JP2000203485A - Friction resistance reducing ship - Google Patents

Friction resistance reducing ship

Info

Publication number
JP2000203485A
JP2000203485A JP11005822A JP582299A JP2000203485A JP 2000203485 A JP2000203485 A JP 2000203485A JP 11005822 A JP11005822 A JP 11005822A JP 582299 A JP582299 A JP 582299A JP 2000203485 A JP2000203485 A JP 2000203485A
Authority
JP
Japan
Prior art keywords
ship
gas
outlet
frictional resistance
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11005822A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takahashi
義明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11005822A priority Critical patent/JP2000203485A/en
Publication of JP2000203485A publication Critical patent/JP2000203485A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively save a power during navigation by effectively reducing frictional resistance of a ship hull. SOLUTION: This friction resistance reducing ship reduces frictional resistance in such a way that air is injected in water through the air outlet 4 of an air outlet part 2 arranged in the vicinity of a bow 1c, fine air bubbles are interposed at a hull outside plank 1 to reduce frictional resistance. In this case, the air outlet part 2 is formed in a shape that a velocity of flow of water flowing along the hull outside plank 1 is increased at the air outlet 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、摩擦抵抗低減船に
係わり、航行状態にある船舶の船体外板に微小気泡を介
在させて摩擦抵抗の低減を図る技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ship for reducing frictional resistance, and more particularly to a technique for reducing frictional resistance by interposing fine air bubbles in a hull outer plate of a ship in a navigation state.

【0002】[0002]

【従来の技術】特開昭50−83992号、特開昭53
−136289号、特開昭60−139586号、特開
昭61−71290号、実開昭61−39691号、及
び実開昭61−128185号等に、摩擦抵抗低減船に
係わる技術が開示されている。この摩擦抵抗低減船は、
航行状態において船体表面(船体外板)から空気等の気
体を水中に噴出して船体外板に多数の微小気泡(マイク
ロバブル)を介在させ、このマイクロバブルの介在によ
って水と船体との間に作用する摩擦抵抗を低減させるも
のである。
2. Description of the Related Art JP-A-50-83992 and JP-A-53-1983.
JP-A-136289, JP-A-60-139586, JP-A-61-71290, JP-A-61-39691, and JP-A-61-128185 disclose a technique relating to a ship with reduced frictional resistance. I have. This friction drag reduction ship,
In the navigation state, gas such as air is blown out into the water from the hull surface (hull skin), causing many microbubbles (microbubbles) to intervene in the hull skin, and the microbubbles intervene between the water and the hull. This is to reduce the acting frictional resistance.

【0003】本出願人は、このような摩擦抵抗低減船の
吹出口の構造に係わる技術として、船首近傍の両舷から
水中に気体(例えば空気)を噴出して船体外板にマイク
ロバブルを介在させる技術を提案している。この技術
は、船首近傍から気体を噴出して生成したマイクロバブ
ルを船体外板の水の流線に沿って拡散させることによ
り、船体全体を効果的にマイクロバブルで覆うことを意
図したものである。
[0003] The present applicant discloses a technique relating to the structure of the blowout port of a frictional resistance reducing ship, in which a gas (for example, air) is blown into water from both sides near the bow and microbubbles are interposed in the hull outer plate. We propose the technique to make it. This technology is intended to effectively cover the entire hull with microbubbles by diffusing microbubbles generated by ejecting gas from the vicinity of the bow along the streamlines of water on the hull skin. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、吹出口
が配される水深や位置あるいは航行速度等に応じて、吹
出口には水圧がかかり、この水圧によって気体の噴出に
要する動力が大きく変化する。例えば、吹出口が比較的
水深の深い位置に配されて吹出口にかかる静圧が高い場
合には、気体の噴出に要する動力が大きくなり、マイク
ロバブルによって減少した航行動力の節約分が目減りす
るといった問題がある。一方、水深の浅い位置に吹出口
を配して吹出口にかかる静圧を低くした場合には、噴出
に要する動力は小さいものの、生成したマイクロバブル
を船底にまで流すことが難しくなる。特に、VLCC
(Very Large Crude Oil Carrier:20万トン級の石油
輸送船)等、船側に対して船幅が比較的大きな船舶(肥
大船)は、海水を左右に押し分けて航行するので、船首
近傍の両舷から気体を噴出して生成させたマイクロバブ
ルによって船底を効果的に覆うといったことが困難とな
るという問題がある。
However, water pressure is applied to the air outlet in accordance with the water depth and position where the air outlet is disposed, the traveling speed, and the like, and the power required for gas ejection is greatly changed by the water pressure. For example, when the outlet is arranged at a relatively deep position and the static pressure applied to the outlet is high, the power required for jetting the gas increases, and the savings in navigational power reduced by the microbubbles are reduced. There is a problem. On the other hand, when the outlet is arranged at a shallow position to lower the static pressure applied to the outlet, although the power required for the ejection is small, it is difficult to flow the generated microbubbles to the bottom of the ship. In particular, VLCC
(Very Large Crude Oil Carrier: a 200,000-ton class oil transport ship) and other vessels with a relatively large ship width (larger vessels) to the ship's side, sailing by pushing seawater to the left and right, so that both sides near the bow There is a problem that it is difficult to effectively cover the bottom of the ship with microbubbles generated by ejecting gas from the vessel.

【0005】本発明は、上述する問題点に鑑みてなされ
たもので、以下の点を目的とするものである。 (1)吹出口にかかる水圧を低くして気体の噴出に要す
る動力を節減する。 (2)種々の形状の船体に対応して船舶の摩擦抵抗を効
果的に低減する。
The present invention has been made in view of the above-mentioned problems, and has the following objects. (1) The water pressure applied to the outlet is reduced to reduce the power required for gas ejection. (2) Friction resistance of a ship is effectively reduced corresponding to a hull of various shapes.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、請求項1に係る発明は、船首近傍に配された気体吹
出部の吹出口から水中へ気体を噴出して、航行している
船舶の船体外板に微小気泡を介在させて摩擦抵抗の低減
を図る摩擦抵抗低減船であって、気体吹出部が、船体外
板に沿って流れる水の流速を吹出口で大きくする形状に
形成される技術が採用される。この摩擦抵抗低減船は、
航行状態における吹出口での水の流速が大きくなるよう
に気体吹出部が形成されているので、吹出口での静圧が
低くなる。
In order to solve the above-mentioned problems, the invention according to claim 1 is directed to a ship navigating by jetting gas into water from an outlet of a gas outlet disposed near a bow. A frictional resistance reducing ship for reducing frictional resistance by interposing fine air bubbles in a hull outer plate, wherein a gas blowing part is formed in a shape to increase a flow velocity of water flowing along the hull outer plate at an outlet. Technology is adopted. This friction drag reduction ship,
Since the gas outlet is formed such that the flow velocity of water at the outlet in the navigation state is increased, the static pressure at the outlet is reduced.

【0007】請求項2に係る発明は、請求項1の摩擦抵
抗低減船において、気体吹出部が、頂部付近に吹出口を
有し、翼形の断面形状に形成される技術が採用される。
この摩擦抵抗低減船では、気体吹出部が翼形に形成され
ているので、気体吹出部の表面を流れる水の流速が頂部
付近で大きくなり、頂部付近に設けられている吹出口で
の静圧が低くなる。また、翼形の気体吹出部に沿って流
れた水は下流での乱れを起こしにくい。
According to a second aspect of the present invention, in the first aspect of the present invention, a technique is employed in which the gas blowing portion has an air outlet near the top and is formed in an airfoil cross section.
In this frictional resistance reducing ship, since the gas blowing portion is formed in an airfoil shape, the flow velocity of the water flowing on the surface of the gas blowing portion increases near the top, and the static pressure at the outlet provided near the top is increased. Becomes lower. Also, water flowing along the airfoil gas outlet is less likely to cause turbulence downstream.

【0008】請求項3に係る発明は、請求項1または2
記載の摩擦抵抗低減船において、気体吹出部が、水の流
れを誘導する形状に形成され、吹出口から船底へ向かう
流線を形成するように配される技術が採用される。この
摩擦抵抗低減船では、気体吹出部に沿って流れる水を吹
出口から船底へ誘導し、気体吹出部から噴出された気体
によって生成された気泡は、流線に沿って船底へ移動す
る。
The invention according to claim 3 is the invention according to claim 1 or 2
In the frictional resistance reducing ship described above, a technique is employed in which the gas blowing portion is formed in a shape that guides the flow of water, and is arranged to form a streamline from the outlet to the bottom of the ship. In this frictional resistance reducing ship, water flowing along the gas outlet is guided from the outlet to the ship bottom, and bubbles generated by the gas ejected from the gas outlet move to the ship bottom along the streamlines.

【0009】請求項4に係る発明は、請求項1または3
記載の摩擦抵抗低減船において、気体吹出部が、液滴状
の輪郭で船体外板から突出した形状に形成される技術が
採用される。この摩擦抵抗低減船では、気体吹出部に沿
って流れる水が下流においても広がらず、気体吹出部か
ら生成した気泡が船体外板に沿って船底へ移動する。
The invention according to claim 4 is the invention according to claim 1 or 3.
In the described frictional resistance reducing ship, a technique is employed in which the gas blowing portion is formed in a shape protruding from the hull outer plate with a droplet-like contour. In this frictional resistance reducing ship, the water flowing along the gas blowing portion does not spread even downstream, and bubbles generated from the gas blowing portion move to the bottom along the hull outer plate.

【0010】[0010]

【発明の実施の形態】以下、本発明に係わる摩擦抵抗低
減船の一実施形態について、図1〜図3を参照して説明
する。図1は肥大船における本実施形態の船首近傍の概
略側面図(右舷側)を示しており、符号Sは肥大船(摩
擦抵抗低減船)、符号1は船体外板、符号2は気体吹出
部、符号3は喫水線をそれぞれ示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a ship for reducing frictional resistance according to the present invention will be described below with reference to FIGS. FIG. 1 is a schematic side view (starboard side) of the enlarged ship in the vicinity of the bow of the present embodiment, where S is an enlarged ship (friction resistance reducing ship), 1 is a hull outer plate, and 2 is a gas blowing unit. , 3 indicate the draft lines, respectively.

【0011】肥大船Sは、船側1bに対して船幅が比較
的大きな船舶であって、例えばVLCC(Very Large C
rude Oil Carrier:20万トン級の石油輸送船)といっ
たものがこれに該当する。このような肥大船Sは、他の
種類の船舶に比べて、喫水線3下の船体外板1の船底1
aの面積が船側1bの面積に対して比較的大きく形成さ
れている。
The enlarged ship S is a ship having a relatively large width with respect to the ship side 1b, for example, a VLCC (Very Large C).
rude Oil Carrier: a 200,000-ton class oil carrier). Such an enlarged ship S has a bottom 1 of a hull shell 1 below a waterline 3 as compared with other types of ships.
The area "a" is formed to be relatively larger than the area of the ship side 1b.

【0012】肥大船Sは、図2に示すように、右舷1d
および左舷1eにおいて船首1c近傍に気体吹出部2が
設けられている。この気体吹出部2は、吹出口4から水
中へ気体を噴出して微小気泡(マイクロバブル)を生成
させることを目的としている。また、肥大船S内には、
気体供給手段5が備えられている。この気体供給手段5
は、圧縮用のコンプレッサ、気体貯蔵用のタンク、気体
吹出用のブロワ、および制御バルブ等を備えており、吹
出口4から気体を噴出するように構成されている。
As shown in FIG. 2, the enlarged ship S is on the starboard side 1d.
Further, a gas blowing section 2 is provided near the bow 1c on the port 1e. The purpose of the gas blowing section 2 is to generate gas by blowing gas into the water from the outlet 4 to generate microbubbles. Also, inside the enlarged ship S,
Gas supply means 5 is provided. This gas supply means 5
Is provided with a compressor for compression, a tank for storing gas, a blower for blowing out gas, a control valve, and the like, and is configured to blow out gas from the outlet 4.

【0013】気体吹出部2は、航行状態にある肥大船S
において、船体外板1に沿って流れる水の流速を吹出口
4で大きくするように、図2で示す断面形状が翼形に形
成され、頂部付近に吹出口4が設けられている。図3
は、気体吹出部2の吹出口4を示しており、翼形に突出
した気体吹出部2の頂部に凹形状の吹出口4が形成され
ている。さらに、この吹出口4が設けられる位置は、気
体吹出部2の頂部付近で、肥大船Sの航行時に水の動圧
の作用が小さい位置である。また、吹出口4の正面形状
は、図1に示すように軸線BC方向を長軸とする楕円形
状に形成されている。図3に戻り、吹出口4には、船体
内部側に向かって緩やかに湾曲した吹出板6が設けら
れ、この吹出板6に多数の孔6aが形成されている。ま
た、吹出口4の船体内部側には、チャンバー7を形成す
るように隔壁8が設けられており、チャンバー7内へ気
体を供給するための気体供給手段5と接続されている。
[0013] The gas blow-out unit 2 is provided with
In FIG. 2, the cross-sectional shape shown in FIG. 2 is formed in an airfoil shape so as to increase the flow velocity of water flowing along the hull skin 1 at the air outlet 4, and the air outlet 4 is provided near the top. FIG.
Indicates a blowout port 4 of the gas blowout section 2, and a concave blowout port 4 is formed at the top of the gas blowout section 2 protruding in an airfoil shape. Further, the position where the blowout port 4 is provided is a position near the top of the gas blowing section 2 where the action of the dynamic pressure of water is small when the enlarged ship S is traveling. The front shape of the outlet 4 is formed in an elliptical shape whose major axis is the direction of the axis BC as shown in FIG. Returning to FIG. 3, the blowout port 4 is provided with a blowout plate 6 gently curved toward the inside of the hull, and the blowout plate 6 has a large number of holes 6a. A partition 8 is provided inside the hull of the outlet 4 so as to form a chamber 7, and is connected to gas supply means 5 for supplying gas into the chamber 7.

【0014】また、気体吹出部2は、水の流れを誘導す
る形状に形成されている。ここでは気体吹出部2は、図
1に示すように、肥大船Sに向かって見た様子が液滴状
の輪郭を持つ形状である。すなわち、気体吹出部2は、
液滴状の輪郭部分を持ち、船体外板1側から突出した滑
らかな凸面2aを持つ形状であり、その断面形状が翼形
となるように形成されている。こうした気体吹出部2の
形状は、気体吹出部2に沿って流れる水をできるだけ乱
さない、造波抵抗の小さい形状となるように設計されて
いる。
The gas blowing section 2 is formed in a shape for guiding the flow of water. Here, as shown in FIG. 1, the gas blowing section 2 has a shape having a droplet-like contour when viewed toward the enlarged ship S. That is, the gas blowing unit 2
It has a droplet-shaped contour portion and has a smooth convex surface 2a protruding from the hull outer plate 1 side, and is formed so that its cross-sectional shape becomes an airfoil. The shape of the gas blowing portion 2 is designed so as to disturb water flowing along the gas blowing portion 2 as much as possible and to have a small wave-making resistance.

【0015】このような気体吹出部2は、船首1c近傍
において、吹出口4から船底1aへ向かう流線Lを形成
するように配されている。すなわち気体吹出部2は、上
述したようにその形状に沿うように水の流れを誘導する
ので、図1に示すように、吹出口4から見てC点が船底
1aへ向かうように配される。そして、この気体吹出部
2の向きは、喫水線3からの傾きである偏角αによって
表される。偏角αは、吹出口4およびC点を通る軸線B
Cにおける、喫水線3に平行で吹出口4を通る直線EF
からの傾きである。こうした気体吹出部2の偏角αおよ
び設置位置といったものは、肥大船Sの標準航行速度に
おいて、造波抵抗が少なくかつ船底1aへと流線Lが向
かうように、数値流体力学(CFD:Computational Fl
uid Dynamics)による流場解析によって設計されてい
る。
Such a gas outlet 2 is arranged near the bow 1c so as to form a streamline L from the outlet 4 to the ship bottom 1a. That is, since the gas blowout part 2 guides the flow of water along the shape as described above, the gas blowout part 2 is arranged such that the point C is directed to the ship bottom 1a as viewed from the blowout port 4, as shown in FIG. . The direction of the gas outlet 2 is represented by a declination α that is an inclination from the waterline 3. The declination α is the axis B passing through the outlet 4 and the point C.
C, a straight line EF passing through the outlet 4 in parallel with the waterline 3
It is the inclination from. The declination α and the installation position of the gas blow-out section 2 are set such that, at the standard sailing speed of the enlarged ship S, the computational fluid dynamics (CFD: Computational Fluid Dynamics) is such that the wave resistance is small and the streamline L is directed toward the bottom 1 a. Fl
uid Dynamics).

【0016】次に、このように建造された摩擦抵抗低減
船(肥大船S)の作用について説明する。この摩擦抵抗
低減船(肥大船S)が航行状態になると、気体供給手段
5によって気体が気体吹出部2のチャンバー7に供給さ
れる。そして、吹出口4での湾曲した吹出板6の孔6a
から水中に気体が噴出されて、マイクロバブルが生成さ
れる。
Next, the operation of the thus constructed ship with reduced frictional resistance (the enlarged ship S) will be described. When the ship with reduced frictional resistance (the enlarged ship S) enters the navigating state, gas is supplied to the chamber 7 of the gas blowing unit 2 by the gas supply means 5. And the hole 6a of the curved blowing plate 6 at the blowing port 4
Gas is blown out of the water to generate microbubbles.

【0017】このとき、気体吹出部2は、液滴状の輪郭
で水の流れを誘導する形状に形成され、吹出口4から船
底1aへ向かう流線Lを形成するように船首1c近傍に
配されているので、気体吹出部2に沿って流れる水が下
流においても広がらずに船底1aへと誘導される。そし
て、生成されたマイクロバブルが流線Lに沿って船側1
bから船底1aへと移動し、船底1aがマイクロバブル
に効果的に覆われる。特に、肥大船Sにおいては、一般
に、喫水線3下の船体外板1の船底1aの面積が大きい
ため、この船底1aにマイクロバブルを介在させること
で効果的に摩擦抵抗を低減させることができる。さら
に、船首1c近傍に気体吹出部2が配置されることで、
発達初期段階の薄い境界層(乱流境界層)にマイクロバ
ブルが生成されるので、マイクロバブルが境界層内で船
体外板1に沿って効率的に拡散される。
At this time, the gas blowing section 2 is formed in a shape that guides the flow of water with a droplet-like contour, and is arranged near the bow 1c so as to form a streamline L from the blowing port 4 toward the bottom 1a. Therefore, the water flowing along the gas blowing section 2 is guided to the ship bottom 1a without spreading downstream. Then, the generated microbubbles move along the stream line L to the ship side 1.
b moves to the ship bottom 1a, and the ship bottom 1a is effectively covered with the microbubbles. In particular, in the enlarged ship S, generally, the area of the bottom 1a of the hull outer plate 1 below the waterline 3 is large, so that microbubbles can be interposed in the bottom 1a to effectively reduce frictional resistance. Further, by disposing the gas blowing part 2 near the bow 1c,
Since microbubbles are generated in the thin boundary layer (turbulent boundary layer) in the early stage of development, the microbubbles are efficiently diffused along the hull skin 1 in the boundary layer.

【0018】また、マイクロバブルによって摩擦抵抗を
低減させるにあたっては、マイクロバブルを生成させる
ための動力を抑制することが重要である。これは、マイ
クロバブルを用いて航行時の摩擦抵抗を低減させる目的
が、船舶の航行に係る動力を節減して輸送コストを低下
させることにあるからである。そのためにここでは、気
体の噴出に要する動力をできるだけ抑制する必要があ
る。そこで、上述したように、気体吹出部2が翼形に形
成されることで、頂部付近に設けられた吹出口4での水
の流速が大きくなるので、吹出口4での静圧が低くな
り、噴出に要する動力を小さく抑えることができる。ま
たこのときに、気体吹出部2が水深の深い位置に配され
ても、航行状態における水の流速によって吹出口4の静
圧を低くできるので、噴出に要する動力を小さく抑える
ことが可能となる。
Further, in reducing frictional resistance by using microbubbles, it is important to suppress power for generating microbubbles. This is because the purpose of using a microbubble to reduce the frictional resistance during navigation is to reduce the power required for navigation of a ship and reduce the transportation cost. Therefore, here, it is necessary to suppress the power required for jetting the gas as much as possible. Therefore, as described above, since the gas outlet 2 is formed in an airfoil shape, the flow velocity of water at the outlet 4 provided near the top increases, so that the static pressure at the outlet 4 decreases. Therefore, the power required for the ejection can be reduced. Also, at this time, even if the gas blowing part 2 is arranged at a deep water position, the static pressure of the blowing port 4 can be reduced by the flow velocity of the water in the navigation state, so that the power required for the blowing can be suppressed to be small. .

【0019】また、気体吹出部2は、気体吹出部2を流
れる水をできるだけ乱さない造波抵抗の小さい形状に形
成されているとともに、最も効果的に船底1aへと流線
Lが向かうように配置されているので、肥大船Sの全抵
抗に与える影響を小さく抑えることができる。
The gas blowing section 2 is formed in a shape having a small wave-making resistance so as not to disturb the water flowing through the gas blowing section 2 as much as possible, and the streamline L is directed to the ship bottom 1a most effectively. Since they are arranged, the influence on the total resistance of the enlarged ship S can be suppressed to a small value.

【0020】すなわち本実施形態は、航行している肥大
船Sの船底1aへとマイクロバブルを流して効果的に肥
大船Sの摩擦抵抗を低減することと、吹出口4からの気
体の噴出に要する動力を節減することとを同時に実現す
るものである。
That is, in the present embodiment, the microbubbles are caused to flow to the bottom 1 a of the traveling enlarged ship S to effectively reduce the frictional resistance of the enlarged ship S, and the gas is ejected from the outlet 4. The required power can be saved at the same time.

【0021】また、図4は本発明に係る摩擦抵抗低減船
の他の実施形態として、高速船Tの船首10c近傍の概
略側面図(右舷側)を示している。本実施形態において
も、前記した実施形態で示したものと同様に、船首10
c近傍において翼形の気体吹出部11が設置されてい
る。前記した肥大船Sにおける実施形態と異なる点は、
気体吹出部11の偏角β(偏角βは、吹出口12および
J点を通る軸線HJにおける、喫水線3に平行で吹出口
12を通る直線MNからの傾き)が、肥大船Sの偏角α
に比べて小さくなっている点である。一般に、高速船T
は、船首10c部分が船首10c前方へと突き出してい
るなど、その形状によって船側10bから船底10aへ
と流れ込む水の流れが形成されやすい。そのため、気体
吹出部2の配置状態は、肥大船Sにおける偏角αに比べ
て小さい偏角βにおいて、最も効率的にマイクロバブル
を船底10aへと流し込ませることが可能となる。ま
た、この気体吹出部11の配置は、高速船Tの標準航行
速度において、造波抵抗が少なくかつ船底10aへと流
線Lが向かうようにCFDを用いて設計されており、高
速船Tの形状や標準運行速度によっては偏角βの大きさ
が偏角αよりも大きくなることがあるのはいうまでもな
い。
FIG. 4 is a schematic side view (starboard side) of the high-speed boat T near the bow 10c as another embodiment of the frictional resistance reducing boat according to the present invention. Also in this embodiment, similarly to the above-mentioned embodiment, the bow 10
An air-blowing gas blowing part 11 is installed near c. The difference from the embodiment of the above-described enlarged ship S is as follows.
The declination β of the gas outlet 11 (the declination β is the inclination of the axis HJ passing through the outlet 12 and the point J from the straight line MN passing through the outlet 12 parallel to the draft line 3) α
This is a point that is smaller than that of. Generally, high-speed ship T
Due to its shape, for example, the flow of water flowing from the ship side 10b to the ship bottom 10a is likely to be formed such that the bow 10c portion projects forward of the bow 10c. Therefore, in the arrangement state of the gas blowing unit 2, it is possible to most efficiently flow the microbubbles into the ship bottom 10a at the declination β smaller than the declination α of the enlarged ship S. In addition, the arrangement of the gas blowing unit 11 is designed using CFD so that the wave resistance is small and the streamline L is directed toward the bottom 10a at the standard navigation speed of the high-speed ship T. It goes without saying that the magnitude of the declination β may be larger than the declination α depending on the shape and the standard operation speed.

【0022】このように、船体の形状に応じて、気体吹
出部11の配置位置および偏角βを適切に設定すること
で、種々の形状の船舶にも柔軟に対応し、マイクロバブ
ルで船舶の摩擦抵抗を効果的に低減させるといったこと
が可能となる。
As described above, by appropriately setting the arrangement position of the gas blowing portion 11 and the deflection angle β in accordance with the shape of the hull, it is possible to flexibly cope with ships of various shapes, and to use microbubbles to control the ship. It is possible to effectively reduce frictional resistance.

【0023】なお、上述した2つの実施形態で示した摩
擦抵抗低減船では、一つの気体吹出部2,11に対して
一つの吹出口4,12が設けられているが、これはもち
ろん一つの気体吹出部2,11に対して複数の吹出口
4,12を設けてもよい。ただし、効率的にマイクロバ
ブルを生成させるためには気体の噴出に要する動力をな
るべく抑制する必要があり、このことから、気体を吹き
出す孔16aの総開口面積は、できるだけ抑制する必要
がある。
Incidentally, in the frictional resistance reducing ship shown in the above two embodiments, one gas outlet 2, 11 is provided with one outlet 4, 12, but this is of course one. A plurality of outlets 4 and 12 may be provided for the gas outlets 2 and 11. However, in order to efficiently generate microbubbles, it is necessary to suppress the power required for jetting the gas as much as possible. Therefore, it is necessary to suppress the total opening area of the holes 16a for jetting the gas as much as possible.

【0024】また、図1および図4において、気体吹出
部2,12の形状は、軸線BC,軸線HJに対して対称
形に描かれているが、これは吹出口4,12での水の流
速が大きくかつ造波抵抗が小さくなるような形状であれ
ば対称形には限らない。また、気体供給手段5は、実施
形態で説明した構成に限らず、所定の圧力で気体を供給
できればよいのであって、ターボチャージャ等を用いた
構成であってもよい。
In FIGS. 1 and 4, the shapes of the gas outlets 2 and 12 are drawn symmetrically with respect to the axis BC and the axis HJ. The shape is not limited to a symmetrical shape as long as the flow velocity is large and the wave resistance is small. Further, the gas supply means 5 is not limited to the configuration described in the embodiment, but may be any configuration as long as it can supply gas at a predetermined pressure, and may be a configuration using a turbocharger or the like.

【発明の効果】【The invention's effect】

【0025】以上説明したように、請求項1に係る摩擦
抵抗低減船は、航行時における吹出口での水の流速が大
きくなり、吹出口での静圧が低くなるので、少ない動力
で水中へ気体を噴出することができる。また、噴出した
気体は微小気泡となって水と船体との間に作用する摩擦
抵抗を低減する。これらにより、気体の噴出に要する動
力を抑制し、効率よく摩擦抵抗を低減することができ
る。また、気体吹出部が船首近傍に配されることで、発
達初期段階の薄い境界層に微小気泡が生成するので、微
小気泡が境界層内で船体に沿って効率的に拡散される。
また、航行時の水の流速を利用して吹出口の静圧を低く
するので、気体吹出部が水深の深い位置に設置されても
気体の噴出に要する動力を小さく抑えることができる。
As described above, the frictional resistance reducing ship according to the first aspect increases the flow velocity of water at the outlet during navigation and decreases the static pressure at the outlet. Gas can be ejected. In addition, the jetted gas becomes microbubbles to reduce frictional resistance acting between water and the hull. Thus, the power required for gas ejection can be suppressed, and the frictional resistance can be efficiently reduced. In addition, since the gas blowing portion is arranged near the bow, micro bubbles are generated in the thin boundary layer in the early stage of development, so that the micro bubbles are efficiently diffused along the hull in the boundary layer.
Further, since the static pressure at the air outlet is reduced by using the flow velocity of the water at the time of navigation, the power required for jetting the gas can be reduced even if the gas blowing part is installed at a deep position.

【0026】請求項2に係る摩擦抵抗低減船では、気体
吹出部が翼形の断面形状に形成されて頂部付近に吹出口
が設けられており、航行時における水の流速によって吹
出口での静圧が低くなるので、少ない動力で水中へ気体
を噴出することができる。また、気体吹出部は水の流れ
を乱さない翼形に形成されているので、形成される流線
に沿って水が効率的に流れ、気体吹出部が船の全抵抗に
与える影響を抑制できる。
According to the second aspect of the present invention, the gas blowing portion is formed in an airfoil cross-sectional shape, and the air outlet is provided near the top portion. Since the pressure is reduced, gas can be ejected into water with less power. In addition, since the gas blowing portion is formed in an airfoil that does not disturb the flow of water, water flows efficiently along the formed streamline, and the effect of the gas blowing portion on the total resistance of the ship can be suppressed. .

【0027】請求項3に係る摩擦抵抗低減船では、航行
時における水の流れが気体吹出部に誘導されて、船側か
ら船底へ向かう水の流線が形成される。気体吹出部から
生成した微小気泡は流線に沿って船底へと流れ込むの
で、船側に対して船幅が比較的大きな肥大船において
も、船底を微小気泡で効果的に覆うことができ、摩擦抵
抗を低減することができる。また、気体吹出部を適切に
配することで、種々の形状の船舶においても柔軟に対応
し、微小気泡でそれぞれの船舶の摩擦抵抗を効率的に低
減させることができる。
In the frictional resistance reducing ship according to the third aspect, the flow of water during navigation is guided to the gas blowing portion, and a stream of water from the ship side to the ship bottom is formed. The microbubbles generated from the gas outlet flow into the bottom of the ship along the streamlines, so even on a large vessel with a relatively large width relative to the ship's side, the bottom of the ship can be effectively covered with the microbubbles, resulting in frictional resistance. Can be reduced. Further, by appropriately arranging the gas blowing portions, it is possible to flexibly cope with ships of various shapes, and the frictional resistance of each of the ships can be efficiently reduced by the minute bubbles.

【0028】請求項4に係る摩擦抵抗低減船では、気体
吹出部が液滴状の輪郭で形成されているので、航行時に
気体吹出部に沿って流れる水が下流においても広がら
ず、気体吹出部から生成した気泡が船体外板に沿って船
底へ移動して、より効率的に船舶の摩擦抵抗を低減させ
ることができる。
According to the fourth aspect of the present invention, since the gas blowing portion is formed in the shape of a droplet, the water flowing along the gas blowing portion during navigation does not spread downstream, and the gas blowing portion does not. The bubbles generated from the hull move to the bottom of the ship along the hull skin, and the frictional resistance of the ship can be reduced more efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態(肥大船)の船首近傍の
概要側面図である。
FIG. 1 is a schematic side view of the vicinity of a bow of an embodiment of the present invention (enlarged boat).

【図2】 図1のA−B−C−D断面図である。FIG. 2 is a sectional view taken along the line ABCD of FIG.

【図3】 図1における気体吹出部の詳細図である。FIG. 3 is a detailed view of a gas blowing section in FIG. 1;

【図4】 本発明の他の実施形態(高速船)の船首近傍
の概要側面図である。
FIG. 4 is a schematic side view of the vicinity of a bow of another embodiment (high-speed ship) of the present invention.

【符号の説明】[Explanation of symbols]

S 肥大船 T 高速船 L 流線 1,10 船体外板 1a,10a 船底 1b,10b 船側 1c,10c 船首 2,11 気体吹出部 3 喫水線 4,12 吹出口 S Hypertrophy vessel T High-speed vessel L Streamline 1,10 Hull skin 1a, 10a Bottom 1b, 10b Ship side 1c, 10c Bow 2,11 Gas outlet 3 Waterline 4,12 Outlet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 船首(1c)近傍に配された気体吹出部
(2)の吹出口(4)から水中へ気体を噴出して、航行
している船舶の船体外板(1)に微小気泡を介在させて
摩擦抵抗の低減を図る摩擦抵抗低減船であって、 前記気体吹出部(2)は、船体外板(1)に沿って流れ
る水の流速を前記吹出口(4)で大きくする形状に形成
されることを特徴とする摩擦抵抗低減船。
1. A gas bubble is blown out into the water from an air outlet (4) of a gas blowing part (2) arranged near a bow (1c), and micro bubbles are generated on a hull outer plate (1) of a traveling ship. A frictional resistance reducing ship that reduces frictional resistance by interposing a gas flow, wherein the gas blowing part (2) increases the flow velocity of water flowing along the hull outer plate (1) at the blowout port (4). A friction-reducing ship characterized by being formed in a shape.
【請求項2】 前記気体吹出部(2)は、頂部付近に前
記吹出口(4)を有し、翼形の断面形状に形成されるこ
とを特徴とする請求項1記載の摩擦抵抗低減船。
2. The frictional drag reducing ship according to claim 1, wherein the gas blowing portion has the air outlet near a top and is formed in an airfoil cross-sectional shape. .
【請求項3】 前記気体吹出部(2)は、水の流れを誘
導する形状に形成され、前記吹出口(4)から船底(1
a)へ向かう流線(L)を形成するように配されること
を特徴とする請求項1または2記載の摩擦抵抗低減船。
3. The gas outlet (2) is formed in a shape for guiding a flow of water, and is provided from the outlet (4) to a ship bottom (1).
3. The reduced frictional drag ship according to claim 1, wherein the ship is arranged to form a streamline (L) toward a).
【請求項4】 前記気体吹出部(2)は、液滴状の輪郭
を持ち船体外板(1)から突出した形状に形成されるこ
とを特徴とする請求項1または3記載の摩擦抵抗低減
船。
4. The frictional resistance reduction according to claim 1, wherein the gas blowing section has a droplet-like contour and is formed to protrude from the hull outer plate. ship.
JP11005822A 1999-01-12 1999-01-12 Friction resistance reducing ship Pending JP2000203485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11005822A JP2000203485A (en) 1999-01-12 1999-01-12 Friction resistance reducing ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11005822A JP2000203485A (en) 1999-01-12 1999-01-12 Friction resistance reducing ship

Publications (1)

Publication Number Publication Date
JP2000203485A true JP2000203485A (en) 2000-07-25

Family

ID=11621777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11005822A Pending JP2000203485A (en) 1999-01-12 1999-01-12 Friction resistance reducing ship

Country Status (1)

Country Link
JP (1) JP2000203485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156721A1 (en) * 2013-03-25 2014-10-02 三井造船株式会社 Ship provided with bubble resistance reduction device, and method for reducing resistance of ship
KR20180019904A (en) * 2016-08-17 2018-02-27 삼성중공업 주식회사 ship

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156721A1 (en) * 2013-03-25 2014-10-02 三井造船株式会社 Ship provided with bubble resistance reduction device, and method for reducing resistance of ship
KR20180019904A (en) * 2016-08-17 2018-02-27 삼성중공업 주식회사 ship
KR101863829B1 (en) * 2016-08-17 2018-06-01 삼성중공업 주식회사 ship

Similar Documents

Publication Publication Date Title
US6145459A (en) Friction-reducing ship and method for reducing skin friction
JP2009274704A (en) Frictional resistance-reduced ship, and operation method thereof
JP2010023764A (en) Frictional resistance reduction ship and operating method
JPH07156859A (en) Method to reduce friction of sailing body and friction reducing sailing body and generating method of microbubble used to reduce friction and device thereof
JP3185047B2 (en) Hull friction resistance reduction method
JP2002002582A (en) Friction resistance reducing ship
JP2000203485A (en) Friction resistance reducing ship
JP2001106171A (en) Frictional resistance reduced-ship and method of reducing frictional resistance of hull
JPH11321775A (en) Friction resistance reducing type ship
JPH10175588A (en) Frictional resistance reducing device for ship
JP2000168673A (en) Frictional resistance reducing ship
JP2001278178A (en) Method of reducing frictional resistance of hull, and frictional resistance reduced ship
JP2018154199A (en) Vessel
JP2001106173A (en) Frictional resistance reduced-ship
JPH1024891A (en) Friction resistance reducing device for ship
JPH10175587A (en) Frictional resistance reducing device for ship
JP2002079986A (en) Ship reduced in friction resistance
JP2000272578A (en) Frictional resistance reducing ship
JP2000289685A (en) Frictional resistance reducing ship
JP2000255477A (en) Friction resistance reduced ship
JP2002145171A (en) Frictional resistance reduced type vessel
JP2000128064A (en) Frictional resistance reduction ship and friction reduction method for hull
JP2003160091A (en) Friction reducer for ship
JP2000296797A (en) Friction resistance reduced ship
JP2023132401A (en) Friction resistance reduction system, navigating body, and friction resistance reduction method for navigating body