JP2010115942A - Frictional resistance reduced vessel and its operation method - Google Patents

Frictional resistance reduced vessel and its operation method Download PDF

Info

Publication number
JP2010115942A
JP2010115942A JP2008288666A JP2008288666A JP2010115942A JP 2010115942 A JP2010115942 A JP 2010115942A JP 2008288666 A JP2008288666 A JP 2008288666A JP 2008288666 A JP2008288666 A JP 2008288666A JP 2010115942 A JP2010115942 A JP 2010115942A
Authority
JP
Japan
Prior art keywords
air
fine bubble
bubble generating
ship
generating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008288666A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takahashi
義明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008288666A priority Critical patent/JP2010115942A/en
Publication of JP2010115942A publication Critical patent/JP2010115942A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Abstract

<P>PROBLEM TO BE SOLVED: To provide a frictional resistance reduced vessel reducing frictional resistance and enhancing fuel economy. <P>SOLUTION: An area becoming a lower side than a draft line L.W.L. is divided to an upper area R1 near the draft surface and a lower area R2 near a bottom of the vessel, feeding of air to a fine bubble generation member 10 arranged at the upper area R1 is performed through an air feeding pipe 3 having a distal end released to an atmosphere, and feeding of air to the fine bubble generation member 10 arranged at the lower area R2 is performed through a branch pipe 6 from a pipe 5 from an assist compressor 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微細気泡(マイクロバブル)を船体の外表面に供給して、船体と水との間の摩擦抵抗を低減した摩擦抵抗低減船およびその運転方法に関する。   The present invention relates to a frictional resistance-reducing ship in which fine bubbles (microbubbles) are supplied to the outer surface of a hull to reduce the frictional resistance between the hull and water and a method for operating the same.

航行中の船体の表面に気泡を供給することで、水に対する船体の摩擦抵抗が小さくなることが従来から知られている。   Conventionally, it is known that the frictional resistance of a hull against water is reduced by supplying bubbles to the surface of the hull during navigation.

船底(外側面)に設けた気泡発生部まで空気を送り込む手段として、コンプレッサ(圧気源)によって空気供給配管内の気液界面を気泡発生部まで押し下げるクローズドタイプと、負圧を利用して空気供給配管内の気液界面を気泡発生部まで引き下げるオープン(大気開放)タイプがある。   As a means to send air to the bubble generation part provided on the ship bottom (outer side), a closed type that pushes the gas-liquid interface in the air supply pipe to the bubble generation part by a compressor (pressure air source) and air supply using negative pressure There is an open (atmospheric release) type that pulls down the gas-liquid interface in the piping to the bubble generation part.

クローズドタイプとしては特許文献1,2を挙げることができる。特許文献1には空気が噴出する空気孔を覆うように平坦な板を取り付けた構成が開示され、特許文献2には高圧気体の噴出口を覆うようにバッフルプレートを取り付け、空気を水中へ一様な状態で圧入させる構成が開示されている。   Patent Documents 1 and 2 can be cited as closed types. Patent Document 1 discloses a configuration in which a flat plate is attached so as to cover an air hole from which air is ejected, and Patent Document 2 is attached with a baffle plate so as to cover an outlet of high-pressure gas, and air is allowed to flow into water. A configuration for press-fitting in various states is disclosed.

ここで、特許文献1における平坦な板および特許文献2におけるバッフルプレートはいずれも当該文献中にも記載されるように負圧を発生することを目的とするものではない。   Here, neither the flat plate in Patent Document 1 nor the baffle plate in Patent Document 2 is intended to generate a negative pressure as described in the document.

また、空気を強制的に噴出するクローズドタイプではどうしても気泡が大きくなってしまう。摩擦抵抗を効果的に低減するには長時間気泡が船体表面に留まることが好ましく、そのためには気泡の径はできるだけ小さいことが要求される。このような微小気泡(マイクロバブル)はケルビン−ヘルムホルツ不安定現象(Kelvin-Helmholtz-Instability)によって発生することが特許文献3に記載されている。   Further, in the closed type in which air is forcibly ejected, bubbles are inevitably enlarged. In order to effectively reduce the frictional resistance, it is preferable that the bubbles stay on the hull surface for a long time, and for this purpose, the diameter of the bubbles is required to be as small as possible. Patent Document 3 describes that such microbubbles are generated by a Kelvin-Helmholtz-Instability phenomenon.

即ち、特許文献3では船底の外板(没水表面)に凹部を設け、この凹部に空気を供給する気体導入管を接続するとともに、凹部の上流側に楔状の負圧形成部を取り付け、凹部内にケルビン−ヘルムホルツ不安定現象を発生させて微小気泡(マイクロバブル)を作り出すようにしている。   That is, in Patent Document 3, a concave portion is provided on the outer plate (submerged surface) of the ship bottom, a gas introduction pipe for supplying air is connected to the concave portion, and a wedge-shaped negative pressure forming portion is attached upstream of the concave portion. A Kelvin-Helmholtz instability phenomenon is generated inside to create microbubbles.

また、特許文献4では微小気泡(マイクロバブル)を作り出す手段として、特許文献3の楔状の負圧形成部の代わりに、ウイングを用いる技術が開示されている。
特開2008−120246号公報 特開2008−143345号公報 特開2002−2582号公報 特許第4070385号公報
Patent Document 4 discloses a technique that uses wings instead of the wedge-shaped negative pressure forming part of Patent Document 3 as means for creating microbubbles.
JP 2008-120246 A JP 2008-143345 A Japanese Patent Laid-Open No. 2002-2582 Japanese Patent No. 4070385

気泡の粒径が小さければ、浮力も小さいため船体の側面で発生させても船尾に到達するまでの時間は十分に側面に留まらせることができるが、特許文献1,2に開示される技術では、空気を強制的に噴出しているため気泡を大量に発生されることはできるが、気泡1つ1つの粒径が大きいため摩擦低減効果は小さい。更に空気の噴出量があまり多いとスクリューまで空気の塊が送られてエア噛みを起こしたり、ローリングやピッチングの原因となる。   If the bubble particle size is small, the buoyancy is also small, so even if it is generated on the side of the hull, the time to reach the stern can be kept sufficiently on the side, but in the techniques disclosed in Patent Documents 1 and 2, Since air is forcibly ejected, a large amount of bubbles can be generated, but since the particle size of each bubble is large, the friction reducing effect is small. Furthermore, if the amount of air blown out is too large, a lump of air is sent to the screw, causing air biting, and causing rolling and pitching.

一方、特許文献3,4に開示される技術によれば、負圧を利用しているため、船体の側面でもある程度留まることができる微細気泡(マイクロバブル)を発生させることが可能である。しかしながら、特許文献3,4に開示される技術は船体自体の形状も特定の形状にする必要がある。また、負圧によって空気供給配管中の気液界面が微細気泡発生部まで下がらない低速航行状態では気泡を発生させることができない。   On the other hand, according to the techniques disclosed in Patent Documents 3 and 4, since the negative pressure is used, it is possible to generate fine bubbles (microbubbles) that can stay to some extent even on the side surface of the hull. However, the techniques disclosed in Patent Documents 3 and 4 require that the shape of the hull itself be a specific shape. In addition, bubbles cannot be generated in a low-speed navigation state in which the gas-liquid interface in the air supply pipe does not drop to the fine bubble generating part due to the negative pressure.

因みに特許文献4にはブロアが開示されているが、このブロアは空気供給配管中の気液界面を押し下げるのではなく、既に気液界面が気泡発生部まで下がっている状態で、より大量の空気を送り込むためのものである。   Incidentally, although a blower is disclosed in Patent Document 4, this blower does not push down the gas-liquid interface in the air supply pipe, but a larger amount of air is already in a state where the gas-liquid interface has already been lowered to the bubble generating part. It is for sending in.

上記課題を解決するため本発明は、航行に伴って負圧を発生するウイングを備えた複数の微細気泡発生部材を船体の喫水面よりも下方となる外側面から船底に沿って取り付けた摩擦抵抗低減船であって、前記喫水面よりも下方となる領域のうち喫水面に近い上方領域に取り付けられる微細気泡発生部材は、ウイングに対向する部分に海水と空気とを混合する気液混合スペースが設けられ、この気液混合スペースに一端から空気を供給する空気供給配管の他端は大気に開放され、また前記喫水面よりも下方となる領域のうち船底に近い下方領域に取り付けられる微細気泡発生部材は、ウイングに対向する部分に海水と空気とを混合する気液混合スペースが設けられ、この気液混合スペースに一端から空気を供給する空気供給配管の他端は所定圧の空気を貯留するリザーバタンクに接続された構成とした。   In order to solve the above problems, the present invention provides a friction resistance in which a plurality of fine bubble generating members having wings that generate a negative pressure during navigation are attached along the bottom of the ship from the outer surface below the draft surface of the hull. The fine bubble generating member attached to the upper region close to the draft surface among the regions below the draft surface is a gas-liquid mixing space for mixing seawater and air in a portion facing the wing. The other end of the air supply pipe that is provided and supplies air from one end to the gas-liquid mixing space is open to the atmosphere, and the fine bubbles are attached to the lower region near the ship bottom in the region below the draft surface. The member is provided with a gas-liquid mixing space for mixing seawater and air at a portion facing the wing, and the other end of the air supply pipe for supplying air from one end to the gas-liquid mixing space has a predetermined pressure. It was connected to each reservoir tank for storing air.

ここで、喫水面は荷物の積み具合や航行状態(旋回時など)によって変化する。請求項1に記載する喫水面は当該船舶に規定の荷物を積載し且つ通常の航行状態の場合に想定される喫水面を指す。また微細気泡とは数mm以下、好ましくは1mm以下の粒径の気泡を指す。   Here, the draft surface changes depending on the loading condition of the luggage and the navigational state (when turning). The draft surface described in claim 1 refers to a draft surface that is assumed in the case of carrying a specified load on the ship and in a normal sailing state. The fine bubbles refer to bubbles having a particle size of several mm or less, preferably 1 mm or less.

因みに、船が走り出すとウイングが発生する負圧によって気液境界面は引き下げられ、下がった界面から微細気泡発生部までの水柱を押し込めるだけの空気の圧力が有れば足りるため、リザーバタンクに空気を送り込むアシストコンプレッサとしてはそれほど大きな容量のコンプレッサは必要でなく、例えば、主機関の出力が10,000kwの船の場合はコンプレッサの容量は10〜20kwで充分である。また、アシストコンプレッサ以外のブロアやエンジンの排気圧などの手段でリザーバタンクに空気を送り込むようにしてもよい。   Incidentally, when the ship starts running, the gas-liquid boundary surface is pulled down by the negative pressure generated by the wing, and it is sufficient that there is enough air pressure to push the water column from the lowered interface to the microbubble generation part. For example, in the case of a ship with a main engine output of 10,000 kw, a compressor capacity of 10 to 20 kw is sufficient. Further, air may be sent to the reservoir tank by means such as a blower other than the assist compressor or exhaust pressure of the engine.

また、リザーバタンクと下方領域に取り付けられる各微細気泡発生部材とを直接つなげてもよいが、減圧弁を備えた分岐管を介して接続することで、下方に位置する微細気泡発生部材ほど高圧の空気が供給される構成にしてもよい。このようにすることで、各微細気泡発生部材からほぼ同時に微細気泡を発生させることができる。   In addition, the reservoir tank and each fine bubble generating member attached to the lower region may be directly connected, but by connecting via a branch pipe provided with a pressure reducing valve, the fine bubble generating member located below has a higher pressure. You may make it the structure supplied with air. By doing in this way, a fine bubble can be generated almost simultaneously from each fine bubble generation member.

更に、前記上方領域または中間領域に取り付けられる微細気泡発生部材に一端が接続される空気供給配管に、リザーバタンクからの分岐管を切替弁を介して接続する構成としてもよい。このようにすることで、低速航行時にも上方領域または中間領域に取り付けられる微細気泡発生部材から微細気泡を発生させることができる。   Furthermore, it is good also as a structure which connects the branch pipe from a reservoir tank via the switching valve to the air supply piping connected at one end to the fine bubble generating member attached to the upper region or the intermediate region. By doing so, fine bubbles can be generated from the fine bubble generating member attached to the upper region or the intermediate region even during low-speed navigation.

一方本発明に係る摩擦抵抗低減船の運転方法は、例えば前記上方領域に取り付けられる微細気泡発生部材の位置またはウイングの角度を調整することで、船舶の航行速度が巡航速度より遅い場合にはリザーバタンクに接続される微細気泡発生部材から気泡を発生させ、巡航速度以上では全ての微細気泡発生部材から気泡を発生させて航行する。尚、上方領域に取り付けられる微細気泡発生部材微細気泡を発生し始める速度を巡航速度よりも遅く設定してもよい。   On the other hand, the operation method of the frictional resistance reduction ship according to the present invention is to adjust the position of the fine bubble generating member attached to the upper region or the angle of the wing, for example, when the ship's navigation speed is slower than the cruise speed. Air bubbles are generated from the fine bubble generating members connected to the tank, and the air bubbles are generated from all the fine bubble generating members at a cruise speed or higher for navigation. In addition, you may set the speed which begins to generate | occur | produce the fine bubble generation | occurrence | production member fine bubble attached to an upper area | region slower than a cruising speed.

本発明に係る摩擦抵抗低減船によれば、船体の航行に伴って発生する負圧を利用しているため、微細な気泡を発生するのに好適なケルビン−ヘルムホルツ不安定現象を形成しやすく、しかも必要最低限のエネルギーでアシストコンプレッサなどを駆動してリザーバタンクに加圧空気を貯留できるためエネルギーロスが小さく、燃費削減に大きく寄与する。   According to the ship with reduced frictional resistance according to the present invention, since the negative pressure generated with the navigation of the hull is used, it is easy to form a Kelvin-Helmholtz instability phenomenon suitable for generating fine bubbles, In addition, since the compressed air can be stored in the reservoir tank by driving the assist compressor or the like with the minimum necessary energy, the energy loss is small and the fuel consumption is greatly reduced.

以下に本発明の実施例を添付図面を参照しつつ説明する。図1は本発明に係る摩擦抵抗低減船の側面図、図2は図1の要部拡大図、図3は微細気泡発生部材の正面図、図4は図3のA方向矢視図、図5は図4のB−B方向断面図、図6は微細気泡(マイクロバブル)発生のメカニズムを説明した図4と同様の図、図7は微細気泡(マイクロバブル)発生のメカニズムを説明した図5と同様の図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 is a side view of a ship with reduced frictional resistance according to the present invention, FIG. 2 is an enlarged view of the main part of FIG. 1, FIG. 3 is a front view of a fine bubble generating member, and FIG. 5 is a cross-sectional view taken along the line BB in FIG. 4, FIG. 6 is a view similar to FIG. 4 illustrating the mechanism of generation of microbubbles, and FIG. 7 is a view illustrating the mechanism of generation of microbubbles. 5 is a diagram similar to FIG.

本発明に係る摩擦抵抗低減船は喫水面(L.W.L.)よりも下方の船体の外側面1から船底2に沿って複数の微細気泡発生部材10を取り付けている。複数の微細気泡発生部材10の配列は図示例では側方から見て直線状をなすように配列しているが、千鳥状や斜めでもよい。   The frictional resistance reduction ship according to the present invention has a plurality of fine bubble generating members 10 attached along the ship bottom 2 from the outer surface 1 of the hull below the draft surface (LWL). In the illustrated example, the plurality of fine bubble generating members 10 are arranged so as to form a straight line when viewed from the side, but they may be staggered or slanted.

本発明では喫水面(L.W.L.)よりも下方となる領域を喫水面に近い上方領域(R1)と船底に近い下方領域(R2)に分け、上方領域(R1)と下方領域(R2)に配置される微細気泡発生部材10への空気の供給形態を異ならせている。   In the present invention, the region below the draft surface (LWL) is divided into an upper region (R1) near the draft surface and a lower region (R2) near the ship bottom, and the upper region (R1) and the lower region ( The supply form of air to the fine bubble generating member 10 arranged in R2) is varied.

図1に示す実施例は船体には穴をあけず、船体の該側面に沿って配置した空気供給管3から微細気泡発生部材10に空気を送り込むようにしている。   The embodiment shown in FIG. 1 does not make a hole in the hull, but feeds air from the air supply pipe 3 arranged along the side of the hull to the fine bubble generating member 10.

即ち、上方領域(R1)に配置される微細気泡発生部材10への空気の供給は先端が大気に開放される空気供給配管3を介して行われ、下方領域(R2)に配置される微細気泡発生部材10への空気の供給は、アシストコンプレッサ4から空気が送り込まれるリザーバタンクTに接続される配管5からの分岐管6を介して行われる。つまり、下方領域(R2)に配置される微細気泡発生部材10への空気の供給は大気開放ではなく閉鎖系の配管を介して行われる。尚、説明を簡単にするため、図示例では上方領域(R1)に配置される微細気泡発生部材10の数を1つにしているが複数でもよい。   That is, the supply of air to the fine bubble generating member 10 disposed in the upper region (R1) is performed via the air supply pipe 3 whose tip is opened to the atmosphere, and the fine bubbles disposed in the lower region (R2). The supply of air to the generating member 10 is performed through a branch pipe 6 from a pipe 5 connected to a reservoir tank T into which air is sent from the assist compressor 4. That is, the supply of air to the fine bubble generating member 10 disposed in the lower region (R2) is performed not through the atmosphere but through a closed piping. In addition, in order to simplify the description, in the illustrated example, the number of fine bubble generating members 10 arranged in the upper region (R1) is one, but a plurality of fine bubble generating members 10 may be provided.

前記各分岐管6には減圧弁V1〜V4が設けられ、下方領域(R2)に配置される微細気泡発生部材10への空気の供給圧を異ならせている。この実施例では上方に位置する減圧弁ほど絞り量を大きくして、下方の微細気泡発生部材10ほど高圧の空気が供給されるようにしている。配管5(分岐管6)内の気液界面から微細気泡発生部材10までの距離は下方の微細気泡発生部材10ほど大きくなるので、減圧弁を設けてリザーバタンクTから空気が均等に供給されるようにする。   Each branch pipe 6 is provided with pressure reducing valves V1 to V4, and the supply pressure of air to the fine bubble generating member 10 arranged in the lower region (R2) is varied. In this embodiment, the amount of restriction is increased toward the pressure reducing valve located at the upper side, so that the higher pressure air is supplied to the fine bubble generating member 10 at the lower side. Since the distance from the gas-liquid interface in the pipe 5 (branch pipe 6) to the fine bubble generating member 10 is as large as the fine bubble generating member 10 below, a pressure reducing valve is provided so that air is evenly supplied from the reservoir tank T. Like that.

尚、最も下方に位置する微細気泡発生部材10への分岐管6には、減圧弁V4を設けなくてもよい。更に、航行速度に応じてリザーバタンクTから供給される空気圧を全体的に調整するようにしてもよい。   Note that the pressure reducing valve V4 may not be provided in the branch pipe 6 to the fine bubble generating member 10 located at the lowermost position. Furthermore, the air pressure supplied from the reservoir tank T may be adjusted as a whole in accordance with the navigation speed.

次に、微細気泡発生部材10の構造を図3〜図5に基づいて説明する。微細気泡発生部材10はフランジ部11、気液混合スペース12及び負圧発生用のウイング13から構成される。このウイング13は気液混合スペース12との間に負圧を形成するため前方に形成される隙間g1より後方に形成される隙間g2が大きくなるように形成され、さらに抵抗を小さくするため側面視でドルフィン状をなすようにしている。   Next, the structure of the fine bubble generating member 10 will be described with reference to FIGS. The fine bubble generating member 10 includes a flange portion 11, a gas-liquid mixing space 12, and a wing 13 for generating negative pressure. The wing 13 is formed such that a gap g2 formed at the rear side is larger than a gap g1 formed at the front side in order to form a negative pressure with the gas-liquid mixing space 12, and further, the side view is used to reduce the resistance. It has a dolphin shape.

またフランジ部11、気液混合スペース12及び負圧発生用のウイング13が一体となるように微細気泡発生部材10は鋳造又は射出成形にて成形される。   The fine bubble generating member 10 is formed by casting or injection molding so that the flange portion 11, the gas-liquid mixing space 12, and the wing 13 for generating negative pressure are integrated.

前記ウイング13は連結部14を介してフランジ部11に取り付けられ、フランジ部11の外側には抵抗を低減するためのカバー15が取り付けられ、このカバー15の内側と船体との間に形成される空間に前記空気供給配管3または分岐管6の下端が挿入され、空気供給配管3または分岐管6から供給される空気は、フランジ部11の内側に形成された通路16を介して前記気液混合スペース12に供給される。   The wing 13 is attached to the flange portion 11 via the connecting portion 14, and a cover 15 for reducing resistance is attached to the outside of the flange portion 11, and is formed between the inside of the cover 15 and the hull. The lower end of the air supply pipe 3 or the branch pipe 6 is inserted into the space, and the air supplied from the air supply pipe 3 or the branch pipe 6 is mixed with the gas-liquid mixture via a passage 16 formed inside the flange portion 11. Supplied to the space 12.

以上において、船が航行を開始した直後は速度が遅いためウイング13によって発生する負圧も小さく、上方領域(R1)に配置される微細気泡発生部材10へ空気の供給を行う空気供給配管3内の気液界面の引き下げ効果は十分でないため上方領域(R1)の微細気泡発生部材10からの微細気泡の発生はない。   In the above, since the speed is low immediately after the ship starts to sail, the negative pressure generated by the wing 13 is small, and the inside of the air supply pipe 3 that supplies air to the fine bubble generating member 10 disposed in the upper region (R1). Since the effect of lowering the gas-liquid interface is not sufficient, fine bubbles are not generated from the fine bubble generating member 10 in the upper region (R1).

しかしながら、下方領域(R2)に配置される微細気泡発生部材10にはリザーバタンクTから空気供給配管5(分岐管6)内の気液界面を微細気泡発生部材10の気液混合スペース12まで押し下げるだけの高圧空気が供給されているので気液混合スペース12内に空気が供給される。   However, the fine bubble generating member 10 arranged in the lower region (R2) pushes the gas-liquid interface in the air supply pipe 5 (branch pipe 6) from the reservoir tank T to the gas-liquid mixing space 12 of the fine bubble generating member 10. Since only high-pressure air is supplied, air is supplied into the gas-liquid mixing space 12.

そして、ウイング13によって形成される負圧が大きくなると、図6及び図7に示すように気液チャンバー12内の気液界面は水平状態から垂直に近い状態に変化する。   When the negative pressure formed by the wing 13 increases, the gas-liquid interface in the gas-liquid chamber 12 changes from a horizontal state to a state close to vertical as shown in FIGS.

気液チャンバー12内の気液界面では、空気と水(海水)が異なる速度で運動している。空気と水は密度が異なるため、図6及び図7で示したように、微細気泡発生部材10の気液チャンバー12内において、ケルビン−ヘルムホルツ不安定現象によって微細気泡(マイクロバブル)が発生し、この微細気泡が船体に沿って下流側に流れる。   At the gas-liquid interface in the gas-liquid chamber 12, air and water (seawater) are moving at different speeds. Since air and water have different densities, as shown in FIGS. 6 and 7, fine bubbles (microbubbles) are generated in the gas-liquid chamber 12 of the fine bubble generating member 10 due to the Kelvin-Helmholtz instability phenomenon, These fine bubbles flow downstream along the hull.

ここで、発生した微細気泡が船体に張り付くように下流側に流れるのはウイング13によって発生する負圧に起因すると考えられる。   Here, it is considered that the flow of the generated fine bubbles to the downstream side so as to stick to the hull is caused by the negative pressure generated by the wing 13.

即ち、船体の表面には境界層が存在し、一旦負圧によって発生しランダムな動きをする微細気泡がこの境界層に入ると、ウイング13の上面と下面(または外側面と内側面)の圧力の違いによって微細気泡は船体に押し付けられ、且つ界面積濃度(船体近傍の単位体積あたりの気体と液体の接触総面積のことで、気泡が動くときの抵抗に比例する)が大きいため、動こうとすると抵抗が大きくなるためその流れ(境界層)から出られずに下流側に流れて、摩擦抵抗を有効に減らす働きをすると考えられる。   That is, there is a boundary layer on the surface of the hull, and once fine bubbles generated by negative pressure and moving randomly enter the boundary layer, the pressure on the upper and lower surfaces (or the outer and inner surfaces) of the wing 13 is increased. The fine bubbles are pressed against the hull due to the difference between them, and the interfacial area concentration (the total contact area of gas and liquid per unit volume near the hull, which is proportional to the resistance when the bubbles move) is large. Then, since the resistance increases, it is considered that the flow flows downstream without coming out of the flow (boundary layer) and effectively reduces frictional resistance.

一方、船底2に取り付けた微細気泡発生部材10にあっては、船体の外側面1に略垂直に取り付けた微細気泡発生部材10と異なり、気液チャンバー12内の気液境界面は水平のままで擾乱が生じることで微細気泡が発生する。   On the other hand, the fine bubble generating member 10 attached to the ship bottom 2 is different from the fine bubble generating member 10 attached substantially vertically to the outer surface 1 of the hull, and the gas-liquid boundary surface in the gas-liquid chamber 12 remains horizontal. Microbubbles are generated due to disturbance.

図8乃至図10は別実施例を示す図2と同様の図であり、図8に示す別実施例にあっては、喫水面に近い上方領域R1に設ける微細気泡発生部材10につながる空気供給配管3に、切替弁17を介してリザーバタンクTにつながる空気供給配管5からの分岐管6を接続し、巡航速度に至らない極低速の場合でも、切替弁17を操作することで、リザーバタンクTから空気が供給されるようにしている。この場合、分岐管6に設ける減圧弁V0は他の減圧弁V1〜V4よりも絞り度を大きく設定する。   FIGS. 8 to 10 are views similar to FIG. 2 showing another embodiment. In the other embodiment shown in FIG. 8, the air supply connected to the fine bubble generating member 10 provided in the upper region R1 close to the draft surface. By connecting the branch pipe 6 from the air supply pipe 5 connected to the reservoir tank T via the switching valve 17 to the pipe 3 and operating the switching valve 17 even at an extremely low speed that does not reach the cruising speed, the reservoir tank Air is supplied from T. In this case, the pressure reducing valve V0 provided in the branch pipe 6 is set to have a higher degree of throttle than the other pressure reducing valves V1 to V4.

図9に示す別実施例は、上方領域R1と下方領域R2の間に中間領域R3を設け、この中間領域R3に配置する微細気泡発生部材10について、大気開放兼リザーバタンクTからの空気が供給されるようにしている。   In another embodiment shown in FIG. 9, an intermediate region R3 is provided between the upper region R1 and the lower region R2, and air from the atmosphere opening / reservoir tank T is supplied to the fine bubble generating member 10 disposed in the intermediate region R3. To be.

図10は船体の正断面図であり、この別実施例にあっては、船体に穴18を形成し、この穴18に微細気泡発生部材10を取り付けるとともに穴18の内側に保持プレート19を溶接し、この保持プレート19に船体内に配置した空気供給配管3または分岐管6を接続して空気を供給するようにしている。   FIG. 10 is a front sectional view of the hull. In this alternative embodiment, a hole 18 is formed in the hull, the fine bubble generating member 10 is attached to the hole 18, and a holding plate 19 is welded inside the hole 18. The air supply pipe 3 or the branch pipe 6 arranged in the hull is connected to the holding plate 19 to supply air.

図10に示す実施例の更なる変更例として、図8及び図9に示した切替弁17を設け、速度に応じて大気開放とリザーバタンクTとの接続を切り替えるようにしてもよい。   As a further modification of the embodiment shown in FIG. 10, the switching valve 17 shown in FIGS. 8 and 9 may be provided, and the connection between the atmosphere release and the reservoir tank T may be switched according to the speed.

本発明に係る摩擦抵抗低減船の側面図Side view of a ship with reduced frictional resistance according to the present invention 図1の要部拡大図1 is an enlarged view of the main part of FIG. 微細気泡発生部材の正面図Front view of the microbubble generator 図3のA方向矢視図A direction arrow view of FIG. 図4のB−B方向断面図BB direction sectional view of FIG. 微細気泡(マイクロバブル)発生のメカニズムを説明した図4と同様の図The same figure as FIG. 4 explaining the mechanism of generation of microbubbles 微細気泡(マイクロバブル)発生のメカニズムを説明した図5と同様の図The same figure as FIG. 5 explaining the mechanism of microbubble generation 別実施例を示す図2と同様の図The same figure as FIG. 2 showing another embodiment 別実施例を示す図2と同様の図The same figure as FIG. 2 showing another embodiment 空気供給管を船体内に配置した別実施例を示す図The figure which shows another Example which has arrange | positioned the air supply pipe in the ship's body

符号の説明Explanation of symbols

1…船体の外側面、2…船底、3…大気に開放される空気供給配管、4…アシストコンプレッサ、5…リザーバタンクにつながる空気供給配管、6…分岐管、10…微細気泡発生部材、11…フランジ部、12…気液混合スペース、13…ウイング、14…連結部、15…カバー、16…通路、17…切替弁、18…船体に形成した穴、19…保持プレート。   DESCRIPTION OF SYMBOLS 1 ... Outer surface of ship body, 2 ... Ship bottom, 3 ... Air supply piping open | released to air | atmosphere, 4 ... Assist compressor, 5 ... Air supply piping connected to a reservoir tank, 6 ... Branch pipe, 10 ... Fine bubble generating member, 11 DESCRIPTION OF SYMBOLS ... Flange part, 12 ... Gas-liquid mixing space, 13 ... Wing, 14 ... Connection part, 15 ... Cover, 16 ... Passage, 17 ... Switching valve, 18 ... Hole formed in the hull, 19 ... Holding plate.

L.W.L.…喫水面、R1…喫水面に近い上方領域、R2…船底に近い下方領域、g1…ウイングの前端部分の隙間、g2…ウイングの後端部分の隙間、V0〜V4…減圧弁、T…リザーバタンク。   L.W.L .... Draft surface, R1 ... Upper region near the draft surface, R2 ... Lower region near the ship bottom, g1 ... Gap in the front end portion of the wing, g2 ... Gap in the rear end portion of the wing, V0 to V4 ... Pressure reducing valve, T ... reservoir tank.

Claims (5)

航行に伴って負圧を発生するウイングを備えた複数の微細気泡発生部材を、船体の喫水面よりも下方となる外側面から船底に沿って取り付けた摩擦抵抗低減船であって、
前記喫水面よりも下方となる領域のうち喫水面に近い上方領域に取り付けられる微細気泡発生部材は、ウイングに対向する部分に海水と空気とを混合する気液混合スペースが設けられ、この気液混合スペースに一端から空気を供給する空気供給配管の他端は大気に開放され、また前記喫水面よりも下方となる領域のうち船底に近い下方領域に取り付けられる微細気泡発生部材は、ウイングに対向する部分に海水と空気とを混合する気液混合スペースが設けられ、この気液混合スペースに一端から空気を供給する空気供給配管の他端は所定圧の空気を貯留するリザーバタンクに接続されていることを特徴とする摩擦抵抗低減船。
A friction resistance-reducing ship in which a plurality of fine bubble generating members having wings that generate a negative pressure accompanying navigation are attached along the ship bottom from an outer surface that is below the draft surface of the hull,
The fine bubble generating member attached to the upper region close to the draft surface in the region below the draft surface is provided with a gas-liquid mixing space for mixing seawater and air in a portion facing the wing. The other end of the air supply pipe for supplying air from one end to the mixing space is open to the atmosphere, and the fine bubble generating member attached to the lower region near the ship bottom in the region below the draft surface is opposed to the wing. A gas-liquid mixing space for mixing seawater and air is provided in the portion to be connected, and the other end of the air supply pipe for supplying air from one end to the gas-liquid mixing space is connected to a reservoir tank that stores air of a predetermined pressure. A ship with reduced frictional resistance.
請求項1に記載の摩擦抵抗低減船において、前記上方領域に取り付けられる微細気泡発生部材は大気に開放される状態と前記リザーバタンクに接続される状態とを切り替える切替弁を介して大気に開放されるか前記リザーバタンクに接続されることを特徴とする摩擦抵抗低減船。 2. The frictional resistance reduction ship according to claim 1, wherein the fine bubble generating member attached to the upper region is opened to the atmosphere via a switching valve that switches between a state opened to the atmosphere and a state connected to the reservoir tank. Or a frictional resistance reducing ship connected to the reservoir tank. 航行に伴って負圧を発生するウイングを備えた複数の微細気泡発生部材を、船体の喫水面よりも下方となる外側面から船底に沿って取り付けた摩擦抵抗低減船であって、
前記喫水面よりも下方となる領域のうち喫水面に近い上方領域に取り付けられる微細気泡発生部材は、ウイングに対向する部分に海水と空気とを混合する気液混合スペースが設けられ、この気液混合スペースに一端から空気を供給する空気供給配管の他端は大気に開放され、また前記喫水面よりも下方となる領域のうち船底に近い下方領域に取り付けられる微細気泡発生部材は、ウイングに対向する部分に海水と空気とを混合する気液混合スペースが設けられ、この気液混合スペースに一端から空気を供給する空気供給配管の他端は所定圧の空気を貯留するリザーバタンクに接続され、更に前記上方領域と下方領域の間の中間領域に取り付けられる微細気泡発生部材は、ウイングに対向する部分に海水と空気とを混合する気液混合スペースが設けられ、この気液混合スペースに一端から空気を供給する空気供給配管の他端は大気に開放される状態と前記リザーバタンクに接続される状態とを切り替える切替弁を介して大気に開放されるか前記リザーバタンクに接続されることを特徴とする摩擦抵抗低減船。
A friction resistance-reducing ship in which a plurality of fine bubble generating members having wings that generate a negative pressure accompanying navigation are attached along the ship bottom from an outer surface that is below the draft surface of the hull,
The fine bubble generating member attached to the upper region close to the draft surface in the region below the draft surface is provided with a gas-liquid mixing space for mixing seawater and air in a portion facing the wing. The other end of the air supply pipe for supplying air from one end to the mixing space is open to the atmosphere, and the fine bubble generating member attached to the lower region near the ship bottom in the region below the draft surface is opposed to the wing. A gas-liquid mixing space for mixing seawater and air is provided in the portion to be connected, and the other end of the air supply pipe for supplying air from one end to the gas-liquid mixing space is connected to a reservoir tank that stores air of a predetermined pressure, Further, the fine bubble generating member attached to an intermediate region between the upper region and the lower region has a gas-liquid mixing space for mixing seawater and air in a portion facing the wing. The other end of the air supply pipe for supplying air from one end to the gas-liquid mixing space is opened to the atmosphere via a switching valve that switches between a state opened to the atmosphere and a state connected to the reservoir tank. Or a frictional resistance reducing ship connected to the reservoir tank.
請求項1乃至請求項3のいずれかに記載の摩擦抵抗低減船において、前記リザーバタンクからの加圧空気は分岐管を介して各微細気泡発生部材に供給され、各分岐管には減圧弁が設けられ、下方に位置する微細気泡発生部材ほど高圧の空気が供給されることを特徴とする摩擦抵抗低減船。 The frictional resistance reduction ship according to any one of claims 1 to 3, wherein pressurized air from the reservoir tank is supplied to each microbubble generating member via a branch pipe, and a pressure reducing valve is provided in each branch pipe. A ship with reduced frictional resistance, wherein high-pressure air is supplied to a fine bubble generating member located below. 請求項1乃至請求項4のいずれかに記載の摩擦抵抗低減船の運転方法であって、前記上方領域に取り付けられる微細気泡発生部材の位置またはウイングの角度を調整することで、船舶の航行速度が巡航速度より遅い場合にはリザーバタンクに接続される微細気泡発生部材からのみ気泡を発生させ、巡航速度以上では全ての微細気泡発生部材から気泡を発生させて航行することを特徴とする摩擦抵抗低減船の運転方法。 5. The operation method of a frictional resistance-reducing ship according to claim 1, wherein the navigation speed of the ship is adjusted by adjusting a position of a fine bubble generating member attached to the upper region or a wing angle. Friction resistance characterized in that bubbles are generated only from the fine bubble generating members connected to the reservoir tank when the cruising speed is slower than the cruising speed, and bubbles are generated from all the fine bubble generating members at the cruising speed or higher. Reduction ship operation method.
JP2008288666A 2008-11-11 2008-11-11 Frictional resistance reduced vessel and its operation method Pending JP2010115942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008288666A JP2010115942A (en) 2008-11-11 2008-11-11 Frictional resistance reduced vessel and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008288666A JP2010115942A (en) 2008-11-11 2008-11-11 Frictional resistance reduced vessel and its operation method

Publications (1)

Publication Number Publication Date
JP2010115942A true JP2010115942A (en) 2010-05-27

Family

ID=42303888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008288666A Pending JP2010115942A (en) 2008-11-11 2008-11-11 Frictional resistance reduced vessel and its operation method

Country Status (1)

Country Link
JP (1) JP2010115942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052718A (en) * 2011-09-01 2013-03-21 Zuei-Ling Lin Water flow resistance reducing apparatus
CN111553041A (en) * 2020-04-23 2020-08-18 清华大学 Gas pipe network parameter calibration method, system, terminal and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052718A (en) * 2011-09-01 2013-03-21 Zuei-Ling Lin Water flow resistance reducing apparatus
CN111553041A (en) * 2020-04-23 2020-08-18 清华大学 Gas pipe network parameter calibration method, system, terminal and storage medium

Similar Documents

Publication Publication Date Title
JP4212640B1 (en) Friction resistance reducing ship and its operating method
JP4286313B1 (en) Friction resistance reducing ship and its operating method
US6145459A (en) Friction-reducing ship and method for reducing skin friction
KR101616261B1 (en) Ship provided with bubble resistance reduction device, and method for reducing resistance of ship
JPH07156859A (en) Method to reduce friction of sailing body and friction reducing sailing body and generating method of microbubble used to reduce friction and device thereof
JP2010115942A (en) Frictional resistance reduced vessel and its operation method
JP2010023765A (en) Ship with reduced friction resistance and operating method therefor
JP5806251B2 (en) Ship equipped with bubble resistance reduction device and ship resistance reduction method
JP2001106171A (en) Frictional resistance reduced-ship and method of reducing frictional resistance of hull
JP2001106173A (en) Frictional resistance reduced-ship
JP4348628B2 (en) Fuel reformer for internal combustion engine
JP2011088515A (en) Frictional resistance reducing ship
JP2001328584A (en) Frictional resistance-reduced ship
JPH09240571A (en) Frictional resistance reducing device of ship
JP2001341689A (en) Ship reduced in frictional resistance
JP2009274464A (en) Frictional resistance-reduced ship, and method for operation thereof
JP2002002580A (en) Frictional resistance reduced ship
JP2002002581A (en) Friction resistance reducing ship, and friction resistance reducing method for hull
JPH10119875A (en) Micro bubble generater
JP2000203485A (en) Friction resistance reducing ship