JPH08229372A - Microbubble jetting device - Google Patents

Microbubble jetting device

Info

Publication number
JPH08229372A
JPH08229372A JP7038862A JP3886295A JPH08229372A JP H08229372 A JPH08229372 A JP H08229372A JP 7038862 A JP7038862 A JP 7038862A JP 3886295 A JP3886295 A JP 3886295A JP H08229372 A JPH08229372 A JP H08229372A
Authority
JP
Japan
Prior art keywords
fluid
water mixed
mixed fluid
bubble
flow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7038862A
Other languages
Japanese (ja)
Inventor
Yoji Kato
洋治 加藤
Tadashi Oi
忠司 大井
Yoshiaki Takahashi
義明 高橋
Osamu Watanabe
修 渡辺
Hideo Mitsutake
英生 光武
Shoichi Maruyama
尚一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP7038862A priority Critical patent/JPH08229372A/en
Publication of JPH08229372A publication Critical patent/JPH08229372A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Nozzles (AREA)

Abstract

PURPOSE: To reduce energy loss on transfer of a bubble-water mixed fluid to a jetting port and to save a space of a flow passage of the bubble-water mixed fluid corresponding to the shape of the jetting port. CONSTITUTION: A device is provided with a flow passage structure 10 for transferring a bubble-water mixed fluid, and a slit-shaped fluid jetting port 3 arranged connected to the fluid passage structure 10 and for jetting the bubble-water mixed fluid. The flow passage structure 10 has a fluid transfer pipe 11 having a circular flow passage section, a pyramid part 12 connected to the tip of the fluid transfer pipe 11 with the shape of the flow passage section being changed from a circle to a rectangle, and an enlarged part 13 connected to the pyramid part 12 with the shape of the flow passage being gradually changed from a rectangle to a slit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気泡水混合流体を利用
して航走体の摩擦を低減する際に使用されるマイクロバ
ブルの噴出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a jetting device for microbubbles which is used when reducing the friction of a vehicle by utilizing a fluid mixture of bubbles and water.

【0002】[0002]

【従来の技術】船舶等の摩擦低減を図るために、船体の
表面に気泡または空気層を介在させる方法が提案されて
いる。気泡を水中に噴出させる技術として、(1)特開
昭50−83992号、(2)特開昭53−13628
9号、(3)特開昭60−139586号、(4)特開
昭61−71290号、(5)実開昭61−39691
号、(6)実開昭61−128185号が提案されてい
る。
2. Description of the Related Art In order to reduce the friction of a ship or the like, a method has been proposed in which a bubble or an air layer is interposed on the surface of the hull. Techniques for ejecting bubbles into water include (1) JP-A-50-83992 and (2) JP-A-53-13628.
No. 9, (3) JP-A-60-139586, (4) JP-A-61-71290, (5) Jitsukai 61-39691.
No. 6, (6) Japanese Utility Model Publication No. 61-128185 is proposed.

【0003】そして、これらの技術では、気泡を噴出さ
せる方法として、空気ポンプで発生させた加圧空気を複
数の穴や多孔板から水中に噴出させるようにしている。
In these techniques, as a method of ejecting bubbles, pressurized air generated by an air pump is ejected into water through a plurality of holes or perforated plates.

【0004】[0004]

【発明が解決しようとする課題】しかし、加圧空気のみ
を複数の穴から噴出する方法であると、微細な気泡を得
ることが困難で、気泡が浮力に基づく上昇力によって船
体から離れ易く、摩擦抵抗低減範囲が小さくなり、多孔
質板から微細な気泡を吹き出す技術では、多孔質板での
気泡吹き出し時における圧力損失に基づくエネルギ消費
が大きくなって、摩擦抵抗低減によるエネルギ節約より
も、気泡吹き出しのためのエネルギ消費の方が多くなっ
て、実用性が損われてしまう等の難点があり、前述した
(1)ないし(6)の技術は、いずれも実用化に至って
いないのが実情である。
However, with the method of ejecting only pressurized air from a plurality of holes, it is difficult to obtain fine bubbles, and the bubbles easily separate from the hull due to the lifting force based on buoyancy. In the technology that reduces the frictional resistance reduction range and blows out fine bubbles from the porous plate, the energy consumption based on the pressure loss when bubbles are blown out on the porous plate becomes large, and the energy saving by reducing the frictional resistance is more important than the energy saving. There is a drawback that the energy consumption for blowing out is increased and the practicality is impaired. In reality, none of the above-mentioned technologies (1) to (6) have been put to practical use. is there.

【0005】本発明は、これらの事情に鑑みてなされた
もので、以下の目的を有するものである。 噴出口までの気泡水混合流体の移送時におけるエネル
ギ損失を低減すること。 噴出口における気泡水混合流体の流速および流量の均
一化を図り、効果的に摩擦低減を図ること。 気泡水混合流体の流体移送管から噴出口までの誘導を
容易にし、接続性を高めること。 噴出口形状に対応した気泡水混合流体の流路の省スペ
ース化を図ること。
The present invention has been made in view of these circumstances, and has the following objects. To reduce energy loss during the transfer of bubbly water mixed fluid to the jet outlet. To equalize the flow velocity and flow rate of the bubbly water mixed fluid at the jet outlet and effectively reduce friction. To facilitate the guidance of the bubbly water mixed fluid from the fluid transfer pipe to the ejection port, and to improve the connectivity. To save space in the flow path of bubbly water mixed fluid that corresponds to the shape of the jet outlet.

【0006】[0006]

【課題を解決するための手段】本発明に係るマイクロバ
ブルの噴出装置は、気泡水混合流体を移送する流路構成
体と、該流路構成体に接続状態に配され気泡水混合流体
を噴出させるスリット状の流体噴出口とを具備し、流路
構成体は、流路断面形状が円形の流体移送管と、該流体
移送管の先端に接続され流路断面形状が円形から角形に
変形した状態の角錘部と、該角錘部に接続され流路断面
形状が角形から漸次スリット状に変形した状態の拡散部
とを有する技術が採用される。拡散部の途中における横
断面積が、流体噴出口と同じか、これよりも大きく設定
される技術が採用される。流路構成体は、船体の没水表
面に、流体噴出口が後方または斜め後方を向くように必
要数配される。
A microbubble ejection device according to the present invention ejects a bubble-water mixed fluid, which is arranged in a connection state with the flow-path constituting body for transferring the bubble-water mixed fluid. The flow path constituting body is provided with a slit-shaped fluid ejection port for allowing the flow path cross-sectional shape to be circular, and the flow path cross-sectional shape connected to the tip of the fluid transfer tube is changed from circular to square. A technique having a pyramidal portion in a state and a diffusing portion connected to the pyramid portion and having a cross-sectional shape of a flow path gradually deformed from a rectangular shape to a slit shape is adopted. A technique is adopted in which the cross-sectional area in the middle of the diffusion part is set to be equal to or larger than that of the fluid ejection port. The required number of the flow path components are arranged on the submerged surface of the hull such that the fluid ejection ports face rearward or obliquely rearward.

【0007】[0007]

【作用】気泡水混合流体発生手段で発生させた気泡水混
合流体は、船殻の各所に配されたマイクロバブルの噴出
装置に移送される。このとき、気泡水混合流体は、流体
移送管によって移送された後、流路断面形状が円形であ
る流体移送管の先端から角錘部に送り込まれる。該角錘
部内では、気泡水混合流体が角形の流路断面形状に基づ
いて徐々に広げられて拡散部に引き継がれる。拡散部内
では、気泡水混合流体が流路断面形状により角形から漸
次スリット状に拡散変形させられてスリット状の流体噴
出口へと誘導される。このように流路断面形状に基づい
てスリット状に広げられた気泡水混合流体は、静圧およ
び自身の運動エネルギによって流体噴出口から後方に向
けて没水表面に沿って噴出される。気泡水混合流体が流
体噴出口から噴出されると、没水表面の近傍に気泡が介
在して、航走時の摩擦の低減効果が生じるとともに、気
泡水混合流体の噴出方向と反対方向への駆動力が発生
し、船体の前方への駆動力となる。拡散部の途中におけ
る横断面積を流体噴出口よりも大きく設定すると、拡散
部の途中で気泡水混合流体の静圧が低くなることによっ
て、拡大された流路断面に均一に広がり、流体噴出口で
流路断面が小さくなることにより、加圧されて没水表面
へと噴出される。このとき、気泡水混合流体は、流体噴
出口のスリットの長さ方向において均一な流量および流
速によって噴出される。
The bubbly water mixed fluid generated by the bubbly water mixed fluid generating means is transferred to the micro-bubble jetting device arranged at various places on the hull. At this time, the bubbly water mixed fluid is transferred by the fluid transfer pipe and then sent to the pyramidal portion from the tip of the fluid transfer pipe having a circular flow path cross-sectional shape. In the pyramidal portion, the bubble-water mixed fluid is gradually spread based on the rectangular channel cross-sectional shape and taken over by the diffusion portion. In the diffusing section, the bubble-water mixed fluid is gradually diffused and deformed from a rectangular shape to a slit shape by the cross-sectional shape of the flow path and is guided to the slit-shaped fluid ejection port. The bubbly water mixed fluid thus spread in a slit shape based on the channel cross-sectional shape is jetted rearward from the fluid jet port along the submerged surface by static pressure and its own kinetic energy. When the bubbly water mixed fluid is ejected from the fluid ejection port, bubbles are present near the submerged surface to reduce the friction at the time of running and also to the direction opposite to the ejection direction of the bubbly water mixed fluid. A driving force is generated and becomes a driving force forward of the hull. If the cross-sectional area in the middle of the diffusion part is set to be larger than that of the fluid ejection port, the static pressure of the bubbly water mixed fluid will decrease in the middle of the diffusion part, and it will spread evenly over the enlarged flow passage section, and As the cross section of the flow channel becomes smaller, it is pressurized and jetted to the submerged surface. At this time, the bubbly water mixed fluid is ejected at a uniform flow rate and flow velocity in the length direction of the slit of the fluid ejection port.

【0008】[0008]

【実施例】図1および図2は、本発明に係わるマイクロ
バブルの噴出装置の一実施例を示すもので、符号Aはマ
イクロバブルの噴出装置、Yは摩擦低減航走体、Eは摩
擦低減対象範囲(吹出し領域)、1は船体、2は気泡水
混合流体発生手段、3は流体噴出口、4は没水表面(船
体表面)、5は推進器、6は舵、7は空気取入れ口、8
は吸水口を示している。
1 and 2 show an embodiment of a micro-bubble ejection device according to the present invention, wherein reference symbol A is a micro-bubble ejection device, Y is a friction-reducing vehicle, and E is friction-reduction. Target range (blowing area), 1 is a hull, 2 is a bubbly water mixed fluid generating means, 3 is a fluid ejection port, 4 is a submerged surface (hull surface), 5 is a propeller, 6 is a rudder, 7 is an air intake port. , 8
Indicates the water inlet.

【0009】摩擦低減航走体Yにおける船体1の適宜位
置には、後述する気泡水混合流体発生手段2が搭載さ
れ、該気泡水混合流体発生手段2は、空気取入れ口7お
よび吸水口8に接続されて空気と水とを所望の比率で混
合した状態の気泡水混合流体を発生させるものである。
At a suitable position of the hull 1 in the friction-reducing vehicle Y, a bubble-water mixed fluid generating means 2 to be described later is mounted, and the bubble-water mixed fluid generating means 2 has an air intake port 7 and a water intake port 8. It is connected to generate a bubbly water mixed fluid in a state where air and water are mixed at a desired ratio.

【0010】以下、マイクロバブルの噴出装置Aの詳細
について説明すると、該噴出装置Aは、図2に示すよう
に、気泡水混合流体発生手段2と接続されて気泡水混合
流体を移送する流路構成体10と、該流路構成体10の
先端に接続状態に配されるスリット状の流体噴出口3と
を具備している。
The details of the micro-bubble jetting device A will be described below. As shown in FIG. 2, the jetting device A is connected to the bubble-water mixed fluid generating means 2 and is a flow path for transferring the bubble-water mixed fluid. The structure 10 and a slit-shaped fluid ejection port 3 arranged in a connected state at the tip of the flow path structure 10 are provided.

【0011】前記流路構成体10は、図1に示した船体
1の外殻の内側に配され、気泡水混合流体を船体1の各
所に移送するための流体移送管11と、該流体移送管1
1の先端に接続された角錘部12と、該角錘部12に接
続された拡散部13とを有している。該拡散部13の先
端の流体噴出口3は、外殻を貫通した状態に斜め後方に
向けて形成される。
The flow passage structure 10 is arranged inside the outer shell of the hull 1 shown in FIG. 1, and is provided with a fluid transfer pipe 11 for transferring the mixed fluid of bubbly water to various parts of the hull 1, and the fluid transfer. Tube 1
It has a pyramidal portion 12 connected to the tip of the No. 1 and a diffusion portion 13 connected to the pyramidal portion 12. The fluid ejection port 3 at the tip of the diffusing portion 13 is formed so as to extend obliquely rearward so as to penetrate the outer shell.

【0012】流路構成体10の各部の流路断面形状は、
流体移送管11では円形とされ、角錘部12では円形か
ら角形に変形されるとともに流路断面が次第に大きくな
るように設定され、また拡散部13では、角形から長方
形に幅を大きくして最終的にはスリット状となるように
それぞれの流路断面が設定される。これら角錘部12お
よび拡散部13は、いずれも例えば平板状のステンレス
鋼板を組み合わせて溶接する方法等によって製作され
る。
The cross-sectional shape of the flow path of each part of the flow path forming body 10 is
The fluid transfer pipe 11 has a circular shape, and the pyramidal portion 12 is set to be deformed from a circular shape to a rectangular shape and the flow passage cross section is gradually increased. Specifically, each flow path cross section is set so as to have a slit shape. Both the pyramidal portion 12 and the diffusion portion 13 are manufactured by, for example, a method of combining flat plate-shaped stainless steel plates and welding them.

【0013】また、流路構成体10の各部における流路
断面は、流体移送管11の横断面積をS1、角錘部12
の流体移送管11との接続部の横断面積をS2、角錘部
12の拡散部13との接続部の横断面積をS3、拡散部
13の途中における横断面積をS4、流体噴出口3の開
口面積をS5とすると、以下のように設定される。 S1=S2 S2≦S3≦S4 S5≦S4 したがって、拡散部13の途中における横断面積S4
は、最も大きくなるように設定される。
The cross section of the flow path in each part of the flow path forming body 10 has a cross-sectional area S1 of the fluid transfer pipe 11 and a pyramidal portion 12
Of the fluid transfer pipe 11 is S2, the cross-sectional area of the connection of the pyramidal portion 12 with the diffusion portion 13 is S3, the cross-sectional area in the middle of the diffusion portion 13 is S4, and the opening of the fluid ejection port 3 is When the area is S5, it is set as follows. S1 = S2 S2 ≦ S3 ≦ S4 S5 ≦ S4 Therefore, the cross-sectional area S4 in the middle of the diffusion unit 13
Is set to be the largest.

【0014】このように構成されているマイクロバブル
の噴出装置Aでは、気泡水混合流体発生手段2を作動さ
せると、前述したように、空気と水とを所望の比率で混
合した気泡水混合流体が発生して、この気泡水混合流体
が、流体移送管11によって船体1の各所に移送され、
流路構成体10を経由して所望箇所の流体噴出口3から
噴出させられる。このとき、気泡水混合流体は、流路断
面形状が円形の流体移送管11から角錘部12に送り込
まれる。該角錘部12内では、気泡水混合流体が角形の
流路断面形状に基づいて徐々に広げられて拡散部13に
引き継がれる。拡散部13内では、気泡水混合流体が流
路断面形状により角形から漸次スリット状に拡散変形さ
せられてスリット状の流体噴出口3へと誘導される。こ
のように流路断面形状に基づいてスリット状に広げられ
た気泡水混合流体は、静圧および自身の運動エネルギに
よって流体噴出口3から後方に向けて没水表面に沿って
噴出させられる。
In the micro-bubble jetting device A thus constructed, when the bubble-water mixed fluid generating means 2 is operated, the bubble-water mixed fluid in which air and water are mixed at a desired ratio as described above. Is generated, and this bubbling water mixed fluid is transferred to various parts of the hull 1 by the fluid transfer pipe 11,
The fluid is ejected from the fluid ejection port 3 at a desired position via the flow path structure 10. At this time, the bubbly water mixed fluid is sent to the pyramidal portion 12 from the fluid transfer pipe 11 having a circular flow path cross-sectional shape. In the pyramidal portion 12, the bubble-water mixed fluid is gradually spread based on the rectangular channel cross-sectional shape and is taken over by the diffusion portion 13. In the diffusion portion 13, the bubble-water mixed fluid is gradually diffused and deformed from a square shape into a slit shape by the cross-sectional shape of the flow path and is guided to the slit-shaped fluid ejection port 3. The bubbly water mixed fluid expanded in the slit shape based on the flow channel cross-sectional shape is jetted rearward from the fluid jet port 3 along the submerged surface by static pressure and kinetic energy of itself.

【0015】気泡水混合流体が流体噴出口3から噴出す
ると、没水表面4の近傍に径の小さな気泡(マイクロバ
ブル)が介在して、航走時の摩擦の低減効果が生じる。
また、気泡水混合流体が、没水表面4に沿って噴出させ
られることにより、その反対方向への推進力として働
く。この推進力は外殻を介して船体1に伝達され、船体
1の前方への駆動力となる。この場合にあって、空気と
水とは、3桁の質量差があるため、気泡水混合流体の噴
出による推進力の発生は、主として水の運動エネルギに
基づくものとなる。
When the bubbly water mixed fluid is ejected from the fluid ejection port 3, bubbles having a small diameter (micro bubbles) are present in the vicinity of the submerged surface 4, and an effect of reducing friction during traveling is produced.
Further, the bubbly water mixed fluid is jetted out along the submerged surface 4, thereby acting as a propulsive force in the opposite direction. This propulsive force is transmitted to the hull 1 via the outer shell and becomes a driving force to the front of the hull 1. In this case, since the mass difference between air and water is three orders of magnitude, the generation of the propulsive force due to the jetting of the bubbling water mixed fluid is mainly based on the kinetic energy of water.

【0016】拡散部13の途中における横断面積S4
が、流体噴出口の開口面積S5よりも大きく設定されて
いると、拡散部13の途中で気泡水混合流体の静圧が低
くなり、拡大された流路断面に基づいて気泡水混合流体
が均一に広げられた後、流体噴出口3を経て没水表面4
へと噴出させられる。このとき、気泡水混合流体は、流
体噴出口3のスリットの長さ方向において、均一な流量
および流速によって噴出させられる。このように、流路
断面形状が円形からスリット状に徐々に変形しているこ
とによって、流路断面形状の変形に伴う移送時のエネル
ギ損失が少なくなる。
A cross-sectional area S4 in the middle of the diffusion section 13
However, if it is set to be larger than the opening area S5 of the fluid ejection port, the static pressure of the bubbly water mixed fluid becomes low in the middle of the diffusion portion 13, and the bubbly water mixed fluid becomes uniform based on the enlarged flow passage cross section. After being spread over the water, the submerged surface 4 passes through the fluid ejection port 3
Is ejected. At this time, the bubbly water mixed fluid is jetted at a uniform flow rate and flow velocity in the length direction of the slit of the fluid jet port 3. As described above, since the flow passage cross-sectional shape is gradually deformed from the circular shape to the slit shape, energy loss at the time of transfer due to the deformation of the flow passage cross-sectional shape is reduced.

【0017】一方、図3は、気泡水混合流体発生手段2
の構造例を示すもので、吸水口8及び加圧水供給手段1
5に接続状態の流路構成体10と、該流路構成体10の
側壁(管壁)の長手方向の一部に周方向及び長手方向に
ほぼ均一な間隔を明けて多数明けられる細孔16と、該
細孔16の回りを囲んだ状態とするガスチャンバ17
と、該ガスチャンバ17の内部空間に接続される加圧空
気供給手段18とを有している。
On the other hand, FIG. 3 shows a bubble-water mixed fluid generating means 2
This is an example of the structure of the water suction port 8 and the pressurized water supply means 1
5, and a plurality of pores 16 formed in a part of the side wall (tube wall) of the flow path constituting body 10 in the longitudinal direction with a substantially uniform interval in the circumferential direction and the longitudinal direction. And the gas chamber 17 that surrounds the pores 16.
And a pressurized air supply means 18 connected to the internal space of the gas chamber 17.

【0018】気泡水混合流体発生手段2により気泡水混
合流体を発生させる場合には、加圧水供給手段15のポ
ンプを作動させることにより、海水(水)を流路構成体
10の内部に送り込むとともに、加圧空気供給手段18
のブロアを作動させることにより、加圧空気をガスチャ
ンバ17の内部空間に送り込んで、多数の細孔16から
噴出させて、気泡が混入した状態の気泡水混合流体を生
成するようにしたものである。
When the bubbly water mixed fluid is generated by the bubbly water mixed fluid generating means 2, the pump of the pressurized water supply means 15 is operated to send seawater (water) into the flow path forming body 10, and Pressurized air supply means 18
By operating the blower of (1), pressurized air is sent into the internal space of the gas chamber 17 and ejected from a large number of pores 16 to generate a bubble-water mixed fluid in which bubbles are mixed. is there.

【0019】[0019]

【発明の効果】本発明に係るマイクロバブルの噴出装置
にあっては、以下の効果を奏する。 (1) 流路構成体の部分で流路断面形状を円形から角
形、長方形としてスリット状に変形して、流体移送管と
流体噴出口とを接続しているので、気泡水混合流体の誘
導が円滑なものとなり、流路断面形状の変形に伴う気泡
水混合流体の移送時のエネルギ損失を少なくすることが
できる。 (2) 拡散部の途中の横断面積を流体噴出口よりも大
きく設定しているので、流速および流量の均一な気泡水
混合流体を流体噴出口から噴出させて没水表面に沿って
送り込み、効果的な摩擦低減を図ることができる。 (3) 流体移送管を、角錘部および拡散部を介して流
体噴出口に接続しているので、小径の流体移送管を流体
噴出口の近傍まで船体の内部の各所に配することがで
き、流体噴出口の形状に対応した流体移送管の省スペー
ス化を図ることができる。
The microbubble ejection device according to the present invention has the following effects. (1) Since the flow path cross-sectional shape is changed from a circular shape to a rectangular shape or a rectangular shape in the flow path structure portion to form a slit shape and the fluid transfer pipe and the fluid ejection port are connected to each other, the bubbling water mixed fluid is guided. It becomes smooth, and the energy loss at the time of transfer of the bubbly water mixed fluid due to the deformation of the flow path cross-sectional shape can be reduced. (2) Since the cross-sectional area in the middle of the diffusion part is set to be larger than that of the fluid ejection port, a bubbling water mixed fluid with a uniform flow velocity and flow rate is ejected from the fluid ejection port and sent along the submerged surface. Friction can be reduced. (3) Since the fluid transfer pipe is connected to the fluid ejection port via the pyramidal portion and the diffusion portion, it is possible to arrange the small diameter fluid transfer pipe at various places inside the hull up to the vicinity of the fluid ejection port. Space saving of the fluid transfer pipe corresponding to the shape of the fluid ejection port can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るマイクロバブルの噴出装置が適用
される船舶の例を示す一部を省略した正面図である。
FIG. 1 is a partially omitted front view showing an example of a ship to which a microbubble ejection device according to the present invention is applied.

【図2】本発明に係るマイクロバブルの噴出装置の一実
施例を示す一部を省略した斜視図である。
FIG. 2 is a partially omitted perspective view showing an embodiment of a micro-bubble ejection device according to the present invention.

【図3】本発明に係るマイクロバブルの噴出装置に適用
される気泡水混合流体発生手段の例を示すブロック図を
併記した正断面図である。
FIG. 3 is a front sectional view together with a block diagram showing an example of a bubble-water mixed fluid generating means applied to the microbubble ejection device according to the present invention.

【符号の説明】[Explanation of symbols]

A 噴出装置(マイクロバブルの噴出装置) E 摩擦低減対象範囲(吹出し領域) Y 摩擦低減航走体 1 船体 2 気泡水混合流体発生手段 3 流体噴出口 4 没水表面(船体表面) 7 空気取入れ口 8 吸水口 10 流路構成体 11 流体移送管 12 角錘部 13 拡散部 17 ガスチャンバ S1 流体移送管の横断面積 S2 角錘部の流体移送管との接続部の横断面積 S3 角錘部の拡散部との接続部の横断面積 S4 拡散部の途中における横断面積 S5 流体噴出口の開口面積 A jetting device (microbubble jetting device) E Friction reduction target range (blowing region) Y Friction-reducing vehicle 1 Hull 2 Bubble water mixed fluid generating means 3 Fluid jet 4 Submerged surface (hull surface) 7 Air intake 8 Water Suction Port 10 Flow Path Constituent 11 Fluid Transfer Pipe 12 Pyramidal Section 13 Diffusion Part 17 Gas Chamber S1 Cross Section of Fluid Transfer Pipe S2 Cross Section of Pyramid Connection with Fluid Transfer Pipe S3 Diffusion of Pyramidal Section Cross-sectional area of the connecting part with the part S4 Cross-sectional area in the middle of the diffusion part S5 Opening area of the fluid ejection port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 義明 東京都江東区豊洲二丁目1番1号 石川島 播磨重工業株式会社東京第一工場内 (72)発明者 渡辺 修 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 (72)発明者 光武 英生 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 (72)発明者 丸山 尚一 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Yoshiaki Takahashi, Yoshiaki Takahashi, 2-1-1 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries, Ltd. Tokyo No. 1 factory (72) Osamu Watanabe Shinchu, Isogo-ku, Yokohama-shi, Kanagawa Haramachi No. 1 Ishikawajima-Harima Heavy Industries Co., Ltd. Technical Research Institute (72) Inventor Hideo Mitsutake No. 1 Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Ishikawajima Harima Heavy Industries Co., Ltd. Technical Research Institute (72) Inventor Shoichi Maruyama Yokohama, Kanagawa No. 1 Shin-Nakahara-cho, Isogo-ku, Ishi Ishikawajima Harima Heavy Industries Ltd. Technical Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気泡水混合流体を噴出させる装置(A)
であって、 気泡水混合流体を移送する流路構成体(10)と、該流
路構成体に接続状態に配され気泡水混合流体を噴出させ
るスリット状の流体噴出口(3)とを具備し、 流路構成体は、流路断面形状が円形の流体移送管(1
1)と、該流体移送管の先端に接続され流路断面形状が
円形から角形に変形した状態の角錘部(12)と、該角
錘部に接続され流路断面形状が角形から漸次スリット状
に変形した状態の拡散部(13)とを有することを特徴
とするマイクロバブルの噴出装置。
1. A device (A) for ejecting a bubbling water mixed fluid.
A flow path forming body (10) for transferring the bubbly water mixed fluid, and a slit-shaped fluid ejection port (3) arranged in the flow path forming body for ejecting the bubbly water mixed fluid. However, the flow path structure is a fluid transfer pipe (1
1), a pyramid portion (12) connected to the tip of the fluid transfer pipe and having a flow passage cross-sectional shape deformed from a circular shape to a square shape, and a flow passage cross-sectional shape connected to the pyramidal portion and having a flow passage cross-sectional shape gradually increasing from a slit And a diffusion part (13) in a deformed state.
【請求項2】 拡散部(13)の途中における横断面積
が、流体噴出口(3)と同じか、これよりも大きく設定
されることを特徴とする請求項1記載のマイクロバブル
の噴出装置。
2. The microbubble ejection device according to claim 1, wherein a cross-sectional area in the middle of the diffusion portion (13) is set to be equal to or larger than that of the fluid ejection port (3).
JP7038862A 1995-02-27 1995-02-27 Microbubble jetting device Withdrawn JPH08229372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7038862A JPH08229372A (en) 1995-02-27 1995-02-27 Microbubble jetting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7038862A JPH08229372A (en) 1995-02-27 1995-02-27 Microbubble jetting device

Publications (1)

Publication Number Publication Date
JPH08229372A true JPH08229372A (en) 1996-09-10

Family

ID=12537021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7038862A Withdrawn JPH08229372A (en) 1995-02-27 1995-02-27 Microbubble jetting device

Country Status (1)

Country Link
JP (1) JPH08229372A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036105A1 (en) * 1999-11-15 2001-05-25 Aura Tec Co., Ltd. Micro-bubble generating nozzle and application device therefor
JP5132828B1 (en) * 2012-06-01 2013-01-30 株式会社 ドットコム・リレーションズ Friction resistance reduction ship

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036105A1 (en) * 1999-11-15 2001-05-25 Aura Tec Co., Ltd. Micro-bubble generating nozzle and application device therefor
JP4002439B2 (en) * 1999-11-15 2007-10-31 株式会社オ−ラテック Microbubble generating nozzle and its application device
JP5132828B1 (en) * 2012-06-01 2013-01-30 株式会社 ドットコム・リレーションズ Friction resistance reduction ship

Similar Documents

Publication Publication Date Title
JP4286313B1 (en) Friction resistance reducing ship and its operating method
JP4212640B1 (en) Friction resistance reducing ship and its operating method
US5575232A (en) Method and device for reducing friction on a navigating vehicle
US5727381A (en) Duct flow control system
JPH07156859A (en) Method to reduce friction of sailing body and friction reducing sailing body and generating method of microbubble used to reduce friction and device thereof
US3875885A (en) Gas injection propulsion system for marine vehicles
JPH08225094A (en) Microbubble generating device
JPH08229372A (en) Microbubble jetting device
JPH08239084A (en) Friction-reduced ship
JPH09151913A (en) Method of reducing friction of ship etc and friction reduced ship
JPH10109684A (en) Micro-bubble generating device
JPH08229371A (en) Microbubble generator
JPH08243368A (en) Microbubble ejector
JPH08229369A (en) Microbubble jetting device
JPH08239083A (en) Friction-reduced ship
JPH08230762A (en) Equipment for generating micro bubble
JPH09151914A (en) Micro-bubble generator
JP2001106171A (en) Frictional resistance reduced-ship and method of reducing frictional resistance of hull
JPH1159563A (en) Friction reducing ship and air generator
JPH08229370A (en) Microbubble generator
JPH10119875A (en) Micro bubble generater
JPH08230761A (en) Equipment for generating micro bubble
JPH08230760A (en) Equipment for generating micro bubble
JPH09150785A (en) Micro bubble generator
JP2010115942A (en) Frictional resistance reduced vessel and its operation method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507