) 2018-08-07 2020-02-13 Covestro Deutschland Ag Verfahren zur herstellung eines doppelbindungen enthaltenden polymers als elastomer-vorstufe
EP3608018A1 (de) 2018-08-08 2020-02-12 Covestro Deutschland AG Verfahren zur herstellung von doppelmetallcyanid-katalysatoren
WO2020030617A1 (de) 2018-08-08 2020-02-13 Covestro Deutschland Ag Verfahren zur herstellung von doppelmetallcyanid-katalysatoren
EP3617248A1 (de) 2018-08-30 2020-03-04 Covestro Deutschland AG Verfahren zur abtrennung von gasförmigen bestandteilen
WO2020043484A1 (de) 2018-08-30 2020-03-05 Covestro Deutschland Ag Verfahren zur abtrennung von gasförmigen bestandteilen
EP3643730A1 (de) 2018-10-26 2020-04-29 Covestro Deutschland AG Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-blockcopolymeren
WO2020083814A1 (de) 2018-10-26 2020-04-30 Covestro Deutschland Ag Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-blockcopolymeren
EP3670571A1 (de) 2018-12-21 2020-06-24 Covestro Deutschland AG Verfahren zur herstellung eines polyester-polyetherpolyol-blockcopolymers
EP3670568A1 (de) 2018-12-21 2020-06-24 Covestro Deutschland AG Verfahren zur herstellung eines polyesters
EP3670557A1 (de) 2018-12-21 2020-06-24 Covestro Deutschland AG Verfahren zur herstellung eines polyoxyalkylenpolyesterpolyols
WO2020127015A1 (de) 2018-12-21 2020-06-25 Covestro Intellectual Property Gmbh & Co. Kg Verfahren zur herstellung eines polyesters
WO2020127016A1 (de) 2018-12-21 2020-06-25 Covestro Intellectual Property Gmbh & Co. Kg Verfahren zur herstellung eines polyester-polyetherpolyol-blockcopolymers
WO2020127582A1 (de) 2018-12-21 2020-06-25 Covestro Intellectual Property Gmbh & Co. Kg Verfahren zur herstellung eines polyoxyalkylenpolyesterpolyols
EP3683251A1 (de) 2019-01-15 2020-07-22 Covestro Deutschland AG Verfahren zur herstellung von diol
WO2020148161A1 (de) 2019-01-15 2020-07-23 Covestro Intellectual Property Gmbh & Co. Kg Verfahren zur herstellung von diol
EP3747927A1 (de) 2019-06-05 2020-12-09 Covestro Deutschland AG Verfahren zur kontinuierlichen herstellung von polyoxyalkylenpolyolen
WO2020245039A1 (de) 2019-06-05 2020-12-10 Covestro Intellectual Property Gmbh & Co. Kg Verfahren zur kontinuierlichen herstellung von polyoxyalkylenpolyolen
EP3750940A1 (de) 2019-06-11 2020-12-16 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2020249433A1 (de) 2019-06-11 2020-12-17 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP3760663A1 (de) 2019-07-05 2021-01-06 Covestro Deutschland AG Verfahren zur herstellung von polyetherestercarbonatpolyolen
WO2021004814A1 (de) 2019-07-05 2021-01-14 Covestro Intellectual Property Gmbh & Co. Kg Verfahren zur herstellung von polyetherestercarbonatpolyolen
EP3763768A1 (de) 2019-07-12 2021-01-13 Covestro Deutschland AG Polyethercarbonatpolyole mit enger segmentlängenverteilung
EP3771724A1 (de) 2019-07-31 2021-02-03 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2021018753A1 (de) 2019-07-31 2021-02-04 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
WO2021110589A1 (de) 2019-12-04 2021-06-10 Covestro Intellectual Property Gmbh & Co. Kg Verfahren zur herstellung von polyethercarbonatpolyolen
WO2021110691A1 (de) 2019-12-04 2021-06-10 Covestro Intellectual Property Gmbh & Co. Kg Verfahren zur herstellung von polyethercarbonatpolyolen
EP3831867A1 (de) 2019-12-04 2021-06-09 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
EP3838938A1 (de) 2019-12-18 2021-06-23 Covestro Deutschland AG Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-copolymeren
WO2021122402A1 (de) 2019-12-18 2021-06-24 Covestro Intellectual Property Gmbh & Co. Kg Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-copolymeren
CN115003413B (zh) * 2020-01-21 2024-02-27 科思创德国股份有限公司 制备双金属氰化物催化剂的方法
WO2021148272A1 (de) 2020-01-21 2021-07-29 Covestro Deutschland Ag Verfahren zur herstellung von doppelmetallcyanid-katalysatoren
CN115003413A (zh) * 2020-01-21 2022-09-02 科思创德国股份有限公司 制备双金属氰化物催化剂的方法
WO2021165283A3 (de) * 2020-02-22 2021-10-14 Covestro Deutschland Ag Verfahren zur herstellung von doppelmetallcyanid-katalysatoren
WO2021165283A2 (de) 2020-02-22 2021-08-26 Covestro Deutschland Ag Verfahren zur herstellung von doppelmetallcyanid-katalysatoren
EP3878885A1 (de) 2020-03-10 2021-09-15 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2021180567A1 (de) 2020-03-10 2021-09-16 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
WO2021185710A1 (de) 2020-03-17 2021-09-23 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP3882297A1 (de) 2020-03-17 2021-09-22 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2021191069A1 (de) 2020-03-25 2021-09-30 Covestro Deutschland Ag Verfahren zur herstellung eines etheresterols
EP3885390A1 (de) 2020-03-25 2021-09-29 Covestro Deutschland AG Verfahren zur herstellung eines etheresterols
EP3889204A1 (de) 2020-04-02 2021-10-06 Covestro Deutschland AG Verfahren zur herstellung eines polyoxyalkylencarbonatpolyols
WO2021198054A1 (de) 2020-04-02 2021-10-07 Covestro Deutschland Ag Verfahren zur herstellung eines polyoxyalkylencarbonatpolyols
EP3922660A1 (de) 2020-06-08 2021-12-15 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
EP3922659A1 (de) 2020-06-08 2021-12-15 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2021249815A1 (de) 2020-06-08 2021-12-16 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
WO2021249814A1 (de) 2020-06-08 2021-12-16 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP3922661A1 (de) 2020-06-12 2021-12-15 Covestro Deutschland AG Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-copolymeren
WO2021249905A1 (de) 2020-06-12 2021-12-16 Covestro Deutschland Ag Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-copolymeren
WO2022084115A1 (de) 2020-10-20 2022-04-28 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatalkoholen
EP3988600A1 (de) 2020-10-20 2022-04-27 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatalkoholen
WO2022189318A1 (de) 2021-03-12 2022-09-15 Covestro Deutschland Ag Verfahren zur aufreinigung von cyclischen carbonaten
WO2022258570A1 (de) 2021-06-10 2022-12-15 Covestro Deutschland Ag Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-copolymeren
EP4151669A1 (de) 2021-09-15 2023-03-22 Covestro Deutschland AG Verfahren zur herstellung von polyethercarbonatpolyolen
WO2023041364A1 (de) 2021-09-15 2023-03-23 Covestro Deutschland Ag Verfahren zur herstellung von polyethercarbonatpolyolen
EP4302874A1 (de) 2022-07-04 2024-01-10 Covestro Deutschland AG Verfahren zur herstellung von doppelmetallcyanid-katalysatoren
WO2024008546A2 (de) 2022-07-04 2024-01-11 Covestro Deutschland Ag Verfahren zur herstellung von doppelmetallcyanid-katalysatoren

Also Published As

Publication number Publication date
HUP0203666A2 (en) 2003-04-28
DE50012324D1 (de) 2006-04-27
DE19958355A1 (de) 2001-06-07
AU1860201A (en) 2001-06-12
PT1244519E (pt) 2006-06-30
BR0015970B1 (pt) 2012-01-24
JP5005144B2 (ja) 2012-08-22
HK1054710A1 (en) 2003-12-12
CN1165375C (zh) 2004-09-08
CA2392819C (en) 2010-02-02
CA2392819A1 (en) 2001-06-07
KR20020059839A (ko) 2002-07-13
PL355412A1 (en) 2004-04-19
ATE318652T1 (de) 2006-03-15
CN1407913A (zh) 2003-04-02
JP2003515440A (ja) 2003-05-07
EP1244519B2 (de) 2012-09-19
CZ20021921A3 (cs) 2002-10-16
EP1244519B1 (de) 2006-03-01
MXPA02005478A (es) 2003-01-28
TW572782B (en) 2004-01-21
CZ299202B6 (cs) 2008-05-14
EP1244519A1 (de) 2002-10-02
RU2264258C2 (ru) 2005-11-20
PL201666B1 (pl) 2009-04-30
ES2258985T5 (es) 2013-01-31
ES2258985T3 (es) 2006-09-16
BR0015970A (pt) 2002-07-16
KR100798236B1 (ko) 2008-01-24
US6780813B1 (en) 2004-08-24

Similar Documents

Publication Publication Date Title
EP1244519B2 (de) Verfahren zur herstellung von dmc-katalysatoren
EP1276563B1 (de) Verfahren zur herstellung von dmc-katalysatoren
DE69433826T2 (de) Doppelmetallkatalysatoren zur Herstellung von Polyolen
EP1866084A2 (de) Verfahren zur herstellung von dmc-katalysatoren
DE19709031A1 (de) Verfahren zur Herstellung von Doppelmetallcyanidkatalysatoren
WO2001064772A1 (de) Verfahren zur herstellung von multimetallcyanidverbindungen
EP1963012A1 (de) Verfahren zur herstellung von multimetallcyanidverbindungen
WO2000015337A1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
WO2000047650A1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
WO2020030617A1 (de) Verfahren zur herstellung von doppelmetallcyanid-katalysatoren
EP1534426A1 (de) Multimetallcyanidverbindungen
EP1189695A1 (de) Suspensionen von plättchenförmigen multimetallcyanidverbindungen, deren herstellung und deren verwendung zur herstellung von polyetheralkoholen
EP1517940A1 (de) Dmc-katalysatoren, polyetheralkohole sowie verfahren zu deren herstellung
EP4093539B1 (de) Verfahren zur herstellung von doppelmetallcyanid-katalysatoren
EP1115488A1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
WO2021165283A2 (de) Verfahren zur herstellung von doppelmetallcyanid-katalysatoren
EP1165659A1 (de) Verfahren zur herstellung von polyetherpolyolen
EP1799344A2 (de) Verfahren zur kontinuierlichen herstellung von dmc-katalysatoren
EP1185367B1 (de) Verfahren zur herstellung von polyetherpolyole unter verwendung von kristallinen multimetallcyanid-katalysatoren
EP1425098A1 (de) Doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
EP4302874A1 (de) Verfahren zur herstellung von doppelmetallcyanid-katalysatoren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000981310

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2392819

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10148555

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2001 541609

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/005478

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020027007067

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PV2002-1921

Country of ref document: CZ

Ref document number: 008166900

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2002 2002118332

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020027007067

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000981310

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2002-1921

Country of ref document: CZ

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000981310

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV2002-1921

Country of ref document: CZ