WO2001036105A1 - Micro-bubble generating nozzle and application device therefor - Google Patents

Micro-bubble generating nozzle and application device therefor Download PDF

Info

Publication number
WO2001036105A1
WO2001036105A1 PCT/JP2000/008010 JP0008010W WO0136105A1 WO 2001036105 A1 WO2001036105 A1 WO 2001036105A1 JP 0008010 W JP0008010 W JP 0008010W WO 0136105 A1 WO0136105 A1 WO 0136105A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
introduction
liquid
nozzle
bubble
Prior art date
Application number
PCT/JP2000/008010
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiko Yahiro
Original Assignee
Aura Tec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aura Tec Co., Ltd. filed Critical Aura Tec Co., Ltd.
Priority to AU13094/01A priority Critical patent/AU1309401A/en
Priority to JP2001538084A priority patent/JP4002439B2/en
Publication of WO2001036105A1 publication Critical patent/WO2001036105A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/02Bathing devices for use with gas-containing liquid, or liquid in which gas is led or generated, e.g. carbon dioxide baths
    • A61H33/027Gas-water mixing nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23121Diffusers having injection means, e.g. nozzles with circumferential outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • B01F25/211Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers the injectors being surrounded by guiding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0018Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with devices for making foam
    • B05B7/0025Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with devices for making foam with a compressed gas supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M67/00Apparatus in which fuel-injection is effected by means of high-pressure gas, the gas carrying the fuel into working cylinders of the engine, e.g. air-injection type
    • F02M67/02Apparatus in which fuel-injection is effected by means of high-pressure gas, the gas carrying the fuel into working cylinders of the engine, e.g. air-injection type the gas being compressed air, e.g. compressed in pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M67/00Apparatus in which fuel-injection is effected by means of high-pressure gas, the gas carrying the fuel into working cylinders of the engine, e.g. air-injection type
    • F02M67/10Injectors peculiar thereto, e.g. valve less type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/02Bathing devices for use with gas-containing liquid, or liquid in which gas is led or generated, e.g. carbon dioxide baths
    • A61H2033/022Bathing devices for use with gas-containing liquid, or liquid in which gas is led or generated, e.g. carbon dioxide baths with control means for regulating the air volume aspirated by a water jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle

Definitions

  • the present invention discharges fine bubbles having a diameter of several tens of microns into water and air in order to purify rivers, lakes, marshes, tap water, etc., and to improve the washing ability of washing water due to dirt in washing machines, toilets, and the like. And a device for applying the same to a microbubble generating nozzle.
  • Japanese Patent Application Laid-Open No. Hei 9-11734404 discloses a pressure detecting means for detecting a discharge pressure of a pump, a gas suction amount adjusting means for changing a suction amount of gas sucked from the gas suction port, There is disclosed an air bubble generating device comprising: a control means for drivingly controlling the gas suction amount adjusting means based on a detection result of the detecting means.
  • Japanese Patent Application Laid-Open No. H10-2955761 discloses an apparatus body including a pump section for discharging the absorbed hot water as a water flow, and an air intake for mixing air into the water flow into the apparatus body.
  • An in-bath air bubble generator having an inlet portion, and a nozzle portion communicating with the pump portion and ejecting air bubbles out of the device main body together with a water flow from the pump portion;
  • a box-shaped wing-shaped injector having a plurality of injection ports is detachably and rotatably attached to a nozzle portion, and the plurality of injection ports are arranged in parallel on a surface opposite to a surface facing the nozzle portion.
  • a disclosed in-bath bubble generator is disclosed.
  • Japanese Patent Application Laid-Open No. H11-1595924 discloses that when hot water in a bathtub is sucked in from a suction port by a circulation pump and jetted from a bubble nozzle, the hot water is injected from the bubble nozzle.
  • a bubble generating bathtub that entrains air supplied through an air pipe from the air suction section to the bubble nozzle to the bathwater, and sprays it into the bathtub as bubbled bathwater, an open / close valve is provided in the air pipe.
  • a bubble generating bath tub having a control device for controlling the opening / closing valve to be opened when the bath water is being injected from the bubble nozzle and closed when the injection of the bath water is stopped.
  • Techniques for degassing such dissolved gases, such as oxygen, from liquids include (1) a method in which the gas in the liquid is separated by applying a vacuum, and (2) a method in which the temperature of the liquid is raised and the gas is boiled. There was a way to separate.
  • the vacuum method requires equipment such as a large compressor and a pressure vessel, and has the problem of large equipment and cost.
  • the boiling method cannot raise the temperature depending on the liquid. Was.
  • a carburetor system, a mechanical fuel injection system, and an electronically controlled fuel injection system have been known as fuel injection devices.
  • the electronically controlled fuel injection system which is generally used, is equipped with a fuel injection valve in the intake manifold, and adjusts the intake air amount and throttle opening so that the optimum air-fuel ratio is adjusted to the operating conditions. And the like, and the fuel injection amount is finely controlled according to the operating state.
  • the pressurized dissolution method is mainly used to generate microbubbles, large-diameter bubbles of 100 m or more cannot be generated in an apparatus that focuses on the generation of microbubbles. That is, the bubble size cannot be selected.
  • the above conventional fuel injection devices have complicated structures and are not satisfactory in performance.
  • the fuel injection valve is provided near the intake valve of the intake manifold, so the fuel injected from the fuel injection valve is conveyed to the downstream while being mixed with the intake air sent from the upstream. Will be introduced. At this time, since the intake air is laminar, there is a limit to the good mixing of the two.
  • the first problem to be solved by the present invention is that the structure is simple, the applicability is high, and at the same time, it generates bubbles of various sizes as the microbubble generator, and at the same time, it has a wide range of purification effects.
  • An object of the present invention is to provide a microbubble generating nozzle which satisfies a required characteristic of obtaining a jet output for generating a liquid movement required for diffusion.
  • a second object is to provide a microbubble generating nozzle, a bubble crushing nozzle, and a bubble bath device that can generate microbubbles using a small pump and can select a bubble size.
  • a third object is to provide a deaerator that can efficiently deaerate at room temperature and pressure without equipment such as a compressor and a pressure vessel.
  • a fourth object is to provide an air-fuel mixture production nozzle capable of obtaining a uniform air-fuel mixture with a simple structure. Disclosure of the invention
  • a microbubble generating nozzle of the present invention has an introduction portion for pressurized liquid and gas and a cylindrical bubble generation space. Forming a pressurized liquid introduction hole and a gas introduction hole to be opened, opening the pressurized liquid introduction hole to an end face of the introduction section, opening the gas introduction hole to a side surface of the introduction section, An adjustment valve for adjusting the amount of introduced gas is provided in the gas introduction pipe communicating with the gas.
  • the pressurized liquid introduced into the bubble generation space from the opening of the pressurized liquid introduction hole is discharged into the space under high pressure to generate a peeling area. Due to this peeling phenomenon, the gas introduced from the gas inlet is dispersed in the discharged water stream as microbubbles (fine bubbles).
  • the amount and size of the microbubbles can be arbitrarily adjusted by adjusting the degree of opening of the gas introduction amount adjusting valve.
  • the dispersed state and size of the discharged bubbles can be reduced.
  • the present invention can be applied to the use of discharging microbubbles into the atmosphere.
  • micro-bubble generating nozzle on the pressurized liquid-side connection pipe in a detachable manner, it is possible to easily select a nozzle to be used in a liquid and a usage environment.
  • microbubble generating nozzles or nozzle-loaded containers By arranging these microbubble generating nozzles or nozzle-loaded containers concentrically inside a large-diameter cylinder, the flow of water in a closed water area or the like can be promoted.
  • a multi-nozzle loading tool provided between the pressurized liquid side connection pipe and the bubble generation side connection pipe and having a loading portion capable of loading a plurality of micro bubble generation nozzles, a large nozzle is provided. It is possible to generate a large number of microbubbles without manufacturing a microbubble.
  • gas introduction to the multiple nozzles can be achieved by preparing a gas introduction pipe collecting chamber provided with a connection part that collects and connects the gas introduction pipes of multiple microbubble generation nozzles to one space. Can be combined into one.
  • the nozzle of the present invention is provided with a container filled with an activator at a position below the bubble generation space, and makes the ejected liquid mixed with the microbubbles contact and pass, thereby discharging the ejected liquid activated by the activator. Obtainable.
  • nozzle structure of the present invention a large amount of microbubbles can be supplied over a wide area of a closed water area with a simple structure.
  • the field of application is applicable to any of oxygen supply to water bodies, removal of chlorine, washing, etc., and there is no limitation.
  • the area and volume of the discharge surface of the bubble generating space can be reduced.
  • the generation efficiency of the microbubbles is increased, the rectification effect and the generation efficiency due to the swirling flow are improved (energy loss is suppressed), and the expansion range of the microbubbles is improved with the improvement of the injection power.
  • a plurality of liquids are provided at the downstream position of the bubble generation space forming cylinder by providing one or more kinds of gases or liquids that are automatically sucked, mixed with the pressurized liquid and discharged. Alternatively, it is possible to mix the gas uniformly, and it is possible to supply food to a distant place at a farm or the like.
  • a plurality of types of gas-liquid can be introduced into the introduction section and discharged into the gas-liquid mixing space, whereby the introduced substances can be efficiently mixed.
  • a gas chamber is formed at an opening of the gas introduction hole on the side of the bubble generation space.
  • the pressurized liquid introduced into the bubble generation space from the opening of the pressurized liquid introduction hole is discharged into the bubble generation space under a predetermined pressure, and generates a reduced pressure region in the bubble generation space. Due to this depressurization phenomenon, the gas introduced into the bubble generation space from the gas introduction hole through the pores of the porous plug mounted in the gas chamber is dispersed as microbubbles (fine bubbles) in the discharged water flow.
  • the amount and size of the microbubbles can be arbitrarily adjusted by adjusting the diameter of the pores of the porous plug and the degree of opening of the gas introduction amount adjusting valve.
  • the gas introduction hole in the gas introduction hole that bypasses the gas chamber and directly communicates with the bubble generation space, when the pressure of the pressurized liquid is low, the gas introduction hole is formed due to the pressure loss of the porous plug. The gas is prevented from being more difficult to be introduced into the bubble generating space, and the gas is introduced into the gas generating space from the gas bypass hole to disperse the microbubbles in the discharged water flow.
  • the shape of the pressurized liquid introduction hole elliptical it is possible to secure a water passage area, and at the same time, it is possible to further reduce the area of the discharge surface of the bubble generation space, thereby increasing the efficiency of generating fine bubbles.
  • the opening rate of the flow rate reduction suppression hole and the space length from the discharge surface of the bubble generation space forming cylinder to the flow rate control cylinder discharge surface can be adjusted on the outer circumference of the bubble generation space forming cylinder connected to the introduction part.
  • the bubbles are planarized. Can be spouted.
  • the control valve is composed of a gas introduction pipe connection part and an air adjustment cock, and the ventilation hole of the gas introduction pipe connection part has a circular cross section, and the ventilation hole of the air adjustment cock has an elliptical cross section. Fine adjustment of the bubble generating area can be easily performed.
  • the bubble bath device of the present invention is provided with a pump that sucks water in a bathtub and discharges water into the bathtub again, and is provided in a discharge-side channel of the pump.
  • a micro-bubble generating nozzle for mixing the air in the atmosphere with the water pumped by the pump to discharge the micro-bubbles into the bathtub is provided.
  • Another bubble bath apparatus of the present invention includes a pump for sucking water in a bathtub and discharging water into the bathtub again, and a microbubble provided on the suction side of the pump for mixing atmospheric air into the suction water.
  • a degassing device of the present invention comprises: a first introduction part having a pressurized gas-liquid introduction hole for introducing a liquid containing gas; and a discharge side of the pressurized gas-liquid introduction hole.
  • a separation gas-liquid introduction hole for introducing a separation gas-liquid discharged from the discharge side of the gas-liquid separation nozzle near the bottom of the swirling flow generating cylinder having a dome-shaped bottom and having a bias with respect to a center axis;
  • a gas aggregating section including a gas aggregating cylinder provided coaxially with a center axis through the bottom of the swirling flow generating cylinder;
  • a gas-liquid riser pipe provided at the top of the swirling flow generating cylinder of the gas aggregation part, a gas recovery part inserted through the bottom of the gas-liquid riser, and a gas recovery part;
  • a second introduction portion connected to the lower end via a valve and having a pressurized liquid introduction hole for introducing a pressurized liquid to be discharged, and a pressurized liquid introduction hole at a discharge side of the pressurized liquid introduction hole.
  • One end opens to the return liquid suction pressure generation space having a cross-sectional area larger than the total area, and the return liquid suction pressure generation space of the second introduction part, and another is provided on the side of the second introduction part.
  • a gas collecting section pressure reducing nozzle having a return liquid introduction hole having an open end
  • a gas recovery unit pressure adjusting pipe is provided for connecting the bottom of the gas recovery unit and the return liquid introduction hole of the gas recovery unit pressure reducing nozzle.
  • a plurality of pressurized gas-liquid introduction holes are formed in a pressurized gas-liquid introduction portion of the gas-liquid separation nozzle, and a discharge side opening of the plurality of pressurized gas-liquid introduction holes is formed on a discharge side of the introduction portion. This is characterized by communicating with the gas-liquid separation space.
  • a stepped portion whose diameter increases discontinuously as the pressurized gas-liquid introduction hole of the gas-liquid separation nozzle goes downstream is provided.
  • an air-fuel mixture injection nozzle is provided with a cylindrical connection having a pressurized gas connection portion connected to a pressurization source and a nozzle connection connected to an intake portion of an internal combustion engine. And a fuel connection part on a side surface, a cylinder having a mixture production space in the cylinder, and a pressurized gas introduction hole penetrating through the pressurized gas connection part and the fuel in this space.
  • a fuel introduction hole penetrating through the connection portion and an air-fuel mixture discharge hole penetrating through the nozzle connection portion are opened, and at least a diameter of the mixture-production space near the fuel connection portion is a diameter of the pressurized gas introduction hole. It is characterized by being set larger.
  • An annular concave portion is formed between the fuel introduction section and the pressurized gas introduction hole.
  • the opening of the pressurized gas introduction hole is formed on an inner wall of the mixed gas production space, and is connected to guide means extending downstream in the flow direction of the mixed gas.
  • a step portion is provided in which the diameter increases discontinuously as the gas mixture exhaust hole goes to the injection hole.
  • a tap is formed on the inner wall of the air-fuel mixture discharge hole, the tap having a peak deviating toward the injection hole.
  • the pressurized gas introduced into the air-fuel mixture production space from the opening of the pressurized gas introduction hole is discharged into the space under high pressure to generate a peeling area. Fluid energy that accelerates the mixing of the fuel and air is generated in the separation area, and the mixed gas produced by the separation phenomenon is in a state in which the fuel and air are uniformly mixed.
  • the nozzle of the present invention can be used by pressurizing the fuel introduced into the fuel introduction pipe connected to the fuel connection portion, but can supply the fuel without pressurization by the self-priming action of the nozzle itself. .
  • the use of the nozzle of the present invention eliminates the necessity of the conventionally used devices such as the intake side piping and start valve of the intake manifold and the intake valve.
  • the nozzle of the present invention it is possible to produce a uniform mixed gas with a simple structure.Also, in the structure on the intake side, the shape of the intake port is changed to a mixed gas injection sub-chamber, or the intake valve is changed. By abolishing it, the nozzle of the present invention allows the air-fuel mixture to be directly injected into the cylinder.
  • FIG. 1 shows a first embodiment of a micro-bubble generating nozzle according to the present invention.
  • FIG. 2 shows a second embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 3 shows a third embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 4 shows a fourth embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 5 shows a fifth embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 6 shows a sixth embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 7 shows a seventh embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 8 shows an eighth embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 9 shows a ninth embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 10 shows a tenth embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 11 shows a first embodiment of a microbubble generating nozzle according to the present invention.
  • FIG. 12 shows a microbubble generating nozzle according to a 12th embodiment of the present invention.
  • FIG. 13 shows a thirteenth embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 14 shows a 14th embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 15 shows a fifteenth embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 16 shows a sixteenth embodiment of the microbubble generating nozzle of the present invention.
  • FIG. 17 shows an embodiment of the gas-liquid mixing nozzle of the present invention.
  • FIG. 18 is a view showing the structure of a bubble crushing / bubble mixing nozzle used in the present invention.
  • FIG. 19 is a view showing the structure of the bubble crushing nozzle used in the present invention.
  • FIG. 20 shows an embodiment of the loading container according to the present invention.
  • FIG. 21 shows an embodiment of the loading container according to the present invention.
  • FIG. 22 shows an embodiment of the flow promoting cylinder according to the present invention.
  • FIG. 23 shows an embodiment of the flow velocity suppressing cylinder according to the present invention.
  • FIG. 24 shows a conveyed product introduction cylinder according to the present invention.
  • FIG. 25 shows a container filled with an activator or the like according to the present invention.
  • FIG. 26 shows the introduced article confirming cylinder according to the present invention.
  • FIG. 27 shows a flow rate adjusting cylinder according to the present invention.
  • FIG. 28 shows a micro bubble curtain generating nozzle according to the present invention.
  • FIG. 29 shows an air regulating valve according to the present invention.
  • FIG. 30 shows an air intake filter according to the present invention.
  • FIG. 31 is a front view and a longitudinal sectional view showing an embodiment of a bubble discharge direction changing elbow according to the present invention.
  • FIG. 32 is a front view, a longitudinal sectional view, and an AB sectional view showing an embodiment of a bubble dispersing nozzle for changing the bubble discharge direction according to the present invention.
  • FIG. 33 is a sectional view showing an embodiment of the multiple nozzle loading device of the present invention.
  • FIG. 34 is a sectional view taken along the line AA and a sectional view taken along the line BB of the embodiment of FIG.
  • FIG. 35 is a plan view showing the structure of the microbubble generating nozzle used in the embodiment of FIG.
  • FIG. 3 is a front view, an A-A cross-sectional view, a bottom view, and a BB cross-sectional view.
  • FIG. 36 is a perspective view showing another example of the multiple nozzle loading device of the present invention.
  • FIG. 37 is a plan view, an AA sectional view, a bottom view, and a BB sectional view showing an embodiment of the gas inlet tube collecting chamber of the present invention.
  • FIG. 38 is a cross-sectional view showing a bathtub to which the bubble bath apparatus according to the first embodiment of the present invention is attached.
  • FIG. 39 is a sectional view showing a bathtub to which a bubble bath apparatus according to a second embodiment of the present invention is attached.
  • FIG. 40 is a detailed view of the hose fitting.
  • FIG. 41 is a cross-sectional view showing details of a water intake section and a discharge section.
  • FIG. 42 is a sectional view showing a bathtub to which a bubble bath apparatus according to a third embodiment of the present invention is attached.
  • FIG. 43 is a sectional view showing a bathtub to which a bubble bath apparatus according to a fourth embodiment of the present invention is attached.
  • FIG. 44 is a sectional view showing a bathtub to which a bubble bath apparatus according to a fifth embodiment of the present invention is attached.
  • FIG. 45 is a sectional view showing a bathtub to which a bubble bath apparatus according to a sixth embodiment of the present invention is attached.
  • FIG. 46 is a diagram showing an embodiment of the deaerator of the present invention.
  • FIG. 47 is a diagram showing an embodiment of the gas-liquid separation nozzle of the present invention.
  • FIG. 48 is a cross-sectional view taken along the line AB of FIG. 46, illustrating an embodiment of the gas-liquid aggregation section of the present invention.
  • FIG. 49 is a cross-sectional view taken along the line C-D of FIG. 46 showing an embodiment of the gas recovery unit of the present invention.
  • FIG. 50 is a view showing an embodiment of the nozzle for reducing the pressure of the gas recovery section of the present invention.
  • FIG. 51 shows a first embodiment of the air-fuel mixture production nozzle of the present invention.
  • FIG. 52 shows a second embodiment of the air-fuel mixture production nozzle of the present invention.
  • FIG. 53 shows a third embodiment of the air-fuel mixture production nozzle of the present invention.
  • FIG. 54 shows a first embodiment of an internal combustion engine to which the present invention is applied.
  • FIG. 55 is an enlarged view of the air-fuel mixture injection sub-chamber of the present invention.
  • FIG. 56 shows a second embodiment of the internal combustion engine to which the present invention is applied.
  • FIG. 57 shows a connection portion of the air-fuel mixture production nozzle of the present invention.
  • FIG. 1 shows the structure of the nozzle 1OA according to the first embodiment.
  • A is a plan view showing the configuration of the introduction portion 1 as viewed from the pressurized liquid inflow side on the upper surface
  • (b) is a longitudinal sectional view
  • (c) is a bottom view as viewed from the bubble discharge port side on the lower surface. is there.
  • the nozzle 1OA has an introduction portion 1 for pressurized liquid and gas, and a bubble generation space 2.
  • the figure shows a structure in which the introduction section 1 and the bubble generating space forming cylinder 3 that forms the bubble generating space 2 are formed separately, and they are fitted together and integrated. Can also be formed.
  • a pressurized liquid introduction hole 4 is formed in the introduction section 1 and opens in the upper surface thereof, and opens into a bubble generation space 2 formed below the introduction section 1.
  • the pressurized liquid introduction hole 4 has the shape of a truncated cone with the top surface of the introduction section 1 as the bottom surface. The size and number of the diameters vary depending on the use of this nozzle and the type of pressurized liquid. As shown in (a), several (in this case, six) bubbles whose opening cross-sectional area is 10 to 40% with respect to the end face are symmetrical at the end face. So that it penetrates through the introduction portion 1 and opens into the bubble generation space 2.
  • Reference numeral 5 denotes a gas introduction hole.
  • This gas introduction hole 5 is formed by a gas introduction pipe 6 inserted from the side opening into the gas introduction hole 5 of the introduction section 1, and is radiated to the bubble generation space 2 or one at the center (radially in this case)
  • a gas introduction amount adjusting valve 7 is mounted outside the side opening.
  • the flow velocity reduction suppressing hole 8 opens to the bubble generation space 2 side as shown in FIG. The number and diameter of the flow velocity reduction suppression holes 8 The pressure and the amount of the pressurized liquid introduced through 15 are adjusted according to the number of the pressurized liquid introduction holes 4 and the opening position in the bubble generation space 2.
  • FIG. 2 shows the structure of the nozzle 10B according to the second embodiment.
  • the figure shows the shape of the bubble generation space forming cylinder 3, the fact that the flow velocity reduction suppression hole 8 is not opened in the bubble generation space formation cylinder 3, and the bubble generation space 2 side of the bubble generation space formation cylinder 3.
  • This is the same as the embodiment of FIG. 1 except that a reduced diameter portion 9 is formed on the inner side toward the discharge surface side.
  • the nozzle 10 B of this embodiment in comparison with the case of the first embodiment, the nozzle 10 B is suitable for use in an application in which the liquid mixed with fine bubbles is discharged into the air, for example, for attachment to a faucet or the like. I have.
  • the reduced diameter portion 9 provided below the bubble generation space 2 enables use in applications in which microbubbles are discharged into the atmosphere.
  • FIG. 3 shows the structure of the nozzle 10C according to the third embodiment.
  • A shows the configuration of the introduction part 1 as viewed from the pressurized liquid inflow side on the upper surface
  • (b) shows a vertical cross section
  • (c) shows a view from the bubble discharge port side on the lower surface
  • (d) shows It is an enlarged view of (c).
  • the nozzle 10 C has an inlet 1 for pressurized liquid and gas, and a bubble generating space 23.
  • the figure shows a structure in which the introduction part 1 and the bubble generation space forming cylinder 3 that forms the bubble generation space 2 are formed separately, and they are fitted together and integrated. It can also be formed.
  • a pressurized liquid introduction hole 4 is formed in the introduction section 1 and opens in the upper surface thereof, and opens into a bubble generation space 2 formed below the introduction section 1.
  • the pressurized liquid introduction hole 4 has the shape of a circle, an ellipse, or a truncated cone or a truncated cone having the top surface of the introduction portion 1 as a bottom surface.
  • several (three in this case) end faces with an opening cross-sectional area of 10 to 40% of the bubble generation space 2 with respect to the end face To open each point so that they are in point symmetry, penetrate through the introduction section 1 and open to the bubble generation space 2 are doing.
  • Reference numeral 5 denotes a gas introduction hole.
  • the gas introduction hole 5 is formed by a gas introduction pipe 6 inserted from the side opening into the gas introduction hole 5 of the introduction section 1, and is radially or one (in this case, radially) opened in the bubble generation space 2.
  • a gas introduction amount adjusting valve 7 is mounted outside the opening on the side surface.
  • 11 is a gas inlet hole for closing the hole that is opened in manufacturing when the gas inlet hole 5 is formed radially
  • 15 is a connecting pipe for connecting the inlet 1 to the fluid flow path
  • 1 2 Is an arc-shaped pressurized liquid guide groove formed on the inner surface of the bubble generating space forming cylinder 3 and communicated with the pressurized liquid introduction hole 4, and 13 is formed at an end of the bubble generating space forming cylinder 3
  • the joining projections 14 are joining stoppers for joining the introduction section 1 and the bubble generating space forming cylindrical body 3.
  • FIG. 4 shows the structure of the nozzle 10D according to the fourth embodiment.
  • the figure shows the embodiment of FIG. 3 in which the shape of the pressurized liquid introduction hole 4 is elliptical.
  • the nozzle 10D of this embodiment is suitable for use in applications requiring more microbubbles, for example, for on-land aquaculture, as compared with the case of Embodiment 1.
  • FIG. 5 shows the structure of the nozzle 10E according to the fifth embodiment.
  • This figure shows a configuration in which the pressurized liquid guide groove 12 on the side of the bubble generating space forming cylinder 3 communicating with the pressurized liquid introduction hole 4 has a contraction portion 16 in the embodiment of FIG. Things.
  • the volume of the bubble generation space 2 and the area of the discharge surface become smaller, and the generation efficiency of fine bubbles increases.
  • the diffusion range of fine bubbles can be expanded with the improvement of the injection power.
  • the nozzle 10E of this embodiment it is used in an application in which more fine bubbles are ejected farther than in the case of the embodiment 1, for example, in a sea area. Suitable for aquaculture, etc.
  • FIG. 6 shows the structure of the nozzle 10F according to the sixth embodiment.
  • the pressurized liquid guiding groove 12 on the side of the bubble generating space forming cylinder 3 communicating with the pressurized liquid introducing hole 4 in the embodiment of FIG. 3 has a spiral shape with a contraction. .
  • a swirl flow is generated in the bubble generation space 2, which increases the efficiency of generation of fine bubbles, and can expand the range of fine bubble diffusion as the injection power increases, and also generates air bubbles due to the rectification effect It can be expected to improve efficiency and suppress energy loss.
  • FIG. 7 shows the structure of the nozzle 10G according to the seventh embodiment.
  • A shows the configuration of the introduction part 1 as viewed from the pressurized liquid inflow side on the upper surface
  • (b) shows a vertical cross section
  • (c) shows a view from the bubble discharge port side on the lower surface
  • (d) shows It is an enlarged view of (c).
  • the nozzle 10G has an introduction portion 1 for pressurized liquid and gas, and a bubble generation space 2.
  • the figure shows a structure in which the introduction section 1 and the bubble generating space forming cylinder 3 that forms the bubble generating space 2 are formed separately, and they are fitted together and integrated. Can also be formed.
  • a pressurized liquid introduction hole 4 is formed in the introduction section 1 and opens in the upper surface thereof, and opens into a bubble generation space 2 formed below the introduction section 1.
  • the pressurized liquid introduction hole 4 has the shape of a circle, an ellipse, or a truncated cone or a truncated cone having the top surface of the introduction portion 1 as a bottom surface.
  • several (three in this case) end faces with an opening cross-sectional area of 10 to 40% of the bubble generation space 2 with respect to the end face Then, each is opened so as to be in a point symmetrical position, penetrates through the introduction portion 1, and opens into the bubble generation space 2.
  • Reference numeral 5 denotes a gas introduction hole.
  • the gas introduction hole 5 is formed by a gas introduction pipe 6 inserted from the side opening into the gas introduction hole 5 of the introduction section 1, and is provided radially or centrally in the bubble generation space 2 (in this case, one at the center).
  • the gas introduction amount adjustment valve 7 is attached outside the side opening.
  • a gas chamber 17 is formed at an opening on the second side of the bubble generation space of the gas introduction hole 5, and a porous plug 18 is attached to the gas chamber 17.
  • the porous plug 18 is made of a porous material or a porous material having micropores communicating with each other, such as a foamed aluminum / porous ceramic.
  • the diameter of the fine pores is preferably about 100 to 100 m, which is suitable for generating microbubbles.
  • 1 1 is a gas inlet hole 5 for closing the hole required for cleaning the inside of the gas inlet hole 5
  • 15 is a connecting pipe for connecting the inlet 1 to the fluid flow path
  • 1 2 is a bubble.
  • 13 is a joint formed at the end of the bubble generation space formation cylinder 3.
  • the projecting projection 14 is a joining stopper for joining the introduction section 1 and the bubble generating space forming cylindrical body 3.
  • FIG. 8 shows the structure of the nozzle 10H according to the eighth embodiment.
  • the shape of the pressurized liquid introduction hole 4 in the embodiment of FIG. 7 is made elliptical. By making it elliptical, it is possible to secure a water passage area and at the same time to make the area of the discharge surface of the bubble generation space 2 smaller, thereby increasing the generation efficiency of fine bubbles.
  • the nozzle 10H of this embodiment is suitable for use in applications that require more microbubbles, for example, for on-land aquaculture, as compared to the case of Embodiment 7.
  • FIG. 9 shows the structure of the nozzle 10J according to the ninth embodiment.
  • This embodiment is different from the embodiment shown in FIG. 7 in that a gas bypass hole 5a is provided which bypasses the gas chamber 17 and directly communicates with the bubble generation space 2. This is because when the pressure of the pressurized liquid is low, it is difficult for gas to be introduced into the bubble generation space 2 from the gas introduction hole 5 due to the pressure loss of the porous plug 18. By doing so, the generation of microbubbles is also significantly reduced. Therefore, by introducing gas from the gas bypass hole 5a into the bubble generation space 2, the microbubbles are dispersed in the discharged water flow.
  • FIG. 10 shows the structure of the nozzle 10 K according to the tenth embodiment.
  • the gas bypass hole 5a in FIG. 9 is applied to the structure of the embodiment shown in FIG.
  • Other configurations and operations are the same as those in the ninth embodiment.
  • FIG. 11 shows the structure of the microbubble generating nozzle 10L.
  • A shows the configuration of the inlet section 1 as viewed from the pressurized liquid inflow side on the upper surface
  • (b) shows a vertical cross section
  • (c) shows a view from the lower bubble discharge port side
  • (d) Is an enlarged view of (c)
  • (e) is an enlarged sectional view of the inside of the cylinder for forming the bubble generation space.
  • the nozzle 10 L has an introduction portion 1 for pressurized liquid and gas, and a bubble generation space 2.
  • the figure shows a structure in which the introduction section 1 and the bubble generating space forming cylinder 3 that forms the bubble generating space 2 are formed separately, and they are fitted together and integrated. Can also be formed.
  • a pressurized liquid introduction hole 4 is formed in the introduction section 1 and opens in the upper surface thereof, and opens into a bubble generation space 2 formed below the introduction section 1.
  • the pressurized liquid introduction hole 4 has the shape of a circle, an ellipse, or a truncated cone or an elliptical truncated cone with the top surface of the introduction portion 1 as a bottom surface.
  • the number of bubbles (three in this case) is such that the opening cross-sectional area of the bubble generation space 2 is 10 to 40% with respect to the end face.
  • Each of the openings opens so as to be a point symmetrical position, penetrates through the introduction portion 1, and opens into the bubble generation space 2.
  • the periphery 4a of the inflow side opening of the pressurized liquid introduction hole 4 is rounded in order to make the flow of the inflowing liquid smooth.
  • Reference numeral 5 denotes a gas introduction hole.
  • the gas introduction hole 5 is formed by a gas introduction pipe 6 inserted from the side opening into the gas introduction hole 5 of the introduction section 1, and is provided radially or centrally in the bubble generation space 2 (in this case, one at the center). (4 in total, 3 radially open), and a gas introduction adjustment valve 7 is attached outside the side opening.
  • Reference numeral 1 denotes a gas introduction hole 5, a gas introduction hole for closing a hole required for cleaning the inside of the gas introduction hole, and 12 denotes a pressurized liquid introduction hole formed on the inner surface of the cylinder 3 for forming a bubble generation space.
  • An arc-shaped pressurized liquid guiding groove communicating with 4, 13 is a bonding projection formed at the end of the bubble generating space forming cylinder 3
  • 14 is an inlet 1 and a bubble generating space forming
  • 15 is a connection pipe for connecting the introduction section 1 to the fluid flow path, and 19 is a downstream connection pipe connected to the introduction section 1.
  • the inner wall of the bubble generation space forming cylinder 3 on the bubble discharge side of the pressurized liquid introduction hole 4 may be straight-worked, but as shown in FIG. By forming the deviating taps, the miniaturization of bubbles can be promoted.
  • FIG. 12 shows the structure of the microbubble generating nozzle 10M.
  • the shape of the pressurized liquid introduction hole 4 is made elliptical.
  • FIG. 13 shows the structure of the microbubble generating nozzle 1 ON.
  • gas introduction holes 5 are formed in three places around one introduction part 1, and three pressurized liquid introduction holes 4 are formed around the three gas introduction holes, respectively. It has a structure in which the pressurized liquid introduction side of the hole 5 is closed with Mekurabis 11.
  • the pressurized liquid guide groove 12 is formed in the bubble generating space forming cylinder 3 on the discharge side of each pressurized liquid introduction hole 4 so that a common space is formed.
  • the inner wall of the bubble generation space forming cylinder 3 on the bubble discharge side of the pressurized liquid introduction hole 4 may be formed by straight processing, but as shown in FIG.
  • the miniaturization of bubbles can be promoted.
  • the pressurized liquid introduced into the bubble generation space 2 from the opening of the pressurized liquid introduction hole 4 is discharged into the space under high pressure to form a peeling area. Due to this peeling phenomenon, the gas introduced from the gas introduction hole 5 is dispersed in the discharged water stream as microbubbles having a diameter of about 10 m.
  • the dispersion amount and size of the microbubbles can be arbitrarily adjusted by adjusting the degree of opening of the gas introduction amount adjustment valve 7.
  • FIGS. 14 to 16 show a gas chamber 17 formed at the opening of the gas introduction hole 5 in the nozzle shown in FIGS. 11 to 13 on the side of the bubble generation space 2, and a porous plug in the gas chamber 17. 18 is attached.
  • the porous plug 18 is made of a porous material or a porous material having fine pores, such as foamed aluminum and porous ceramics. The diameter of the pores is preferably about 10 to 100 m, which is suitable for generating microbubbles.
  • the gas chamber 17 is formed at the opening of the gas introduction hole 5 on the side of the bubble generation space 2, and the porous plug 18 is attached to the gas chamber 17. Microbubbles can be generated even if a pressurized liquid is introduced.
  • Example 1 gas-liquid mixing nozzle
  • FIG. 17 shows the structure of the gas-liquid mixing nozzle 20 according to the first embodiment.
  • A is a plan view showing the configuration of the introduction part 21 as viewed from the pressurized gas-liquid inflow side on the upper surface
  • (b) is a longitudinal sectional view
  • (c) is a view as viewed from the bubble discharge port side on the lower surface
  • (D) is an enlarged view of (c).
  • the nozzle 20 has an inlet 21 for pressurized liquid and gas, and a cylindrical inlet mixing space 22.
  • a pressurized gas-liquid introduction hole 23 and a plurality of gas-liquid introduction holes 24 formed in the space 22 are formed, and the pressurized gas-liquid introduction hole 23 is opened at an end face of the introduction portion 21 to form a plurality of gas-liquid introduction holes.
  • Adjustment valves 2 7, 2 that open 24 to the side of the inlet 21 and adjust the gas-liquid introduction amount to the gas-liquid introduction pipes 25, 26 that communicate with the gas-liquid introduction holes 24 8 are provided.
  • Figure In the above there is shown a structure in which an introduction part mixing space forming cylindrical body 29 in which an introduction part 21 and an introduction substance mixing space 22 are formed is formed separately, and each is fitted and integrated. It can be formed integrally from the beginning.
  • the above-mentioned pressurized gas-liquid introduction hole 23 has a shape of a circle, an ellipse, or a truncated cone or a truncated elliptical cone with the top surface of the introduction portion 1 as a bottom surface.
  • a plurality of pipes whose opening cross-sectional area of the inlet mixture space 22 is 10 to 40% with respect to the end face (in this case, 3) are opened at the end faces so that they are point-symmetrical to each other, penetrate through the introduction section 21, and open to the introduced substance mixing space 22.
  • the gas-liquid introduction holes 23 are formed by gas-liquid introduction pipes 25 and 26 inserted into the introduction part 21 from the side opening, and a plurality of gas-liquid introduction holes 22 are radially opened in the introduction mixture space 22 and Gas-liquid introduction amount adjustment valves 27 and 28 are mounted outside the opening.
  • 30 is a connection pipe for connecting the introduction section 21 to the fluid flow path, and 31 is connected to the pressurized gas-liquid introduction hole 23 formed on the inner surface of the cylinder 29 for forming the introduction mixture space.
  • An arc-shaped pressurized liquid guiding groove, 32 is a joining projection formed at the end of the introduced material mixing space forming cylinder 29, and 33 is an introducing portion 21 and the introduced material mixing space forming cylinder. This is a joining stop for joining with 29.
  • Example 2 bubble crushing and bubble mixing nozzle
  • FIG. 18 shows an embodiment of the bubble crushing / bubble mixing nozzle 40, in which a gas introduction hole 42 is formed at the center of the introduction section 41, and a plurality of pressurized liquid introduction holes 4 are formed around the hole. 3 and a gas introduction pipe 4 4 is provided on the side of the introduction section 4 1 to allow outside air to communicate with the gas introduction hole 4 2, and the pressurized liquid introduction hole 4 3 Blocked at 5.
  • the inflow side peripheral surface 43 a of the pressurized liquid introduction hole 43 is rounded.
  • the pressurized liquid introduction hole 43 and the gas introduction hole 42 of the introduction part 41 are discharged into the common bubble crushing space 47 on the bubble generation space 46 side. As shown in Fig.
  • the bubble crushing tube 48 inside the pressurized liquid introduction hole 4 3 introduction section 4 1 has a plurality of discontinuous large diameters on the inner wall as it goes to the discharge side. With steps. In addition, taps are formed on the inner wall, with the mountain deviating downstream. Multiple holes are made into a single hole in the bubble crushing space 47 on the outlet side.
  • 49 is a connecting pipe
  • 50 is a gas introduction amount adjusting valve.
  • Example 3 bubble crushing nozzle
  • FIG. 19 shows an embodiment of the bubble crushing nozzle 60, in which the gas inlet for introducing outside air is not provided in the inlet section 61, and the bubble crushing tube 63 is passed through the pressurized liquid inlet 62 and the bubble crushing pipe 63.
  • the pressurized liquid is directly discharged into the bubble crushing space 64, and the step in the bubble crushing tube 163 that has an intermittently large diameter is set up. With the combined cavitation action, bubbles of several hundred meters contained in the pressurized liquid are made finer to about 10 zm and ejected as microbubbles.
  • This bubble crushing nozzle 60 also has a function as a gas-liquid separation nozzle that separates dissolved gas from liquid into mist when pressurized water of about 1 kg Z cm 2 is passed.
  • 62 a is a rounded side surface on the inflow side of the pressurized liquid introduction hole 62
  • 65 is a connecting pipe.
  • FIG. 20 shows the structure of the loading container 70 when the introduction portion 1 of the microbubble generating nozzle 10 according to the first embodiment is used alone.
  • This loading container 70 is a loading container used for the purpose of discharging into a liquid, and can be easily attached to and detached from the connection pipes 15 and 19 by using screws at both ends of the container. 1 can be freely attached and detached. In addition, by providing the rail 71 for preventing displacement, the rotation of the introduction portion 1 can be prevented.
  • 72 is the gas inlet tube insertion hole,
  • FIG. 21 shows the loading container 8 when the introduction unit 1 according to the second embodiment is used alone.
  • the loading container in comparison with the case of the first embodiment, is used for the purpose of discharging into the air.
  • the generation space 2 can be filled with an activator or the like.
  • reference numeral 75 denotes a net holding rubber for preventing scattering of activators and the like
  • 76 denotes a net mounting cap.
  • Example 3 flow promotion cylinder
  • FIG. 22 shows the structure of a flow promoting cylinder 90 according to the third embodiment when the introduction unit 1 is loaded in the loading container 70 of the first embodiment.
  • the flow of water is further promoted in a closed water area or the like by attaching the loading container 70 to the central portion of the large-diameter cylindrical body 91 with a fixing bracket 92.
  • the upstream side of the flow promotion cylinder 90 is spread in a trumpet shape, so that the flow of fluid to the cylinder 91 is smooth.
  • FIG. 23 shows a structure of a flow velocity suppressing cylinder 100 according to the fourth embodiment.
  • a flow rate reduction suppression hole 101 is provided in a flow rate suppression cylinder 100 connected to a bubble generation space forming cylinder 3 joined to the discharge side of the introduction section 1, and a bubble generation space is provided.
  • An arc-shaped flange 102 is provided at the joint with the forming cylinder 3 to prevent turbulence.
  • the collar 102 is provided for preventing a turbulent flow, if necessary, because the collar is applied to a material having a remarkably high flow velocity according to the present invention.
  • the flow rate reduction suppression hole 101 is provided for suppressing the flow rate decrease because the flow rate is decreased at the same time as the flow velocity by simply connecting a cylinder.
  • FIG. 24 shows the structure of the transported article introduction cylinder 110 according to the fifth embodiment.
  • the conveyed product introduction cylinder 110 is connected to the bubble generating space forming cylinder 3 and has one or more (in this case, three) conveyed material introduction holes 1 1 1 and a conveyed material introduction pipe 1 1 2 Are connected to connecting pipes 1 1 and 3.
  • the fine bubbles and the introduced material can be conveyed to the connection pipe terminal by being connected to the bubble generating space forming cylinder 3.
  • Example 6 (Activated agent filled container)
  • FIG. 25 shows the structure of a container 80 filled with an activator or the like according to the sixth embodiment.
  • This embodiment is for use in the air, and an activator or other scattering prevention net 74 is attached to the bubble generation space forming cylinder 3 side and the discharge section side via a packing 73 and a pressing rubber 75.
  • the activator and the like can be filled in the activator and the like filling space 77.
  • 72 is a gas inlet tube insertion hole
  • 76 is a cap.
  • the introduction rail 1 can be prevented from rotating by providing the rail 71.
  • FIG. 26 shows the structure of the introduced matter checking cylinder 120 according to the seventh embodiment.
  • the introduction confirmation tube 120 is connected in the middle of the pipe of the connection tube 19 (downstream of the bubble generating space forming cylinder 3), and the confirmation window 1 2 1 of glass or transparent plastic is connected to the window. It is sealed with a material retainer 1 2 2.
  • the confirmation windows 122 are preferably provided on both sides of the pipe.
  • the air volume can be adjusted without checking the bubble generation state at the terminal.
  • the interior can be easily checked by illuminating from the opposite side and transmitting light.
  • FIG. 27 shows the structure of a flow rate adjusting cylinder 130 according to the eighth embodiment.
  • a flow rate adjusting cylinder mounting auxiliary tool 1 3 2 having a flow rate reduction suppressing hole 13 1 formed on the outer periphery of the discharge port side of the bubble generating space forming cylinder 3 joined to the discharge side of the introduction section 1 3 2
  • the flow rate control cylinder 13 3 slides and the flow rate reduction hole 13 1 opening rate and the bubble generation space forming cylinder 3
  • the space length from the discharge surface to the flow rate control cylinder 13 30 discharge surface The flow rate can be easily adjusted when used in a bubble injection bath or the like.
  • the figure shows a structure in which the air bubble generation space forming cylinder 3 and the flow rate adjusting cylinder mounting aid 1 32 are formed separately and fitted together to integrate them. Can also be formed.
  • Example 9 (Micro bubble curtain generating nozzle)
  • FIG. 28 shows the structure of the microbubble curtain generating nozzle 140 according to the ninth embodiment.
  • the nozzle 140 has a width diverging from the circular nozzle mounting portion 141 for joining to the bubble generating space forming cylinder 3 toward the bubble discharge port 144 side, and a tapered height.
  • a bubble guide plate 144 is provided inside.
  • the bubbles can be ejected into the liquid in a planar manner by being connected to the bubble generating space forming cylinder 3.
  • FIG. 29 shows the structure of the air adjusting valve 150 according to the tenth embodiment.
  • the gas required for microbubble generation is very small. Therefore, in this embodiment, the ventilation hole 158 in the air adjustment cock 153 is formed into an elliptical shape so that the fine adjustment of the region where the microbubbles are generated can be easily performed.
  • 15 1 is the outer cylinder
  • 15 2 is the inner cylinder
  • 15 3 is the air adjustment cock
  • 15 4 is the fully open and fully closed stopper
  • 15 5 is the gas inlet connection
  • 15 6 is the seal.
  • a ring, 157 is a connection part of the inner cylinder part
  • 158 is a vent
  • 159 is a contraction part for connecting the cross section of the vent.
  • FIG. 30 shows the structure of the air intake filter 160 according to the first embodiment.
  • a perforated filter for preventing blockage of the porous material is connected to the gas inlet 5.
  • 16 1 is a filter cylinder
  • 16 2 is a cap
  • 16 3 is a net stopper
  • 16 4 is a filter holding net
  • 16 5 is a filter receiving projection
  • 167 is a connection part of the inner cylinder
  • 168 is a vent.
  • the nozzle introduction portion 1 is attached downward, that is, vertically attached to the water surface, and an elbow 170 is used to horizontally change the direction of bubbles.
  • the depth (water pressure) from the water surface to each gas introduction hole becomes the same, and the discharge direction is changed to the horizontal direction by using an elbow 170.
  • bubbles of stable and uniform size are generated, especially for large-diameter nozzles. Becomes possible.
  • Embodiment 14 (Bubble Dispersion Nozzle for Changing Bubble Discharge Direction)
  • microbubble dispersion nozzle 180 shown in FIG. 32 By attaching the microbubble dispersion nozzle 180 shown in FIG. 32 for the same purpose as in the embodiment 13, a large amount of microbubbles can be dispersed in multiple directions and discharged.
  • This microbubble dispersion nozzle has a hemispherical bubble dispersion convex portion 181 provided immediately below a vertically attached microbubble generating nozzle 10 and a bubble discharge port 182 provided in a horizontal direction.
  • Example 15 multiple nozzle loading device
  • FIGS. 33 and 34 show an embodiment of a multi-nozzle loader in which a plurality of micro-bubble generating nozzles are loaded to increase the amount of generated micro-bubbles as a whole.
  • the multiple-nozzle loading device 190 is provided with holes for loading a plurality of, in this example, three, microbubble generating nozzles, and the microbubble generating nozzle as shown in FIG. 35 is provided. 10 is loaded.
  • 1 is an introduction part
  • la is a nozzle fixing flange
  • lb is a nozzle fixing projection
  • 2 is a bubble generation space
  • 3 is a bubble generation space forming cylinder
  • 4 is a pressurized liquid introduction hole
  • 5 is a gas.
  • Inlet 6 is a gas inlet pipe
  • 7 is a gas inlet adjustment valve
  • 1 1 is a gas inlet hole mekravis
  • 1 2 is a pressurized liquid guide groove
  • 19 1 is a nozzle fixture
  • 19 2 is a nozzle fixture.
  • Recesses, 193 is a recess for fixing the nozzle
  • 194 is packing
  • 195 is a gas introduction pipe.
  • the ejection power and the amount of bubbles can be controlled according to the pumping ability. Also, the pressure of each nozzle can be kept constant.
  • FIG. 36 shows another embodiment of a multi-nozzle loading tool for loading a plurality of micro-bubble generating nozzles 10.
  • the multi-nozzle loader 200 has a plurality of microbubble generating nozzles 10 mounted on a side of a straight pipe 201 into which a pressurized gas is introduced.
  • FIG. 37 shows an example of a gas introduction tube collecting chamber 210 that integrates gas introduction into a plurality of nozzles into one.
  • 21 1 is the upper part of the outer cylinder of the collecting chamber
  • 212 is the lower part of the outer cylinder of the collecting chamber
  • 2 13 is the connection part of the gas introduction pipe
  • 214 is the vent
  • 215 is the convex part of the filter receiver
  • 216 is the filter
  • the connecting pipe for gas introduction can be integrated into one.
  • the gas introduction amount of a plurality of nozzles can be adjusted at one place. Filters can be loaded inside if necessary.
  • the main unit and the gas introduction amount adjustment valve can be separate.
  • FIG. 38 shows a first embodiment of the present invention, in which a bubble generator 330 is attached to a water inlet 310 and a discharge outlet 320 of a bathtub 300.
  • Fig. 38 (a) is a sectional view of the bathtub mounting part, (b) is an enlarged sectional view of the water intake, (c) is an enlarged sectional view of the outlet, and (d) is an enlarged sectional view of the outlet attachment hose. .
  • the bubble generating device 330 includes a circulation pump 301, a microbubble generating nozzle 10, and a bubble crushing / bubble mixing nozzle 40 (or a bubble crushing nozzle 60).
  • the microbubble generating nozzle 10 has a diameter of the introduction portion 1 of 20 mm, a length of 40 mm, a diameter of the pressurized liquid introduction hole 4 of 7 mm ⁇ 3, a diameter of the gas introduction hole 5 of lmm,
  • the outer diameter of the bubble generating space forming cylinder 3 is 20 mm, the length is 30 mm, and the inner diameter of the pressurized liquid guide groove 12 is expanded to 7.0 mm, 7.5 mm, 8.0 mm by two steps.
  • the bubble generation space 2 was expanded to 10.0 mm, 10.5 mm, and 11.0 mm by two steps.
  • the diameter of the inlet 41 is 15 mm
  • the length is 30 mm
  • the diameter of the pressurized liquid inlet 43 is 1.2 mm, 1.5 mm, and 1.8 mm.
  • the structure shown in Fig. 18 was used in which nine gas inlet holes 42 had a diameter of lmm.
  • 302 is a gas introduction pipe
  • 303a and 303b are gas introduction amount adjusting valves
  • 15 is It is a connecting pipe.
  • the intake port 3 110 is equipped with the intake port connector 3 1 1, the intake filter attaching / detaching device 3 1 2 and the intake filter 3 1 3, and the intake port connector 3 1
  • the connection pipe 15 is connected to 1.
  • the discharge port 3 20 is equipped with the discharge port fitting 3 2 1 and the discharge port attachment 3 2 2, and the discharge port 3 2 1 is connected to the connection pipe 1 5 Is connected.
  • Fig. 38 (b) the intake port 3 110 is equipped with the intake port connector 3 1 1, the intake filter attaching / detaching device 3 1 2 and the intake filter 3 1 3, and the intake port connector 3 1
  • the connection pipe 15 is connected to 1.
  • the discharge port 3 20 is equipped with the discharge port fitting 3 2 1 and the discharge port attachment 3 2 2, and the discharge port 3 2 1 is connected to the connection pipe 1 5 Is connected.
  • the discharge outlet attachment 3 2 2 has a discharge lower attachment hose 3 consisting of a discharge outlet attachment hose fitting 3 2 4, a hose 3 2 5 and a hose tip protector 3 2 6 23 can be attached, and micro-bubbles can be applied to any part of the human body to apply the massaging effect to the human body.
  • microbubbles are mixed into the suction water from the microbubble generating nozzle 10 attached to the suction side. At this point, the amount of microbubbles is not necessarily large.
  • the gas-liquid mixed with air bubbles further crushed in the pump 301 is guided to the air bubble crushing / air mixing nozzle 40 attached to the discharge port. Due to the cavitation function of this nozzle, the air bubbles are further broken, and most of the air bubbles become microbubbles of about 10 m.
  • the regulating valve 303 a attached to the nozzle 10 is adjusted and fixed to the state of generating micro-sized fine bubbles, and by adjusting the regulating valve 303 b, the bubbles of several mm from the micro-sized bubbles are adjusted. Up to the generation of air bubbles is possible.
  • a gas introduction hole having a fixed flow rate may be used instead of the regulating valve 303a.
  • FIG. 39 shows a second embodiment of the present invention, in which an external bubble bath is attached to a bathtub 300.
  • the device 340 is to be attached.
  • This bubble bath apparatus 340 has a hose fitting 350 attached to the wall surface of a bathtub 300, and is connected to a pump 301 by connecting pipes 15, 19 (hose).
  • reference numeral 360 denotes a water intake unit
  • reference numeral 370 denotes a discharge unit. As shown in Fig.
  • the hose mounting fixture 350 has three mounting position adjustment grooves on the hose mounting support plate 3 51 whose upper part is bent in a U-shape, and the mounting position fixing knob 3 5 3 And a generation nozzle fixture 354 are attached, and a scratch prevention rubber 355 is attached to the back side of the portion bent in a U-shape.
  • a connecting member 356 provided with a hose through hole 357 is attached to the upper and lower mounting position fixing knobs 353 so that the sucker 358 sucks the inner wall of the bathtub.
  • the nozzle fixing device 3 5 4 is fixed to the hose mounting support plate 3 51 with the mounting position fixing knob 3 5 3 from the back side, and the bubble crushing / bubble mixing nozzle 40 or the bubble crushing nozzle 60 is attached. ing.
  • FIG 41 (a) Details of the water intake section 360 are shown in Figure 41 (a). Connect the connection pipe 15 to the pump 30 1 with the hose connection 3 7 1 to the intake filter connection 3 6 1, and attach the intake filter loading cap 3 6 2 with the intake filter 3 6 4 at the end. It is installed. 3 6 3 is an intake filter holding net.
  • FIG. 41 (b) Details of the discharge section 370 are shown in FIG. 41 (b).
  • the connecting pipe 19 from the pump 301 is connected to the nozzle mounting elbow pipe 372 at the hose connecting part 371, and the bubble pulverizing / bubble mixing nozzle 40 or the bubble pulverizing nozzle 60 is attached to the tip of the pipe.
  • a flow rate adjusting cylinder 373 provided with a flow rate reduction suppressing hole 374 is attached via a flow rate adjusting cylinder mounting auxiliary tool 375.
  • FIG. 42 shows a third embodiment of the present invention, and shows a bubble bath apparatus 370 having a built-in pump 301 which is used by being immersed in a bathtub 300.
  • a water intake slit 381 and a discharge port attachment mounting portion 383 are provided in the device case 380, and a water intake filter is attached to the water intake loss slit 381 with a water stop filter 382.
  • a bubble crushing / bubble mixing nozzle 40 or a discharge port attachment fitting 3 22 connected to the bubble crushing nozzle 60 is attached to the attachment portion 3 83.
  • a discharge port attachment hose 3 2 3 can be connected to the discharge port attachment fixture 3 2 2.
  • the gas inlet tube 302 is taken out of the bathtub 300 to take in air.
  • reference numeral 384 denotes an operation section for operating the switch 385 of the pump 301 from outside.
  • FIG. 43 shows a fourth embodiment of the present invention.
  • the bubble crushing / bubble mixing nozzle 40 or the bubble crushing nozzle 60 in the first embodiment is omitted.
  • a bubble generating nozzle 10 is attached.
  • FIG. 44 shows a fifth embodiment of the present invention, in which the bubble crushing / bubble mixing nozzle 40 or the bubble crushing nozzle 60 in the second embodiment is omitted, and microbubbles are generated in the discharge section 370. Nozzle 10 is attached.
  • FIG. 45 shows a sixth embodiment of the present invention, in which the bubble crushing / bubble mixing nozzle 40 or the bubble crushing nozzle 60 in the third embodiment is omitted, and the discharge side of the pump 301 is provided with a microstructure. A bubble generating nozzle 10 is attached.
  • FIG. 46 is a sectional view showing the structure of the embodiment of the deaerator of the present invention.
  • FIG. Fig. 47 (a) is a plan view showing the form of the introduction part 4 21 viewed from the pressurized liquid inflow side on the upper surface, (b) is a longitudinal sectional view, (c) is a view from the lower surface, (d) ) Is an enlarged view of (c), and (e) is an enlarged sectional view of the gas-liquid separation tube 4 23. is there.
  • reference numeral 404 denotes a gas recovery motorized valve
  • 406 denotes a gas recovery section pressure control valve
  • 408 denotes a pressure in the gas condensing section pressure control valve
  • 470 denotes a control panel
  • 471 denotes a flow trace liquid.
  • the surface relay, 472 is instrumentation wiring.
  • the gas-liquid separation nozzle 420 has a pressurized gas-liquid introduction section 421 and a gas-liquid separation space 424.
  • the drawing shows the structure in which the introduction part 421 and the gas-liquid separation space forming cylinder 425 forming the gas-liquid separation space 424 are integrally formed, they may be formed separately.
  • a pressurized gas-liquid introduction hole 4 22 formed on the upper surface of the introduction section 4 21 is formed in the introduction section 4 21, and a gas-liquid separation space 4 formed below the introduction section 4 2 1 as a gas-liquid separation pipe 4 2 3. Opened to 24.
  • the pressurized gas-liquid introduction hole 422 has a circular or elliptical shape, and the size and number of the diameters vary depending on the pressure and type of the pressurized gas-liquid, as shown in FIG.
  • a plurality of pipes (31 in this case) are opened so that they are point-symmetrical at the end face, and a gas-liquid separation pipe 4 2 3 penetrating through the introduction section 4 2 1 as a gas-liquid separation space 4 2 4 It is open to.
  • the pressurized gas-liquid introduced into the gas-liquid separation nozzle 420 passes through a gas-liquid separation tube 423 provided with a step portion whose diameter increases discontinuously toward the downstream side, and has a sharp cross-sectional area.
  • a gas-liquid separation tube 423 provided with a step portion whose diameter increases discontinuously toward the downstream side, and has a sharp cross-sectional area.
  • the gas-liquid separation tube 423 has a biased inner wall formed therein, which causes cavitation on the wall surface of the gas-liquid separation tube.
  • This cavitation phenomenon becomes more remarkable when the position of the triangular peak of the tap cross section is formed so as to be shifted downstream in the flow direction of the pressurized gas-liquid.
  • the separated gas-liquid discharged from the gas-liquid separation nozzle 420 is introduced into the gas aggregating section 4330 by the separation gas-liquid introduction connection tube 402.
  • the outer surface of the end surface of the gas-liquid separation nozzle A turbulence prevention collar 403 is formed to prevent turbulence from occurring between them.
  • the gas aggregating part 4330 has a dome-shaped swirling flow generating cylinder 432 and a gas aggregating cylinder 434 that is provided concentrically through the bottom of the swirling flow generating cylinder 43.
  • the connecting pipe for separation gas-liquid introduction 402 generates a swirl flow so that the separation gas and liquid are introduced into the swirl flow generation cylinder 43 while generating a swirl flow.
  • a separation gas-liquid introduction hole 431 is provided at a position (tangential direction) deviated from the center axis of the cylinder 432. In Fig. 48, the separation gas-liquid introduction hole 431 is provided in the direction in which the swirling flow is generated to the left (counterclockwise) in the direction of fluid flow. May be generated.
  • a gas-liquid riser pipe 4336 penetrates the top of the swirling flow generation cylinder 432 of the gas aggregation section 4330, and a gas recovery section 44 is provided above the gas-liquid riser pipe 436. It is provided through the bottom of the zero. As shown in FIG. 49, a gas backflow prevention reduced diameter portion 443 is formed in the middle of the gas recovery portion 440, and is higher than the gas backflow prevention reduced diameter portion 443. The upper end of the gas-liquid riser pipe 436 is located at the top. Above the gas recovery section 440, a gas recovery pipe 405 is provided via a floatless liquid level relay for detecting the recovery state of gas and a gas recovery valve 404, and the device is connected continuously.
  • the lower end of the gas condensing cylinder 4 3 4 is connected to a gas collecting section pressure reducing nozzle 4 50 via a gas collecting section pressure control valve 408 and a collecting section pressure reducing nozzle connecting pipe 409. I have.
  • FIG. 50 shows the structure of the nozzle 450 for reducing the pressure in the gas recovery section.
  • A shows the configuration of the introduction section 451, as viewed from the pressurized liquid inflow side on the upper surface
  • (b) shows a vertical cross section
  • (c) shows a view as viewed from the pressurized liquid discharge port side on the lower surface. Show.
  • the nozzle 450 has a pressurized gas-liquid introduction section 451, and a return liquid suction pressure generation space 457.
  • the introduction part 45 1 and the return liquid suction pressure generating cylinder 45 56 that forms the return liquid suction pressure generation space 45 57 are formed separately, and they are fitted together and integrated. Although it is shown, it can be formed integrally from the beginning.
  • a pressurized liquid introduction hole 452 is formed in the introduction section 451, which opens on the upper surface, and opens into the return liquid suction pressure generation space 457 formed below the introduction section 451. I have.
  • the pressurized liquid introduction hole 452 has the shape of a circle, an ellipse, or a truncated cone or a truncated cone with the top surface of the introduction part 451 as the bottom surface. And the type of pressurized liquid, but as shown in Fig. 7 (a), a plurality of openings whose cross-sectional area of the return liquid suction pressure generating space 457 is 10% to 40% with respect to the end face.
  • the books (three in this case) are opened so that they are point-symmetrical on the end face, penetrate through the introduction part 451, and open to the return liquid suction pressure generation space 457. Further, the periphery 452a of the inflow side opening of the pressurized liquid introduction hole 452 is rounded in order to make the flow of the flowing liquid smooth.
  • Reference numeral 453 denotes a return liquid introduction hole.
  • the return liquid introduction hole 4 5 3 is formed by the return liquid introduction pipe 4 5 4 inserted from the side opening into the return liquid introduction hole 4 5 3 of the introduction section 4 5 1, and the return liquid suction pressure generation space 4 5 There is one radial or central opening (in this case, one central).
  • 455 is the return liquid introduction hole for closing the hole required for cleaning the inside of the return liquid introduction hole 545
  • 458 is formed on the inner surface of the return liquid suction pressure generating cylinder 456.
  • Reference numeral 460 denotes a joining stopper for joining the introduction portion 451 and the return liquid suction pressure generating cylinder 456.
  • the pressurized gas-liquid introduced into the gas-liquid separation nozzle 420 generates a state close to a vacuum due to the cavitation phenomenon inside the gas-liquid separation nozzle 420, and the gas in the liquid becomes mist-like and is separated. .
  • the separated gas-liquid is sent as a swirling flow from the separated gas-liquid introduction hole 431 to the gas aggregation section 4330.
  • the liquid flows to the pressure regulating valve 408 below the gas condensing part 430 in the flow direction, but the tornado-shaped gas as described above acts as an air lift (the gas flow in the liquid). Due to the floating action), it stays in the center of the gas aggregation space 435.
  • the gas remaining in the central part is returned to the gas collecting part pressure reducing nozzle 450, and the gas collecting part 444 is connected to the gas collecting part pressure adjusting pipe 407 connected to the liquid introduction pipe 454.
  • the inside of the chamber is decompressed and sent to the gas recovery section 440. That is, deaerator
  • the floatless liquid level relay 471 in the gas recovery space 441 detects the low liquid level and sends a signal to the control panel 470.
  • the motorized valve 404 opens and the motorized valve 406 closes.
  • the electric valve 408 provided at the lower part of the gas coagulation cylinder 4 3 4 is operated in the closing direction, and the gas in the gas recovery space 4 4 1 is forcibly recovered by the pressure reducing device 4 7 3.
  • the flow in the riser pipe 436 is forcibly guided to the gas recovery section 4440 to raise the internal liquid level.
  • the floatless liquid level relay 471 detects and sends a signal to the control panel 470.
  • FIG. 51 shows a first embodiment of the structure of the air-fuel mixture production nozzle 500 according to the present invention.
  • a and B show the configuration of the pressurized gas connection section 502 and the pressurized gas introduction hole 503 viewed from the pressurized gas introduction side
  • C to D show the fuel connection section 505 and pressurized gas introduction.
  • the shape of the holes 503, E-F are the shapes of the fuel introduction section 506 and the pressurized gas introduction hole 503 viewed from the gas-mixture production space 507
  • GH is the mixture injection surface.
  • 1 shows an air-fuel mixture injection hole 509 as viewed from above.
  • the air-fuel mixture production nozzle 500 has a pressurized gas introduction hole 503, a fuel introduction part 506, and an air-fuel mixture discharge hole 508 in the air-fuel mixture production space 507. It is open.
  • the pressurized gas introduction hole 503 is provided on a partition between the pressurized gas introduction pipe 501 and the air-fuel mixture production space 507 on a circumference around the fuel introduction section 506. You.
  • Six pressurized gas introduction holes 503 are arranged at equal intervals. The number of pressurized gas introduction holes is not limited to six as long as they are equidistant from each other. As is clear from the cross section E--F in FIG.
  • the outlet of the pressurized gas introduction hole 503 on the mixture gas production space 507 is provided on the inner wall of the gas mixture production space 507. And continuous with the linear groove 507a formed along the flow direction of the mixture.
  • the groove 507a extends to the vicinity of the reduced cross section 507b of the mixed gas production space 507, and thereafter gradually disappears, and its shape is desirably a semicircular shape.
  • the groove 507a constitutes guide means for guiding the pressurized gas so as to generate only a vertical vortex in the downstream direction.
  • An annular recess 507 c is formed between the pressurized gas introduction hole 503 and the fuel introduction section 506 and is continuous in the circumferential direction, and the recess 507 c has a semicircular shape.
  • the gas-mixture discharge space 507 is formed such that the gas-mixture production space 507 is reduced in diameter and communicates with the gas-mixture injection hole 509 and is opened. Inside the mixture exhaust hole 508, there is formed a stepped portion whose diameter is discontinuously increased toward the injection hole, and a tap in which the position of the peak is deviated toward the injection hole side.
  • the fuel connection portion 505 is arranged at the center of the mixture-producing space so as to inject fuel along the flow direction of the mixture. If the air-fuel mixture is offset from the center of the air-fuel mixture production space, helical energy is applied to the air flow during fuel injection, making it difficult to control the mixing process, resulting in a stable combustion state. Absent.
  • the air introduced from the pressurized gas introduction pipe 501 to the pressurized gas connection section 502 and then narrowed down to the pressurized gas introduction hole 503 is discharged to the mixed gas production space 507. You. At this time, rapid expansion occurs and the flow becomes turbulent, and a so-called peeling area is generated near the fuel introduction section 506. Due to this peeling phenomenon, the air and fuel are evenly and uniformly mixed. In the case of the present embodiment, the air flow with the turbulent flow returns to the upstream side from the air-fuel mixture discharge hole 508 in a state where the spiral flow is suppressed by the groove The fuel is concentrated around the fuel introduction section 506, so that the mixing of air and fuel is remarkably improved.
  • a stepped portion whose diameter increases discontinuously as it goes to the injection hole and a tap where the position of the peak is deviated toward the injection hole are formed inside the mixture exhaust hole 508.
  • the air-fuel mixture is introduced into the cylinder with a spiral from the air-fuel mixture discharge hole 508, so that the combustion state is further improved.
  • FIG. 52 shows a second embodiment of the structure of the air-fuel mixture production nozzle 500 according to the present invention.
  • a and B show the configuration of the pressurized gas connection section 502 and the pressurized gas introduction hole 503 viewed from the pressurized gas introduction side
  • C to D show the fuel connection section 505 and pressurized gas introduction.
  • the shape of the hole 503, E-F is the shape of the fuel introduction part 506 and the pressurized gas introduction hole 503 as viewed from the air-fuel mixture production space
  • GH is the shape of the air-fuel mixture injection surface.
  • the mixture injection hole 509 is shown.
  • the air-fuel mixture production nozzle 510 has a pressurized gas introduction hole 503, a fuel introduction part 506, and an air-fuel mixture discharge hole 508 in the air-fuel mixture production space 507. It is open.
  • the pressurized gas introduction hole 503 has the shape of a truncated cone with the pressurized gas connection surface at the bottom, and is open to the mixed gas production space 507.
  • the fuel introduction section 506 is formed by a fuel introduction pipe connected to the fuel connection section 505 on the side surface, and the fuel-air mixture production space 507 It is oriented in the direction along the flow direction of the mixture, that is, parallel to the flow direction.
  • the fuel introduction section 506 is open at the bottom of a semicircular annular concave section 507d formed around the pressurized gas introduction hole 503.
  • the mixture exhaust hole 508 has an air-mixing production space 507 with a reduced diameter and is open to communicate with the mixture mixture injection hole 509. There is a step where the diameter increases discontinuously as it goes, and a tap where the position of the peak is deviated toward the injection hole side.
  • three fuel introduction portions 506 are arranged around the pressurized gas introduction hole 503, and each of the fuel introduction holes 506 is arranged at an equal interval and has an additional space. It is equidistant from the pressurized gas introduction hole 503.
  • the number of the fuel introduction portions 506 is not limited to three as long as they are at equal intervals.
  • the air introduced from the pressurized gas introduction pipe 501 to the pressurized gas connection section 502 and then narrowed down to the pressurized gas introduction hole 503 is discharged to the mixed gas production space 507. You. At this time, rapid expansion occurs and the flow becomes turbulent, and a so-called peeling area is generated near the fuel introduction hole 506. Due to this peeling phenomenon, the air and the fuel are evenly and uniformly mixed. In the case of the present embodiment, the turbulent airflow returning from the air-fuel mixture discharge hole 508 to the upstream side is concentrated in the fuel introduction portion 506 by the concave portion 507d. Therefore, mixing of air and fuel is improved.
  • a stepped portion whose diameter increases discontinuously toward the injection hole and a tap where the position of the mountain is biased toward the injection hole are formed inside the mixture discharge hole 508, In a state where the fuel and the air are well mixed, the air-fuel mixture is introduced into the cylinder with a spiral from the air-fuel mixture discharge hole 508, so that the combustion state is further improved.
  • FIG. 53 shows a third embodiment of the structure of the air-fuel mixture production nozzle 500.
  • FIGS. A and B show the configuration of the pressurized gas connection section 502 and the pressurized gas introduction hole 503 viewed from the pressurized gas introduction side, and C to D show the fuel connection in the mixed gas production space 507.
  • the shape of the part 505, the fuel introduction part 506, and the pressurized gas introduction hole 503 is shown, and EF indicates the mixture injection hole 509 viewed from the mixture injection surface.
  • the air-fuel mixture production nozzle 500 is located in the air-fuel mixture production space 507 A pressurized gas introduction hole 503, a fuel introduction portion 506, and a mixture gas discharge hole 508 are opened.
  • the pressurized gas introduction hole 503 has the shape of a truncated cone with the pressurized gas connection surface at the bottom, and is open to the air-fuel mixture production space 507.
  • the fuel introduction section 506 is formed by a fuel introduction pipe 504 connected to the fuel connection section 505 on the side surface, and is opened to the air-fuel mixture production space 507.
  • the gas-mixture discharge hole 509 is formed such that the gas-mixture production space 507 has a reduced diameter and the diameter is substantially the same as that of the pressurized gas introduction hole 503 and communicates with the gas-mixture injection hole 509 and is opened.
  • the mixture exhaust hole 508 there is formed a stepped portion whose diameter increases discontinuously as it goes to the injection hole, and a tap where the position of the peak is deviated toward the injection hole.
  • three fuel connection portions 505 are provided evenly at every 120 degrees in the circumferential direction, and the fuel connection portions 505 are arranged in a direction perpendicular to the flow of the air-fuel mixture.
  • the mixture is oriented to the center of the production space.
  • the number of fuel introduction sections 506 is not limited to three as long as they are at equal intervals.
  • the air introduced from the pressurized gas introduction pipe 501 to the pressurized gas connection section 502 and then narrowed down to the pressurized gas introduction hole 503 is discharged to the mixed gas production space 507. You. At this time, rapid expansion occurs, resulting in a flow with turbulence, and a so-called peeling area is generated near the fuel introduction section 506. Due to this peeling phenomenon, the air and the fuel are evenly and uniformly mixed. It is preferable that the diameter of the pressurized gas introduction hole 503 and the diameter of the mixed gas discharge hole 508 are substantially equal.
  • a stepped portion whose diameter increases discontinuously toward the injection hole and a tap where the position of the mountain is deviated toward the injection hole are formed inside the mixture discharge hole 508, In a state where the fuel and the air are well mixed, the air-fuel mixture is introduced into the cylinder with a spiral from the air-fuel mixture discharge hole 508, so that the combustion state is further improved.
  • FIG. 54 shows a first embodiment of the entire system of a fuel internal combustion engine to which the air-fuel mixture production nozzle according to the present invention is applied.
  • the cylinder 561 is provided with an intake port 564 and an exhaust port 565, and each port is provided with an intake valve 531 and an exhaust valve 551. Ignition between intake port 564 and exhaust port 565 A plug 5 7 1 is provided.
  • the intake port 564 communicates with the mixture-air injection sub-chamber 530, and the mixture-air injection sub-chamber 530 forms an intake manifold.
  • An air-fuel mixture injection injection nozzle 500 is attached to the air-fuel mixture injection sub-chamber 530.
  • the exhaust port 5 65 communicates with the exhaust manifold 5 52.
  • 56 2 and 56 3 indicate a piston and a connecting rod, respectively.
  • the pressurized gas introduction pipe 5 0 1 sends the air pressurized by the compressor 5 41 to the mixture air injection nozzle 500 via the throttle valve 5 2 4.
  • a fuel introduction pipe 504 for feeding fuel from the reservoir tank 522 to the fuel-air mixture injection nozzle 500 through the shutoff valve 523 and the throttle valve 524. It is connected.
  • the reservoir tank 522 receives the supply of fuel from the fuel tank 521.
  • FIG. 55 shows an enlarged view of the air-fuel mixture injection sub-chamber 530 according to FIG. 54.
  • a nozzle mounting portion 534 into which 33 is inserted and fixed is provided, and is fastened to the cylinder head via a sealing member.
  • FIG. 56 shows a second embodiment of the entire system of the fuel internal combustion engine to which the air-fuel mixture production nozzle according to the present invention is applied.
  • the intake valve of the first embodiment shown in FIG. 54 is omitted, and the shut-out valve 523 is connected to the fuel introduction pipe 504 downstream of the throttle valve 524.
  • the present embodiment differs from the first embodiment in that it is provided and that a shut-out valve 523 is added to the pressurized air introducing pipe 501.
  • FIG. 57 is an enlarged view of the connection portion of the fuel-air mixture production injection valve 500 according to FIG. 56.
  • the fuel-air mixture production injection nozzle 5 is formed in the nozzle mounting portion 534 formed in the cylinder 561.
  • the injection part 5 33 of 00 is fitted.
  • a shut-out valve 523 is provided between the air-fuel mixture production injection valve 500 and the injection part 533.
  • the pressurized air from the compressor 541 is directly introduced into the air-fuel mixture injection sub-chamber 530 or the cylinder 561, which was conventionally required.
  • Machines such as an intake side pipe of the intake manifold and a start valve are not required, and a compact internal combustion engine can be obtained.
  • the nozzle of the present invention can produce a uniform gas mixture, so that the two-stroke engine and the rotary
  • the present invention can be used for purification of rivers and lakes, bubble baths, washing machines, hydroponics, gas recovery from liquids, and fuel-efficient internal combustion engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Rehabilitation Therapy (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Nozzles (AREA)

Abstract

A micro-bubble generating nozzle comprising an introduction unit (1) for pressurized liquid and gas, a cylindrical bubble generating space (2), a pressurizing liquid introducing hole (4) and a gas introducing hole (5) formed in the introduction unit (1) and opened to the bubble generating space (2), the pressurized liquid introducing hole (4) being opened in the end face of the introducing unit (1) and the gas introducing hole (5) being opened in the side face of the introduction unit (1), and a regulating valve (7) disposed in a gas introducing tube (6) communicating with the gas introducing hole (5), for regulating a gas introducing amount. Pressurized liquid introduced into the bubble generating space (2) from the opening of the pressurized liquid introducing hole (4) is discharged into the space under a high pressure to cause a separation region. The gas introduced from the gas introducing hole (5) is dispersed into discharged water current as micro-bubbles (fine bubbles) due to this separation phenomenon, the dispersion amount and size of the micro-bubbles being properly regulated by regulating the opening of the gas introduction amount regulating valve (7).

Description

明 細 書  Specification
マイクロバブル発生ノズル及びその応用装置 技術分野 Microbubble generating nozzle and its application device
本発明は、 川 ·湖沼 ·水道水等の浄化、 洗濯機、 便器等における汚れによる 洗浄水の洗浄能力を向上させるために、 数十ミクロン径の微細気泡を水中およ び空気中に吐出するためのマイクロバブル発生ノズル及びその応用装置に関す る。 背景技術  The present invention discharges fine bubbles having a diameter of several tens of microns into water and air in order to purify rivers, lakes, marshes, tap water, etc., and to improve the washing ability of washing water due to dirt in washing machines, toilets, and the like. And a device for applying the same to a microbubble generating nozzle. Background art
マイクロバブルの水質浄化機能については、 例えば、 平成 1 0年 7月 2 4日 発行の日刊工業新聞に記載されているように既に広く知られており、 そのため のマイクロバブルの発生装置としては、 とくに、 流動性のない閉鎖水域におい て、 浄化効果をより広範囲に拡散させるために必要な噴出力が得られること、 また、 その使用の環境によって、 発生する気泡の大きさを自在に調整する必要 がある。 これらの要求特性を充足するために、 従来から、 特開平 5— 6 4 8 0 0号公報、 特開平 5— 1 4 6 7 9 6号公報、 特開平 8— 2 3 0 7 6 1号公報等 に見られるように、 閉鎖水域浄化装置が多く提案されている。  The water purification function of microbubbles is already widely known, for example, as described in the Nikkan Kogyo Shimbun published on July 24, 1999. However, it is necessary to obtain the required jetting power to spread the purification effect more widely in a closed water area with no fluidity, and to freely adjust the size of the generated bubbles depending on the environment of use. is there. Conventionally, in order to satisfy these required characteristics, Japanese Patent Application Laid-Open Nos. Hei 5-6480, Hei 5-146976, Hei 8-230761 As can be seen, many closed water purification systems have been proposed.
また、 従来においても、 浴槽内に気泡を発生させて、 気泡による快適な入浴 を行うことのできる気泡発生浴槽が各種提案されている。  In the past, various bubble-generating bathtubs have been proposed in which bubbles are generated in a bathtub so that a comfortable bathing with the bubbles can be performed.
特開平 9一 1 7 3 4 0 4号公報には、 ポンプの吐出圧力を検出する圧力検出 手段と、 前記気体吸込口から吸い込まれる気体の吸込量を変化させる気体吸込 量調整手段と、 前記圧力検出手段の検出結果に基づき、 前記気体吸込量調整手 段を駆動制御する制御手段とを備えた気泡発生装置が開示されている。  Japanese Patent Application Laid-Open No. Hei 9-11734404 discloses a pressure detecting means for detecting a discharge pressure of a pump, a gas suction amount adjusting means for changing a suction amount of gas sucked from the gas suction port, There is disclosed an air bubble generating device comprising: a control means for drivingly controlling the gas suction amount adjusting means based on a detection result of the detecting means.
また、 特開平 1 0— 2 9 5 7 6 1号公報には、 吸水した湯水を水流として放 出するポンプ部を内蔵する装置本体と、 その装置本体に、 水流中に空気を混入 する空気取入部と、 前記ポンプ部と連通しポンプ部からの水流とともに気泡を 装置本体外に噴出するノズル部とを備えた浴中気泡発生装置において、 略長方 形の箱状で複数の噴射口を備えた翼形噴射体をノズル部に着脱かつ回動自在に 取り付け、 前記複数の噴射口は前記ノズル部に対向する面と反対側の面に並設 開口した浴中気泡発生装置が開示されている。 Japanese Patent Application Laid-Open No. H10-2955761 discloses an apparatus body including a pump section for discharging the absorbed hot water as a water flow, and an air intake for mixing air into the water flow into the apparatus body. An in-bath air bubble generator having an inlet portion, and a nozzle portion communicating with the pump portion and ejecting air bubbles out of the device main body together with a water flow from the pump portion; A box-shaped wing-shaped injector having a plurality of injection ports is detachably and rotatably attached to a nozzle portion, and the plurality of injection ports are arranged in parallel on a surface opposite to a surface facing the nozzle portion. A disclosed in-bath bubble generator is disclosed.
さらに、 特開平 1 1一 1 5 5 9 2 4号公報には、 浴槽内の浴湯を循環ポンプ にて吸い込み口から吸入するとともに気泡ノズルから噴射する際に、 この気泡 ノズルからの噴射される浴湯に、 空気吸入部から気泡ノズルに至る空気配管を 介して供給される空気を巻き込んで、 気泡混じりの浴湯として浴槽内に噴射す る気泡発生浴槽において、 空気配管に開閉弁を設け、 この開閉弁を気泡ノズル から浴湯を噴射しているときに開き、 浴湯の噴射を停止しているときに閉じる ように制御する制御装置を具備した気泡発生浴槽が開示されている。  Further, Japanese Patent Application Laid-Open No. H11-1595924 discloses that when hot water in a bathtub is sucked in from a suction port by a circulation pump and jetted from a bubble nozzle, the hot water is injected from the bubble nozzle. In a bubble generating bathtub that entrains air supplied through an air pipe from the air suction section to the bubble nozzle to the bathwater, and sprays it into the bathtub as bubbled bathwater, an open / close valve is provided in the air pipe. There is disclosed a bubble generating bath tub having a control device for controlling the opening / closing valve to be opened when the bath water is being injected from the bubble nozzle and closed when the injection of the bath water is stopped.
さらに、 水の中に酸素が含まれていると、 ボイラ缶の内壁が酸化し、 鯖が出 て腐食してしまう。 これを防ぐために、 従来は C aを水に入れてボイラ缶の内 壁に付着させ、 防護膜を形成していたが、 C aが付着しすぎると C a膜は断熱 材料であるため、 ポイラの熱効率が低下する。 そのため、 定期的に C a膜を除 去する必要があった。  Furthermore, if oxygen is contained in the water, the inner wall of the boiler can is oxidized and the mackerel comes out and corrodes. To prevent this, in the past, Ca was put in water and attached to the inner wall of the boiler can to form a protective film.However, if Ca is attached too much, the Ca film is a heat insulating material, Thermal efficiency is reduced. Therefore, it was necessary to periodically remove the Ca film.
このような酸素等の溶存気体を液体から脱気する技術としては、 (1 ) 真空 にして液の中の気体を分離する方法と、 (2 ) 液の温度を上げて沸騰させて気 体を分離する方法があった。  Techniques for degassing such dissolved gases, such as oxygen, from liquids include (1) a method in which the gas in the liquid is separated by applying a vacuum, and (2) a method in which the temperature of the liquid is raised and the gas is boiled. There was a way to separate.
しかしながら、 真空にする方法は、 大型のコンプレッサや耐圧容器等の機器 が必要で、 設備とコストが大掛かりになるという問題があり、 沸騰させる方法 では、 液によっては温度を上げられないという問題があつた。  However, the vacuum method requires equipment such as a large compressor and a pressure vessel, and has the problem of large equipment and cost.The boiling method cannot raise the temperature depending on the liquid. Was.
また、 従来、 燃料噴射装置としてキャブレター方式、 機械式燃料噴射方式、 電子制御式燃料噴射方式が知られている。 近年一般的に用いられている、 電子 制御式燃料噴射方式では、 インテークマ二ホールドに燃料噴射弁を設け、 運転 状況等に応じた最適な空燃比になるように、 吸入空気量、 スロットル開度等を 検出し、 燃料噴射量を運転状態に応じて細かく制御することが行われている。 し力、しながら、 これらの従来の装置では、 1 0 m程度のマイクロバブルの 発生が極めて困難であり、 この種のマイクロバブル発生には大容量 (5 k gノ c m 2程度) のポンプを必要とした。 Conventionally, a carburetor system, a mechanical fuel injection system, and an electronically controlled fuel injection system have been known as fuel injection devices. In recent years, the electronically controlled fuel injection system, which is generally used, is equipped with a fuel injection valve in the intake manifold, and adjusts the intake air amount and throttle opening so that the optimum air-fuel ratio is adjusted to the operating conditions. And the like, and the fuel injection amount is finely controlled according to the operating state. However, with these conventional devices, it is extremely difficult to generate microbubbles of about 10 m, and a large capacity (5 kg required the pump cm about 2).
また、 マイクロバブルの発生には、 主に加圧溶解法を用いているため、 マイ クロバブル発生に重点を置いた装置の場合、 1 0 0 m以上の大径の気泡の発 生が出来ない。 すなわち、 気泡サイズの選択が出来ない。  In addition, since the pressurized dissolution method is mainly used to generate microbubbles, large-diameter bubbles of 100 m or more cannot be generated in an apparatus that focuses on the generation of microbubbles. That is, the bubble size cannot be selected.
さらに、 上記従来の燃料噴射装置は、 何れも構造が複雑であるとともに、 性 能面でも満足できるものではなかった。 出願人による研究の結果、 従来のもの においては、 燃料噴射弁から噴射される燃料と送り込まれる空気の混合状態に おいて、 燃料の微細化及び空気との均一化が充分でないことが判明した。 混合 状態の微細化及び均一化が充分でないと、 燃費、 ェミッション性能の向上は達 成できないばかりか、 出力性能の向上にも限界がある。 通常、 燃料噴射弁はィ ンテークマ二ホールドの吸気バルブ近傍に設けられているため、 燃料噴射弁か ら噴射された燃料は、 上流から送り込まれてくる吸入空気と混じり合いながら 下流に搬送され、 シリンダに導入される。 この際、 吸入空気は層流であるため 両者を良好に混合させるには限界がある。  Furthermore, the above conventional fuel injection devices have complicated structures and are not satisfactory in performance. As a result of a study by the applicant, it has been found that in the prior art, in a mixed state of the fuel injected from the fuel injection valve and the supplied air, the fuel is not sufficiently refined and uniformized with the air. If the mixture is not sufficiently refined and homogenized, not only will fuel efficiency and emission performance not be improved, but also output power performance will be limited. Normally, the fuel injection valve is provided near the intake valve of the intake manifold, so the fuel injected from the fuel injection valve is conveyed to the downstream while being mixed with the intake air sent from the upstream. Will be introduced. At this time, since the intake air is laminar, there is a limit to the good mixing of the two.
本発明が解決しょうとする第 1の課題は、 構造が簡単で、 適用性が高く、 し かも、 上記マイクロバブル発生装置としてのさまざまな大きさの気泡を発生さ せると同時に、 浄化効果の広範囲拡散に必要な液体移動を発生させる噴出力を 得るという要求特性を満たすマイクロバブル発生ノズルを提供することにあ る。  The first problem to be solved by the present invention is that the structure is simple, the applicability is high, and at the same time, it generates bubbles of various sizes as the microbubble generator, and at the same time, it has a wide range of purification effects. An object of the present invention is to provide a microbubble generating nozzle which satisfies a required characteristic of obtaining a jet output for generating a liquid movement required for diffusion.
また第 2の課題は、 小型のポンプを使用してマイクロバブルを発生すること ができ、 また気泡サイズの選択が可能なマイクロバブル発生ノズル、 気泡粉砕 ノズル及び気泡風呂装置を提供することにある。  A second object is to provide a microbubble generating nozzle, a bubble crushing nozzle, and a bubble bath device that can generate microbubbles using a small pump and can select a bubble size.
第 3の課題は、 コンプレッサや耐圧容器などの設備が不要で、 常温 ·常圧下 で効率よく脱気できる脱気装置を提供することにある。  A third object is to provide a deaerator that can efficiently deaerate at room temperature and pressure without equipment such as a compressor and a pressure vessel.
第 4の課題は、 簡単な構造でありながら均一化された混合気体を得ることが できる混合気製造噴射ノズルを提供することにある。 発明の開示 前記第 1の課題を解決するため、 本発明のマイクロバブル発生ノズルは、 加 圧液体と気体との導入部と円筒状の気泡発生空間を有し、 前記導入部内に、 前 記気泡発生空間に開口する加圧液体導入孔と気体導入孔を形成し、 前記加圧液 体導入孔を前記導入部の端面に開口し、 前記気体導入孔を前記導入部の側面に 開口し、 前記気体導入孔と連通する気体導入管に気体導入量を調整する調整弁 を設けたものである。 A fourth object is to provide an air-fuel mixture production nozzle capable of obtaining a uniform air-fuel mixture with a simple structure. Disclosure of the invention In order to solve the first problem, a microbubble generating nozzle of the present invention has an introduction portion for pressurized liquid and gas and a cylindrical bubble generation space. Forming a pressurized liquid introduction hole and a gas introduction hole to be opened, opening the pressurized liquid introduction hole to an end face of the introduction section, opening the gas introduction hole to a side surface of the introduction section, An adjustment valve for adjusting the amount of introduced gas is provided in the gas introduction pipe communicating with the gas.
加圧液体導入孔の開口から気泡発生空間内に導入された加圧液体は、 高圧の 下で空間内に吐出されてはがれ域を生じる。 このはがれ現象によって、 気体導 入孔から導入された気体は、 マイクロバブル (微細気泡) として吐出水流中に 分散される。 そして、 このマイクロバブルの分散量と大きさは、 気体導入量調 整弁の開口程度を調節することによって任意に調整できる。  The pressurized liquid introduced into the bubble generation space from the opening of the pressurized liquid introduction hole is discharged into the space under high pressure to generate a peeling area. Due to this peeling phenomenon, the gas introduced from the gas inlet is dispersed in the discharged water stream as microbubbles (fine bubbles). The amount and size of the microbubbles can be arbitrarily adjusted by adjusting the degree of opening of the gas introduction amount adjusting valve.
また、 導入部内に気泡発生空間に開口を有する気体導入孔を設けることによ つて、 吐出する気泡の分散状態と大きさを微細化できる。  Further, by providing a gas introduction hole having an opening in the bubble generation space in the introduction portion, the dispersed state and size of the discharged bubbles can be reduced.
さらに、 気泡発生空間形成用筒体に流速低下抑制孔を設けることにより、 は がれ域で生じるエネルギー損失の抑制および接続された吐出側の配管内の液体 に微細気泡を混入させることができる。  Furthermore, by providing the flow velocity reduction suppressing hole in the bubble generating space forming cylinder, it is possible to suppress energy loss occurring in the peeling area and mix fine bubbles into the liquid in the connected piping on the discharge side.
また、 気泡発生空間形成用筒体の下方位置に縮径部分または活性剤等充填部 分を設けることにより、 マイクロバブルを大気中に吐き出す用途に適用するこ とができる。  Further, by providing a reduced diameter portion or a portion filled with an activator, etc. below the bubble generating space forming cylinder, the present invention can be applied to the use of discharging microbubbles into the atmosphere.
さらに、 前記のマイクロバブル発生ノズルを加圧液体側接続管に着脱自在に 装着することで、 液体中における使用用途、 使用環境におけるノズルの選択を 容易に行うことができる。  Further, by mounting the micro-bubble generating nozzle on the pressurized liquid-side connection pipe in a detachable manner, it is possible to easily select a nozzle to be used in a liquid and a usage environment.
これらのマイクロバブル発生ノズルまたはノズル装填容器を大径の筒体の内 部に同心状に配置することで、 閉鎖水域等における水の流動を促進できる。 また、 加圧液体側接続管と気泡発生側接続管との間に設けられ、 マイクロバ ブル発生ノズルを複数個装填可能な装填部を設けた複数ノズル装填具を準備す ることで、 大型のノズルを製作することなく、 大量のマイクロバブルを発生す ることが可能となる。 このとき、 複数のマイクロバブル発生ノズルの気体導入管を 1つの空間に集 合して接続する接続部を設けた気体導入管集合チャンバ一を用意することによ り、 複数ノズルへの気体導入を 1つにまとめることができる。 By arranging these microbubble generating nozzles or nozzle-loaded containers concentrically inside a large-diameter cylinder, the flow of water in a closed water area or the like can be promoted. In addition, by preparing a multi-nozzle loading tool provided between the pressurized liquid side connection pipe and the bubble generation side connection pipe and having a loading portion capable of loading a plurality of micro bubble generation nozzles, a large nozzle is provided. It is possible to generate a large number of microbubbles without manufacturing a microbubble. At this time, gas introduction to the multiple nozzles can be achieved by preparing a gas introduction pipe collecting chamber provided with a connection part that collects and connects the gas introduction pipes of multiple microbubble generation nozzles to one space. Can be combined into one.
本発明のノズルは、活性剤を充填した容器を気泡発生空間の下方位置に設け、 マイクロバブルを混入した吐出液体を接触、 通過させることで、 活性剤によつ て活性化された吐出液を得ることができる。  The nozzle of the present invention is provided with a container filled with an activator at a position below the bubble generation space, and makes the ejected liquid mixed with the microbubbles contact and pass, thereby discharging the ejected liquid activated by the activator. Obtainable.
本発明のノズル構造によって、 簡単な構造でありながら、 閉鎖水域の広域に わたって、 マイクロバブルを多量に供給できる。  According to the nozzle structure of the present invention, a large amount of microbubbles can be supplied over a wide area of a closed water area with a simple structure.
また、 適用分野も水域への酸素供給、 塩素の除去、 洗浄等の何れにも適用で き、 制限を受けない。  In addition, the field of application is applicable to any of oxygen supply to water bodies, removal of chlorine, washing, etc., and there is no limitation.
加圧液体導入孔の形状を楕円とすることにより、 通水面積を確保すると同時 に気泡発生空間の吐出面の面積をより小さくすることが可能となり、 微細気泡 の発生効率が高まる。  By making the shape of the pressurized liquid introduction hole elliptical, it is possible to secure the water passage area and at the same time to make the area of the discharge surface of the bubble generation space smaller, thereby increasing the efficiency of generating fine bubbles.
気泡発生空間形成用筒体内面に加圧液体導入孔に連通する直線もしくは、 ら せん状の貫通または縮流を伴う溝を設けることにより、 気泡発生空間の吐出面 の面積及び空間体積が小さくなつて、 微細気泡の発生効率が高まり、 整流効果 及び旋回流による発生効率の向上 (エネルギー損失抑制) と、 噴出力の向上に 伴う、 微細気泡拡散範囲の拡大を図ることができる。  By providing a straight or helical groove with a piercing or contracting flow communicating with the pressurized liquid introduction hole on the inner surface of the bubble generating space forming cylinder, the area and volume of the discharge surface of the bubble generating space can be reduced. As a result, the generation efficiency of the microbubbles is increased, the rectification effect and the generation efficiency due to the swirling flow are improved (energy loss is suppressed), and the expansion range of the microbubbles is improved with the improvement of the injection power.
気泡発生空間形成用筒体に微細気泡の発生状態を確認出来る窓を設けること により、 配管の途中にノズルを取り付ける場合、 先端の気泡の発生状態を直接 確認することなく、 空気量及び気泡発生状態を手元で容易に調節できる。  By installing a window in the bubble generation space forming cylinder to check the generation state of fine bubbles, when installing a nozzle in the middle of the pipe, the air volume and the bubble generation state without directly checking the bubble generation state at the tip Can be easily adjusted at hand.
気泡発生空間形成用筒体の下流位置に、 一つ、 もしくは複数種類の気体又は 液体を、 自動的に吸引し、 加圧液体と混合させ吐出する搬送物導入筒を設ける ことにより、 複数の液体もしくは気体を均一に混合することが可能であり、 養 殖場等において、 遠方へのエサ供給を手元からできる。  A plurality of liquids are provided at the downstream position of the bubble generation space forming cylinder by providing one or more kinds of gases or liquids that are automatically sucked, mixed with the pressurized liquid and discharged. Alternatively, it is possible to mix the gas uniformly, and it is possible to supply food to a distant place at a farm or the like.
また、 マイクロバブルの発生のほか、 複数種類の気液を導入部に導入して気 液混合空間に吐出することで、 導入物を効率的に混合することができる。  In addition to the generation of microbubbles, a plurality of types of gas-liquid can be introduced into the introduction section and discharged into the gas-liquid mixing space, whereby the introduced substances can be efficiently mixed.
さらに、 気体導入孔の前記気泡発生空間側開口に気体チャンバを形成し、 こ の気体チャンバに、 多孔性プラグを装着し、 微細気泡の発生効率を高めること ができる。 Further, a gas chamber is formed at an opening of the gas introduction hole on the side of the bubble generation space. By attaching a porous plug to the gas chamber, the generation efficiency of microbubbles can be increased.
加圧液体導入孔の開口から気泡発生空間内に導入された加圧液体は、 所定の 圧力の下で気泡発生空間内に吐出されてこの気泡発生空間において減圧域を生 じる。 この減圧現象によって気体導入孔から気体チャンバ内に装着された多孔 性プラグの細孔を介して気泡発生空間内に導入された気体は、 マイクロバブル (微細気泡) として吐出水流中に分散される。 そして、 このマイクロバブルの 分散量と大きさは、 多孔性プラグの細孔の径と気体導入量調整弁の開口程度を 調節することによって任意に調整できる。  The pressurized liquid introduced into the bubble generation space from the opening of the pressurized liquid introduction hole is discharged into the bubble generation space under a predetermined pressure, and generates a reduced pressure region in the bubble generation space. Due to this depressurization phenomenon, the gas introduced into the bubble generation space from the gas introduction hole through the pores of the porous plug mounted in the gas chamber is dispersed as microbubbles (fine bubbles) in the discharged water flow. The amount and size of the microbubbles can be arbitrarily adjusted by adjusting the diameter of the pores of the porous plug and the degree of opening of the gas introduction amount adjusting valve.
また、 気体導入孔に、 気体チャンバを迂回して気泡発生空間に直接通ずる気 体バイパス孔を設けることにより、 加圧液体の圧力が低圧である場合に、 多孔 性プラグの圧力損失により気体導入孔より気泡発生空間に気体が導入されにく くなるのを防止し、 気体バイパス孔から気体発生空間に気体を導入してマイク ロバブルを吐出水流中に分散させる。  In addition, by providing a gas bypass hole in the gas introduction hole that bypasses the gas chamber and directly communicates with the bubble generation space, when the pressure of the pressurized liquid is low, the gas introduction hole is formed due to the pressure loss of the porous plug. The gas is prevented from being more difficult to be introduced into the bubble generating space, and the gas is introduced into the gas generating space from the gas bypass hole to disperse the microbubbles in the discharged water flow.
また、 加圧液体導入孔の形状を楕円とすることにより、 通水面積を確保する と同時に気泡発生空間の吐出面の面積をより小さくすることが可能となり、 微 細気泡の発生効率が高まる。  Further, by making the shape of the pressurized liquid introduction hole elliptical, it is possible to secure a water passage area, and at the same time, it is possible to further reduce the area of the discharge surface of the bubble generation space, thereby increasing the efficiency of generating fine bubbles.
導入部と接合される気泡発生空間形成用筒体の外周に、 流量低下抑制孔の開 口率及び気泡発生空間形成用筒体吐出面から流速調節筒吐出面までの空間長を 調整可能とした流速調整筒を取り付けることにより、 バブルバス等に使用する 場合、 簡単に流速が調整できる。  The opening rate of the flow rate reduction suppression hole and the space length from the discharge surface of the bubble generation space forming cylinder to the flow rate control cylinder discharge surface can be adjusted on the outer circumference of the bubble generation space forming cylinder connected to the introduction part. By installing a flow rate adjusting cylinder, the flow rate can be easily adjusted when used in a bubble bath or the like.
導入部と接合される気泡発生空間形成用筒体の下流位置に、 基部に流量低下 抑制孔を形成した扁平末広がり状の吐出部を有するマイクロバブルカーテン発 生ノズルを取り付けることにより、 気泡を平面的に噴出させることができる。 調整弁を、 気体導入管接続部とエアー調整コックとより構成し、 前記気体導 入管接続部の通気孔は断面円形とし、 前記エア一調整コックの通気孔は断面楕 円とすることにより、 マイクロバブルを発生させる領域の微調節を簡単に行う ことができる。 気体導入管のエアー取り入れ口にエアーフィルターを取り付けることによ り、 多孔性プラグを気体導入孔に使用する場合に生じやすい導入空気中の塵埃 による多孔性プラグの目詰まりを防止することができる。 By attaching a micro-bubble curtain generation nozzle having a flat divergent discharge section with a flow rate reduction suppression hole formed at the base at the downstream position of the bubble generation space forming cylinder joined to the introduction section, the bubbles are planarized. Can be spouted. The control valve is composed of a gas introduction pipe connection part and an air adjustment cock, and the ventilation hole of the gas introduction pipe connection part has a circular cross section, and the ventilation hole of the air adjustment cock has an elliptical cross section. Fine adjustment of the bubble generating area can be easily performed. By attaching an air filter to the air inlet of the gas inlet tube, it is possible to prevent the porous plug from being clogged by dust in the introduced air, which is likely to occur when a porous plug is used in the gas inlet hole.
前記第 2の課題を解決するため、 本発明の気泡風呂装置は、 浴槽内の水を吸 入して再び浴槽内に水を吐出するポンプと、 このポンプの吐出側水路に設けら れて、 大気中の空気とポンプにより圧送される水とを混合して浴槽内にマイク ロバブルを吐出するマイクロバブル発生ノズルとを設けたことを特徴とする。 本発明の他の気泡風呂装置は、 浴槽内の水を吸入して再び浴槽内に水を吐出 するポンプと、 このポンプの吸入側に設けられて吸入水に大気中の空気を混入 させるマイクロバブル発生ノズルと、 前記ポンプの吐出側水路に設けられて、 大気中の空気とポンプにより圧送される気泡混合水中の気泡を微細化して浴槽 内にマイクロバブルを吐出する気泡粉砕ノズルとを設けたことを特徴とする。 前記第 3の課題を解決するため、 本発明の脱気装置は、 気体を含む液体を導 入する加圧気液導入孔を形成した第 1の導入部と、 この加圧気液導入孔の吐出 側において加圧気液導入孔の総面積よりも断面積を大きくした気液分離空間と を有する気液分離ノズルと、  In order to solve the second problem, the bubble bath device of the present invention is provided with a pump that sucks water in a bathtub and discharges water into the bathtub again, and is provided in a discharge-side channel of the pump. A micro-bubble generating nozzle for mixing the air in the atmosphere with the water pumped by the pump to discharge the micro-bubbles into the bathtub is provided. Another bubble bath apparatus of the present invention includes a pump for sucking water in a bathtub and discharging water into the bathtub again, and a microbubble provided on the suction side of the pump for mixing atmospheric air into the suction water. A generating nozzle, and a bubble crushing nozzle provided in a discharge side water channel of the pump for miniaturizing bubbles in air mixed with air in the air and bubble mixed water pumped by the pump and discharging microbubbles into the bathtub. It is characterized by. In order to solve the third problem, a degassing device of the present invention comprises: a first introduction part having a pressurized gas-liquid introduction hole for introducing a liquid containing gas; and a discharge side of the pressurized gas-liquid introduction hole. A gas-liquid separation nozzle having a gas-liquid separation space having a larger cross-sectional area than the total area of the pressurized gas-liquid introduction holes,
頂部がドーム状の有底の旋回流発生筒の底部近傍に前記気液分離ノズルの吐 出側から吐出される分離気液を中心軸線に対して偏倚して導入する分離気液導 入孔と、 前記旋回流発生筒の底部を貫通して中心軸線と同軸に設けられた気体 凝集筒とを備えた気体凝集部と、  A separation gas-liquid introduction hole for introducing a separation gas-liquid discharged from the discharge side of the gas-liquid separation nozzle near the bottom of the swirling flow generating cylinder having a dome-shaped bottom and having a bias with respect to a center axis; A gas aggregating section including a gas aggregating cylinder provided coaxially with a center axis through the bottom of the swirling flow generating cylinder;
前記気体凝集部の旋回流発生筒の頂部に貫通して設けられた気液上昇管と、 この気液上昇管が底部に貫通して内部に挿通される気体回収部と、 前記気体凝集筒の下端にバルブを介して接続され、 排出される加圧液体を導 入する加圧液体導入孔を形成した第 2の導入部と、 この加圧液体導入孔の吐出 側において加圧液体導入孔の総面積よりも断面積を大きくした返送液体吸引圧 力発生空間と、 前記第 2の導入部の前記返送液体吸引圧力発生空間に一端が開 口し、 前記第 2の導入部の側部に他端が開口する返送液体導入孔とを有する気 体回収部圧力減圧用ノズルと、 前記気体回収部の底部と前記気体回収部圧力減圧用ノズルの返送液体導入孔 とを連結する気体回収部圧力調節管とを備えている。 A gas-liquid riser pipe provided at the top of the swirling flow generating cylinder of the gas aggregation part, a gas recovery part inserted through the bottom of the gas-liquid riser, and a gas recovery part; A second introduction portion connected to the lower end via a valve and having a pressurized liquid introduction hole for introducing a pressurized liquid to be discharged, and a pressurized liquid introduction hole at a discharge side of the pressurized liquid introduction hole. One end opens to the return liquid suction pressure generation space having a cross-sectional area larger than the total area, and the return liquid suction pressure generation space of the second introduction part, and another is provided on the side of the second introduction part. A gas collecting section pressure reducing nozzle having a return liquid introduction hole having an open end, A gas recovery unit pressure adjusting pipe is provided for connecting the bottom of the gas recovery unit and the return liquid introduction hole of the gas recovery unit pressure reducing nozzle.
前記気液分離ノズルの加圧気液の導入部に複数の加圧気液導入孔を穿設し、 前記複数の加圧気液導入孔の吐出側開口を、 前記導入部の吐出側に形成した共 通の気液分離空間に連通させたことを特徴としている。  A plurality of pressurized gas-liquid introduction holes are formed in a pressurized gas-liquid introduction portion of the gas-liquid separation nozzle, and a discharge side opening of the plurality of pressurized gas-liquid introduction holes is formed on a discharge side of the introduction portion. This is characterized by communicating with the gas-liquid separation space.
また、 気液分離ノズルの加圧気液導入孔を下流側に行くにつれて不連続的に 径が大きくなる段差部を設けたことを特徴とする。  In addition, a stepped portion whose diameter increases discontinuously as the pressurized gas-liquid introduction hole of the gas-liquid separation nozzle goes downstream is provided.
この脱気装置において、 気液分離ノズルの気液分離管の内壁に偏倚したタツ プを形成することにより、 気液分離管の壁面でもキヤビテーシヨンが生じる。 このキヤビテーシヨン現象は、 タップ断面の三角形状の山の位置を、 加圧気液 の流れ方向の下流側に偏倚して形成することにより、 さらに顕著になる。  In this deaerator, by forming a biased tap on the inner wall of the gas-liquid separation tube of the gas-liquid separation nozzle, cavitation also occurs on the wall surface of the gas-liquid separation tube. This cavitation phenomenon becomes more remarkable when the position of the triangular peak of the tap cross section is formed so as to be shifted downstream in the flow direction of the pressurized gas-liquid.
前記第 4の課題を解決するため、 本発明の混合気製造噴射ノズルは、 円筒状 の両端に、 加圧源に接続される加圧気体接続部と内燃機関の吸気部に接続され るノズル接続部とが形成され、 側面に燃料接続部を有するものであって、 円筒 内には混合気製造空間を有し、 この空間に前記加圧気体接続部内を貫通する加 圧気体導入孔と前記燃料接続部内を貫通する燃料導入孔及び前記ノズル接続部 内を貫通する混合気排出孔とを開口し、 少なくとも前記混合気製造空間の前記 燃料接続部近傍の径は、 前記加圧気体導入孔の径より大きく設定されているこ とを特徴としている。  In order to solve the fourth problem, an air-fuel mixture injection nozzle according to the present invention is provided with a cylindrical connection having a pressurized gas connection portion connected to a pressurization source and a nozzle connection connected to an intake portion of an internal combustion engine. And a fuel connection part on a side surface, a cylinder having a mixture production space in the cylinder, and a pressurized gas introduction hole penetrating through the pressurized gas connection part and the fuel in this space. A fuel introduction hole penetrating through the connection portion and an air-fuel mixture discharge hole penetrating through the nozzle connection portion are opened, and at least a diameter of the mixture-production space near the fuel connection portion is a diameter of the pressurized gas introduction hole. It is characterized by being set larger.
この混合気製造噴射ノズルにおいて、 前記混合気製造空間の下方位置に縮径 部分を設けていることを特徴としている。  In this air-fuel mixture production nozzle, a reduced diameter portion is provided below the air-fuel mixture production space.
前記燃料導入部と前記加圧気体導入孔との間には環状凹部が形成されている ことを特徴としている。  An annular concave portion is formed between the fuel introduction section and the pressurized gas introduction hole.
また、 前記加圧気体導入孔の開口は、 混合気製造空間の内壁に形成され、 混 合気体の流れ方向下流に伸びるガイド手段に接続されていることを特徴として いる。  Further, the opening of the pressurized gas introduction hole is formed on an inner wall of the mixed gas production space, and is connected to guide means extending downstream in the flow direction of the mixed gas.
さらに、 前記混合気排気孔を噴射孔に行くにつれて不連続的に径が大きくな る段差部を設けたことを特徴としている。 前記混合気排出孔の内壁に、 山の位置が噴射孔側に偏倚しているタップを形 成したことを特徴としている。 Further, a step portion is provided in which the diameter increases discontinuously as the gas mixture exhaust hole goes to the injection hole. A tap is formed on the inner wall of the air-fuel mixture discharge hole, the tap having a peak deviating toward the injection hole.
加圧気体導入孔の開口から混合気製造空間内に導入された加圧気体は、 高圧 の下で空間内に吐出されて剥がれ域を生じる。 この剥がれ域では燃料と空気と の混合を加速するような流体エネルギーが発生しており、 この剥がれ現象によ り製造された混合気体は、燃料と空気が満遍なく均一に混合された状態となる。 本発明のノズルは燃料接続部に接続した燃料導入管に導入する燃料を加圧し て使用することも出来るが、 ノズル自体の自吸作用により加圧することなく燃 料を供給することが可能である。  The pressurized gas introduced into the air-fuel mixture production space from the opening of the pressurized gas introduction hole is discharged into the space under high pressure to generate a peeling area. Fluid energy that accelerates the mixing of the fuel and air is generated in the separation area, and the mixed gas produced by the separation phenomenon is in a state in which the fuel and air are uniformly mixed. The nozzle of the present invention can be used by pressurizing the fuel introduced into the fuel introduction pipe connected to the fuel connection portion, but can supply the fuel without pressurization by the self-priming action of the nozzle itself. .
さらに、 本発明のノズルを使用することにより、 従来使用されているインテ 一クマ二ホールドの吸気側配管、 スタートバルブ等の機器類及び吸気バルブが 不要となるものである。  Further, the use of the nozzle of the present invention eliminates the necessity of the conventionally used devices such as the intake side piping and start valve of the intake manifold and the intake valve.
本発明のノズルによつて、 簡単な構造でありながら均一化された混合気体の 製造が可能となり、 また吸気側の構造においても吸気ポートの形状を混合気噴 射副室に変更、 もしくは吸気バルブを廃止して、 本発明のノズルによりシリン ダー内に直接混合気を噴射させることが可能となる。 図面の簡単な説明  According to the nozzle of the present invention, it is possible to produce a uniform mixed gas with a simple structure.Also, in the structure on the intake side, the shape of the intake port is changed to a mixed gas injection sub-chamber, or the intake valve is changed. By abolishing it, the nozzle of the present invention allows the air-fuel mixture to be directly injected into the cylinder. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明のマイクロバプル発生ノズルの第 1の実施例を示す。  FIG. 1 shows a first embodiment of a micro-bubble generating nozzle according to the present invention.
図 2は本発明のマイクロバブル発生ノズルの第 2の実施例を示す。  FIG. 2 shows a second embodiment of the microbubble generating nozzle of the present invention.
図 3は本発明のマイクロバブル発生ノズルの第 3の実施例を示す。  FIG. 3 shows a third embodiment of the microbubble generating nozzle of the present invention.
図 4は本発明のマイクロバブル発生ノズルの第 4の実施例を示す。  FIG. 4 shows a fourth embodiment of the microbubble generating nozzle of the present invention.
図 5は本発明のマイクロバブル発生ノズルの第 5の実施例を示す。  FIG. 5 shows a fifth embodiment of the microbubble generating nozzle of the present invention.
図 6は本発明のマイクロバブル発生ノズルの第 6の実施例を示す。  FIG. 6 shows a sixth embodiment of the microbubble generating nozzle of the present invention.
図 7は本発明のマイクロバブル発生ノズルの第 7の実施例を示す。  FIG. 7 shows a seventh embodiment of the microbubble generating nozzle of the present invention.
図 8は本発明のマイクロバブル発生ノズルの第 8の実施例を示す。  FIG. 8 shows an eighth embodiment of the microbubble generating nozzle of the present invention.
図 9は本発明のマイクロバブル発生ノズルの第 9の実施例を示す。  FIG. 9 shows a ninth embodiment of the microbubble generating nozzle of the present invention.
図 1 0は本発明のマイクロバブル発生ノズルの第 1 0の実施例を示す c 図 1 1は本発明のマイクロバブル発生ノズルの第 1 1の実施例を示す。 図 1 2は本発明のマイクロバブル発生ノズルの第 1 2の実施例を示す。 図 1 3は本発明のマイクロバブル発生ノズルの第 1 3の実施例を示す。 図 1 4は本発明のマイクロバブル発生ノズルの第 1 4の実施例を示す。 図 1 5は本発明のマイクロバブル発生ノズルの第 1 5の実施例を示す。 図 1 6は本発明のマイクロバブル発生ノズルの第 1 6の実施例を示す。 図 1 7は本発明の気液混合ノズルの実施例を示す。 FIG. 10 shows a tenth embodiment of the microbubble generating nozzle of the present invention. FIG. 11 shows a first embodiment of a microbubble generating nozzle according to the present invention. FIG. 12 shows a microbubble generating nozzle according to a 12th embodiment of the present invention. FIG. 13 shows a thirteenth embodiment of the microbubble generating nozzle of the present invention. FIG. 14 shows a 14th embodiment of the microbubble generating nozzle of the present invention. FIG. 15 shows a fifteenth embodiment of the microbubble generating nozzle of the present invention. FIG. 16 shows a sixteenth embodiment of the microbubble generating nozzle of the present invention. FIG. 17 shows an embodiment of the gas-liquid mixing nozzle of the present invention.
図 1 8は本発明に使用する気泡粉砕兼気泡混入ノズルの構造を示す図であ る。  FIG. 18 is a view showing the structure of a bubble crushing / bubble mixing nozzle used in the present invention.
図 1 9は本発明に使用する気泡粉碎ノズルの構造を示す図である。  FIG. 19 is a view showing the structure of the bubble crushing nozzle used in the present invention.
図 2 0は本発明に係る装填容器の実施例を示す。  FIG. 20 shows an embodiment of the loading container according to the present invention.
図 2 1は本発明に係る装填容器の実施例を示す。  FIG. 21 shows an embodiment of the loading container according to the present invention.
図 2 2は本発明に係る流動促進筒の実施例を示す。  FIG. 22 shows an embodiment of the flow promoting cylinder according to the present invention.
図 2 3は本発明に係る流速抑制筒の実施例を示す。  FIG. 23 shows an embodiment of the flow velocity suppressing cylinder according to the present invention.
図 2 4は本発明に係る搬送物導入筒を示す。  FIG. 24 shows a conveyed product introduction cylinder according to the present invention.
図 2 5は本発明に係る活性剤等充填容器を示す。  FIG. 25 shows a container filled with an activator or the like according to the present invention.
図 2 6は本発明に係る導入物確認筒を示す。  FIG. 26 shows the introduced article confirming cylinder according to the present invention.
図 2 7は本発明に係る流速調節筒を示す。  FIG. 27 shows a flow rate adjusting cylinder according to the present invention.
図 2 8は本発明に係るマイクロバブルカーテン発生ノズルを示す。  FIG. 28 shows a micro bubble curtain generating nozzle according to the present invention.
図 2 9は本発明に係るエアー調整バルブを示す。  FIG. 29 shows an air regulating valve according to the present invention.
図 3 0は本発明に係るエアー取り入れ口フィル夕を示す。  FIG. 30 shows an air intake filter according to the present invention.
図 3 1は本発明に係るバブル吐出方向変換用エルボの実施例を示す正面図及 び縦断面図である。  FIG. 31 is a front view and a longitudinal sectional view showing an embodiment of a bubble discharge direction changing elbow according to the present invention.
図 3 2は本発明に係るバブル吐出方向変換用バブル分散ノズルの実施例を示 す正面図、 縦断面図及び A— B断面図である。  FIG. 32 is a front view, a longitudinal sectional view, and an AB sectional view showing an embodiment of a bubble dispersing nozzle for changing the bubble discharge direction according to the present invention.
図 3 3は本発明の複数ノズル装填具の実施例を示す断面図である。  FIG. 33 is a sectional view showing an embodiment of the multiple nozzle loading device of the present invention.
図 3 4は図 3 3の実施例の A— A断面図及び B— B断面図である。  FIG. 34 is a sectional view taken along the line AA and a sectional view taken along the line BB of the embodiment of FIG.
図 3 5は図 3 3の実施例に用いるマイクロバブル発生ノズルの構造を示す平 面図、 A— A断面図、 底面図及び B— B断面図である。 FIG. 35 is a plan view showing the structure of the microbubble generating nozzle used in the embodiment of FIG. FIG. 3 is a front view, an A-A cross-sectional view, a bottom view, and a BB cross-sectional view.
図 3 6は本発明の複数ノズル装填具の他の例を示す斜視図である。  FIG. 36 is a perspective view showing another example of the multiple nozzle loading device of the present invention.
図 3 7は本発明の気体導入管集合チャンバの実施例を示す平面図、 A— A断 面図、 底面図及び B— B断面図である。  FIG. 37 is a plan view, an AA sectional view, a bottom view, and a BB sectional view showing an embodiment of the gas inlet tube collecting chamber of the present invention.
図 3 8は本発明の第 1実施例である気泡風呂装置を取り付けた浴槽を示す断 面図である。  FIG. 38 is a cross-sectional view showing a bathtub to which the bubble bath apparatus according to the first embodiment of the present invention is attached.
図 3 9は本発明の第 2実施例である気泡風呂装置を取り付けた浴槽を示す断 面図である。  FIG. 39 is a sectional view showing a bathtub to which a bubble bath apparatus according to a second embodiment of the present invention is attached.
図 4 0はホース取付具の詳細図である。  FIG. 40 is a detailed view of the hose fitting.
図 4 1は取水部と吐出部の詳細を示す断面図である。  FIG. 41 is a cross-sectional view showing details of a water intake section and a discharge section.
図 4 2は本発明の第 3実施例である気泡風呂装置を取り付けた浴槽を示す断 面図である。  FIG. 42 is a sectional view showing a bathtub to which a bubble bath apparatus according to a third embodiment of the present invention is attached.
図 4 3は本発明の第 4実施例である気泡風呂装置を取り付けた浴槽を示す断 面図である。  FIG. 43 is a sectional view showing a bathtub to which a bubble bath apparatus according to a fourth embodiment of the present invention is attached.
図 4 4は本発明の第 5実施例である気泡風呂装置を取り付けた浴槽を示す断 面図である。  FIG. 44 is a sectional view showing a bathtub to which a bubble bath apparatus according to a fifth embodiment of the present invention is attached.
図 4 5は本発明の第 6実施例である気泡風呂装置を取り付けた浴槽を示す断 面図である。  FIG. 45 is a sectional view showing a bathtub to which a bubble bath apparatus according to a sixth embodiment of the present invention is attached.
図 4 6は本発明の脱気装置の実施例を示す図である。  FIG. 46 is a diagram showing an embodiment of the deaerator of the present invention.
図 4 7は本発明の気液分離ノズルの実施例を示す図である。  FIG. 47 is a diagram showing an embodiment of the gas-liquid separation nozzle of the present invention.
図 4 8は本発明の気液凝集部の実施例を示す図 4 6の A— B断面図である。 図 4 9は本発明の気体回収部の実施例を示す図 4 6の C一 D断面図である。 図 5 0は本発明の気体回収部圧力減圧用ノズルの実施例を示す図である。 図 5 1は本発明の混合気製造ノズルの第 1実施例を示す。  FIG. 48 is a cross-sectional view taken along the line AB of FIG. 46, illustrating an embodiment of the gas-liquid aggregation section of the present invention. FIG. 49 is a cross-sectional view taken along the line C-D of FIG. 46 showing an embodiment of the gas recovery unit of the present invention. FIG. 50 is a view showing an embodiment of the nozzle for reducing the pressure of the gas recovery section of the present invention. FIG. 51 shows a first embodiment of the air-fuel mixture production nozzle of the present invention.
図 5 2は本発明の混合気製造ノズルの第 2実施例を示す。  FIG. 52 shows a second embodiment of the air-fuel mixture production nozzle of the present invention.
図 5 3は本発明の混合気製造ノズルの第 3実施例を示す。  FIG. 53 shows a third embodiment of the air-fuel mixture production nozzle of the present invention.
図 5 4は本発明が適用される内燃機関の第 1の実施例を示す。  FIG. 54 shows a first embodiment of an internal combustion engine to which the present invention is applied.
図 5 5は本発明の混合気噴射副室の拡大図を示す。 図 5 6は本発明が適用される内燃機関の第 2の実施例を示す。 FIG. 55 is an enlarged view of the air-fuel mixture injection sub-chamber of the present invention. FIG. 56 shows a second embodiment of the internal combustion engine to which the present invention is applied.
図 5 7は本発明の混合気製造ノズルの接続部を示す。 発明を実施するための最良の形態  FIG. 57 shows a connection portion of the air-fuel mixture production nozzle of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明の実施例を、 導入加圧液体として、 水圧が 1 . S k g Z c m 2 3 . 0 k g Z c m 2 の市水道を、 導入気体として空気を用いた閉鎖水域浄化用 のノズルの実施例に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described by using a city water supply having a water pressure of 1.S kg Z cm 2 3.0 kg Z cm 2 as an introduction pressurized liquid and a nozzle for purifying a closed water area using air as an introduction gas. This will be described based on an example.
A. マイクロバブル発生ノズル A. Micro bubble generation nozzle
実施例 1 Example 1
図 1は、 第 1の実施例に係るノズル 1 O Aの構造を示す。 同図 (a ) は上面 の加圧液体流入側から見た導入部 1の形態を示す平面図、 (b ) は縦断面図、 ( c ) は下面の気泡吐出口側から見た底面図である。  FIG. 1 shows the structure of the nozzle 1OA according to the first embodiment. (A) is a plan view showing the configuration of the introduction portion 1 as viewed from the pressurized liquid inflow side on the upper surface, (b) is a longitudinal sectional view, and (c) is a bottom view as viewed from the bubble discharge port side on the lower surface. is there.
同図(b ) に示すように、 ノズル 1 O Aは、加圧液体と気体との導入部 1と、 気泡発生空間 2を有する。 図においては、 導入部 1と気泡発生空間 2を形成し た気泡発生空間形成用筒体 3は別体に形成し、 それぞれを嵌合して一体化した 構造を示しているが、 当初から一体に形成することもできる。  As shown in FIG. 1 (b), the nozzle 1OA has an introduction portion 1 for pressurized liquid and gas, and a bubble generation space 2. The figure shows a structure in which the introduction section 1 and the bubble generating space forming cylinder 3 that forms the bubble generating space 2 are formed separately, and they are fitted together and integrated. Can also be formed.
この導入部 1内には、 その上面に開口する加圧液体導入孔 4を形成し、 導入 部 1の下に形成した気泡発生空間 2に開口している。 この加圧液体導入孔 4は 導入部 1の上面を底面とする円錐台の形状をなし、 径の大きさと数は、 このノ ズルの使用用途と加圧液体の種類によっても異なるが、 同図 (a ) に示すよう に、 端面に対し、 気泡発生空間 2の開口断面積が 1 0〜4 0 %になる程度の複 数本 (この場合は 6個) を端面でそれぞれが対称位置になるように開口し、 導 入部 1内を貫通し、 気泡発生空間 2に開口している。 5は気体導入孔を示す。 この気体導入孔 5は、 側面の開口から導入部 1の気体導入孔 5に挿入された気 体導入管 6によって形成され、 気泡発生空間 2に放射状または中央に 1個 (こ の場合は放射状) 開口させるとともに、 側面の開口の外側に気体導入量調整弁 7が取り付けられている。 また、 流速低下抑制孔 8は、 同図 (b ) に示すよう に、 気泡発生空間 2側に開口する。 この流速低下抑制孔 8の数と径は、 接続管 1 5を通して導入される加圧液体の圧力と量、 さらには、 加圧液体導入孔 4の 数と気泡発生空間 2内での開口位置によって調整する。 A pressurized liquid introduction hole 4 is formed in the introduction section 1 and opens in the upper surface thereof, and opens into a bubble generation space 2 formed below the introduction section 1. The pressurized liquid introduction hole 4 has the shape of a truncated cone with the top surface of the introduction section 1 as the bottom surface. The size and number of the diameters vary depending on the use of this nozzle and the type of pressurized liquid. As shown in (a), several (in this case, six) bubbles whose opening cross-sectional area is 10 to 40% with respect to the end face are symmetrical at the end face. So that it penetrates through the introduction portion 1 and opens into the bubble generation space 2. Reference numeral 5 denotes a gas introduction hole. This gas introduction hole 5 is formed by a gas introduction pipe 6 inserted from the side opening into the gas introduction hole 5 of the introduction section 1, and is radiated to the bubble generation space 2 or one at the center (radially in this case) In addition to the opening, a gas introduction amount adjusting valve 7 is mounted outside the side opening. In addition, the flow velocity reduction suppressing hole 8 opens to the bubble generation space 2 side as shown in FIG. The number and diameter of the flow velocity reduction suppression holes 8 The pressure and the amount of the pressurized liquid introduced through 15 are adjusted according to the number of the pressurized liquid introduction holes 4 and the opening position in the bubble generation space 2.
実施例 2 Example 2
図 2は、 第 2の実施例に係るノズル 1 0 Bの構造を示す。 同図は、 気泡発生 空間形成用筒体 3の形状および気泡発生空間形成用筒体 3に流速低下抑制孔 8 が開口されないこと、 及び気泡発生空間形成用筒体 3の気泡発生空間 2側の内 側が吐出面側に向かって縮径部分 9が形成されていることを除き、 図 1の実施 例と同じである。  FIG. 2 shows the structure of the nozzle 10B according to the second embodiment. The figure shows the shape of the bubble generation space forming cylinder 3, the fact that the flow velocity reduction suppression hole 8 is not opened in the bubble generation space formation cylinder 3, and the bubble generation space 2 side of the bubble generation space formation cylinder 3. This is the same as the embodiment of FIG. 1 except that a reduced diameter portion 9 is formed on the inner side toward the discharge surface side.
この実施例のノズル 1 0 Bの場合は、 実施例 1の場合と対比して、 微細気泡 を混入させた液体を空気中に吐き出すような用途での使用、 例えば蛇口等への 取付に適している。 この場合、 気泡発生空間 2の下方位置に設けた縮径部分 9 によって、 マイクロバブルを大気中に吐き出す用途においても使用が可能とな る。  In the case of the nozzle 10 B of this embodiment, in comparison with the case of the first embodiment, the nozzle 10 B is suitable for use in an application in which the liquid mixed with fine bubbles is discharged into the air, for example, for attachment to a faucet or the like. I have. In this case, the reduced diameter portion 9 provided below the bubble generation space 2 enables use in applications in which microbubbles are discharged into the atmosphere.
実施例 3 Example 3
図 3は、 第 3の実施例に係るノズル 1 0 Cの構造を示す。 同図 (a ) は上面 の加圧液体流入側から見た導入部 1の形態を、 (b ) は縦断面を、 (c ) は下面 の気泡吐出口側から見た図、 (d ) は (c ) の拡大図である。  FIG. 3 shows the structure of the nozzle 10C according to the third embodiment. (A) shows the configuration of the introduction part 1 as viewed from the pressurized liquid inflow side on the upper surface, (b) shows a vertical cross section, (c) shows a view from the bubble discharge port side on the lower surface, and (d) shows It is an enlarged view of (c).
同図(b ) に示すように、 ノズル 1 0 Cは、 加圧液体と気体との導入部 1と、 気泡発生空間 2 3を有する。 図においては、 導入部 1と気泡発生空間 2を形成 した気泡発生空間形成用筒体 3は別体に形成し、 それぞれを嵌合して一体化し た構造を示しているが、 当初から一体に形成することもできる。  As shown in FIG. 2B, the nozzle 10 C has an inlet 1 for pressurized liquid and gas, and a bubble generating space 23. The figure shows a structure in which the introduction part 1 and the bubble generation space forming cylinder 3 that forms the bubble generation space 2 are formed separately, and they are fitted together and integrated. It can also be formed.
この導入部 1内には、 その上面に開口する加圧液体導入孔 4を形成し、 導入 部 1の下に形成した気泡発生空間 2に開口している。この加圧液体導入孔 4は、 円、 楕円もしくは導入部 1の上面を底面とする円錐台または楕円錘台の形状を なし、 径の大きさと数は、 このノズルの使用用途と加圧液体の種類によっても 異なるが、 同図 (a ) に示すように、 端面に対し、 気泡発生空間 2の開口断面 積が 1 0〜4 0 %になる程度の複数本 (この場合は 3個) を端面でそれぞれが 点対称位置になるように開口し、 導入部 1内を貫通し、 気泡発生空間 2に開口 している。 また加圧液体導入孔 4の流入側開口の周囲 4 aは、 流入する液体の 流れを円滑にするため、 アールを取っている。 5は気体導入孔を示す。 この気 体導入孔 5は、 側面の開口から導入部 1の気体導入孔 5に挿入された気体導入 管 6によって形成され、 気泡発生空間 2に放射状または中央に 1個 (この場合 は放射状) 開口させるとともに、 側面の開口の外側に気体導入量調整弁 7が取 り付けられている。 なお、 1 1は気体導入孔 5を放射状に形成するときに製造 上開けられる孔を塞ぐための気体導入孔メクラビス、 1 5は導入部 1を流体流 路に接続するための接続管、 1 2は気泡発生空間形成用筒体 3内面に形成され た、 加圧液体導入孔 4に連通する円弧状の加圧液体誘導溝、 1 3は気泡発生空 間形成用筒体 3の端部に形成された接合用凸部、 1 4は導入部 1と気泡発生空 間形成用筒体 3とを接合する接合用止具である。 A pressurized liquid introduction hole 4 is formed in the introduction section 1 and opens in the upper surface thereof, and opens into a bubble generation space 2 formed below the introduction section 1. The pressurized liquid introduction hole 4 has the shape of a circle, an ellipse, or a truncated cone or a truncated cone having the top surface of the introduction portion 1 as a bottom surface. Although different depending on the type, as shown in Figure (a), several (three in this case) end faces with an opening cross-sectional area of 10 to 40% of the bubble generation space 2 with respect to the end face To open each point so that they are in point symmetry, penetrate through the introduction section 1 and open to the bubble generation space 2 are doing. In addition, the periphery 4a of the inflow side opening of the pressurized liquid introduction hole 4 is rounded in order to make the flow of the inflowing liquid smooth. Reference numeral 5 denotes a gas introduction hole. The gas introduction hole 5 is formed by a gas introduction pipe 6 inserted from the side opening into the gas introduction hole 5 of the introduction section 1, and is radially or one (in this case, radially) opened in the bubble generation space 2. At the same time, a gas introduction amount adjusting valve 7 is mounted outside the opening on the side surface. In addition, 11 is a gas inlet hole for closing the hole that is opened in manufacturing when the gas inlet hole 5 is formed radially, 15 is a connecting pipe for connecting the inlet 1 to the fluid flow path, and 1 2 Is an arc-shaped pressurized liquid guide groove formed on the inner surface of the bubble generating space forming cylinder 3 and communicated with the pressurized liquid introduction hole 4, and 13 is formed at an end of the bubble generating space forming cylinder 3 The joining projections 14 are joining stoppers for joining the introduction section 1 and the bubble generating space forming cylindrical body 3.
実施例 4 Example 4
図 4は、 第 4の実施例に係るノズル 1 0 Dの構造を示す。 同図は、 図 3の実 施例において、 加圧液体導入孔 4の形状を楕円としたものである。 楕円にする ことにより、 通水面積を確保すると同時に気泡発生空間 2の吐出面の面積をよ り小さくすることが可能となり、 微細気泡の発生効率が高まる。  FIG. 4 shows the structure of the nozzle 10D according to the fourth embodiment. The figure shows the embodiment of FIG. 3 in which the shape of the pressurized liquid introduction hole 4 is elliptical. By making it elliptical, it is possible to secure a water passage area and at the same time to make the area of the discharge surface of the bubble generation space 2 smaller, thereby increasing the generation efficiency of fine bubbles.
この実施例のノズル 1 0 Dの場合は、 実施例 1の場合と対比して、 より多く の微細気泡が必要とされるような用途での使用、 例えば陸上養殖等に適してい る。  The nozzle 10D of this embodiment is suitable for use in applications requiring more microbubbles, for example, for on-land aquaculture, as compared with the case of Embodiment 1.
実施例 5 Example 5
図 5は、 第 5の実施例に係るノズル 1 0 Eの構造を示す。 同図は、 図 3の実 施例において、 加圧液体導入孔 4と連通する気泡発生空間形成用筒体 3側の加 圧液体誘導溝 1 2を、 縮流部 1 6をもつ構成としたものである。 そうすること で、 気泡発生空間 2の体積及び吐出面の面積がより小さくなり、 微細気泡の発 生効率が高まる。 また、 噴出力の向上に伴う、 微細気泡拡散範囲の拡大を図る ことができる。  FIG. 5 shows the structure of the nozzle 10E according to the fifth embodiment. This figure shows a configuration in which the pressurized liquid guide groove 12 on the side of the bubble generating space forming cylinder 3 communicating with the pressurized liquid introduction hole 4 has a contraction portion 16 in the embodiment of FIG. Things. By doing so, the volume of the bubble generation space 2 and the area of the discharge surface become smaller, and the generation efficiency of fine bubbles increases. In addition, the diffusion range of fine bubbles can be expanded with the improvement of the injection power.
この実施例のノズル 1 0 Eの場合は、 実施例 1の場合と対比して、 より多く の微細気泡をより遠方に噴出させるような用途での使用、 例えば海域における 養殖等に適している。 In the case of the nozzle 10E of this embodiment, it is used in an application in which more fine bubbles are ejected farther than in the case of the embodiment 1, for example, in a sea area. Suitable for aquaculture, etc.
実施例 6 Example 6
図 6は、 第 6の実施例に係るノズル 1 0 Fの構造を示す。 同図は、 図 3の実 施例において、 加圧液体導入孔 4と連通する気泡発生空間形成用筒体 3側の加 圧液体誘導溝 1 2を縮流を伴うらせん状としたものである。 そうすることで、 気泡発生空間 2に旋回流が発生し、 微細気泡の発生効率が高まり、 噴出力の向 上に伴う、 微細気泡拡散範囲の拡大を図ることができるほか、 整流効果による 気泡発生効率の向上とエネルギー損失抑制効果を期待できる。  FIG. 6 shows the structure of the nozzle 10F according to the sixth embodiment. In the embodiment of FIG. 3, the pressurized liquid guiding groove 12 on the side of the bubble generating space forming cylinder 3 communicating with the pressurized liquid introducing hole 4 in the embodiment of FIG. 3 has a spiral shape with a contraction. . By doing so, a swirl flow is generated in the bubble generation space 2, which increases the efficiency of generation of fine bubbles, and can expand the range of fine bubble diffusion as the injection power increases, and also generates air bubbles due to the rectification effect It can be expected to improve efficiency and suppress energy loss.
この実施例のノズル 1 0 Fの場合は、 実施例 3の場合と対比して、 より多く の微細気泡をより遠方に噴出させるような用途での使用、 例えばダム湖におけ る水中への酸素供給等に適している。  In the case of the nozzle 10F of this embodiment, the use in an application in which more fine bubbles are ejected farther than in the case of the embodiment 3, for example, oxygen in water in a dam lake is used. Suitable for supply.
実施例 7 Example 7
図 7は、 第 7の実施例に係るノズル 1 0 Gの構造を示す。 同図 (a ) は上面 の加圧液体流入側から見た導入部 1の形態を、 (b ) は縦断面を、 (c ) は下面 の気泡吐出口側から見た図、 (d ) は (c ) の拡大図である。  FIG. 7 shows the structure of the nozzle 10G according to the seventh embodiment. (A) shows the configuration of the introduction part 1 as viewed from the pressurized liquid inflow side on the upper surface, (b) shows a vertical cross section, (c) shows a view from the bubble discharge port side on the lower surface, and (d) shows It is an enlarged view of (c).
同図(b ) に示すように、 ノズル 1 0 Gは、 加圧液体と気体との導入部 1と、 気泡発生空間 2を有する。 図においては、 導入部 1と気泡発生空間 2を形成し た気泡発生空間形成用筒体 3は別体に形成し、 それぞれを嵌合して一体化した 構造を示しているが、 当初から一体に形成することもできる。  As shown in FIG. 1 (b), the nozzle 10G has an introduction portion 1 for pressurized liquid and gas, and a bubble generation space 2. The figure shows a structure in which the introduction section 1 and the bubble generating space forming cylinder 3 that forms the bubble generating space 2 are formed separately, and they are fitted together and integrated. Can also be formed.
この導入部 1内には、 その上面に開口する加圧液体導入孔 4を形成し、 導入 部 1の下に形成した気泡発生空間 2に開口している。この加圧液体導入孔 4は、 円、 楕円もしくは導入部 1の上面を底面とする円錐台または楕円錘台の形状を なし、 径の大きさと数は、 このノズルの使用用途と加圧液体の種類によっても 異なるが、 同図 (a ) に示すように、 端面に対し、 気泡発生空間 2の開口断面 積が 1 0〜4 0 %になる程度の複数本 (この場合は 3個) を端面でそれぞれが 点対称位置になるように開口し、 導入部 1内を貫通し、 気泡発生空間 2に開口 している。 また加圧液体導入孔 4の流入側開口の周囲 4 aは、 流入する液体の 流れを円滑にするため、 アールを取っている。 5は気体導入孔を示す。 この気体導入孔 5は、 側面の開口から導入部 1の気体導入孔 5に挿入された 気体導入管 6によって形成され、気泡発生空間 2に放射状または中央に 1個(こ の場合は中央に 1個) 開口させるとともに、 側面の開口の外側に気体導入量調 整弁 7が取り付けられている。 本発明においては、 気体導入孔 5の気泡発生空 間 2側開口に気体チャンバ 1 7を形成し、 この気体チャンバ 1 7に、 多孔性プ ラグ 1 8を装着する。 この多孔性プラグ 1 8は、 例えば発泡アルミゃ有孔セラ ミックス等の、微細孔が連通している多孔質材料または多孔加工材を使用する。 細孔の径は、 1 0〜 1 0 0 m程度がマイクロバブル生成に好適である。 A pressurized liquid introduction hole 4 is formed in the introduction section 1 and opens in the upper surface thereof, and opens into a bubble generation space 2 formed below the introduction section 1. The pressurized liquid introduction hole 4 has the shape of a circle, an ellipse, or a truncated cone or a truncated cone having the top surface of the introduction portion 1 as a bottom surface. Although different depending on the type, as shown in Figure (a), several (three in this case) end faces with an opening cross-sectional area of 10 to 40% of the bubble generation space 2 with respect to the end face Then, each is opened so as to be in a point symmetrical position, penetrates through the introduction portion 1, and opens into the bubble generation space 2. In addition, the periphery 4a of the inflow side opening of the pressurized liquid introduction hole 4 is rounded in order to make the flow of the inflowing liquid smooth. Reference numeral 5 denotes a gas introduction hole. The gas introduction hole 5 is formed by a gas introduction pipe 6 inserted from the side opening into the gas introduction hole 5 of the introduction section 1, and is provided radially or centrally in the bubble generation space 2 (in this case, one at the center). The gas introduction amount adjustment valve 7 is attached outside the side opening. In the present invention, a gas chamber 17 is formed at an opening on the second side of the bubble generation space of the gas introduction hole 5, and a porous plug 18 is attached to the gas chamber 17. The porous plug 18 is made of a porous material or a porous material having micropores communicating with each other, such as a foamed aluminum / porous ceramic. The diameter of the fine pores is preferably about 100 to 100 m, which is suitable for generating microbubbles.
なお、 1 1は気体導入孔 5内部を掃除する場合必要とされる孔を塞ぐための 気体導入孔メクラビス、 1 5は導入部 1を流体流路に接続するための接続管、 1 2は気泡発生空間形成用筒体 3内面に形成された、 加圧液体導入孔 4に連通 する円弧状の加圧液体誘導溝、 1 3は気泡発生空間形成用筒体 3の端部に形成 された接合用凸部、 1 4は導入部 1と気泡発生空間形成用筒体 3とを接合する 接合用止具である。  In addition, 1 1 is a gas inlet hole 5 for closing the hole required for cleaning the inside of the gas inlet hole 5, 15 is a connecting pipe for connecting the inlet 1 to the fluid flow path, and 1 2 is a bubble. An arc-shaped pressurized liquid guide groove formed on the inner surface of the generation space forming cylinder 3 and communicating with the pressurized liquid introduction hole 4. 13 is a joint formed at the end of the bubble generation space formation cylinder 3. The projecting projection 14 is a joining stopper for joining the introduction section 1 and the bubble generating space forming cylindrical body 3.
実施例 8 Example 8
図 8は、 第 8の実施例に係るノズル 1 0 Hの構造を示す。 同図は、 図 7の実 施例において、 加圧液体導入孔 4の形状を楕円としたものである。 楕円にする ことにより、 通水面積を確保すると同時に気泡発生空間 2の吐出面の面積をよ り小さくすることが可能となり、 微細気泡の発生効率が高まる。  FIG. 8 shows the structure of the nozzle 10H according to the eighth embodiment. In the figure, the shape of the pressurized liquid introduction hole 4 in the embodiment of FIG. 7 is made elliptical. By making it elliptical, it is possible to secure a water passage area and at the same time to make the area of the discharge surface of the bubble generation space 2 smaller, thereby increasing the generation efficiency of fine bubbles.
この実施例のノズル 1 0 Hの場合は、 実施例 7の場合と対比して、 より多く の微細気泡が必要とされるような用途での使用、 例えば陸上養殖等に適してい る。  The nozzle 10H of this embodiment is suitable for use in applications that require more microbubbles, for example, for on-land aquaculture, as compared to the case of Embodiment 7.
実施例 9 Example 9
図 9は、 第 9の実施例に係るノズル 1 0 Jの構造を示す。 同図は、 図 7の実 施例において、 気体チャンバ 1 7を迂回して気泡発生空間 2に直接通ずる気体 バイパス孔 5 aを設けたものである。 これは、 加圧液体の圧力が低圧である場 合、 多孔性プラグ 1 8の圧力損失により気体導入孔 5より気泡発生空間 2に気 体が導入されにくくなる。 そうすると、 マイクロバブルの発生も著しく低減す るので、気体バイパス孔 5 aから気泡発生空間 2に気体を導入することにより、 マイクロバブルを吐出水流中に分散させる。 FIG. 9 shows the structure of the nozzle 10J according to the ninth embodiment. This embodiment is different from the embodiment shown in FIG. 7 in that a gas bypass hole 5a is provided which bypasses the gas chamber 17 and directly communicates with the bubble generation space 2. This is because when the pressure of the pressurized liquid is low, it is difficult for gas to be introduced into the bubble generation space 2 from the gas introduction hole 5 due to the pressure loss of the porous plug 18. By doing so, the generation of microbubbles is also significantly reduced. Therefore, by introducing gas from the gas bypass hole 5a into the bubble generation space 2, the microbubbles are dispersed in the discharged water flow.
実施例 1 0 Example 10
図 1 0は、 第 1 0の実施例に係るノズル 1 0 Kの構造を示す。 同図は、 図 9 の気体バイパス孔 5 aを図 8に示した実施例の構造に適用したものである。 そ の他の構成及び作用については、 実施例 9と同様である。  FIG. 10 shows the structure of the nozzle 10 K according to the tenth embodiment. In this figure, the gas bypass hole 5a in FIG. 9 is applied to the structure of the embodiment shown in FIG. Other configurations and operations are the same as those in the ninth embodiment.
実施例 1 1 Example 1 1
図 1 1は、 マイクロバブル発生ノズル 1 0 Lの構造を示す。 同図 (a ) は上 面の加圧液体流入側から見た導入部 1の形態を、 (b ) は縦断面を、 (c ) は下 面の気泡吐出口側から見た図、 (d ) は (c ) の拡大図, (e ) は気泡発生空間 形成用筒体内部の拡大断面図である。  FIG. 11 shows the structure of the microbubble generating nozzle 10L. (A) shows the configuration of the inlet section 1 as viewed from the pressurized liquid inflow side on the upper surface, (b) shows a vertical cross section, (c) shows a view from the lower bubble discharge port side, (d) () Is an enlarged view of (c), and (e) is an enlarged sectional view of the inside of the cylinder for forming the bubble generation space.
同図(b ) に示すように、 ノズル 1 0 Lは、 加圧液体と気体との導入部 1と、 気泡発生空間 2を有する。 図においては、 導入部 1と気泡発生空間 2を形成し た気泡発生空間形成用筒体 3は別体に形成し、 それぞれを嵌合して一体化した 構造を示しているが、 当初から一体に形成することもできる。  As shown in FIG. 1B, the nozzle 10 L has an introduction portion 1 for pressurized liquid and gas, and a bubble generation space 2. The figure shows a structure in which the introduction section 1 and the bubble generating space forming cylinder 3 that forms the bubble generating space 2 are formed separately, and they are fitted together and integrated. Can also be formed.
この導入部 1内には、 その上面に開口する加圧液体導入孔 4を形成し、 導入 部 1の下に形成した気泡発生空間 2に開口している。この加圧液体導入孔 4は、 円、 楕円もしくは導入部 1の上面を底面とする円錐台または楕円錘台の形状を なし、 径の大きさと数は、 このノズルの用途と加圧液体の種類によっても異な るが、 同図 (a ) に示すように、 端面に対し、 気泡発生空間 2の開口断面積が 1 0〜4 0 %になる程度の複数本 (この場合は 3個) を端面でそれぞれが点対 称位置になるように開口し、 導入部 1内を貫通し、 気泡発生空間 2に開口して いる。 また加圧液体導入孔 4の流入側開口の周囲 4 aは、 流入する液体の流れ を円滑にするため、 アールを取っている。 5は気体導入孔を示す。  A pressurized liquid introduction hole 4 is formed in the introduction section 1 and opens in the upper surface thereof, and opens into a bubble generation space 2 formed below the introduction section 1. The pressurized liquid introduction hole 4 has the shape of a circle, an ellipse, or a truncated cone or an elliptical truncated cone with the top surface of the introduction portion 1 as a bottom surface. As shown in Fig. 3 (a), the number of bubbles (three in this case) is such that the opening cross-sectional area of the bubble generation space 2 is 10 to 40% with respect to the end face. Each of the openings opens so as to be a point symmetrical position, penetrates through the introduction portion 1, and opens into the bubble generation space 2. The periphery 4a of the inflow side opening of the pressurized liquid introduction hole 4 is rounded in order to make the flow of the inflowing liquid smooth. Reference numeral 5 denotes a gas introduction hole.
この気体導入孔 5は、 側面の開口から導入部 1の気体導入孔 5に挿入された 気体導入管 6によって形成され、気泡発生空間 2に放射状または中央に 1個(こ の場合は中央に 1個、 放射状に 3個の計 4個) 開口させるとともに、 側面の開 口の外側に気体導入量調整弁 7が取り付けられている。 なお、 1 1は気体導入孔 5内部を掃除する場合必要とされる孔を塞ぐための 気体導入孔メクラビス、 1 2は気泡発生空間形成用筒体 3内面に形成された、 加圧液体導入孔 4に連通する円弧状の加圧液体誘導溝、 1 3は気泡発生空間形 成用筒体 3の端部に形成された接合用凸部、 1 4は導入部 1と気泡発生空間形 成用筒体 3とを接合する接合用止具、 1 5は導入部 1を流体流路に接続するた めの接続管、 1 9は導入部 1に接続される下流側接続管である。 The gas introduction hole 5 is formed by a gas introduction pipe 6 inserted from the side opening into the gas introduction hole 5 of the introduction section 1, and is provided radially or centrally in the bubble generation space 2 (in this case, one at the center). (4 in total, 3 radially open), and a gas introduction adjustment valve 7 is attached outside the side opening. Reference numeral 1 denotes a gas introduction hole 5, a gas introduction hole for closing a hole required for cleaning the inside of the gas introduction hole, and 12 denotes a pressurized liquid introduction hole formed on the inner surface of the cylinder 3 for forming a bubble generation space. An arc-shaped pressurized liquid guiding groove communicating with 4, 13 is a bonding projection formed at the end of the bubble generating space forming cylinder 3, 14 is an inlet 1 and a bubble generating space forming A joining stopper for joining the cylindrical body 3, 15 is a connection pipe for connecting the introduction section 1 to the fluid flow path, and 19 is a downstream connection pipe connected to the introduction section 1.
加圧液体導入孔 4の気泡吐出側の気泡発生空間形成用筒体 3の内壁は、 直線 加工でもよいが、 図 1 1 ( e ) に示すように下流側が広くなる段及び下流側に 山が偏倚しているタップを形成することによって気泡の微細化を促進すること ができる。  The inner wall of the bubble generation space forming cylinder 3 on the bubble discharge side of the pressurized liquid introduction hole 4 may be straight-worked, but as shown in FIG. By forming the deviating taps, the miniaturization of bubbles can be promoted.
実施例 1 2 Example 1 2
図 1 2は、 マイクロバブル発生ノズル 1 0 Mの構造を示す。 同図は、 図 1 1 の実施例において、 加圧液体導入孔 4の形状を楕円としたものである。 楕円に することにより、 通水面積を確保すると同時に気泡発生空間 2の吐出面の面積 をより小さくすることが可能となり、 マイクロバブルの発生効率が高まる。 実施例 1 3  FIG. 12 shows the structure of the microbubble generating nozzle 10M. In the figure, in the embodiment of FIG. 11, the shape of the pressurized liquid introduction hole 4 is made elliptical. By making the shape elliptical, it is possible to secure a water flow area and at the same time to make the area of the discharge surface of the bubble generation space 2 smaller, thereby increasing the efficiency of generating microbubbles. Example 13
図 1 3は、マイクロバブル発生ノズル 1 O Nの構造を示す。 この実施例では、 一つの導入部 1の周囲 3個所に気体導入孔 5を穿設し、 3個所の気体導入孔の 回りにそれぞれ 3個の加圧液体導入孔 4を穿設し、 気体導入孔 5の加圧液体導 入側をメクラビス 1 1で塞いだ構造としている。 そして、 それぞれの加圧液体 導入孔 4の吐出側の気泡発生空間形成用筒体 3には共通の空間が形成されるよ うに加圧液体誘導溝 1 2を形成している。  FIG. 13 shows the structure of the microbubble generating nozzle 1 ON. In this embodiment, gas introduction holes 5 are formed in three places around one introduction part 1, and three pressurized liquid introduction holes 4 are formed around the three gas introduction holes, respectively. It has a structure in which the pressurized liquid introduction side of the hole 5 is closed with Mekurabis 11. The pressurized liquid guide groove 12 is formed in the bubble generating space forming cylinder 3 on the discharge side of each pressurized liquid introduction hole 4 so that a common space is formed.
この実施例においても、 加圧液体導入孔 4の気泡吐出側の気泡発生空間形成 用筒体 3の内壁は、 直線加工でもよいが、 図 1 3 ( e ) に示すように下流側が 広くなる段及び下流側に山が偏倚しているタップを形成することによって気泡 の微細化を促進することができる。  Also in this embodiment, the inner wall of the bubble generation space forming cylinder 3 on the bubble discharge side of the pressurized liquid introduction hole 4 may be formed by straight processing, but as shown in FIG. In addition, by forming a tap whose mountain is deviated downstream, the miniaturization of bubbles can be promoted.
以上の構造のノズルにおいて、 加圧液体導入孔 4の開口から気泡発生空間 2 内に導入された加圧液体は、高圧の下で空間内に吐出されてはがれ域を生じる。 このはがれ現象によって、 気体導入孔 5から導入された気体は、 径が 1 0 m 程度のマイクロバブルとして吐出水流中に分散される。 そして、 このマイクロ バブルの分散量と大きさは、 気体導入量調整弁 7の開口程度を調節することに よって任意に調整できる。 In the nozzle having the above-described structure, the pressurized liquid introduced into the bubble generation space 2 from the opening of the pressurized liquid introduction hole 4 is discharged into the space under high pressure to form a peeling area. Due to this peeling phenomenon, the gas introduced from the gas introduction hole 5 is dispersed in the discharged water stream as microbubbles having a diameter of about 10 m. The dispersion amount and size of the microbubbles can be arbitrarily adjusted by adjusting the degree of opening of the gas introduction amount adjustment valve 7.
実施例 1 4〜: L 6 Example 14: L 6
図 1 4〜図 1 6は、 図 1 1〜図 1 3のノズルにおける気体導入孔 5の気泡発 生空間 2側開口に気体チャンバ 1 7を形成し、 この気体チャンバ 1 7に、 多孔 性プラグ 1 8を装着したものである。 この多孔性プラグ 1 8は、 例えば発泡ァ ルミや有孔セラミックス等の、 微細孔が連通している多孔質材料または多孔加 ェ材を使用する。 細孔の径は、 1 0〜 1 0 0 m程度がマイクロバブル生成に 好適である。  FIGS. 14 to 16 show a gas chamber 17 formed at the opening of the gas introduction hole 5 in the nozzle shown in FIGS. 11 to 13 on the side of the bubble generation space 2, and a porous plug in the gas chamber 17. 18 is attached. The porous plug 18 is made of a porous material or a porous material having fine pores, such as foamed aluminum and porous ceramics. The diameter of the pores is preferably about 10 to 100 m, which is suitable for generating microbubbles.
このように、 気体導入孔 5の気泡発生空間 2側開口に気体チャンバ 1 7を形 成し、 この気体チャンバ 1 7に、 多孔性プラグ 1 8を装着することにより、 高 圧から中低圧の加圧液体を導入してもマイクロバブルを生成することができ る。  In this way, the gas chamber 17 is formed at the opening of the gas introduction hole 5 on the side of the bubble generation space 2, and the porous plug 18 is attached to the gas chamber 17. Microbubbles can be generated even if a pressurized liquid is introduced.
B . その他のノズル B. Other nozzles
実施例 1 (気液混合ノズル) Example 1 (gas-liquid mixing nozzle)
図 1 7は、第 1の実施例に係る気液混合ノズル 2 0の構造を示す。 同図(a ) は上面の加圧気液流入側から見た導入部 2 1の形態を示す平面図、 (b ) は縦 断面図、 (c ) は下面の気泡吐出口側から見た図、 (d ) は (c ) の拡大図であ る。  FIG. 17 shows the structure of the gas-liquid mixing nozzle 20 according to the first embodiment. (A) is a plan view showing the configuration of the introduction part 21 as viewed from the pressurized gas-liquid inflow side on the upper surface, (b) is a longitudinal sectional view, (c) is a view as viewed from the bubble discharge port side on the lower surface, (D) is an enlarged view of (c).
同図 (b ) に示すように、 ノズル 2 0は、 加圧液体と気体との導入部 2 1と 円筒状の導入物混合空間 2 2を有し、 導入部 2 1内に、 導入物混合空間 2 2に 開口する加圧気液導入孔 2 3と複数の気液導入孔 2 4を形成し、 加圧気液導入 孔 2 3を導入部 2 1の端面に開口し、 複数の気液導入孔 2 4を導入部 2 1の側 面に開口し、 複数の気液導入孔 2 4と連通する複数の気液導入管 2 5、 2 6に 気液導入量を調整する調整弁 2 7 , 2 8をそれぞれ設けた構成としている。 図 においては、 導入部 2 1と導入物混合空間 2 2を形成した導入物混合空間形成 用筒体 2 9は別体に形成し、 それぞれを嵌合して一体化した構造を示している が、 当初から一体に形成することもできる。 As shown in FIG. 2B, the nozzle 20 has an inlet 21 for pressurized liquid and gas, and a cylindrical inlet mixing space 22. A pressurized gas-liquid introduction hole 23 and a plurality of gas-liquid introduction holes 24 formed in the space 22 are formed, and the pressurized gas-liquid introduction hole 23 is opened at an end face of the introduction portion 21 to form a plurality of gas-liquid introduction holes. Adjustment valves 2 7, 2 that open 24 to the side of the inlet 21 and adjust the gas-liquid introduction amount to the gas-liquid introduction pipes 25, 26 that communicate with the gas-liquid introduction holes 24 8 are provided. Figure In the above, there is shown a structure in which an introduction part mixing space forming cylindrical body 29 in which an introduction part 21 and an introduction substance mixing space 22 are formed is formed separately, and each is fitted and integrated. It can be formed integrally from the beginning.
前記の加圧気液導入孔 2 3は、 円、 楕円もしくは導入部 1の上面を底面とす る円錐台または楕円錘台の形状をなし、 径の大きさと数は、 このノズルの使用 用途と加圧気液の種類によっても異なるが、 同図 (a ) に示すように、 端面に 対し、導入物混合空間 2 2の開口断面積が 1 0〜4 0 %になる程度の複数本(こ の場合は 3個) を端面でそれぞれが点対称位置になるように開口し、 導入部 2 1内を貫通し、 導入物混合空間 2 2に開口している。 気液導入孔 2 3は、 側面 の開口から導入部 2 1に挿入された気液導入管 2 5, 2 6によって形成され、 導入物混合空間 2 2に放射状に複数個開口させるとともに、 側面の開口の外側 に気液導入量調整弁 2 7, 2 8が取り付けられている。 なお、 3 0は導入部 2 1を流体流路に接続するための接続管、 3 1は導入物混合空間形成用筒体 2 9 内面に形成された、 加圧気液導入孔 2 3に連通する円弧状の加圧液体誘導溝、 3 2は導入物混合空間形成用筒体 2 9の端部に形成された接合用凸部、 3 3は 導入部 2 1と導入物混合空間形成用筒体 2 9とを接合する接合用止具である。 実施例 2 (気泡粉砕兼気泡混入ノズル)  The above-mentioned pressurized gas-liquid introduction hole 23 has a shape of a circle, an ellipse, or a truncated cone or a truncated elliptical cone with the top surface of the introduction portion 1 as a bottom surface. Although it depends on the type of pressurized gas and liquid, as shown in Figure (a), a plurality of pipes whose opening cross-sectional area of the inlet mixture space 22 is 10 to 40% with respect to the end face (in this case, 3) are opened at the end faces so that they are point-symmetrical to each other, penetrate through the introduction section 21, and open to the introduced substance mixing space 22. The gas-liquid introduction holes 23 are formed by gas-liquid introduction pipes 25 and 26 inserted into the introduction part 21 from the side opening, and a plurality of gas-liquid introduction holes 22 are radially opened in the introduction mixture space 22 and Gas-liquid introduction amount adjustment valves 27 and 28 are mounted outside the opening. In addition, 30 is a connection pipe for connecting the introduction section 21 to the fluid flow path, and 31 is connected to the pressurized gas-liquid introduction hole 23 formed on the inner surface of the cylinder 29 for forming the introduction mixture space. An arc-shaped pressurized liquid guiding groove, 32 is a joining projection formed at the end of the introduced material mixing space forming cylinder 29, and 33 is an introducing portion 21 and the introduced material mixing space forming cylinder. This is a joining stop for joining with 29. Example 2 (bubble crushing and bubble mixing nozzle)
図 1 8は、 気泡粉砕兼気泡混入ノズル 4 0の実施例を示すもので、 導入部 4 1の中央部に気体導入孔 4 2を穿設し、 その周囲に複数の加圧液体導入孔 4 3 を穿設し、 導入部 4 1の側部に気体導入管 4 4を設けて外気を気体導入孔 4 2 に連通させ、 加圧液体導入孔 4 3側の気体導入孔 4 2はメクラビス 4 5で閉塞 したものである。 加圧液体導入孔 4 3の流入側の周面 4 3 aはアールをとって いる。 導入部 4 1の加圧液体導入孔 4 3と気体導入孔 4 2は、 気泡発生空間 4 6側で共通の気泡粉砕空間 4 7に放出される。 加圧液体導入孔 4 3の導入部 4 1内部の気泡粉砕管 4 8は、 図 1 8 ( e ) に示すように、 内壁に、 吐出側に行 くにつれて不連続的に大径となる複数の段を持つ。 また、 内壁に、 山が下流側 に偏倚しているタップを形成している。 出口側の気泡粉砕空間 4 7にて複数孔 を単孔にする。 図中 4 9は接続管、 5 0は気体導入量調整弁である。 実施例 3 (気泡粉砕ノズル) FIG. 18 shows an embodiment of the bubble crushing / bubble mixing nozzle 40, in which a gas introduction hole 42 is formed at the center of the introduction section 41, and a plurality of pressurized liquid introduction holes 4 are formed around the hole. 3 and a gas introduction pipe 4 4 is provided on the side of the introduction section 4 1 to allow outside air to communicate with the gas introduction hole 4 2, and the pressurized liquid introduction hole 4 3 Blocked at 5. The inflow side peripheral surface 43 a of the pressurized liquid introduction hole 43 is rounded. The pressurized liquid introduction hole 43 and the gas introduction hole 42 of the introduction part 41 are discharged into the common bubble crushing space 47 on the bubble generation space 46 side. As shown in Fig. 18 (e), the bubble crushing tube 48 inside the pressurized liquid introduction hole 4 3 introduction section 4 1 has a plurality of discontinuous large diameters on the inner wall as it goes to the discharge side. With steps. In addition, taps are formed on the inner wall, with the mountain deviating downstream. Multiple holes are made into a single hole in the bubble crushing space 47 on the outlet side. In the figure, 49 is a connecting pipe, and 50 is a gas introduction amount adjusting valve. Example 3 (bubble crushing nozzle)
図 1 9は、 気泡粉砕ノズル 6 0の実施例を示すもので、 導入部 6 1に外気を 導入する気体導入孔を設けず、 加圧液体導入孔 6 2から気泡粉砕管 6 3を通し て気泡粉砕空間 6 4に直接加圧液体を吐出させ、 気泡粉砕管 6 3における不達 続的に大径となる段と、 山が下流側に偏倚している夕ップ及び気泡粉砕空間 6 4の複合化したキヤビテーション作用により、 加圧液体に含まれる数 1 0 0 mの気泡を 1 0 z m程度に微細化してマイクロバブルとして吐出するようにし たものである。 この気泡粉砕ノズル 6 0は 1 k g Z c m 2程度の加圧水を通し た場合、 溶存気体を液体から霧状に分離する、 気液分離ノズルとしての機能も 持つ。 図中 6 2 aは加圧液体導入孔 6 2の流入側のアールを取った側面、 6 5 は接続管である。 FIG. 19 shows an embodiment of the bubble crushing nozzle 60, in which the gas inlet for introducing outside air is not provided in the inlet section 61, and the bubble crushing tube 63 is passed through the pressurized liquid inlet 62 and the bubble crushing pipe 63. The pressurized liquid is directly discharged into the bubble crushing space 64, and the step in the bubble crushing tube 163 that has an intermittently large diameter is set up. With the combined cavitation action, bubbles of several hundred meters contained in the pressurized liquid are made finer to about 10 zm and ejected as microbubbles. This bubble crushing nozzle 60 also has a function as a gas-liquid separation nozzle that separates dissolved gas from liquid into mist when pressurized water of about 1 kg Z cm 2 is passed. In the figure, 62 a is a rounded side surface on the inflow side of the pressurized liquid introduction hole 62, and 65 is a connecting pipe.
C . 付帯装置 C. Ancillary equipment
実施例 1 (装填容器) Example 1 (loading container)
図 2 0は、 第 1の実施例に係るマイクロバブル発生ノズル 1 0の導入部 1を 単体で使用する場合の装填容器 7 0の構造を示す。  FIG. 20 shows the structure of the loading container 70 when the introduction portion 1 of the microbubble generating nozzle 10 according to the first embodiment is used alone.
この装填容器 7 0は、 液体中に吐き出す用途に使用する場合の装填容器であ り、 接続管 1 5、 1 9との脱着も容器両端をネジ等にすることにより、 簡易に 行え、 導入部 1の脱着も自在である。 また、 ズレ止め用レール 7 1を設けるこ とにより、 導入部 1の回転を防止できる。なお、 図中 7 2は気体導入管挿入孔、 This loading container 70 is a loading container used for the purpose of discharging into a liquid, and can be easily attached to and detached from the connection pipes 15 and 19 by using screws at both ends of the container. 1 can be freely attached and detached. In addition, by providing the rail 71 for preventing displacement, the rotation of the introduction portion 1 can be prevented. In the figure, 72 is the gas inlet tube insertion hole,
7 3はパッキンである。 7 3 is a packing.
実施例 2 (装填容器) Example 2 (loading container)
図 2 1は、 第 2の実施例に係る導入部 1を単体で使用する場合の装填容器 8 FIG. 21 shows the loading container 8 when the introduction unit 1 according to the second embodiment is used alone.
0の構造を示す。 The structure of 0 is shown.
この実施例の場合は、 実施例 1の場合と対比して、 空気中に吐き出す用途に 使用する場合の装填容器であり、 吐出口に活性剤等飛散防止ネット 7 4を取り 付けることにより、 気泡発生空間 2内に活性剤等の充填を可能とした。 図中 7 5は活性剤等飛散防止ネッ卜押さえゴム、 7 6はネット取付キャップである。 実施例 3 (流動促進筒) In the case of this embodiment, in comparison with the case of the first embodiment, the loading container is used for the purpose of discharging into the air. The generation space 2 can be filled with an activator or the like. In the figure, reference numeral 75 denotes a net holding rubber for preventing scattering of activators and the like, and 76 denotes a net mounting cap. Example 3 (flow promotion cylinder)
図 2 2は、 第 3の実施例に係る、 導入部 1を実施例 1の装填容器 7 0に装填 した場合の流動促進筒 9 0の構造を示す。  FIG. 22 shows the structure of a flow promoting cylinder 90 according to the third embodiment when the introduction unit 1 is loaded in the loading container 70 of the first embodiment.
この流動促進筒 9 0は、 大径の筒体 9 1の中心部に固定用金具 9 2で装填容 器 7 0を取り付けることにより、 閉鎖水域等において、 水の流動がさらに促進 される。 この流動促進筒 9 0の上流側は、 ラッパ状に広げることにより、 筒体 9 1への流体の流れを円滑にする。  In the flow promoting cylinder 90, the flow of water is further promoted in a closed water area or the like by attaching the loading container 70 to the central portion of the large-diameter cylindrical body 91 with a fixing bracket 92. The upstream side of the flow promotion cylinder 90 is spread in a trumpet shape, so that the flow of fluid to the cylinder 91 is smooth.
実施例 4 (流速抑制筒) Example 4 (flow control cylinder)
図 2 3は、 第 4の実施例に係る流速抑制筒 1 0 0の構造を示す。 本実施例で は、 導入部 1の吐出側に接合された気泡発生空間形成用筒体 3に接続される流 速抑制筒 1 0 0に、 流量低下抑制孔 1 0 1を設け、 気泡発生空間形成用筒体 3 との接合部には、 乱流防止のために断面円弧状のツバ 1 0 2を設けている。 こ のツバ 1 0 2は、 本発明によって流速が著しく速いものに適用されるため、 必 要に応じて、 乱流を防止するために設けられるものである。 また、 流量低下抑 制孔 1 0 1は、単なる筒を接続しただけでは流速と同時に流量も低下するため、 流量低下を抑制するために設けられるものである。  FIG. 23 shows a structure of a flow velocity suppressing cylinder 100 according to the fourth embodiment. In the present embodiment, a flow rate reduction suppression hole 101 is provided in a flow rate suppression cylinder 100 connected to a bubble generation space forming cylinder 3 joined to the discharge side of the introduction section 1, and a bubble generation space is provided. An arc-shaped flange 102 is provided at the joint with the forming cylinder 3 to prevent turbulence. The collar 102 is provided for preventing a turbulent flow, if necessary, because the collar is applied to a material having a remarkably high flow velocity according to the present invention. In addition, the flow rate reduction suppression hole 101 is provided for suppressing the flow rate decrease because the flow rate is decreased at the same time as the flow velocity by simply connecting a cylinder.
実施例 5 (搬送物導入筒) Example 5 (conveyance introduction tube)
図 2 4は、 第 5の実施例に係る搬送物導入筒 1 1 0の構造を示す。 この搬送 物導入筒 1 1 0は、 気泡発生空間形成用筒体 3に接続され、 1個もしくは複数 個 (この場合は 3個) の搬送物導入孔 1 1 1と搬送物導入管 1 1 2により接続 管 1 1 3に接続されている。 この実施例では、 気泡発生空間形成用筒体 3と連 結することにより、 接続管端末に微細気泡と導入物を搬送することができる。 実施例 6 (活性剤等充填容器)  FIG. 24 shows the structure of the transported article introduction cylinder 110 according to the fifth embodiment. The conveyed product introduction cylinder 110 is connected to the bubble generating space forming cylinder 3 and has one or more (in this case, three) conveyed material introduction holes 1 1 1 and a conveyed material introduction pipe 1 1 2 Are connected to connecting pipes 1 1 and 3. In this embodiment, the fine bubbles and the introduced material can be conveyed to the connection pipe terminal by being connected to the bubble generating space forming cylinder 3. Example 6 (Activated agent filled container)
図 2 5は、 第 6の実施例に係る活性剤等充填容器 8 0の構造を示す。 この実 施例は、 空気中において使用する場合であり、 気泡発生空間形成用筒体 3側と 吐出部側にパッキン 7 3、 押さえゴム 7 5を介して活性剤等飛散防止ネット 7 4を取り付けることにより、 活性剤等充填空間 7 7内に活性剤等の充填を可能 とした。 図中 7 2は気体導入管挿入孔、 7 6はキャップである。 また、 ズレ止 め用レール 7 1を設けることにより、 導入部 1の回転を防止できる。 FIG. 25 shows the structure of a container 80 filled with an activator or the like according to the sixth embodiment. This embodiment is for use in the air, and an activator or other scattering prevention net 74 is attached to the bubble generation space forming cylinder 3 side and the discharge section side via a packing 73 and a pressing rubber 75. Thereby, the activator and the like can be filled in the activator and the like filling space 77. In the figure, 72 is a gas inlet tube insertion hole, and 76 is a cap. In addition, the gap stop The introduction rail 1 can be prevented from rotating by providing the rail 71.
実施例 7 (導入物確認筒) Example 7 (Introduction confirmation tube)
図 2 6は、 第 7の実施例に係る導入物確認筒 1 2 0の構造を示す。 この実施 例では、 接続筒 1 9 (気泡発生空間形成用筒体 3の下流位置) の配管の途中に 導入物確認筒 1 2 0を接続し、 ガラス又は透明プラスチックの確認窓 1 2 1を 窓材押さえ金具 1 2 2で密閉したものである。 この確認窓 1 2 1は、 管の両側 に設けることが好ましい。  FIG. 26 shows the structure of the introduced matter checking cylinder 120 according to the seventh embodiment. In this embodiment, the introduction confirmation tube 120 is connected in the middle of the pipe of the connection tube 19 (downstream of the bubble generating space forming cylinder 3), and the confirmation window 1 2 1 of glass or transparent plastic is connected to the window. It is sealed with a material retainer 1 2 2. The confirmation windows 122 are preferably provided on both sides of the pipe.
配管途中にノズルを取り付ける場合、 端末の気泡発生状態を確認することな く、 空気量を調節できる。 また、 両面に窓 1 2 1を設けることにより、 反対側 から照明を当て、 光を透過させることにより、 内部確認が容易になる。  If a nozzle is installed in the middle of the pipe, the air volume can be adjusted without checking the bubble generation state at the terminal. In addition, by providing windows 12 on both sides, the interior can be easily checked by illuminating from the opposite side and transmitting light.
実施例 8 (流速調節筒) Example 8 (flow rate adjusting cylinder)
図 2 7は、 第 8の実施例に係る流速調節筒 1 3 0の構造を示す。 本実施例で は、 導入部 1の吐出側に接合された気泡発生空間形成用筒体 3の吐出口側外周 に流量低下抑制孔 1 3 1を形成した流速調節筒取付用補助具 1 3 2を取り付け ることにより、 流速調節筒 1 3 0のスライドによる流量低下抑制孔 1 3 1の開 口率及び気泡発生空間形成用筒体 3吐出面から流速調節筒 1 3 0吐出面までの 空間長を調整可能とし、 気泡噴射バス等に使用する場合、 簡単に流速が調節で きる。 図においては、 気泡発生空間形成用筒体 3と流速調節筒取付用補助具 1 3 2は別体に形成し、 それぞれを嵌合して一体化した構造を示しているが、 当 初から一体に形成することもできる。  FIG. 27 shows the structure of a flow rate adjusting cylinder 130 according to the eighth embodiment. In this embodiment, a flow rate adjusting cylinder mounting auxiliary tool 1 3 2 having a flow rate reduction suppressing hole 13 1 formed on the outer periphery of the discharge port side of the bubble generating space forming cylinder 3 joined to the discharge side of the introduction section 1 3 2 By mounting the flow rate control cylinder 13, the flow rate control cylinder 13 3 slides and the flow rate reduction hole 13 1 opening rate and the bubble generation space forming cylinder 3 The space length from the discharge surface to the flow rate control cylinder 13 30 discharge surface The flow rate can be easily adjusted when used in a bubble injection bath or the like. The figure shows a structure in which the air bubble generation space forming cylinder 3 and the flow rate adjusting cylinder mounting aid 1 32 are formed separately and fitted together to integrate them. Can also be formed.
実施例 9 (マイクロバブルカーテン発生ノズル) Example 9 (Micro bubble curtain generating nozzle)
図 2 8は、 第 9の実施例に係るマイクロバブルカーテン発生ノズル 1 4 0の 構造を示す。 このノズル 1 4 0は、 気泡発生空間形成用筒体 3に接合するため の円形のノズル取付部 1 4 1から幅は気泡吐出口 1 4 2側に向かって末広がり 状に、 高さは先細り状になっており、 内部に気泡誘導板 1 4 3を設けている。 この実施例では、 気泡発生空間形成用筒体 3と連結することにより、 気泡を平 面的に液体中に噴出することができる。  FIG. 28 shows the structure of the microbubble curtain generating nozzle 140 according to the ninth embodiment. The nozzle 140 has a width diverging from the circular nozzle mounting portion 141 for joining to the bubble generating space forming cylinder 3 toward the bubble discharge port 144 side, and a tapered height. And a bubble guide plate 144 is provided inside. In this embodiment, the bubbles can be ejected into the liquid in a planar manner by being connected to the bubble generating space forming cylinder 3.
実施例 1 0 (エアー調整バルブ) 図 2 9は、 第 1 0の実施例に係るエアー調整バルブ 1 5 0の構造を示す。 マ イクロバブル発生に必要な気体はごく微量である。そのため、 この実施例では、 エアー調整コック 1 5 3内の通気孔 1 5 8を楕円の形状とし、 マイクロバブル を発生させる領域の微調整を簡易に行えるようにした。 図中 1 5 1は外筒部、 1 5 2は内筒部、 1 5 3はエアー調整コック、 1 5 4は全開全閉ストッパ、 1 5 5は気体導入管接続部、 1 5 6はシールリング、 1 5 7は内筒部接続部、 1 5 8は通気孔、 1 5 9は通気孔断面連結用縮部である。 Example 10 (Air adjustment valve) FIG. 29 shows the structure of the air adjusting valve 150 according to the tenth embodiment. The gas required for microbubble generation is very small. Therefore, in this embodiment, the ventilation hole 158 in the air adjustment cock 153 is formed into an elliptical shape so that the fine adjustment of the region where the microbubbles are generated can be easily performed. In the figure, 15 1 is the outer cylinder, 15 2 is the inner cylinder, 15 3 is the air adjustment cock, 15 4 is the fully open and fully closed stopper, 15 5 is the gas inlet connection, and 15 6 is the seal. A ring, 157 is a connection part of the inner cylinder part, 158 is a vent, and 159 is a contraction part for connecting the cross section of the vent.
実施例 1 1 (エアー取り入れ口フィル夕) Example 1 1 (Air intake fill evening)
図 3 0は、 第 1 1の実施例に係るエアー取り入れ口フィルタ 1 6 0の構造を 示す。 特に多孔性の材料を気体導入孔 5に使用する場合、 導入空気による閉塞 の可能性が生じる。 このため多孔性材料の閉塞を防止する有孔フィルタを気体 導入孔 5に接続する。 図 3 0において、 1 6 1はフィル夕一外筒、 1 6 2はキ ヤップ、 1 6 3はネット止め具、 1 6 4はフィルター押さえネット、 1 6 5は フィルター受け凸部、 1 6 6はフィルタ、 1 6 7は内筒部接続部、 1 6 8は通 気孔である。  FIG. 30 shows the structure of the air intake filter 160 according to the first embodiment. In particular, when a porous material is used for the gas introduction hole 5, there is a possibility of blockage due to introduced air. For this purpose, a perforated filter for preventing blockage of the porous material is connected to the gas inlet 5. In Fig. 30, 16 1 is a filter cylinder, 16 2 is a cap, 16 3 is a net stopper, 16 4 is a filter holding net, 16 5 is a filter receiving projection, 1 6 6 Is a filter, 167 is a connection part of the inner cylinder, and 168 is a vent.
実施例 1 3 (バブル吐出方向変換用エルボ) Example 13 (Elbow for changing the direction of bubble discharge)
ノズルを水面と平行に、 すなわち水面に対して水平方向に取り付けて使用す る場合においては、 次のような問題が発生する。  When the nozzle is used in parallel with the water surface, that is, in the horizontal direction with respect to the water surface, the following problems occur.
特に大径ノズルにおいて気泡発生空間内の気体導入孔を複数設けた場合、 各 々の気体導入孔において水面からの深度、 すなわち水圧が異なってくる。 この ため、 水面に近い方の気体導入孔は気泡が出やすく、 反対に深い方の気体導入 孔は気泡が出にくくなる。 これにより、 安定した同一径の気泡発生が困難であ る。  In particular, when a large-diameter nozzle is provided with a plurality of gas introduction holes in the bubble generation space, the depth from the water surface, that is, the water pressure in each gas introduction hole differs. For this reason, air bubbles are likely to come out from the gas inlet nearer to the water surface, and conversely, air bubbles are harder to come out from the deeper gas inlet. This makes it difficult to generate stable bubbles of the same diameter.
本実施例では、 図 3 1に示すようにノズルの導入部 1を下向き、 すなわち水 面に対して垂直方向に取り付け、 水平に気泡の向きを変換するためにエルボ 1 7 0を使用する。 これにより、 水面から各気体導入孔までの深度 (水圧) が同 じとなり、 吐出方向は、 エルボ 1 7 0を使用することにより水平方向に変換す る。 これにより、 特に大径ノズルにおいても安定して均一なサイズの気泡発生 が可能となる。 In this embodiment, as shown in FIG. 31, the nozzle introduction portion 1 is attached downward, that is, vertically attached to the water surface, and an elbow 170 is used to horizontally change the direction of bubbles. As a result, the depth (water pressure) from the water surface to each gas introduction hole becomes the same, and the discharge direction is changed to the horizontal direction by using an elbow 170. As a result, bubbles of stable and uniform size are generated, especially for large-diameter nozzles. Becomes possible.
実施例 1 4 (バブル吐出方向変換用バブル分散ノズル) Embodiment 14 (Bubble Dispersion Nozzle for Changing Bubble Discharge Direction)
実施例 1 3と同じ目的で、 図 3 2に示す、 マイクロバブル分散ノズル 1 8 0 を取り付けることにより、 大量のマイクロバブルを多方向に分散させ、 吐き出 すことができる。 このマイクロバブル分散ノズルは、 垂直に取り付けたマイク ロバブル発生ノズル 1 0の直下に半球状の気泡分散用凸部 1 8 1を設け、 水平 方向に気泡吐出口 1 8 2を設けたものである。  By attaching the microbubble dispersion nozzle 180 shown in FIG. 32 for the same purpose as in the embodiment 13, a large amount of microbubbles can be dispersed in multiple directions and discharged. This microbubble dispersion nozzle has a hemispherical bubble dispersion convex portion 181 provided immediately below a vertically attached microbubble generating nozzle 10 and a bubble discharge port 182 provided in a horizontal direction.
実施例 1 5 (複数ノズル装填具) Example 15 (multiple nozzle loading device)
図 3 3及び図 3 4は、 複数のマイクロバブル発生ノズルを装填して、 全体と してマイクロバブルの発生量を増加させる複数ノズル装填具の実施例を示すも のである。  FIGS. 33 and 34 show an embodiment of a multi-nozzle loader in which a plurality of micro-bubble generating nozzles are loaded to increase the amount of generated micro-bubbles as a whole.
具体的に説明すると、 複数ノズル装填具 1 9 0には、 複数個、 本例では 3個 のマイクロバブル発生ノズルを装填する穴が設けられており、 図 3 5に示すよ うなマイクロバブル発生ノズル 1 0が装填される。 図中 1は導入部、 l aはノ ズル固定用ツバ、 l bはノズル固定用凸部、 2は気泡発生空間、 3は気泡発生 空間形成用筒体、 4は加圧液体導入孔、 5は気体導入孔、 6は気体導入管、 7 は気体導入量調整弁、 1 1は気体導入孔メクラビス、 1 2は加圧液体誘導溝、 1 9 1はノズル固定具、 1 9 2はノズル固定具取付用凹部、 1 9 3はノズル固 定用凹部、 1 9 4はパッキン、 1 9 5は気体導入パイプである。  More specifically, the multiple-nozzle loading device 190 is provided with holes for loading a plurality of, in this example, three, microbubble generating nozzles, and the microbubble generating nozzle as shown in FIG. 35 is provided. 10 is loaded. In the figure, 1 is an introduction part, la is a nozzle fixing flange, lb is a nozzle fixing projection, 2 is a bubble generation space, 3 is a bubble generation space forming cylinder, 4 is a pressurized liquid introduction hole, and 5 is a gas. Inlet, 6 is a gas inlet pipe, 7 is a gas inlet adjustment valve, 1 1 is a gas inlet hole mekravis, 1 2 is a pressurized liquid guide groove, 19 1 is a nozzle fixture, and 19 2 is a nozzle fixture. Recesses, 193 is a recess for fixing the nozzle, 194 is packing, and 195 is a gas introduction pipe.
この複数ノズル装填具によれば、 複数のノズルを自在に脱着できるため、 ポ ンプ能力に合わせて噴出力や気泡量をコントロールできる。 また、 各ノズルの 加圧力を一定にできる。  According to this multi-nozzle loading device, since a plurality of nozzles can be freely attached and detached, the ejection power and the amount of bubbles can be controlled according to the pumping ability. Also, the pressure of each nozzle can be kept constant.
実施例 1 6 (複数ノズル装填具) Example 16 (Multiple nozzle loading device)
図 3 6は、 複数のマイクロバブル発生ノズル 1 0を装填する複数ノズル装填 具の他の実施例を示すものである。 この複数ノズル装填具 2 0 0は、 加圧気体 を導入する直管 2 0 1の側部に複数個のマイクロバブル発生ノズル 1 0を装着 したものである。  FIG. 36 shows another embodiment of a multi-nozzle loading tool for loading a plurality of micro-bubble generating nozzles 10. The multi-nozzle loader 200 has a plurality of microbubble generating nozzles 10 mounted on a side of a straight pipe 201 into which a pressurized gas is introduced.
実施例 1 7 (気体導入管集合チャンバ) 図 37は、 複数ノズルへの気体導入を一つにまとめる気体導入管集合チャン バ 210の例を示すものである。 Example 17 (gas inlet tube collecting chamber) FIG. 37 shows an example of a gas introduction tube collecting chamber 210 that integrates gas introduction into a plurality of nozzles into one.
図中 21 1は集合チャンバ外筒上部、 212は集合チャンバ外筒下部、 2 1 3は気体導入管接続部、 2 14は通気孔、 21 5はフィルター受け凸部、 2 1 6はフィルター、 217は気体導入量調整弁である。  In the figure, 21 1 is the upper part of the outer cylinder of the collecting chamber, 212 is the lower part of the outer cylinder of the collecting chamber, 2 13 is the connection part of the gas introduction pipe, 214 is the vent, 215 is the convex part of the filter receiver, 216 is the filter, Is a gas introduction amount adjustment valve.
本実施例によれば、 複数のノズルを 1箇所に集中して設置する場合、 気体導 入のための接続管を 1本にまとめることができる。 また、 複数ノズルの気体導 入量を 1箇所で調整することができる。 必要に応じて、 中にフィルターを装填 することができる。 なお、 本体と気体導入量調整弁は別々でも可能である。 D. 応用例  According to the present embodiment, when a plurality of nozzles are installed in one place, the connecting pipe for gas introduction can be integrated into one. In addition, the gas introduction amount of a plurality of nozzles can be adjusted at one place. Filters can be loaded inside if necessary. The main unit and the gas introduction amount adjustment valve can be separate. D. Application Examples
第 1実施例 (風呂) First example (bath)
図 38は本発明の第 1実施例を示すもので、 浴槽 300の取水口 310と吐 出口 320に気泡発生装置 330を取り付けたものである。 図 38 (a) は浴 槽取付部の断面図、 (b) は取水口部拡大断面図、 (c) は吐出口部拡大断面図、 (d) は吐出口アタッチメントホースの拡大断面図である。  FIG. 38 shows a first embodiment of the present invention, in which a bubble generator 330 is attached to a water inlet 310 and a discharge outlet 320 of a bathtub 300. Fig. 38 (a) is a sectional view of the bathtub mounting part, (b) is an enlarged sectional view of the water intake, (c) is an enlarged sectional view of the outlet, and (d) is an enlarged sectional view of the outlet attachment hose. .
この実施例では、 気泡発生装置 330は循環ポンプ 301とマイクロバブル 発生ノズル 10と気泡粉砕兼気泡混入ノズル 40 (または気泡粉砕ノズル 60) からなつている。 本実施例においては、 マイクロバブル発生ノズル 10は、 導 入部 1の直径が 20mm、 長さが 40mm、 加圧液体導入孔 4の直径が 7 mm X 3個、 気体導入孔 5の直径が lmm、 気泡発生空間形成用筒体 3の外径が 2 0mm、 長さが 30mm、 加圧液体誘導溝 12の内径が 2つの段差により 7. 0 mm, 7. 5 mm, 8. 0 mmと拡径し、 気泡発生空間 2が 2つの段差によ り 10. 0mm,. 10. 5mm, 1 1. 0mmと拡径する、 図 11に示す構造 のものを使用した。 また、 気泡粉砕兼気泡混入ノズル 40は、 導入部 41の直 径が 15mm、 長さが 30mm、 加圧液体導入孔 43の直径が 1. 2mm, 1. 5 mm, 1. 8 mmと拡径するものを 9個、 気体導入孔 42の直径が lmmの、 図 18に示す構造のものを使用した。  In this embodiment, the bubble generating device 330 includes a circulation pump 301, a microbubble generating nozzle 10, and a bubble crushing / bubble mixing nozzle 40 (or a bubble crushing nozzle 60). In the present embodiment, the microbubble generating nozzle 10 has a diameter of the introduction portion 1 of 20 mm, a length of 40 mm, a diameter of the pressurized liquid introduction hole 4 of 7 mm × 3, a diameter of the gas introduction hole 5 of lmm, The outer diameter of the bubble generating space forming cylinder 3 is 20 mm, the length is 30 mm, and the inner diameter of the pressurized liquid guide groove 12 is expanded to 7.0 mm, 7.5 mm, 8.0 mm by two steps. The structure shown in Fig. 11 was used in which the bubble generation space 2 was expanded to 10.0 mm, 10.5 mm, and 11.0 mm by two steps. The diameter of the inlet 41 is 15 mm, the length is 30 mm, and the diameter of the pressurized liquid inlet 43 is 1.2 mm, 1.5 mm, and 1.8 mm. The structure shown in Fig. 18 was used in which nine gas inlet holes 42 had a diameter of lmm.
図中 302は気体導入管、 303 a, 303 bは気体導入量調整弁、 1 5は 接続管である。 図 3 8 ( b ) に示すように、 取水口 3 1 0には、 取水口接続具 3 1 1と取水フィルター脱着具 3 1 2と取水フィルター 3 1 3が装着され、 取 水口接続具 3 1 1に接続管 1 5が接続される。 また図 3 8 ( c ) に示すように、 吐出口 3 2 0には、 吐出口接続具 3 2 1と吐出口アタッチメント 3 2 2が装着 され、 吐出口接続具 3 2 1に接続管 1 5が接続される。 吐出口アタッチメント 3 2 2には、 図 3 8 ( d ) に示すような、 吐出口アタッチメントホース取付具 3 2 4とホース 3 2 5とホース先端保護具 3 2 6からなる吐出ロア夕ツチメン トホース 3 2 3が装着でき、 人体の任意の部位にマイクロバブルを照射してマ ッサージ作用を人体に適用できるようにしている。 In the figure, 302 is a gas introduction pipe, 303a and 303b are gas introduction amount adjusting valves, and 15 is It is a connecting pipe. As shown in Fig. 38 (b), the intake port 3 110 is equipped with the intake port connector 3 1 1, the intake filter attaching / detaching device 3 1 2 and the intake filter 3 1 3, and the intake port connector 3 1 The connection pipe 15 is connected to 1. Also, as shown in Fig. 38 (c), the discharge port 3 20 is equipped with the discharge port fitting 3 2 1 and the discharge port attachment 3 2 2, and the discharge port 3 2 1 is connected to the connection pipe 1 5 Is connected. As shown in Fig. 38 (d), the discharge outlet attachment 3 2 2 has a discharge lower attachment hose 3 consisting of a discharge outlet attachment hose fitting 3 2 4, a hose 3 2 5 and a hose tip protector 3 2 6 23 can be attached, and micro-bubbles can be applied to any part of the human body to apply the massaging effect to the human body.
この実施例において、 装置を運転すると、 まず吸い込み側に取り付けたマイ クロバブル発生ノズル 1 0からマイクロバブルが吸入水に混入する。 この時点 では、 マイクロバブルの混入量は必ずしも多くない。  In this embodiment, when the apparatus is operated, first, microbubbles are mixed into the suction water from the microbubble generating nozzle 10 attached to the suction side. At this point, the amount of microbubbles is not necessarily large.
マイクロバブルが混入した気液は、 ポンプ 3 0 1内の羽根により大径の気泡 はさらに微細に砕かれる。 通常、 ポンプ 3 0 1内に気泡が混入すると、 異音、 雑音が発生するが、 本装置は、 微細化した状態で混入させるため、 この類の音 はほとんど発生しない。 なおかつ、 圧力の低下も同様にほとんど見受けられな い。  In the gas-liquid mixed with the microbubbles, the large-diameter bubbles are further finely broken by the blades in the pump 301. Normally, when air bubbles enter the pump 301, abnormal noise and noise are generated. However, since this device is mixed in a miniaturized state, this kind of sound is hardly generated. In addition, there is almost no decrease in pressure.
ポンプ 3 0 1内でさらに砕かれた気泡が混入した気液は、 吐出口に取り付け た気泡粉砕兼気泡混入ノズル 4 0に導かれる。 このノズルの持つキヤビテーシ ヨン作用により、 気泡はさらに砕かれ、 ほとんどの気泡は 1 0 m程度のマイ クロバブルとなる。 また、 ノズル 1 0に取り付けた調整弁 3 0 3 aはマイクロ サイズの微細気泡発生状態に調節固定し、 調整弁 3 0 3 bを調節することによ り、 マイクロサイズの気泡から数 mmの気泡まで、 自在な気泡の生成が可能で ある。  The gas-liquid mixed with air bubbles further crushed in the pump 301 is guided to the air bubble crushing / air mixing nozzle 40 attached to the discharge port. Due to the cavitation function of this nozzle, the air bubbles are further broken, and most of the air bubbles become microbubbles of about 10 m. In addition, the regulating valve 303 a attached to the nozzle 10 is adjusted and fixed to the state of generating micro-sized fine bubbles, and by adjusting the regulating valve 303 b, the bubbles of several mm from the micro-sized bubbles are adjusted. Up to the generation of air bubbles is possible.
この実施例において、 調整弁 3 0 3 aに代えて、 流量を固定した気体導入穴 とすることもできる。  In this embodiment, a gas introduction hole having a fixed flow rate may be used instead of the regulating valve 303a.
ぐ第 2実施例 > (風呂) 2nd embodiment> (Bath)
図 3 9は本発明の第 2実施例を示すもので、 浴槽 3 0 0に外付けの気泡風呂 装置 3 4 0を取り付けるようにしたものである。 この気泡風呂装置 3 4 0は浴 槽 3 0 0の壁面にホース取付具 3 5 0を取り付けて、 接続管 1 5、 1 9 (ホー ス) によりポンプ 3 0 1と接続したものである。 図中 3 6 0は取水部、 3 7 0 は吐出部である。 ホース取付具 3 5 0は、 図 4 0に示すように、 上部がコ字状 に曲げられたホース取付支持板 3 5 1に取付位置調節溝を 3個所設け、 取付位 置固定ツマミ 3 5 3と発生ノズル固定具 3 5 4を取り付けており、 コ字状に曲 げられた部分の裏側にはキズ防止ラバ一 3 5 5を貼り付けている。 上部と下部 の取付位置固定ツマミ 3 5 3には、 ホース通し孔 3 5 7を設けた連結材 3 5 6 を取り付け、 吸盤 3 5 8で浴槽の内壁に吸着するようにしている。 中央の発生 ノズル固定具 3 5 4は、 裏側から取付位置固定ツマミ 3 5 3でホース取付支持 板 3 5 1に固定し、 気泡粉砕兼気泡混入ノズル 4 0または気泡粉砕ノズル 6 0 を取り付けるようにしている。 FIG. 39 shows a second embodiment of the present invention, in which an external bubble bath is attached to a bathtub 300. The device 340 is to be attached. This bubble bath apparatus 340 has a hose fitting 350 attached to the wall surface of a bathtub 300, and is connected to a pump 301 by connecting pipes 15, 19 (hose). In the figure, reference numeral 360 denotes a water intake unit, and reference numeral 370 denotes a discharge unit. As shown in Fig. 40, the hose mounting fixture 350 has three mounting position adjustment grooves on the hose mounting support plate 3 51 whose upper part is bent in a U-shape, and the mounting position fixing knob 3 5 3 And a generation nozzle fixture 354 are attached, and a scratch prevention rubber 355 is attached to the back side of the portion bent in a U-shape. A connecting member 356 provided with a hose through hole 357 is attached to the upper and lower mounting position fixing knobs 353 so that the sucker 358 sucks the inner wall of the bathtub. At the center, the nozzle fixing device 3 5 4 is fixed to the hose mounting support plate 3 51 with the mounting position fixing knob 3 5 3 from the back side, and the bubble crushing / bubble mixing nozzle 40 or the bubble crushing nozzle 60 is attached. ing.
取水部 3 6 0の詳細を図 4 1 ( a ) に示す。 ポンプ 3 0 1への接続管 1 5に ホース接続部 3 7 1で取水フィルター接続部 3 6 1に接続し、 その先端に、 取 水フィルター 3 6 4を取り付けた取水フィルター装填キャップ 3 6 2を装着し ている。 3 6 3は取水フィルター押さえネットである。  Details of the water intake section 360 are shown in Figure 41 (a). Connect the connection pipe 15 to the pump 30 1 with the hose connection 3 7 1 to the intake filter connection 3 6 1, and attach the intake filter loading cap 3 6 2 with the intake filter 3 6 4 at the end. It is installed. 3 6 3 is an intake filter holding net.
吐出部 3 7 0の詳細を図 4 1 ( b ) に示す。 ポンプ 3 0 1からの接続管 1 9 は、 ホース接続部 3 7 1でノズル取付エルボ管 3 7 2に接続し、 その先端に気 泡粉砕兼気泡混入ノズル 4 0または気泡粉砕ノズル 6 0を取り付ける。 その先 端には、 流量低下抑制孔 3 7 4を設けた流速調節筒 3 7 3を流速調整筒取付用 補助具 3 7 5を介して取り付ける。  Details of the discharge section 370 are shown in FIG. 41 (b). The connecting pipe 19 from the pump 301 is connected to the nozzle mounting elbow pipe 372 at the hose connecting part 371, and the bubble pulverizing / bubble mixing nozzle 40 or the bubble pulverizing nozzle 60 is attached to the tip of the pipe. . At the front end, a flow rate adjusting cylinder 373 provided with a flow rate reduction suppressing hole 374 is attached via a flow rate adjusting cylinder mounting auxiliary tool 375.
<第 3実施例 > (風呂) <Third embodiment> (bath)
図 4 2は、 本発明の第 3実施例を示すもので、 浴槽 3 0 0内に沈めて使用す るポンプ 3 0 1を内蔵した気泡風呂装置 3 7 0を示すものである。 本実施例で は、 装置ケース 3 8 0内に取水ロスリット 3 8 1と吐出口アタッチメント取付 部 3 8 3を設け、 取水ロスリツ卜 3 8 1に取水フィル夕一止め具 3 8 2で取水 フィルター 3 6 4を装着し、 取水フィルタ一 3 6 4の近傍にマイクロバブル発 生ノズル 1 0を配置し、 接続管 1 5でポンプ 3 0 1に接続し、 吐出ロア夕ツチ メント取付部 3 8 3に気泡粉砕兼気泡混入ノズル 4 0または気泡粉砕ノズル 6 0と接続された吐出口アタッチメント取付具 3 2 2を取り付けたものである。 吐出口アタッチメント取付具 3 2 2には、 吐出口アタッチメントホース 3 2 3 を接続することができる。 気体導入管 3 0 2は浴槽 3 0 0外に取り出して空気 を取り入れる。 図中 3 8 4はポンプ 3 0 1のスィッチ 3 8 5を外から操作する ための操作部である。 FIG. 42 shows a third embodiment of the present invention, and shows a bubble bath apparatus 370 having a built-in pump 301 which is used by being immersed in a bathtub 300. In the present embodiment, a water intake slit 381 and a discharge port attachment mounting portion 383 are provided in the device case 380, and a water intake filter is attached to the water intake loss slit 381 with a water stop filter 382. Attach the microbubble generation nozzle 10 near the water intake filter 1, and connect it to the pump 301 with the connecting pipe 15. A bubble crushing / bubble mixing nozzle 40 or a discharge port attachment fitting 3 22 connected to the bubble crushing nozzle 60 is attached to the attachment portion 3 83. A discharge port attachment hose 3 2 3 can be connected to the discharge port attachment fixture 3 2 2. The gas inlet tube 302 is taken out of the bathtub 300 to take in air. In the figure, reference numeral 384 denotes an operation section for operating the switch 385 of the pump 301 from outside.
ぐ第 4実施例 > (風呂) 4th embodiment> (Bath)
図 4 3は本発明の第 4実施例を示すものであり、 第 1実施例における気泡粉 碎兼気泡混入ノズル 4 0または気泡粉砕ノズル 6 0を省略し、 ポンプ 3 0 1の 吐出側にマイクロバブル発生ノズル 1 0を取り付けたものである。  FIG. 43 shows a fourth embodiment of the present invention. In the first embodiment, the bubble crushing / bubble mixing nozzle 40 or the bubble crushing nozzle 60 in the first embodiment is omitted. A bubble generating nozzle 10 is attached.
<第 5実施例 > (風呂) <Fifth embodiment> (bath)
図 4 4は本発明の第 5実施例を示すものであり、 第 2実施例における気泡粉 碎兼気泡混入ノズル 4 0または気泡粉砕ノズル 6 0を省略し、 吐出部 3 7 0に マイクロバブル発生ノズル 1 0を取り付けたものである。  FIG. 44 shows a fifth embodiment of the present invention, in which the bubble crushing / bubble mixing nozzle 40 or the bubble crushing nozzle 60 in the second embodiment is omitted, and microbubbles are generated in the discharge section 370. Nozzle 10 is attached.
<第 6実施例 > (風呂) <Sixth embodiment> (bath)
図 4 5は本発明の第 6実施例を示すものであり、 第 3実施例における気泡粉 砕兼気泡混入ノズル 4 0または気泡粉砕ノズル 6 0を省略し、 ポンプ 3 0 1の 吐出側にマイクロバブル発生ノズル 1 0を取り付けたものである。  FIG. 45 shows a sixth embodiment of the present invention, in which the bubble crushing / bubble mixing nozzle 40 or the bubble crushing nozzle 60 in the third embodiment is omitted, and the discharge side of the pump 301 is provided with a microstructure. A bubble generating nozzle 10 is attached.
これらの第 4〜第 6実施例においては、 第 1〜第 3実施例の 2つのノズルを 設けた場合に比べて気泡の量ゃ径は劣るものの、 従来の気泡風呂に比べて、 マ イクロバブルによる効果は充分期待できる。  In these fourth to sixth embodiments, although the amount and diameter of air bubbles are inferior to those in the case where the two nozzles of the first to third embodiments are provided, compared to the conventional bubble bath, microbubbles are used. The effect can be expected enough.
ぐ第 7実施例 > (脱気装置) 7th embodiment> (Degassing device)
図 4 6は本発明の脱気装置の実施例の構造を示す断面図である。  FIG. 46 is a sectional view showing the structure of the embodiment of the deaerator of the present invention.
図において、 脱気装置 4 0 0は、 外部から脱気を必要とする加圧液体が、 接 続管 4 0 1を介して気液分離ノズル 4 2 0に導入される。 気液分離ノズル 4 2 0は、 図 4 7に示す構造となっている。 図 4 7 ( a ) は上面の加圧液体流入側 から見た導入部 4 2 1の形態を示す平面図、 (b ) は縦断面図、 (c ) は下面か ら見た図、 (d ) は (c ) の拡大図、 (e ) は気液分離管 4 2 3の拡大断面図で ある。 図中 4 0 4ば気体回収用電動弁、 4 0 6は気体回収部圧力調節電動弁、 4 0 8は気体凝集部内圧力調節電動弁、 4 7 0は制御盤、 4 7 1はフロートレ ス液面リレー、 4 7 2は計装配線である。 In the figure, in a degassing device 400, a pressurized liquid that needs to be degassed from outside is introduced into a gas-liquid separation nozzle 420 through a connection pipe 401. The gas-liquid separation nozzle 420 has the structure shown in FIG. Fig. 47 (a) is a plan view showing the form of the introduction part 4 21 viewed from the pressurized liquid inflow side on the upper surface, (b) is a longitudinal sectional view, (c) is a view from the lower surface, (d) ) Is an enlarged view of (c), and (e) is an enlarged sectional view of the gas-liquid separation tube 4 23. is there. In the figure, reference numeral 404 denotes a gas recovery motorized valve, 406 denotes a gas recovery section pressure control valve, 408 denotes a pressure in the gas condensing section pressure control valve, 470 denotes a control panel, and 471 denotes a flow trace liquid. The surface relay, 472 is instrumentation wiring.
同図 (b ) に示すように、 気液分離ノズル 4 2 0は、 加圧気液の導入部 4 2 1と、 気液分離空間 4 2 4を有する。 図においては、 導入部 4 2 1と気液分離 空間 4 2 4を形成した気液分離空間形成筒 2 5は一体に形成した構造を示して いるが、 別体に形成することもできる。  As shown in FIG. 2B, the gas-liquid separation nozzle 420 has a pressurized gas-liquid introduction section 421 and a gas-liquid separation space 424. Although the drawing shows the structure in which the introduction part 421 and the gas-liquid separation space forming cylinder 425 forming the gas-liquid separation space 424 are integrally formed, they may be formed separately.
この導入部 4 2 1内には、 その上面に開口する加圧気液導入孔 4 2 2を形成 し、 気液分離管 4 2 3として導入部 4 2 1の下に形成した気液分離空間 4 2 4 に開口している。 この加圧気液導入孔 4 2 2は、 円、 もしくは楕円の形状をな し、 径の大きさと数は、 加圧気液の圧力と種類によっても異なるが、 同図 (a ) に示すように、 複数本 (この場合は 3 1個) を端面でそれぞれが点対称位置に なるように開口し、 導入部 4 2 1内を貫通した気液分離管 4 2 3として気液分 離空間 4 2 4に開口している。 また加圧気液導入孔 4 2 2の流入側開口の周囲 4 2 2 aは、 流入する液体の流れを円滑にするため、 アールを取っている。 この気液分離ノズル 4 2 0に導入された加圧気液は、 下流側に行くにつれて 不連続的に径が大きくなる段差部を設けた気液分離管 4 2 3を通って、 断面積 が急激に広くなる気液分離空間 4 2 4に排出される際、 気液分離管 4 2 3内部 と気液分離空間 4 2 4の上底壁面 4 2 4 aにおいてキヤビテーションが生じ、 液体中の気体が霧状となって、 液体と分離された状態となる。  A pressurized gas-liquid introduction hole 4 22 formed on the upper surface of the introduction section 4 21 is formed in the introduction section 4 21, and a gas-liquid separation space 4 formed below the introduction section 4 2 1 as a gas-liquid separation pipe 4 2 3. Opened to 24. The pressurized gas-liquid introduction hole 422 has a circular or elliptical shape, and the size and number of the diameters vary depending on the pressure and type of the pressurized gas-liquid, as shown in FIG. A plurality of pipes (31 in this case) are opened so that they are point-symmetrical at the end face, and a gas-liquid separation pipe 4 2 3 penetrating through the introduction section 4 2 1 as a gas-liquid separation space 4 2 4 It is open to. Around the inflow side opening of the pressurized gas-liquid introduction hole 422 is rounded in order to make the flow of the flowing liquid smooth. The pressurized gas-liquid introduced into the gas-liquid separation nozzle 420 passes through a gas-liquid separation tube 423 provided with a step portion whose diameter increases discontinuously toward the downstream side, and has a sharp cross-sectional area. When the gas is discharged into the gas-liquid separation space 4 2 4 that is widened, cavitation occurs in the inside of the gas-liquid separation tube 4 2 3 and the upper bottom wall 4 2 4 a of the gas-liquid separation space 4 2 4. The gas becomes mist and separates from the liquid.
なお、 気液分離管 4 2 3は、 図 4 7 ( e ) に示すように、 内壁に偏倚した夕 ップが形成されており、 これにより、 気液分離管の壁面でもキヤビテーシヨン が生じる。 このキヤビテーシヨン現象は、タップ断面の三角形状の山の位置を、 加圧気液の流れ方向の下流側に偏倚して形成することにより、 さらに顕著にな る。  In addition, as shown in FIG. 47 (e), the gas-liquid separation tube 423 has a biased inner wall formed therein, which causes cavitation on the wall surface of the gas-liquid separation tube. This cavitation phenomenon becomes more remarkable when the position of the triangular peak of the tap cross section is formed so as to be shifted downstream in the flow direction of the pressurized gas-liquid.
図 4 6に戻って、 気液分離ノズル 4 2 0から吐出された分離気液は、 分離気 液導入用接続管 4 0 2により、気体凝集部 4 3 0内部に導入される。 このとき、 分離気液導入用接続管 4 0 2の内面には、 気液分離ノズル 4 2 0の端面外周と の間で乱流が起きないための乱流防止ツバ 4 0 3が形成されている。 Returning to FIG. 46, the separated gas-liquid discharged from the gas-liquid separation nozzle 420 is introduced into the gas aggregating section 4330 by the separation gas-liquid introduction connection tube 402. At this time, the outer surface of the end surface of the gas-liquid separation nozzle A turbulence prevention collar 403 is formed to prevent turbulence from occurring between them.
気体凝集部 4 3 0は頂部がドーム状の旋回流発生筒 4 3 2とその旋回流発生 筒 4 3 2の底部から貫通して同心状に設けられている気体凝集筒 4 3 4とを有 しており、 図 4 8に示すように、 分離気液導入用接続管 4 0 2は、 分離気液が 旋回流発生筒 4 3 2に旋回流を生じながら導入されるように、 旋回流発生筒 4 3 2の中心軸とは偏倚した位置 (接線方向) に分離気液導入孔 4 3 1を有して いる。 なお、 図 4 8には、 流体の進行方向に向かって左向き (反時計回り) に 旋回流を生じる向きに分離気液導入孔 4 3 1を設けている力 反対側に設けて 右向きに旋回流を生じるようにしてもよい。  The gas aggregating part 4330 has a dome-shaped swirling flow generating cylinder 432 and a gas aggregating cylinder 434 that is provided concentrically through the bottom of the swirling flow generating cylinder 43. As shown in FIG. 48, the connecting pipe for separation gas-liquid introduction 402 generates a swirl flow so that the separation gas and liquid are introduced into the swirl flow generation cylinder 43 while generating a swirl flow. A separation gas-liquid introduction hole 431 is provided at a position (tangential direction) deviated from the center axis of the cylinder 432. In Fig. 48, the separation gas-liquid introduction hole 431 is provided in the direction in which the swirling flow is generated to the left (counterclockwise) in the direction of fluid flow. May be generated.
気体凝集部 4 3 0の旋回流発生筒 4 3 2の頂部は、 気液上昇管 4 3 6が貫通 して設けられており、 気液上昇管 4 3 6の上部は、 気体回収部 4 4 0の底部に 貫通して設けられている。 気体回収部 4 4 0の中ほどには、 図 4 9に示すよう に、 気体逆流防止用縮径部 4 4 3が形成されており、 この気体逆流防止用縮径 部 4 4 3よりも上位に気液上昇管 4 3 6の上端が位置するように構成されてい る。 気体回収部 4 4 0の上部には、 気体の回収状態を検知するフロートレス液 面リレ一及び気体回収用バルブ 4 0 4を介して気体回収管 4 0 5が設けられて おり、 装置の連続運転を可能にするため、 減圧装置 4 7 3に接続されている。 一方、 気体凝集筒 4 3 4の下端には気体凝集部内圧力調節バルブ 4 0 8及び 回収部圧力減圧用ノズル接続管 4 0 9を介して気体回収部圧力減圧用ノズル 4 5 0が接続されている。  A gas-liquid riser pipe 4336 penetrates the top of the swirling flow generation cylinder 432 of the gas aggregation section 4330, and a gas recovery section 44 is provided above the gas-liquid riser pipe 436. It is provided through the bottom of the zero. As shown in FIG. 49, a gas backflow prevention reduced diameter portion 443 is formed in the middle of the gas recovery portion 440, and is higher than the gas backflow prevention reduced diameter portion 443. The upper end of the gas-liquid riser pipe 436 is located at the top. Above the gas recovery section 440, a gas recovery pipe 405 is provided via a floatless liquid level relay for detecting the recovery state of gas and a gas recovery valve 404, and the device is connected continuously. It is connected to a decompression device 473 to enable operation. On the other hand, the lower end of the gas condensing cylinder 4 3 4 is connected to a gas collecting section pressure reducing nozzle 4 50 via a gas collecting section pressure control valve 408 and a collecting section pressure reducing nozzle connecting pipe 409. I have.
この気体回収部圧力減圧用ノズル 4 5 0の構造を図 5 0に示す。 同図 (a ) は上面の加圧液体流入側から見た導入部 4 5 1の形態を、 (b ) は縦断面を、 ( c ) は下面の加圧液体吐出口側から見た図を示す。  FIG. 50 shows the structure of the nozzle 450 for reducing the pressure in the gas recovery section. (A) shows the configuration of the introduction section 451, as viewed from the pressurized liquid inflow side on the upper surface, (b) shows a vertical cross section, and (c) shows a view as viewed from the pressurized liquid discharge port side on the lower surface. Show.
同図 (b ) に示すように、 ノズル 4 5 0は、 加圧気液の導入部 4 5 1と、 返 送液体吸引圧力発生空間 4 5 7を有する。 図においては、 導入部 4 5 1と返送 液体吸引圧力発生空間 4 5 7を形成した返送液体吸引圧力発生筒体 4 5 6は別 体に形成し、 それぞれを嵌合して一体化した構造を示しているが、 当初から一 体に形成することもできる。 この導入部 4 5 1内には、 その上面に開口する加圧液体導入孔 4 5 2を形成 し、 導入部 4 5 1の下に形成した返送液体吸引圧力発生空間 4 5 7に開口して いる。 この加圧液体導入孔 4 5 2は、 円、 楕円もしくは導入部 4 5 1の上面を 底面とする円錐台または楕円錘台の形状をなし、 径の大きさと数は、 このノズ ルの使用用途と加圧液体の種類によっても異なるが、 同図(a ) に示すように、 端面に対し、 返送液体吸引圧力発生空間 4 5 7の開口断面積が 1 0〜4 0 %に なる程度の複数本 (この場合は 3個) を端面でそれぞれが点対称位置になるよ うに開口し、 導入部 4 5 1内を貫通し、 返送液体吸引圧力発生空間 4 5 7に開 口している。 また加圧液体導入孔 4 5 2の流入側開口の周囲 4 5 2 aは、 流入 する液体の流れを円滑にするため、 アールを取っている。 4 5 3は返送液体導 入孔を示す。 As shown in FIG. 2B, the nozzle 450 has a pressurized gas-liquid introduction section 451, and a return liquid suction pressure generation space 457. In the figure, the introduction part 45 1 and the return liquid suction pressure generating cylinder 45 56 that forms the return liquid suction pressure generation space 45 57 are formed separately, and they are fitted together and integrated. Although it is shown, it can be formed integrally from the beginning. A pressurized liquid introduction hole 452 is formed in the introduction section 451, which opens on the upper surface, and opens into the return liquid suction pressure generation space 457 formed below the introduction section 451. I have. The pressurized liquid introduction hole 452 has the shape of a circle, an ellipse, or a truncated cone or a truncated cone with the top surface of the introduction part 451 as the bottom surface. And the type of pressurized liquid, but as shown in Fig. 7 (a), a plurality of openings whose cross-sectional area of the return liquid suction pressure generating space 457 is 10% to 40% with respect to the end face. The books (three in this case) are opened so that they are point-symmetrical on the end face, penetrate through the introduction part 451, and open to the return liquid suction pressure generation space 457. Further, the periphery 452a of the inflow side opening of the pressurized liquid introduction hole 452 is rounded in order to make the flow of the flowing liquid smooth. Reference numeral 453 denotes a return liquid introduction hole.
この返送液体導入孔 4 5 3は、 側面の開口から導入部 4 5 1の返送液体導入 孔 4 5 3に挿入された返送液体導入管 4 5 4によって形成され、 返送液体吸引 圧力発生空間 4 5 7に放射状または中央に 1個 (この場合は中央に 1個) 開口 されている。  The return liquid introduction hole 4 5 3 is formed by the return liquid introduction pipe 4 5 4 inserted from the side opening into the return liquid introduction hole 4 5 3 of the introduction section 4 5 1, and the return liquid suction pressure generation space 4 5 There is one radial or central opening (in this case, one central).
なお、 4 5 5は返送液体導入孔 4 5 3内部を掃除する場合必要とされる孔を 塞ぐための返送液体導入孔メクラビス、 4 5 8は返送液体吸引圧力発生筒体 4 5 6内面に形成された、 加圧液体導入孔 4 5 2に連通する円弧状の加圧液体誘 導溝、 4 5 9は返送液体吸引圧力発生筒体 4 5 6の端部に形成された接合用凸 部、 4 6 0は導入部 4 5 1と返送液体吸引圧力発生筒体 4 5 6とを接合する接 合用止具である。  In addition, 455 is the return liquid introduction hole for closing the hole required for cleaning the inside of the return liquid introduction hole 545, and 458 is formed on the inner surface of the return liquid suction pressure generating cylinder 456. The arc-shaped pressurized liquid guide groove communicating with the pressurized liquid introduction hole 452, the connecting protrusion 509 formed at the end of the return liquid suction pressure generating cylinder 456, Reference numeral 460 denotes a joining stopper for joining the introduction portion 451 and the return liquid suction pressure generating cylinder 456.
次に、 本発明の脱気装置による脱気のプロセスについて説明する。  Next, the deaeration process by the deaerator of the present invention will be described.
1 . 気液分離ノズル 4 2 0に導入された加圧気液は、 気液分離ノズル 4 2 0内 のキヤビテーシヨン現象により真空に近い状態が生じ、 液体中の気体が霧状に なって分離される。  1. The pressurized gas-liquid introduced into the gas-liquid separation nozzle 420 generates a state close to a vacuum due to the cavitation phenomenon inside the gas-liquid separation nozzle 420, and the gas in the liquid becomes mist-like and is separated. .
2 . 分離された気液は分離気液導入孔 4 3 1より気体凝集部 4 3 0へ旋回流と して送り込まれる。  2. The separated gas-liquid is sent as a swirling flow from the separated gas-liquid introduction hole 431 to the gas aggregation section 4330.
3 . 送り込まれた気液は旋回流を伴い、 ドーム部上部に達し、 気体凝集筒 4 3 4を旋回流を加速させ降下してくる。 このとき、 気体凝集空間 4 3 5の中央部 に気体が凝集し、 竜巻状になる。 3. The sent gas and liquid accompany the swirling flow and reach the upper part of the dome, and the gas condensing cylinder 4 3 4 accelerates the swirling flow and descends. At this time, the gas condenses at the center of the gas condensing space 435 to form a tornado.
4. 液体は流れ方向にある気体凝集部 4 3 0下方の圧力調節バルブ 4 0 8に流 れて行くが、 前記のように竜巻状になった気体はエアーリフトの作用 (液体中 における気体の浮上作用) により気体凝集空間 4 3 5の中央部に留まる。  4. The liquid flows to the pressure regulating valve 408 below the gas condensing part 430 in the flow direction, but the tornado-shaped gas as described above acts as an air lift (the gas flow in the liquid). Due to the floating action), it stays in the center of the gas aggregation space 435.
5 . この中央部に留まった気体は、 気体回収部圧力減圧用ノズル 4 5 0の返送 液体導入管 4 5 4に接続されている気体回収部圧力調節管 4 0 7により気体回 収部 4 4 0内が減圧され、 気体回収部 4 4 0に送られる。 すなわち、 脱気装置 5. The gas remaining in the central part is returned to the gas collecting part pressure reducing nozzle 450, and the gas collecting part 444 is connected to the gas collecting part pressure adjusting pipe 407 connected to the liquid introduction pipe 454. The inside of the chamber is decompressed and sent to the gas recovery section 440. That is, deaerator
4 1 0最下部の脱気水吐出口前部に取り付けた気体回収部圧力減圧用ノズル 4 5 0の導入部 4 5 1に流入する加圧液体の有する負圧発生効果が返送液体導入 孔 4 5 3に発生し、 これにより、 気体回収部 4 4 0内の圧力が減圧され、 竜巻 状になった気体 浮上を促す。 4 10 0 Gas recovery unit attached to the front of the degassed water discharge port at the bottom of the bottom 4 Pressure reducing nozzle 4 5 0 Introducing section 4 5 1 Negative pressure generation effect of the pressurized liquid flowing into the liquid returning hole 4 5 3, whereby the pressure in the gas recovery section 44 is reduced, and the tornado-like gas is promoted.
6 . 浮上した気泡は気液上昇管 4 3 6内を通り、 気体回収部 4 4 0内の気体回 収空間 4 4 1に集まる。  6. The air bubbles that have floated pass through the gas-liquid riser pipe 436 and collect in the gas collection space 441 in the gas recovery section 4400.
7 . 気体回収が進むと気体回収空間 4 4 1内のフロートレス液面リレー 4 7 1 が液面低下を検知し、 制御盤 4 7 0に信号を送る。  7. As the gas recovery proceeds, the floatless liquid level relay 471 in the gas recovery space 441 detects the low liquid level and sends a signal to the control panel 470.
8 . 液面低下の信号を受けると、 電動弁 4 0 4は開、 電動弁 4 0 6は閉作動を する。同時に気体凝集筒 4 3 4下部に設けた電動弁 4 0 8を閉方向に作動させ、 減圧装置 4 7 3により気体回収空間 4 4 1内の気体を強制的に回収することに よって、 気液上昇管 4 3 6内の流れを気体回収部 4 4 0に強制的に導き内部液 面を上昇させる。  8. When receiving the signal of the liquid level drop, the motorized valve 404 opens and the motorized valve 406 closes. At the same time, the electric valve 408 provided at the lower part of the gas coagulation cylinder 4 3 4 is operated in the closing direction, and the gas in the gas recovery space 4 4 1 is forcibly recovered by the pressure reducing device 4 7 3. The flow in the riser pipe 436 is forcibly guided to the gas recovery section 4440 to raise the internal liquid level.
9 . 液面が上限に達するとフロートレス液面リレー 4 7 1が検知し、 制御盤 4 7 0に信号を送る。  9. When the liquid level reaches the upper limit, the floatless liquid level relay 471 detects and sends a signal to the control panel 470.
1 0 . 液面上昇の信号を受けると、 減圧装置は停止し、 電動弁 4 0 4は閉、 電 動弁 4 0 6は開作動をする。  10. When the signal of the liquid level rise is received, the pressure reducing device stops, the electric valve 404 closes, and the electric valve 406 opens.
1 1 . 同時に気体凝集筒下部の電動弁 4 0 8を開方向に作動させ、 気体回収を 行う。  1 1. At the same time, operate the motor-operated valve 408 at the bottom of the gas coagulation cylinder in the opening direction to collect gas.
1 2 . 上記プロセスにより、 装置の連続運転下における気体回収を行う。 ぐ第 8実施例 > (混合気製造ノズル) 1 2. By the above process, gas recovery under continuous operation of the equipment. Eighth Embodiment> (Air-fuel mixture production nozzle)
以下、 本発明の実施の形態を導入圧力気体として、 圧力が 2 . 0 k g / c m 2 の空気を導入燃料としてガソリンを用いた 4サイクル内燃機関を例にして図面 に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking as an example a four-stroke internal combustion engine using gasoline as an introduction fuel and air having a pressure of 2.0 kg / cm 2 as an introduction fuel.
図 5 1は本発明に係る混合気製造ノズル 5 0 0の構造の第 1実施例を示す。 同図 A— Bは加圧気体導入側から見た加圧気体接続部 5 0 2及び加圧気体導入 孔 5 0 3の形態を、 C一 Dは燃料接続部 5 0 5及び加圧気体導入孔 5 0 3の形 態を、 E— Fは混合気製造空間 5 0 7から見た燃料導入部 5 0 6及び加圧気体 導入孔 5 0 3の形態を、 G— Hは混合気噴射面から見た混合気噴射孔 5 0 9を 示す。  FIG. 51 shows a first embodiment of the structure of the air-fuel mixture production nozzle 500 according to the present invention. In the figure, A and B show the configuration of the pressurized gas connection section 502 and the pressurized gas introduction hole 503 viewed from the pressurized gas introduction side, and C to D show the fuel connection section 505 and pressurized gas introduction. The shape of the holes 503, E-F are the shapes of the fuel introduction section 506 and the pressurized gas introduction hole 503 viewed from the gas-mixture production space 507, and GH is the mixture injection surface. 1 shows an air-fuel mixture injection hole 509 as viewed from above.
同図 (a ) に示すように、 混合気製造ノズル 5 0 0は混合気製造空間 5 0 7 に加圧気体導入孔 5 0 3、 燃料導入部 5 0 6、 混合気排出孔 5 0 8を開口して いる。 この加圧気体導入孔 5 0 3は、 加圧気体導入管 5 0 1と混合気製造空間 5 0 7との間の隔壁に燃料導入部 5 0 6を中心とする円周上に設けられてい る。 各加圧気体導入孔 5 0 3は等間隔に 6個配置されている。 加圧気体導入孔 の数は互いに等間隔であれば 6個に限定されるものではない。 図 5 1 ( b ) の E— F断面から明らかなように、 加圧気体導入孔 5 0 3の混合気製造空間 5 0 7側出口は、 この混合気製造空間 5 0 7の内壁に設けられた混合気の流れ方向 に沿って形成された直線状の溝 5 0 7 aに連続している。 この溝 5 0 7 aは混 合気製造空間 5 0 7の断面縮小部 5 0 7 b近傍まで延び、 その後、 徐々に消失 しており、 その形状は半円形状であることが望ましい。 この溝 5 0 7 aは加圧 気体を下流方向に縦渦のみを発生し得るよう導くガイド手段を構成するもので ある。 加圧気体導入孔 5 0 3と燃料導入部 5 0 6との間には円周方向に連続す る環状凹部 5 0 7 cが形成されており、凹部 5 0 7 cは半円形状を有している。 また混合気排出孔 5 0 8は混合気製造空間 5 0 7が縮径を伴い混合気噴射孔 5 0 9と連通し開口されている。 混合気排出孔 5 0 8の内部には噴射孔に行くに つれて不連続的に径が大きくなる段差部と、 山の位置が噴射孔側に偏倚してい るタップが形成されている。 同図 (b ) に示すように、 燃料接続部 5 0 5は混合気製造空間の中心に、 混 合気の流れ方向に沿って燃料を噴射するよう配置されている。 混合気製造空間 の中心に対してオフセットした場合は、 燃料の噴射に伴い、 空気の流れに対し て螺旋状のエネルギーが付与され混合過程のコントロールが難しくなり、 結果 として安定した燃焼状態は得られない。 As shown in the figure (a), the air-fuel mixture production nozzle 500 has a pressurized gas introduction hole 503, a fuel introduction part 506, and an air-fuel mixture discharge hole 508 in the air-fuel mixture production space 507. It is open. The pressurized gas introduction hole 503 is provided on a partition between the pressurized gas introduction pipe 501 and the air-fuel mixture production space 507 on a circumference around the fuel introduction section 506. You. Six pressurized gas introduction holes 503 are arranged at equal intervals. The number of pressurized gas introduction holes is not limited to six as long as they are equidistant from each other. As is clear from the cross section E--F in FIG. 51 (b), the outlet of the pressurized gas introduction hole 503 on the mixture gas production space 507 is provided on the inner wall of the gas mixture production space 507. And continuous with the linear groove 507a formed along the flow direction of the mixture. The groove 507a extends to the vicinity of the reduced cross section 507b of the mixed gas production space 507, and thereafter gradually disappears, and its shape is desirably a semicircular shape. The groove 507a constitutes guide means for guiding the pressurized gas so as to generate only a vertical vortex in the downstream direction. An annular recess 507 c is formed between the pressurized gas introduction hole 503 and the fuel introduction section 506 and is continuous in the circumferential direction, and the recess 507 c has a semicircular shape. are doing. In addition, the gas-mixture discharge space 507 is formed such that the gas-mixture production space 507 is reduced in diameter and communicates with the gas-mixture injection hole 509 and is opened. Inside the mixture exhaust hole 508, there is formed a stepped portion whose diameter is discontinuously increased toward the injection hole, and a tap in which the position of the peak is deviated toward the injection hole side. As shown in FIG. 2B, the fuel connection portion 505 is arranged at the center of the mixture-producing space so as to inject fuel along the flow direction of the mixture. If the air-fuel mixture is offset from the center of the air-fuel mixture production space, helical energy is applied to the air flow during fuel injection, making it difficult to control the mixing process, resulting in a stable combustion state. Absent.
加圧気体導入管 5 0 1から加圧気体接続部 5 0 2に導入され、 その後加圧気 体導入孔 5 0 3までの間で絞られた空気は、 混合気製造空間 5 0 7に吐出され る。 この際、 急激な膨張が起こり、 乱流を伴った流れとなり、 いわゆる剥がれ 域が燃料導入部 5 0 6近傍に生じる。 この剥がれ現象により、 空気と燃料とは 満遍なく均一に混合される。 本実施例の場合、 溝 5 0 7 aにより螺旋の流れが 抑制された状態で混合気排出孔 5 0 8から上流側に戻って前記の乱流を伴った 空気流が凹部 5 0 7 cにより燃料導入部 5 0 6周りにに集中され、 よって、 空 気と燃料との混合が著しく向上するものである。 さらに、 混合気排出孔 5 0 8 の内部には噴射孔に行くにつれて不連続的に径が大きくなる段差部と、 山の位 置が噴射孔側に偏倚しているタップが形成されているので、 燃料と空気とが良 好に混合した状態で、 混合気は混合気排出孔 5 0 8から螺旋を伴ってシリンダ 内に導入されるために、 燃焼状態がより改善されるものである。  The air introduced from the pressurized gas introduction pipe 501 to the pressurized gas connection section 502 and then narrowed down to the pressurized gas introduction hole 503 is discharged to the mixed gas production space 507. You. At this time, rapid expansion occurs and the flow becomes turbulent, and a so-called peeling area is generated near the fuel introduction section 506. Due to this peeling phenomenon, the air and fuel are evenly and uniformly mixed. In the case of the present embodiment, the air flow with the turbulent flow returns to the upstream side from the air-fuel mixture discharge hole 508 in a state where the spiral flow is suppressed by the groove The fuel is concentrated around the fuel introduction section 506, so that the mixing of air and fuel is remarkably improved. Furthermore, a stepped portion whose diameter increases discontinuously as it goes to the injection hole and a tap where the position of the peak is deviated toward the injection hole are formed inside the mixture exhaust hole 508. In a state in which the fuel and the air are well mixed, the air-fuel mixture is introduced into the cylinder with a spiral from the air-fuel mixture discharge hole 508, so that the combustion state is further improved.
ぐ第 9実施例 > (混合気製造ノズル) Ninth Embodiment> (Air-fuel mixture production nozzle)
図 5 2は本発明に係る混合気製造ノズル 5 0 0の構造の第 2実施例を示す。 同図 A— Bは加圧気体導入側から見た加圧気体接続部 5 0 2及び加圧気体導入 孔 5 0 3の形態を、 C一 Dは燃料接続部 5 0 5及び加圧気体導入孔 5 0 3の形 態を、 E— Fは混合気製造空間から見た燃料導入部 5 0 6及び加圧気体導入孔 5 0 3の形態を、 G— Hは混合気噴射面から見た混合気噴射孔 5 0 9を示す。 同図 (a ) に示すように、 混合気製造ノズル 5 1 0は混合気製造空間 5 0 7 に加圧気体導入孔 5 0 3、 燃料導入部 5 0 6、 混合気排出孔 5 0 8を開口して いる。 この加圧気体導入孔 5 0 3は加圧気体接続面を底辺とする円錐台の形状 をなし、 混合気製造空間 5 0 7に開口している。 燃料導入部 5 0 6は、 側面の 燃料接続部 5 0 5に接続された燃料導入管で形成され、 混合気製造空間 5 0 7 に開口され、 混合気の流れ方向に沿った方向、 つまり流れ方向に平行に指向し ている。 燃料導入部 5 0 6は加圧気体導入孔 5 0 3の周りに形成された半円形 状の環状凹部 5 0 7 dの底面部に開口している。 また混合気排出孔 5 0 8は混 合気製造空間 5 0 7が縮径を伴い混合気噴射孔 5 0 9と連通し開口されている 混合気排出孔 5 0 8の内部には噴射孔に行くにつれて不連続的に径が大きくな る段差部と、 山の位置が噴射孔側に偏倚しているタップが形成されている。 同図 (b ) に示すように、 燃料導入部 5 0 6は、 加圧気体導入孔 5 0 3の周 りに 3個配置されており、 各燃料導入孔は 5 0 6は等間隔かつ加圧気体導入孔 5 0 3と等距離の関係にある。 燃料導入部 5 0 6の数は互いに等間隔であれば 3個に限定されるものではない。 FIG. 52 shows a second embodiment of the structure of the air-fuel mixture production nozzle 500 according to the present invention. In the figure, A and B show the configuration of the pressurized gas connection section 502 and the pressurized gas introduction hole 503 viewed from the pressurized gas introduction side, and C to D show the fuel connection section 505 and pressurized gas introduction. The shape of the hole 503, E-F is the shape of the fuel introduction part 506 and the pressurized gas introduction hole 503 as viewed from the air-fuel mixture production space, and GH is the shape of the air-fuel mixture injection surface. The mixture injection hole 509 is shown. As shown in the figure (a), the air-fuel mixture production nozzle 510 has a pressurized gas introduction hole 503, a fuel introduction part 506, and an air-fuel mixture discharge hole 508 in the air-fuel mixture production space 507. It is open. The pressurized gas introduction hole 503 has the shape of a truncated cone with the pressurized gas connection surface at the bottom, and is open to the mixed gas production space 507. The fuel introduction section 506 is formed by a fuel introduction pipe connected to the fuel connection section 505 on the side surface, and the fuel-air mixture production space 507 It is oriented in the direction along the flow direction of the mixture, that is, parallel to the flow direction. The fuel introduction section 506 is open at the bottom of a semicircular annular concave section 507d formed around the pressurized gas introduction hole 503. The mixture exhaust hole 508 has an air-mixing production space 507 with a reduced diameter and is open to communicate with the mixture mixture injection hole 509. There is a step where the diameter increases discontinuously as it goes, and a tap where the position of the peak is deviated toward the injection hole side. As shown in FIG. 3B, three fuel introduction portions 506 are arranged around the pressurized gas introduction hole 503, and each of the fuel introduction holes 506 is arranged at an equal interval and has an additional space. It is equidistant from the pressurized gas introduction hole 503. The number of the fuel introduction portions 506 is not limited to three as long as they are at equal intervals.
加圧気体導入管 5 0 1から加圧気体接続部 5 0 2に導入され、 その後加圧気 体導入孔 5 0 3までの間で絞られた空気は、 混合気製造空間 5 0 7に吐出され る。 この際急激な膨張が起こり、 乱流を伴った流れとなり、 いわゆる剥がれ域 が燃料導入孔 5 0 6近傍に生じる。 この剥がれ現象により、 空気と燃料とは満 遍なく均一に混合される。 本実施例の場合、 混合気排出孔 5 0 8から上流側に 戻ってきた乱流を伴った空気流が凹部 5 0 7 dにより燃料導入部 5 0 6に集中 される。 そのため空気と燃料との混合が向上する。 さらに、 混合気排出孔 5 0 8の内部には噴射孔に行くにつれて不連続的に径が大きくなる段差部と、 山の 位置が噴射孔側に偏倚しているタップが形成されているので、 燃料と空気とが 良好に混合した状態で、 混合気は混合気排出孔 5 0 8から螺旋を伴ってシリン ダ内に導入されるために、 燃焼状態がより改善されるものである。  The air introduced from the pressurized gas introduction pipe 501 to the pressurized gas connection section 502 and then narrowed down to the pressurized gas introduction hole 503 is discharged to the mixed gas production space 507. You. At this time, rapid expansion occurs and the flow becomes turbulent, and a so-called peeling area is generated near the fuel introduction hole 506. Due to this peeling phenomenon, the air and the fuel are evenly and uniformly mixed. In the case of the present embodiment, the turbulent airflow returning from the air-fuel mixture discharge hole 508 to the upstream side is concentrated in the fuel introduction portion 506 by the concave portion 507d. Therefore, mixing of air and fuel is improved. Further, a stepped portion whose diameter increases discontinuously toward the injection hole and a tap where the position of the mountain is biased toward the injection hole are formed inside the mixture discharge hole 508, In a state where the fuel and the air are well mixed, the air-fuel mixture is introduced into the cylinder with a spiral from the air-fuel mixture discharge hole 508, so that the combustion state is further improved.
<第 1 0実施例 > (混合気製造ノズル)  <First Example> (Air-fuel mixture production nozzle)
図 5 3は混合気製造ノズル 5 0 0の構造の第 3実施例を示す。 同図 A— Bは 加圧気体導入側から見た加圧気体接続部 5 0 2及び加圧気体導入孔 5 0 3の形 態を、 C一 Dは混合気製造空間 5 0 7における燃料接続部 5 0 5、 燃料導入部 5 0 6及び加圧気体導入孔 5 0 3の形態を、 E— Fは混合気噴射面から見た混 合気噴射孔 5 0 9を示す。  FIG. 53 shows a third embodiment of the structure of the air-fuel mixture production nozzle 500. FIGS. A and B show the configuration of the pressurized gas connection section 502 and the pressurized gas introduction hole 503 viewed from the pressurized gas introduction side, and C to D show the fuel connection in the mixed gas production space 507. The shape of the part 505, the fuel introduction part 506, and the pressurized gas introduction hole 503 is shown, and EF indicates the mixture injection hole 509 viewed from the mixture injection surface.
同図 (a ) に示すように、 混合気製造ノズル 5 0 0は混合気製造空間 5 0 7 に加圧気体導入孔 5 0 3、 燃料導入部 5 0 6、 混合気排出孔 5 0 8を開口して いる。 この加圧気体導入孔 5 0 3は、 加圧気体接続面を底辺とする円錐台の形 状をなし、 混合気製造空間 5 0 7に開口している。 燃料導入部 5 0 6は、 側面 の燃料接続部 5 0 5に接続された燃料導入管 5 0 4で形成され、 混合気製造空 間 5 0 7に開口される。 また混合気排出孔 5 0 8は混合気製造空間 5 0 7が縮 径を伴い加圧気体導入孔 5 0 3と同程度の径で混合気噴射孔 5 0 9と連通し開 口される。 混合気排出孔 5 0 8の内部には噴射孔に行くにつれて不連続的に径 が大きくなる段差部と、 山の位置が噴射孔側に偏倚しているタツプが形成され ている。 As shown in the figure (a), the air-fuel mixture production nozzle 500 is located in the air-fuel mixture production space 507 A pressurized gas introduction hole 503, a fuel introduction portion 506, and a mixture gas discharge hole 508 are opened. The pressurized gas introduction hole 503 has the shape of a truncated cone with the pressurized gas connection surface at the bottom, and is open to the air-fuel mixture production space 507. The fuel introduction section 506 is formed by a fuel introduction pipe 504 connected to the fuel connection section 505 on the side surface, and is opened to the air-fuel mixture production space 507. In addition, the gas-mixture discharge hole 509 is formed such that the gas-mixture production space 507 has a reduced diameter and the diameter is substantially the same as that of the pressurized gas introduction hole 503 and communicates with the gas-mixture injection hole 509 and is opened. Inside the mixture exhaust hole 508, there is formed a stepped portion whose diameter increases discontinuously as it goes to the injection hole, and a tap where the position of the peak is deviated toward the injection hole.
同図 (b ) に示すように、 燃料接続部 5 0 5は円周方向に 1 2 0度毎に均等 に 3個設けられ、 燃料接続部 5 0 5は混合気の流れと直行する方向で、 混合気 製造空間の中心に指向している。 燃料導入部 5 0 6の数は互いに等間隔であれ ば 3個に限定されるものではない。  As shown in FIG. 3B, three fuel connection portions 505 are provided evenly at every 120 degrees in the circumferential direction, and the fuel connection portions 505 are arranged in a direction perpendicular to the flow of the air-fuel mixture. The mixture is oriented to the center of the production space. The number of fuel introduction sections 506 is not limited to three as long as they are at equal intervals.
加圧気体導入管 5 0 1から加圧気体接続部 5 0 2に導入され、 その後加圧気 体導入孔 5 0 3までの間で絞られた空気は、 混合気製造空間 5 0 7に吐出され る。 この際、 急激な膨張が起こり、 乱流を伴った流れとなり、 いわゆる、 剥が れ域が燃料導入部 5 0 6近傍に生じる。 この剥がれ現象により、 空気と燃料と は満遍なく均一に混合される。 なお、 加圧気体導入孔 5 0 3の径と、 混合気排 出孔 5 0 8の径とは、 ほぼ等しいことが好ましい。 さらに、 混合気排出孔 5 0 8の内部には噴射孔に行くにつれて不連続的に径が大きくなる段差部と、 山の 位置が噴射孔側に偏倚しているタツプが形成されているので、 燃料と空気とが 良好に混合した状態で、 混合気は混合気排出孔 5 0 8から螺旋を伴ってシリン ダ内に導入されるために、 燃焼状態がより改善されるものである。  The air introduced from the pressurized gas introduction pipe 501 to the pressurized gas connection section 502 and then narrowed down to the pressurized gas introduction hole 503 is discharged to the mixed gas production space 507. You. At this time, rapid expansion occurs, resulting in a flow with turbulence, and a so-called peeling area is generated near the fuel introduction section 506. Due to this peeling phenomenon, the air and the fuel are evenly and uniformly mixed. It is preferable that the diameter of the pressurized gas introduction hole 503 and the diameter of the mixed gas discharge hole 508 are substantially equal. Further, a stepped portion whose diameter increases discontinuously toward the injection hole and a tap where the position of the mountain is deviated toward the injection hole are formed inside the mixture discharge hole 508, In a state where the fuel and the air are well mixed, the air-fuel mixture is introduced into the cylinder with a spiral from the air-fuel mixture discharge hole 508, so that the combustion state is further improved.
<第 1 1実施例 > (内燃機関の全体システムの第 1実施例)  <First Embodiment> (First Embodiment of Overall System of Internal Combustion Engine)
図 5 4は、 本発明に係る混合気製造ノズルを適用した燃料内燃機関の全体シ ステムの第 1実施例を示す。 シリンダ 5 6 1には吸気ポート 5 6 4、 排気ポー ト 5 6 5が設けられており、 各ポートには吸気バルブ 5 3 1、 排気バルブ 5 5 1が設けられている。 吸気ポート 5 6 4と排気ポート 5 6 5との間には、 点火 プラグ 5 7 1が設けられている。 吸気ポート 5 6 4は混合気噴射副室 5 3 0に 連通しており、 この混合気噴射副室 5 3 0はインテークマ二ホールドを構成す る。 混合気噴射副室 5 3 0には、 混合気製造噴射ノズル 5 0 0が取り付けられ ている。排気ポート 5 6 5はェギゾーストマ二ホールド 5 5 2に連通している。 5 6 2、 5 6 3は各々ピストン、 コンロッドを示している。 FIG. 54 shows a first embodiment of the entire system of a fuel internal combustion engine to which the air-fuel mixture production nozzle according to the present invention is applied. The cylinder 561 is provided with an intake port 564 and an exhaust port 565, and each port is provided with an intake valve 531 and an exhaust valve 551. Ignition between intake port 564 and exhaust port 565 A plug 5 7 1 is provided. The intake port 564 communicates with the mixture-air injection sub-chamber 530, and the mixture-air injection sub-chamber 530 forms an intake manifold. An air-fuel mixture injection injection nozzle 500 is attached to the air-fuel mixture injection sub-chamber 530. The exhaust port 5 65 communicates with the exhaust manifold 5 52. 56 2 and 56 3 indicate a piston and a connecting rod, respectively.
混合気製造噴射ノズル 5 0 0には、 コンプレッサー 5 4 1で加圧された空気 を、 スロットルバルブ 5 2 4を介して混合気製造噴射ノズル 5 0 0に送る、 加 圧気体導入管 5 0 1が接続され、 また、 リザーバタンク 5 2 2からの燃料をシ ャットァゥトバルブ 5 2 3とスロットルバルブ 5 2 4を介して混合気製造噴射 ノズル 5 0 0に送る燃料導入管 5 0 4が接続されている。 リザーバタンク 5 2 2は燃料タンク 5 2 1から燃料の供給を受ける。  The pressurized gas introduction pipe 5 0 1 sends the air pressurized by the compressor 5 41 to the mixture air injection nozzle 500 via the throttle valve 5 2 4. And a fuel introduction pipe 504 for feeding fuel from the reservoir tank 522 to the fuel-air mixture injection nozzle 500 through the shutoff valve 523 and the throttle valve 524. It is connected. The reservoir tank 522 receives the supply of fuel from the fuel tank 521.
図 5 5は、 図 5 4に係る混合気噴射副室 5 3 0の拡大図を示すものであり、 吸気弁が貫通するバルブガイド 5 3 2と混合気製造噴射ノズル 5 0 0の噴射部 5 3 3が挿入され固定されるノズル取付け部 5 3 4が設けられており、 シリン ダへッドにシール部材を介して締結されている。  FIG. 55 shows an enlarged view of the air-fuel mixture injection sub-chamber 530 according to FIG. 54. A nozzle mounting portion 534 into which 33 is inserted and fixed is provided, and is fastened to the cylinder head via a sealing member.
ぐ第 1 2実施例 > (内燃機関の全体システムの第 2実施例) 12th Embodiment> (Second Embodiment of Overall System for Internal Combustion Engine)
図 5 6は、 本発明に係る混合気製造ノズルを適用した燃料内燃機関の全体シ ステムの第 2実施例を示す。 本実施例では、 図 5 4による第 1実施例の吸気バ ルブが省略されたものであって、 シャツトアウトバルブ 5 2 3はスロットルバ ルブ 5 2 4の下流側の燃料導入管 5 0 4に設けられた点と、 加圧空気導入管 5 0 1にシャツトアウトバルブ 5 2 3が追加された点で第 1実施例と相違してい る。  FIG. 56 shows a second embodiment of the entire system of the fuel internal combustion engine to which the air-fuel mixture production nozzle according to the present invention is applied. In this embodiment, the intake valve of the first embodiment shown in FIG. 54 is omitted, and the shut-out valve 523 is connected to the fuel introduction pipe 504 downstream of the throttle valve 524. The present embodiment differs from the first embodiment in that it is provided and that a shut-out valve 523 is added to the pressurized air introducing pipe 501.
図 5 7は、 図 5 6に係る混合気製造噴射バルブ 5 0 0の接続部の拡大図であ り、 シリンダ 5 6 1に形成されたノズル取付け部 5 3 4に混合気製造噴射ノズ ル 5 0 0の噴射部 5 3 3が嵌合されている。 混合気製造噴射バルブ 5 0 0と噴 射部 5 3 3との間にはシャツトアウトバルブ 5 2 3が設けられている。  FIG. 57 is an enlarged view of the connection portion of the fuel-air mixture production injection valve 500 according to FIG. 56. The fuel-air mixture production injection nozzle 5 is formed in the nozzle mounting portion 534 formed in the cylinder 561. The injection part 5 33 of 00 is fitted. A shut-out valve 523 is provided between the air-fuel mixture production injection valve 500 and the injection part 533.
本発明のノズルによれば、 コンプレッサー 5 4 1からの加圧空気を混合気噴 射副室 5 3 0又はシリンダ 5 6 1に直接導入しているので、 従来必要とされた インテークマ二ホールドの吸気側配管及びスター卜バルブ等の機械類が不要と なり、 コンパクトな内燃機関を得ることが可能になる。 また、 本発明のノズル は均一化された混合気体が製造できるため、 2サイクルエンジン、 ロータリー According to the nozzle of the present invention, the pressurized air from the compressor 541 is directly introduced into the air-fuel mixture injection sub-chamber 530 or the cylinder 561, which was conventionally required. Machines such as an intake side pipe of the intake manifold and a start valve are not required, and a compact internal combustion engine can be obtained. In addition, the nozzle of the present invention can produce a uniform gas mixture, so that the two-stroke engine and the rotary
'、 ディ一ゼルェンジンにおいても使用が可能である。 産業上の利用可能性  ', It can be used also in Dieseljinjin. Industrial applicability
本発明は、 河川や湖沼の浄化、 泡風呂、 洗濯機、 水耕栽培、 液中からの気体 回収、 低燃費の内燃機関等の用途に利用できる。  INDUSTRIAL APPLICABILITY The present invention can be used for purification of rivers and lakes, bubble baths, washing machines, hydroponics, gas recovery from liquids, and fuel-efficient internal combustion engines.

Claims

請 求 の 範 囲 The scope of the claims
1 . 加圧液体と気体との導入部と円筒状の気泡発生空間を有し、 1. It has a pressurized liquid and gas introduction part and a cylindrical bubble generation space,
前記導入部内に、 前記気泡発生空間に開口する加圧液体導入孔と気体導入孔 を形成し、  Forming a pressurized liquid introduction hole and a gas introduction hole that open into the bubble generation space in the introduction section;
前記加圧液体導入孔を前記導入部の端面に開口し、  Opening the pressurized liquid introduction hole at the end face of the introduction section,
前記気体導入孔を前記導入部の側面に開口し、  Opening the gas introduction hole on a side surface of the introduction portion,
前記気体導入孔と連通する気体導入管に気体導入量を調整する調整弁を設け たマイクロバブル発生ノズル。  A micro-bubble generating nozzle provided with an adjusting valve for adjusting a gas introduction amount in a gas introduction pipe communicating with the gas introduction hole.
2 . 気泡発生空間形成用筒体に流速低下抑制孔を設けた請求の範囲 1記載のマ イクロバブル発生ノズル。  2. The microbubble generating nozzle according to claim 1, wherein a flow velocity reduction suppressing hole is provided in the bubble generating space forming cylinder.
3 . 気泡発生空間形成用筒体の下方位置に縮径部分または活性剤等充填部分を 設けた請求の範囲 1または 2記載のマイクロバブル発生ノズル。  3. The microbubble generating nozzle according to claim 1 or 2, wherein a reduced diameter portion or a portion filled with an activator or the like is provided below the bubble generating space forming cylinder.
4 . 加圧液体導入孔の形状を円もしくは楕円とした請求の範囲 1または 3記載 のマイクロバブル発生ノズル。  4. The microbubble generating nozzle according to claim 1 or 3, wherein the shape of the pressurized liquid introduction hole is a circle or an ellipse.
5 . 気泡発生空間形成用筒体内面に加圧液体導入孔に連通する直線もしくは、 らせん状の貫通または縮流を伴う溝を設けた請求の範囲 1から 4のいずれかの 項に記載のマイクロバブル発生ノズル。  5. The micro-cell according to any one of claims 1 to 4, wherein a straight or helical groove with a piercing or contracting flow is provided on the inner surface of the air bubble generating space forming cylinder to communicate with the pressurized liquid introduction hole. Bubble generation nozzle.
6 . 気泡発生空間形成用筒体の下流位置に、 微細気泡の発生状態を確認出来る 窓を設けた導入物確認筒を接続した請求の範囲 1から 5のいずれかの項に記載 のマイクロバブル発生ノズル。  6. Microbubble generation according to any one of claims 1 to 5, wherein an introductory material check tube provided with a window for checking the generation state of microbubbles is connected at a downstream position of the bubble generation space forming cylinder. nozzle.
7 . 気泡発生空間形成用筒体の下流位置に、 一つ、 もしくは複数種類の気体又 は液体又は粉粒体を自動的に吸引し、 加圧液体と混合させ吐出する搬送物導入 筒を設けた請求の範囲 1から 6のいずれかの項に記載のマイクロバブル発生ノ ズル。  7. At the downstream position of the bubble generating space forming cylinder, a conveyer tube is provided that automatically sucks one or more types of gas or liquid or powder, mixes it with the pressurized liquid, and discharges it. 7. The microbubble generating nozzle according to any one of claims 1 to 6.
8 . 気泡発生空間形成用筒体の下流位置に、 流速を抑制し流量の低下を抑制す る流速抑制筒を設けた請求の範囲 1から 7のいずれかの項に記載のマイクロバ ブル発生ノズル。 8. The microbubble generation nozzle according to any one of claims 1 to 7, further comprising a flow velocity suppression cylinder provided at a position downstream of the bubble generation space forming cylinder to suppress the flow velocity and to suppress a decrease in the flow rate.
9 . 気体導入孔の気泡発生空間側開口に気体チャンバを形成し、 この気体チヤ ンバに、 多孔性プラグを装着したことを特徴とする請求の範囲 1から 8のいず れかの項に記載のマイクロバブル発生ノズル。 9. A gas chamber is formed at an opening of a gas introduction hole on a bubble generation space side, and a porous plug is attached to the gas chamber, according to any one of claims 1 to 8. Micro bubble generation nozzle.
1 0 . 気体導入孔に、 気体チャンバを迂回して気泡発生空間に直接通ずる気体 バイパス孔を設けたことを特徴とする請求の範囲 1から 9のいずれかの項に記 載のマイクロバブル発生ノズル。  10. The microbubble generating nozzle according to any one of claims 1 to 9, wherein a gas bypass hole is provided in the gas introducing hole to bypass the gas chamber and directly to the bubble generating space. .
1 1 . 導入部と接合される気泡発生空間形成用筒体の外周に、 流量低下抑制孔 の開口率及び Z又は気泡発生空間形成用筒体吐出面から流速調節筒吐出面まで の空間長を調整可能とした流速調整筒を取り付けた請求の範囲 1から 1 0のい ずれかの項に記載のマイクロバブル発生ノズル。  1 1. At the outer periphery of the bubble generation space forming cylinder joined to the introduction part, set the opening ratio of the flow rate reduction suppression hole and Z or the space length from the bubble generation space formation cylinder discharge surface to the flow rate control cylinder discharge surface. The microbubble generation nozzle according to any one of claims 1 to 10, further comprising a flow rate adjusting cylinder that is adjustable.
1 2 . 導入部と接合される気泡発生空間形成用筒体の下流位置に、 基部に流量 低下抑制孔を形成した扁平末広がり状の吐出部を有するマイクロバブルカーテ ン発生ノズルを取り付けた請求の範囲 1から 1 1のいずれかの項に記載のマイ クロバブル発生ノズル。  12. A micro-bubble curtain generating nozzle having a flat and divergent discharge part with a flow rate reduction suppression hole formed in the base at the downstream position of the bubble generation space forming cylinder joined to the introduction part. The microbubble generating nozzle according to any one of 1 to 11 above.
1 3 . 調整弁を、 気体導入管接続部とエアー調整コックにより構成し、 前記気 体導入管接続部の通気孔は断面円形とし、 前記エアー調整コックの通気孔は断 面楕円とした請求の範囲 1から 1 2のいずれかの項に記載のマイクロバブル発 生ノズル。  13. The regulating valve is composed of a gas introduction pipe connection portion and an air adjustment cock, wherein the ventilation hole of the gas introduction tube connection portion has a circular cross section, and the ventilation hole of the air adjustment cock has a cross-sectional ellipse. The microbubble generation nozzle according to any one of the range 1 to 12.
1 4 . 気体導入管のエアー取り入れ口に、 エア一フィルターを取り付けた請求 の範囲 1から 1 3のいずれかの項に記載のマイクロバブル発生ノズル。  14. The microbubble generating nozzle according to any one of claims 1 to 13, wherein an air filter is attached to an air inlet of the gas inlet tube.
1 5 . 加圧液体導入孔の気泡吐出側の気泡発生空間形成用筒体内の加圧液体誘 導溝及び気泡発生空間内壁に、 下流側に行くにつれて不連続的に径が大きくな る段差部を設けたことを特徴とする請求の範囲 1から 1 4のいずれかの項に記 載のマイクロバブル発生ノズル。  15. The stepped portion whose diameter increases discontinuously toward the downstream side in the pressurized liquid guiding groove and the inner wall of the bubble generating space in the bubble generating space forming cylinder on the bubble discharge side of the pressurized liquid introducing hole. The microbubble generating nozzle according to any one of claims 1 to 14, wherein the nozzle is provided with:
1 6 . 加圧液体導入孔の気泡吐出側の気泡発生空間形成用筒体内の加圧液体誘 導溝及び気泡発生空間内壁に、 山の位置が下流側に偏倚しているタップを形成 したことを特徴とする請求の範囲 1 5記載のマイクロバブル発生ノズル。 16. Taps whose peaks are shifted downstream are formed in the pressurized liquid guiding groove and the inner wall of the bubble generating space inside the bubble generating space forming cylinder on the bubble discharge side of the pressurized liquid introducing hole. The micro-bubble generating nozzle according to claim 15, characterized in that:
1 7 . 請求の範囲 1から 1 6のいずれかの項に記載のマイクロバブル発生ノズ ルを加圧液体側接続管に着脱自在に装着したノズル装填容器。 17. Microbubble generation noise according to any one of claims 1 to 16 Nozzle-loaded container with a nozzle attached to the pressurized liquid side connection pipe detachably.
1 8 . 請求の範囲 1から 1 6のいずれかの項に記載のマイクロバブル発生ノズ ルまたはノズル装填容器を大径の筒体の内部に同心状に配置した流動促進筒。 18. A flow-promoting cylinder in which the microbubble generating nozzle or the nozzle loading container according to any one of claims 1 to 16 is concentrically arranged inside a large-diameter cylinder.
1 9 . 請求の範囲 1から 1 6のいずれかの項に記載のマイクロバブル発生ノズ ルの気泡吐出側に取り付けられ、 そのノズルの気泡発生空間よりも大径の有底 のケ一シングを備え、 そのケ一シングの底部中央に半球状の気泡分散用凸部を 有し、 側部周壁に、 気泡吐出口を設けたことを特徴とするバブル吐出方向変換 用バブル分散ノズル。 19. The microbubble generating nozzle according to any one of claims 1 to 16 is attached to the bubble discharge side of the nozzle, and has a bottomed casing having a diameter larger than the bubble generating space of the nozzle. A bubble dispersing nozzle for changing a bubble discharge direction, comprising a hemispherical bubble dispersing convex portion at the bottom center of the casing, and a bubble discharging port provided on a side peripheral wall.
2 0 . 加圧液体側接続管と気泡発生側接続管との間に設けられ、 マイクロバブ ル発生ノズルを複数個装填可能な装填部を設けた複数ノズル装填具。  20. A multi-nozzle loader provided between the pressurized liquid-side connection pipe and the bubble generation-side connection pipe, and provided with a loading section capable of loading a plurality of microbubble generation nozzles.
2 1 . 複数のマイクロバブル発生ノズルの気体導入管を 1つの空間に集合して 接続する接続部を設けた気体導入管集合チヤンバー。  2 1. A gas introduction tube collecting chamber provided with a connection part that collects and connects the gas introduction tubes of a plurality of microbubble generation nozzles in one space.
2 2 . 加圧液体と気体との導入部と円筒状の導入物混合空間を有し、  2 2. It has a pressurized liquid and gas introduction part and a cylindrical introduction mixture space,
前記導入部内に、 前記導入物混合空間に開口する加圧気液導入孔と複数の気 液導入孔を形成し、  Forming a pressurized gas-liquid introduction hole and a plurality of gas-liquid introduction holes that open into the introduction mixture space in the introduction portion;
前記加圧気液導入孔を前記導入部の端面に開口し、  Opening the pressurized gas-liquid introduction hole at the end face of the introduction section,
前記複数の気液導入孔を前記導入部の側面に開口し、  Opening the plurality of gas-liquid introduction holes on the side surface of the introduction unit,
前記複数の気液導入孔と連通する複数の気液導入管に気液導入量を調整する 調整弁をそれぞれ設けた気液混合ノズル。  A gas-liquid mixing nozzle provided with an adjusting valve for adjusting a gas-liquid introduction amount to a plurality of gas-liquid introduction pipes communicating with the plurality of gas-liquid introduction holes.
2 3 . 導入物混合空間形成用筒体内面に、 加圧気液導入孔に連通する直線また は螺旋状の貫通又は縮流を伴う溝を設けた請求の範囲 2 2記載の気液混合ノズ ル。 23. The gas-liquid mixing nozzle according to claim 22, wherein a groove having a straight or spiral penetrating or contracting flow communicating with the pressurized gas-liquid introduction hole is provided on the inner surface of the cylinder for forming the introduced material mixing space. .
2 4 . 加圧気液導入孔の気液吐出側の導入物混合空間形成用筒体内の加圧気液 誘導溝及び導入物混合空間内壁に、 下流側に行くにつれて不連続的に径が大き くなる段差部を設けたことを特徴とする請求の範囲 2 2又は 2 3記載の気液混 合ノズル。  2 4. The diameter of the pressurized gas-liquid guiding groove and the inner wall of the mixed gas space inside the cylinder for forming the mixed material on the gas-liquid discharge side of the pressurized gas-liquid introduction hole increases discontinuously as it goes downstream. 24. The gas-liquid mixing nozzle according to claim 22, wherein a step portion is provided.
2 5 . 加圧気液導入孔の気液吐出側の導入物混合空間形成用筒体内の加圧気液 誘導溝及び導入物混合空間内壁に、 山の位置が下流側に偏倚しているタップを 形成した請求の範囲 2 2から 2 4のいずれかの項に記載の気液混合ノズル。 25. In the pressurized gas / liquid guide groove and the inner wall of the introduced material mixing space in the cylinder for forming the introduced material mixing space on the gas / liquid discharge side of the pressurized gas / liquid introducing hole, tap the mountain whose position is shifted to the downstream side. The gas-liquid mixing nozzle according to any one of claims 22 to 24, which is formed.
2 6 . 加圧液体の導入部に複数の加圧液体導入孔を穿設し、 前記複数の加圧液 体導入孔の吐出側開口を、 前記導入部の吐出側に形成した共通の気泡粉砕空間 に連通させたことを特徴とする気泡粉砕ノズル。 26. A plurality of pressurized liquid introduction holes are drilled in the pressurized liquid introduction section, and the discharge side openings of the plurality of pressurized liquid introduction holes are formed on the discharge side of the introduction section. A bubble crushing nozzle characterized by communicating with a space.
2 7 . 前記加圧液体導入孔を下流側に行くにつれて不連続的に径が大きくなる 段差部を設けたことを特徴とする請求の範囲 2 6記載の気泡粉砕ノズル。  27. The bubble crushing nozzle according to claim 26, further comprising a step portion whose diameter increases discontinuously as the pressurized liquid introduction hole goes downstream.
2 8 . 加圧液体導入孔の内壁に、 山の位置が下流側に偏倚しているタップを形 成したことを特徴とする請求の範囲 2 6又は 2 7記載の気泡粉砕ノズル。  28. The bubble crushing nozzle according to claim 26 or 27, wherein a tap is formed on the inner wall of the pressurized liquid introduction hole so that the position of the peak is deviated to the downstream side.
2 9 . 加圧液体と気体との導入部に複数の加圧液体導入孔と少なくとも 1つの 気体導入孔を穿設し、 前記複数の加圧液体導入孔の吐出側開口を、 前記導入部 の吐出側に形成した共通の気泡発生空間に連通させ、前記各加圧液体導入孔を、 下流側に行くにつれて不連続的に径が大きくなる段差部を設けたことを特徴と する気泡粉碎ノズル。  29. A plurality of pressurized liquid introduction holes and at least one gas introduction hole are formed in the introduction portion of the pressurized liquid and the gas, and the discharge side openings of the plurality of pressurized liquid introduction holes are formed in the introduction portion. A bubble crushing nozzle characterized in that it is provided with a common bubble generation space formed on the discharge side, and each of the pressurized liquid introduction holes is provided with a stepped portion whose diameter is discontinuously increased toward the downstream side.
3 0 . 加圧液体導入孔の内壁に、 山の位置が下流側に偏倚しているタップを形 成したことを特徴とする請求の範囲 2 9記載の気泡粉碎ノズル。  30. The bubble crushing nozzle according to claim 29, wherein a tap whose mountain position is deviated downstream is formed on the inner wall of the pressurized liquid introduction hole.
3 1 . 浴槽内の水を吸入して再び浴槽内に水を吐出するポンプと、 このポンプ の吐出側水路に設けられて、 大気中の空気とポンプにより圧送される水とを混 合して浴槽内にマイクロバブルを吐出するマイクロバブル発生ノズルとを設け たことを特徴とする気泡風呂装置。  3 1. A pump that draws water in the bathtub and discharges water into the bathtub again, and mixes atmospheric air with water pumped by the pump, which is provided in the discharge channel of this pump. A bubble bath device comprising a micro-bubble generating nozzle for discharging micro-bubbles in a bathtub.
3 2 . 浴槽内の水を吸入して再び浴槽内に水を吐出するポンプと、 このポンプ の吸入側に設けられて吸入水に大気中の空気を混入させるマイクロバブル発生 ノズルと、 前記ポンプの吐出側水路に設けられて、 大気中の空気とポンプによ り圧送される気泡混合水中の気泡を微細化して浴槽内にマイクロバブルを吐出 する気泡粉砕ノズルとを設けたことを特徴とする気泡風呂装置。 32. A pump that sucks water in the bathtub and discharges water into the bathtub again, a microbubble generation nozzle that is provided on the suction side of this pump and mixes atmospheric air into the suction water, A bubble crushing nozzle provided in the discharge-side waterway, and provided with a bubble crushing nozzle for discharging air bubbles and microbubbles into the bathtub by miniaturizing bubbles in air mixed with bubble air fed by a pump. Bath equipment.
3 3 . 気体を含む液体を導入する加圧気液導入孔を形成した第 1の導入部と、 この加圧気液導入孔の吐出側において加圧気液導入孔の総面積よりも断面積を 大きくした気液分離空間とを有する気液分離ノズルと、 33. The first introduction section having a pressurized gas-liquid introduction hole for introducing liquid containing gas, and the cross-sectional area larger than the total area of the pressurized gas-liquid introduction hole on the discharge side of the pressurized gas-liquid introduction hole A gas-liquid separation nozzle having a gas-liquid separation space,
頂部がドーム状の有底の旋回流発生筒の底部近傍に前記気液分離ノズルの吐 出側から吐出される分離気液を中心軸線に対して偏倚して導入する分離気液導 入孔と、 前記旋回流発生筒の底部を貫通して中心軸線と同軸に設けられた気体 凝集筒とを備えた気体凝集部と、 The gas-liquid separation nozzle discharges near the bottom of a swirling flow generating cylinder with a dome-shaped bottom. A separation gas-liquid introduction hole for introducing a separation gas-liquid discharged from the outlet side with respect to the central axis, and a gas agglomeration cylinder penetrating through the bottom of the swirling flow generating cylinder and provided coaxially with the central axis. A gas aggregating unit comprising:
前記気体凝集部の旋回流発生筒の頂部に貫通して設けられた気液上昇管と、 この気液上昇管が底部に貫通して内部に揷通される気体回収部と、 前記気体凝集筒の下端にバルブを介して接続され、 排出される加圧液体を導 入する加圧液体導入孔を形成した第 2の導入部と、 この加圧液体導入孔の吐出 側において加圧液体導入孔の総面積よりも断面積を大きくした返送液体吸引圧 力発生空間と、 前記第 2の導入部の前記返送液体吸引圧力発生空間に一端が開 口し、 前記第 2の導入部の側部に他端が開口する返送液体導入孔とを有する気 体回収部圧力減圧用ノズルと、  A gas-liquid riser pipe penetrating the top of the swirling flow generating cylinder of the gas aggregation part; a gas recovery part penetrating the gas-liquid riser pipe to the bottom and communicating inside; A second introduction portion connected to a lower end of the pressurized liquid via a valve and formed with a pressurized liquid introduction hole for introducing a pressurized liquid to be discharged, and a pressurized liquid introduction hole on a discharge side of the pressurized liquid introduction hole. One end opens to the return liquid suction pressure generating space having a cross-sectional area larger than the total area of the second liquid inlet and the return liquid suction pressure generating space of the second introduction portion, and a side portion of the second introduction portion. A gas collection section pressure reducing nozzle having a return liquid introduction hole with the other end open;
前記気体回収部の底部と前記気体回収部圧力減圧用ノズルの返送液体導入孔 とを連結する気体回収部圧力調節管と  A gas recovery part pressure adjusting pipe connecting the bottom of the gas recovery part and the return liquid introduction hole of the gas recovery part pressure reducing nozzle;
を備えた脱気装置。 Degassing device equipped with.
3 4 . 前記気液分離ノズルの加圧気液の導入部に複数の加圧気液導入孔を穿設 し、 前記複数の加圧気液導入孔の吐出側開口を、 前記導入部の吐出側に形成し た共通の気液分離空間に連通させた請求の範囲 3 3記載の脱気装置。  3 4. A plurality of pressurized gas-liquid introduction holes are formed in the pressurized gas-liquid introduction portion of the gas-liquid separation nozzle, and discharge side openings of the plurality of pressurized gas-liquid introduction holes are formed on the discharge side of the introduction portion. 33. The degassing device according to claim 33, wherein the degassing device communicates with the common gas-liquid separation space.
3 5 . 気液分離ノズルの加圧気液導入孔を下流側に行くにつれて不連続的に径 が大きくなる段差部を設けたことを特徴とする請求の範囲 3 3又は 3 4記載の 脱気装置。 35. The degassing device according to claim 33, wherein a step portion whose diameter increases discontinuously as it goes downstream of the pressurized gas-liquid introduction hole of the gas-liquid separation nozzle is provided. .
3 6 . 気液分離ノズルの加圧気液導入孔の内壁に、 断面の三角形状の山の位置 が、 加圧気液の流れ方向の下流側に偏倚しているタップを形成した請求の範囲 3 3記載の脱気装置。  36. A claim in which the triangular cross section of the cross-section is formed on the inner wall of the pressurized gas-liquid introduction hole of the gas-liquid separation nozzle with a tap whose position is deviated to the downstream side in the flow direction of the pressurized gas-liquid. The degassing device as described.
3 7 . 気体回収管、 気体回収部圧力調節管及び気体凝集筒下流に接続された各 々のバルブを電気的制御により行うことを特徴とする請求の範囲 3 3から 3 7 のいずれかの項に記載の脱気装置。  37. The method according to any one of claims 33 to 37, wherein each valve connected to the gas recovery pipe, the gas recovery section pressure control pipe, and the downstream of the gas aggregation pipe is electrically controlled. The degassing device according to item 1.
3 8 . 気体回収管に真空ポンプ等の減圧装置を取り付けたことを特徴とする請 求の範囲 3 3から 3 7のいずれかの項に記載の脱気装置。 38. The deaerator according to any one of claims 33 to 37, wherein a pressure reducing device such as a vacuum pump is attached to the gas recovery pipe.
3 9 . 内燃機関に用いられる燃料噴射装置であって、 円筒状の両端に、 加圧源 に接続される加圧気体接続部と内燃機関の吸気部に接続されるノズル接続部と が形成され、 側面に燃料接続部を有するものであって、 円筒内には混合気製造 空間を有し、 該空間に前記加圧気体接続部内を貫通する加圧気体導入孔と前記 燃料接続部内を貫通する燃料導入孔及び前記ノズル接続部内を貫通する混合気 排出孔とを開口し、 少なくとも前記混合気製造空間の前記燃料導入部近傍の径 は、 前記加圧気体導入孔の径より大きく設定されていることを特徴とする混合 気製造噴射ノズル。 39. A fuel injection device used in an internal combustion engine, wherein a pressurized gas connection portion connected to a pressurization source and a nozzle connection portion connected to an intake portion of the internal combustion engine are formed at both ends of a cylindrical shape. Having a fuel connection portion on the side surface, having a mixed gas production space in the cylinder, and a pressurized gas introduction hole penetrating through the pressurized gas connection portion in the space and penetrating through the fuel connection portion. A fuel introduction hole and an air-fuel mixture discharge hole penetrating through the nozzle connection portion are opened, and at least a diameter of the air-fuel mixture production space near the fuel introduction portion is set to be larger than a diameter of the pressurized gas introduction hole. An injection nozzle for producing an air-fuel mixture.
4 0 . 前記混合気製造空間の下方位置に縮径部分を設けていることを特徴とす る請求の範囲 3 9記載の混合気製造噴射ノズル。  40. The air-fuel mixture injection nozzle according to claim 39, wherein a reduced diameter portion is provided below the air-fuel mixture production space.
4 1 . 前記燃料導入部と前記加圧気体導入孔との間には環状凹部が形成されて いることを特徴とする請求の範囲 3 7記載の混合気製造噴射ノズル。  41. The fuel-air mixture injection nozzle according to claim 37, wherein an annular concave portion is formed between the fuel introduction portion and the pressurized gas introduction hole.
4 2 . 前記加圧気体導入孔の開口は、 混合気製造空間の内壁に形成され、 混合 気体の流れ方向下流に伸びるガイド手段に接続されていることを特徴とする請 求の範囲 3 9から 4 1のいずれかの項に記載の混合気製造噴射ノズル。  42. The claim 39, wherein the opening of the pressurized gas introduction hole is formed in the inner wall of the mixture gas production space, and is connected to guide means extending downstream in the flow direction of the mixture gas. 41. The air-fuel mixture production injection nozzle according to any one of the above items.
4 3 . 前記混合気排気孔を噴射孔に行くにつれて不連続的に径が大きくなる段 差部を設けたことを特徴とする請求の範囲 3 9から 4 2のいずれかの項に記載 の混合気製造噴射ノズル。  43. The mixing according to any one of claims 39 to 42, characterized in that a step portion is provided in which the diameter increases discontinuously as the mixture gas exhaust hole approaches the injection hole. Qi injection nozzle.
4 4 . 前記混合気排出孔の内壁に、 山の位置が噴射孔側に偏倚しているタップ を形成したことを特徴とする請求の範囲 3 9から 4 3のいずれかの項に記載の 混合気製造噴射ノズル。  44. The mixing according to any one of claims 39 to 43, wherein a tap is formed on the inner wall of the air-fuel mixture discharge hole such that the position of the peak is deviated toward the injection hole. Qi injection nozzle.
PCT/JP2000/008010 1999-11-15 2000-11-13 Micro-bubble generating nozzle and application device therefor WO2001036105A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU13094/01A AU1309401A (en) 1999-11-15 2000-11-13 Micro-bubble generating nozzle and application device therefor
JP2001538084A JP4002439B2 (en) 1999-11-15 2000-11-13 Microbubble generating nozzle and its application device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP32458299 1999-11-15
JP11/324582 1999-11-15
JP2000095664 2000-03-30
JP2000/95664 2000-03-30
JP2000/121407 2000-04-21
JP2000121407 2000-04-21
JP2000/139150 2000-05-11
JP2000139150 2000-05-11
JP2000236567 2000-08-04
JP2000/236567 2000-08-04

Publications (1)

Publication Number Publication Date
WO2001036105A1 true WO2001036105A1 (en) 2001-05-25

Family

ID=27531141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008010 WO2001036105A1 (en) 1999-11-15 2000-11-13 Micro-bubble generating nozzle and application device therefor

Country Status (3)

Country Link
JP (1) JP4002439B2 (en)
AU (1) AU1309401A (en)
WO (1) WO2001036105A1 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191950A (en) * 2000-12-25 2002-07-10 National Institute Of Advanced Industrial & Technology Microbubble generator using special nozzle
JP2003125649A (en) * 2001-10-25 2003-05-07 Aura Tec:Kk Soil improvement methods and equipment
JP2004033908A (en) * 2002-07-03 2004-02-05 Fuji Electric Holdings Co Ltd Ozone diffuser
WO2003045541A3 (en) * 2001-11-19 2004-04-22 Mir Chem Gmbh Device and method for producing foam
JP2005000882A (en) * 2003-06-13 2005-01-06 Aura Tec:Kk Micro bubble generator
JP2005000878A (en) * 2003-06-13 2005-01-06 Aura Tec:Kk Apparatus for generating micro bubble
NL1024434C2 (en) * 2003-10-02 2005-04-05 Friesland Brands Bv Method and device for forming gas bubbles in a liquid product.
NL1024438C2 (en) * 2003-10-02 2005-04-05 Friesland Brands Bv Method and device for forming gas bubbles in a liquid product.
JP2005211314A (en) * 2004-01-29 2005-08-11 Asahi Kogyo Kk Bubble-generating device
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Method for producing nanobubbles
JP2005288222A (en) * 2004-03-31 2005-10-20 Masao Senoo Water purifier
WO2006075452A1 (en) * 2005-01-13 2006-07-20 National University Corporation University Of Tsukuba Microbubble producing device, vortex breaking nozzle for microbubble producing device, spiral flow producing blade body for microbubble producing device, microbubble producing method, and microbubble applied device
WO2007010745A1 (en) * 2005-07-21 2007-01-25 Toyota Jidosha Kabushiki Kaisha Fuel supply apparatus
JP2007075328A (en) * 2005-09-14 2007-03-29 Sharp Corp Disinfection method for ultrapure water production apparatus and sterilization apparatus for ultrapure water production apparatus
JP2007083108A (en) * 2005-09-20 2007-04-05 Sharp Corp Liquid processing method and liquid processing apparatus
JP2007136409A (en) * 2005-11-22 2007-06-07 Sharp Corp Water treatment method and water treatment apparatus
JP2008079895A (en) * 2006-09-28 2008-04-10 Sharp Corp Micro-nano bubble bathtub water preparation method and micro-nano bubble bathtub
JP2008100134A (en) * 2006-10-17 2008-05-01 Toflo Corporation Kk Gas-liquid mixing device
EP1980549A1 (en) 2007-04-13 2008-10-15 Sumitomo Chemical Company, Limited Process for producing cycloalkanol and/or cycloalkanone
JP2009060987A (en) * 2007-09-04 2009-03-26 Sharp Corp Bathing equipment
JP2009101250A (en) * 2006-07-11 2009-05-14 Makoto Minamidate Fine bubble generating apparatus
EP2060318A1 (en) 2007-11-15 2009-05-20 YARA International ASA Apparatus and method for generating and distributing bubbles in a gas-liquid mixture
WO2009147443A3 (en) * 2008-06-04 2010-01-28 Pursuit Dynamics Plc Mist generating apparatus and method
JP2010207678A (en) * 2009-03-09 2010-09-24 Noritz Corp Swirling type bubble generator
JP2010246493A (en) * 2009-04-20 2010-11-04 Nakata Coating Co Ltd Water-supplying system
WO2011062103A1 (en) * 2009-11-18 2011-05-26 サントリーホールディングス株式会社 Method for producing carbonated beverage
US7950770B2 (en) 2006-02-28 2011-05-31 Ricoh Company, Ltd. Method and droplet-ejecting head for droplet-ejecting recording apparatus capable of achieving high recording image quality
JP2011245405A (en) * 2010-05-26 2011-12-08 Panasonic Electric Works Co Ltd Microbubble generation device
KR101118220B1 (en) 2010-03-09 2012-03-20 (주)대륜기계 nozzle assembly of micro-bubble generating device
DE102008033206B4 (en) * 2007-09-28 2012-04-26 Honda Motor Co., Ltd. Microbubble generator
JP5115659B2 (en) * 2010-04-08 2013-01-09 トヨタ自動車株式会社 Fuel injection valve
KR101250819B1 (en) 2013-02-20 2013-04-05 (주)동일캔바스엔지니어링 Microbubble nozzle for dissolved air floatation
JP2013081923A (en) * 2011-10-12 2013-05-09 Jfe Engineering Corp Spray nozzle and mixing method of gas and liquid
CN103964592A (en) * 2013-01-31 2014-08-06 江苏金梓环境科技有限公司 Solar energy shallow layer micro-nano aerator
US9004375B2 (en) 2004-02-26 2015-04-14 Tyco Fire & Security Gmbh Method and apparatus for generating a mist
US9010663B2 (en) 2004-02-26 2015-04-21 Tyco Fire & Security Gmbh Method and apparatus for generating a mist
WO2015103811A1 (en) * 2014-01-08 2015-07-16 Wanhua Chemical Group Co., Ltd. Catalytic wet oxidation reaction tower, method and apparatus for treating high concentration organic wastewater using the same
US9239063B2 (en) 2004-07-29 2016-01-19 Pursuit Marine Drive Limited Jet pump
US20170087525A1 (en) * 2015-09-28 2017-03-30 Hamilton Sundstrand Corporation Systems and methods for gas disposal
CN107107081A (en) * 2014-11-14 2017-08-29 三星工程株式会社 Gas-liquid mixed distributor, shell-and-tube heat exchanger
US9931648B2 (en) 2006-09-15 2018-04-03 Tyco Fire & Security Gmbh Mist generating apparatus and method
US10300439B2 (en) 2015-09-28 2019-05-28 Hamilton Sundstrand Corporation Systems and methods for gas disposal
KR101998725B1 (en) 2019-02-16 2019-07-10 주식회사 아스페 Apparatus for manufacturing oxygen-bearing water
WO2019230787A1 (en) * 2018-05-30 2019-12-05 株式会社アクアソリューション Microbubble-generating device
US10507480B2 (en) 2004-02-26 2019-12-17 Tyco Fire Products Lp Method and apparatus for generating a mist
CN110820236A (en) * 2018-08-13 2020-02-21 青岛海尔洗衣机有限公司 Washing apparatus
JPWO2019234962A1 (en) * 2018-06-08 2020-06-18 株式会社オプトクリエーション Fine bubble liquid production apparatus, fine bubble liquid production method and ozone fine bubble liquid
CN112076902A (en) * 2020-08-17 2020-12-15 福建省永安林业(集团)股份有限公司永安人造板厂 Fire-retardant foaming ball reposition of redundant personnel sprinkling system of fibreboard
JP2021112719A (en) * 2020-01-20 2021-08-05 株式会社ワカイダ・エンジニアリング Water quality improvement device and water quality improvement method
CN113248033A (en) * 2020-02-07 2021-08-13 阮庆源 Microbubble generation module
US20210379541A1 (en) * 2018-12-05 2021-12-09 Exira Capital, L.L.C. Compressed air foam mixing system
JP7012399B1 (en) 2021-06-03 2022-02-14 トーフレ株式会社 Fine bubble generation unit and water supply system
CN114074056A (en) * 2020-08-20 2022-02-22 深圳市裕展精密科技有限公司 Lead-in device, lead-in method and product
CN114278478A (en) * 2021-12-13 2022-04-05 上海工程技术大学 Slow-release entrained air jet gas nozzle
JP2023086210A (en) * 2021-12-10 2023-06-22 株式会社サイエンス Bubble generation device and bubble generator
KR102563242B1 (en) * 2022-04-07 2023-08-03 계룡환경주식회사 Aeration device for water purification with functions of stagnant water removal and water quality improvement

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357820B1 (en) * 2012-09-19 2014-02-05 반석정밀공업주식회사 Multi-point discharging head that binding to the dispenser
US10829392B2 (en) 2015-10-29 2020-11-10 DOOSAN Heavy Industries Construction Co., LTD Dissolved air flotation system
JP6609819B2 (en) 2017-04-05 2019-11-27 株式会社 Toshin Microbubble generator, microbubble and foam switching device and shower head
JP7315490B2 (en) 2020-01-27 2023-07-26 株式会社Ihi Defoamer

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125359A (en) * 1974-03-05 1975-10-02
US4103827A (en) * 1976-05-27 1978-08-01 Mitsubishi Precision Co., Ltd. Method of and apparatus for generating mixed and atomized fluids
JPS6046188U (en) * 1983-09-05 1985-04-01 セイレイ工業株式会社 Oscillating sorting device
JPS60190476U (en) * 1984-05-24 1985-12-17 川崎製鉄株式会社 ERW steel pipe manufacturing equipment
JPS6195455U (en) * 1984-11-22 1986-06-19
JPH0257532A (en) * 1988-08-09 1990-02-27 Dainippon Printing Co Ltd Spray defect detection device for liquid spray equipment
JPH0236664U (en) * 1988-09-01 1990-03-09
JPH0275555U (en) * 1988-11-30 1990-06-08
JPH05245414A (en) * 1991-05-17 1993-09-24 Toshiharu Fukai Foaming nozzle
JPH06272644A (en) * 1993-03-17 1994-09-27 Yamaha Motor Co Ltd Fuel injection type two-cycle engine
JPH0713329U (en) * 1993-08-11 1995-03-07 株式会社コロナ Structure of air intake pipe in bath with bubble generator
JPH0838947A (en) * 1995-07-17 1996-02-13 Toshio Takagi Sprinkler nozzle
JPH08229372A (en) * 1995-02-27 1996-09-10 Yoji Kato Micro bubble ejection device
EP0787570A2 (en) * 1996-02-01 1997-08-06 Sumitomo Chemical Company, Limited Process for supplying compressed gas and process for producing hollow article using the same
JPH1094722A (en) * 1996-07-31 1998-04-14 Idec Izumi Corp Fine bubble feeder
JPH10328586A (en) * 1997-05-30 1998-12-15 Tokyu Constr Co Ltd Mixing and spraying method and mixing and spraying nozzle
JPH1113596A (en) * 1997-06-19 1999-01-19 Kazuyoshi Matsuyama Fuel injection nozzle with straightening function
JPH11225653A (en) * 1998-02-18 1999-08-24 New Delta Ind Co Jet pipe for spreader
JPH11253702A (en) * 1998-01-09 1999-09-21 Nkk Corp Liquid defoaming device and liquid application device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5294513A (en) * 1976-02-04 1977-08-09 Takuo Mochizuki Nozzles
JPS5941780B2 (en) * 1976-05-27 1984-10-09 三菱プレシジョン株式会社 Complex fluid jet method and complex nozzle unit
JPS62151961U (en) * 1986-03-15 1987-09-26
JPH0345468U (en) * 1989-09-12 1991-04-26
JPH0611118Y2 (en) * 1990-08-21 1994-03-23 株式会社エフエスケー Gas-liquid mixing nozzle
JPH05161899A (en) * 1991-12-16 1993-06-29 Takashi Yamamoto Aerating apparatus
JP2521504Y2 (en) * 1992-07-08 1996-12-25 富士ロビン株式会社 Power sprayer
JP3993722B2 (en) * 1999-06-14 2007-10-17 株式会社オ−ラテック Microbubble discharge nozzle, nozzle loading container and flow promotion cylinder

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125359A (en) * 1974-03-05 1975-10-02
US4103827A (en) * 1976-05-27 1978-08-01 Mitsubishi Precision Co., Ltd. Method of and apparatus for generating mixed and atomized fluids
JPS6046188U (en) * 1983-09-05 1985-04-01 セイレイ工業株式会社 Oscillating sorting device
JPS60190476U (en) * 1984-05-24 1985-12-17 川崎製鉄株式会社 ERW steel pipe manufacturing equipment
JPS6195455U (en) * 1984-11-22 1986-06-19
JPH0257532A (en) * 1988-08-09 1990-02-27 Dainippon Printing Co Ltd Spray defect detection device for liquid spray equipment
JPH0236664U (en) * 1988-09-01 1990-03-09
JPH0275555U (en) * 1988-11-30 1990-06-08
JPH05245414A (en) * 1991-05-17 1993-09-24 Toshiharu Fukai Foaming nozzle
JPH06272644A (en) * 1993-03-17 1994-09-27 Yamaha Motor Co Ltd Fuel injection type two-cycle engine
JPH0713329U (en) * 1993-08-11 1995-03-07 株式会社コロナ Structure of air intake pipe in bath with bubble generator
JPH08229372A (en) * 1995-02-27 1996-09-10 Yoji Kato Micro bubble ejection device
JPH0838947A (en) * 1995-07-17 1996-02-13 Toshio Takagi Sprinkler nozzle
EP0787570A2 (en) * 1996-02-01 1997-08-06 Sumitomo Chemical Company, Limited Process for supplying compressed gas and process for producing hollow article using the same
JPH1094722A (en) * 1996-07-31 1998-04-14 Idec Izumi Corp Fine bubble feeder
JPH10328586A (en) * 1997-05-30 1998-12-15 Tokyu Constr Co Ltd Mixing and spraying method and mixing and spraying nozzle
JPH1113596A (en) * 1997-06-19 1999-01-19 Kazuyoshi Matsuyama Fuel injection nozzle with straightening function
JPH11253702A (en) * 1998-01-09 1999-09-21 Nkk Corp Liquid defoaming device and liquid application device
JPH11225653A (en) * 1998-02-18 1999-08-24 New Delta Ind Co Jet pipe for spreader

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191950A (en) * 2000-12-25 2002-07-10 National Institute Of Advanced Industrial & Technology Microbubble generator using special nozzle
JP2003125649A (en) * 2001-10-25 2003-05-07 Aura Tec:Kk Soil improvement methods and equipment
WO2003045541A3 (en) * 2001-11-19 2004-04-22 Mir Chem Gmbh Device and method for producing foam
JP2004033908A (en) * 2002-07-03 2004-02-05 Fuji Electric Holdings Co Ltd Ozone diffuser
JP2005000882A (en) * 2003-06-13 2005-01-06 Aura Tec:Kk Micro bubble generator
JP2005000878A (en) * 2003-06-13 2005-01-06 Aura Tec:Kk Apparatus for generating micro bubble
EP1520630A1 (en) * 2003-10-02 2005-04-06 Friesland Brands B.V. Method and apparatus for forming gas bubbles in a liquid product
NL1024438C2 (en) * 2003-10-02 2005-04-05 Friesland Brands Bv Method and device for forming gas bubbles in a liquid product.
EP1520483A1 (en) * 2003-10-02 2005-04-06 Friesland Brands B.V. Method and apparatus for forming gas bubbles in a liquid product
NL1024434C2 (en) * 2003-10-02 2005-04-05 Friesland Brands Bv Method and device for forming gas bubbles in a liquid product.
JP2005211314A (en) * 2004-01-29 2005-08-11 Asahi Kogyo Kk Bubble-generating device
US10507480B2 (en) 2004-02-26 2019-12-17 Tyco Fire Products Lp Method and apparatus for generating a mist
US9004375B2 (en) 2004-02-26 2015-04-14 Tyco Fire & Security Gmbh Method and apparatus for generating a mist
US9010663B2 (en) 2004-02-26 2015-04-21 Tyco Fire & Security Gmbh Method and apparatus for generating a mist
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Method for producing nanobubbles
JP2005288222A (en) * 2004-03-31 2005-10-20 Masao Senoo Water purifier
US9239063B2 (en) 2004-07-29 2016-01-19 Pursuit Marine Drive Limited Jet pump
WO2006075452A1 (en) * 2005-01-13 2006-07-20 National University Corporation University Of Tsukuba Microbubble producing device, vortex breaking nozzle for microbubble producing device, spiral flow producing blade body for microbubble producing device, microbubble producing method, and microbubble applied device
US7997563B2 (en) 2005-01-13 2011-08-16 National University Corporation University Of Tsukuba Micro-bubble generator, vortex breakdown nozzle for micro-bubble generator, vane swirler for micro-bubble generator, micro-bubble generating method, and micro-bubble applying device
WO2007010745A1 (en) * 2005-07-21 2007-01-25 Toyota Jidosha Kabushiki Kaisha Fuel supply apparatus
JP2007075328A (en) * 2005-09-14 2007-03-29 Sharp Corp Disinfection method for ultrapure water production apparatus and sterilization apparatus for ultrapure water production apparatus
JP2007083108A (en) * 2005-09-20 2007-04-05 Sharp Corp Liquid processing method and liquid processing apparatus
JP2007136409A (en) * 2005-11-22 2007-06-07 Sharp Corp Water treatment method and water treatment apparatus
US7950770B2 (en) 2006-02-28 2011-05-31 Ricoh Company, Ltd. Method and droplet-ejecting head for droplet-ejecting recording apparatus capable of achieving high recording image quality
JP2009101250A (en) * 2006-07-11 2009-05-14 Makoto Minamidate Fine bubble generating apparatus
US9931648B2 (en) 2006-09-15 2018-04-03 Tyco Fire & Security Gmbh Mist generating apparatus and method
JP2008079895A (en) * 2006-09-28 2008-04-10 Sharp Corp Micro-nano bubble bathtub water preparation method and micro-nano bubble bathtub
JP2008100134A (en) * 2006-10-17 2008-05-01 Toflo Corporation Kk Gas-liquid mixing device
US7622615B2 (en) 2007-04-13 2009-11-24 Sumitomo Chemical Company, Limited Process for producing cycloalkanol and/or cycloalkanone
EP1980549A1 (en) 2007-04-13 2008-10-15 Sumitomo Chemical Company, Limited Process for producing cycloalkanol and/or cycloalkanone
JP2009060987A (en) * 2007-09-04 2009-03-26 Sharp Corp Bathing equipment
DE102008033206B4 (en) * 2007-09-28 2012-04-26 Honda Motor Co., Ltd. Microbubble generator
EP2060318A1 (en) 2007-11-15 2009-05-20 YARA International ASA Apparatus and method for generating and distributing bubbles in a gas-liquid mixture
AU2009254940B2 (en) * 2008-06-04 2013-05-02 Tyco Fire & Security Gmbh Mist generating apparatus and method
CN102112236A (en) * 2008-06-04 2011-06-29 推进动力公司 Mist generating apparatus and method
JP2011523893A (en) * 2008-06-04 2011-08-25 パスート ダイナミックス ピーエルシー Improved mist generating apparatus and method
EA022737B1 (en) * 2008-06-04 2016-02-29 Персьют Дайнэмикс Плк Mist generating method and apparatus
US8991727B2 (en) 2008-06-04 2015-03-31 Tyco Fire & Security Gmbh Mist generating apparatus and method
CN102112236B (en) * 2008-06-04 2014-07-23 推进动力公司 Mist generating apparatus and method
WO2009147443A3 (en) * 2008-06-04 2010-01-28 Pursuit Dynamics Plc Mist generating apparatus and method
JP2010207678A (en) * 2009-03-09 2010-09-24 Noritz Corp Swirling type bubble generator
JP2010246493A (en) * 2009-04-20 2010-11-04 Nakata Coating Co Ltd Water-supplying system
WO2011062103A1 (en) * 2009-11-18 2011-05-26 サントリーホールディングス株式会社 Method for producing carbonated beverage
EP2502508B1 (en) * 2009-11-18 2018-08-15 Suntory Holdings Limited Method for producing carbonated beverage
CN102639014A (en) * 2009-11-18 2012-08-15 三得利控股株式会社 Method for producing carbonated beverage
JP2011103814A (en) * 2009-11-18 2011-06-02 Suntory Holdings Ltd Method for producing carbonated beverage
KR101118220B1 (en) 2010-03-09 2012-03-20 (주)대륜기계 nozzle assembly of micro-bubble generating device
JP5115659B2 (en) * 2010-04-08 2013-01-09 トヨタ自動車株式会社 Fuel injection valve
JP2011245405A (en) * 2010-05-26 2011-12-08 Panasonic Electric Works Co Ltd Microbubble generation device
JP2013081923A (en) * 2011-10-12 2013-05-09 Jfe Engineering Corp Spray nozzle and mixing method of gas and liquid
CN103964592A (en) * 2013-01-31 2014-08-06 江苏金梓环境科技有限公司 Solar energy shallow layer micro-nano aerator
KR101250819B1 (en) 2013-02-20 2013-04-05 (주)동일캔바스엔지니어링 Microbubble nozzle for dissolved air floatation
WO2015103811A1 (en) * 2014-01-08 2015-07-16 Wanhua Chemical Group Co., Ltd. Catalytic wet oxidation reaction tower, method and apparatus for treating high concentration organic wastewater using the same
CN107107081A (en) * 2014-11-14 2017-08-29 三星工程株式会社 Gas-liquid mixed distributor, shell-and-tube heat exchanger
US10589237B2 (en) * 2015-09-28 2020-03-17 Hamilton Sundstrand Corporation Systems and methods for gas disposal
US10300439B2 (en) 2015-09-28 2019-05-28 Hamilton Sundstrand Corporation Systems and methods for gas disposal
US20170087525A1 (en) * 2015-09-28 2017-03-30 Hamilton Sundstrand Corporation Systems and methods for gas disposal
US11202998B2 (en) 2015-09-28 2021-12-21 Hamilton Sundstrand Corporation Systems and methods for gas disposal
CN112236219A (en) * 2018-05-30 2021-01-15 株式会社水改质 Micro-bubble generating device
US11980855B2 (en) 2018-05-30 2024-05-14 Aquasolution Corporation Ultrafine bubble generating apparatus
WO2019230787A1 (en) * 2018-05-30 2019-12-05 株式会社アクアソリューション Microbubble-generating device
JPWO2019230787A1 (en) * 2018-05-30 2021-03-25 株式会社アクアソリューション Fine bubble generator
JP7038809B2 (en) 2018-05-30 2022-03-18 株式会社アクアソリューション Fine bubble generator
RU2754228C1 (en) * 2018-05-30 2021-08-30 Аквасолюшн Корпорэйшн Device for generating ultra-small bubbles
AU2019279159B2 (en) * 2018-05-30 2021-12-16 Aquasolution Corporation Ultrafine Bubble Generating Apparatus
JPWO2019234962A1 (en) * 2018-06-08 2020-06-18 株式会社オプトクリエーション Fine bubble liquid production apparatus, fine bubble liquid production method and ozone fine bubble liquid
CN110820236A (en) * 2018-08-13 2020-02-21 青岛海尔洗衣机有限公司 Washing apparatus
US20210379541A1 (en) * 2018-12-05 2021-12-09 Exira Capital, L.L.C. Compressed air foam mixing system
KR101998725B1 (en) 2019-02-16 2019-07-10 주식회사 아스페 Apparatus for manufacturing oxygen-bearing water
JP2021112719A (en) * 2020-01-20 2021-08-05 株式会社ワカイダ・エンジニアリング Water quality improvement device and water quality improvement method
CN113248033A (en) * 2020-02-07 2021-08-13 阮庆源 Microbubble generation module
CN113248033B (en) * 2020-02-07 2023-01-31 阮证隆 Microbubble Generation Module
CN112076902A (en) * 2020-08-17 2020-12-15 福建省永安林业(集团)股份有限公司永安人造板厂 Fire-retardant foaming ball reposition of redundant personnel sprinkling system of fibreboard
CN114074056A (en) * 2020-08-20 2022-02-22 深圳市裕展精密科技有限公司 Lead-in device, lead-in method and product
CN114074056B (en) * 2020-08-20 2023-08-08 富联裕展科技(深圳)有限公司 Introduction device, introduction method and product
JP7012399B1 (en) 2021-06-03 2022-02-14 トーフレ株式会社 Fine bubble generation unit and water supply system
JP2022185901A (en) * 2021-06-03 2022-12-15 トーフレ株式会社 Fine bubble generation unit and water supply system
JP2023086210A (en) * 2021-12-10 2023-06-22 株式会社サイエンス Bubble generation device and bubble generator
JP7546921B2 (en) 2021-12-10 2024-09-09 株式会社サイエンス Bubble generating device and bubble generator
CN114278478A (en) * 2021-12-13 2022-04-05 上海工程技术大学 Slow-release entrained air jet gas nozzle
KR102563242B1 (en) * 2022-04-07 2023-08-03 계룡환경주식회사 Aeration device for water purification with functions of stagnant water removal and water quality improvement

Also Published As

Publication number Publication date
AU1309401A (en) 2001-05-30
JP4002439B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
WO2001036105A1 (en) Micro-bubble generating nozzle and application device therefor
US7624969B2 (en) Two-stage injector-mixer
CN110891674A (en) Microbubble generating apparatus and microbubble generating method, and shower apparatus and oil-water separating apparatus having the same
WO2001097958A1 (en) Fine air bubble generator and fine air bubble generating device with the generator
KR101483412B1 (en) Micro bubble nozzle
CN101491749B (en) Micro bubble generation device
JP2004313905A (en) Structure of gas-liquid dissolving tank
JP2005262200A (en) Water cleaning apparatus
JP2009028579A (en) Bubble generating apparatus
JP4107241B2 (en) Fine bubble generation nozzle
JP2002153741A (en) Tool for mixing fluid and pump for mixing fluid using the same
JP2001347145A (en) Fine bubble generator
JP2007268390A (en) Bubble generator
CN216149616U (en) Micro-nano bubble generating system
CN113648914A (en) Micro-nano bubble generating system
CN218643473U (en) Built-in foam generating device
JP7505739B2 (en) Hydrogen microbubble generating device and hydrogen microbubble generating unit
CN214486428U (en) Air inlet mechanism, bubble water preparation device and water outlet equipment
CN112808040B (en) Air intake mechanism, bubble water preparation device and water outlet equipment
CN115999418A (en) Air suction protection structure of micro-bubble device
CN209602189U (en) A high-efficiency sewage treatment injector
JP2003056500A (en) Ejector
KR200266540Y1 (en) Shower head for mixing gas in water under the low pressure
CN2882773Y (en) Mini ozone gas-water circulation mixer
JP2007301561A (en) Bubble crushing nozzle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 538084

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase