JPH10175587A - Frictional resistance reducing device for ship - Google Patents

Frictional resistance reducing device for ship

Info

Publication number
JPH10175587A
JPH10175587A JP8353926A JP35392696A JPH10175587A JP H10175587 A JPH10175587 A JP H10175587A JP 8353926 A JP8353926 A JP 8353926A JP 35392696 A JP35392696 A JP 35392696A JP H10175587 A JPH10175587 A JP H10175587A
Authority
JP
Japan
Prior art keywords
air
ship
opening
boundary layer
frictional resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8353926A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takahashi
義明 高橋
Ryuta Ono
龍太 小野
Yuki Yoshida
有希 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP8353926A priority Critical patent/JPH10175587A/en
Publication of JPH10175587A publication Critical patent/JPH10175587A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To feed more small air bubbles in a boundary layer and reduce the generation of frictional resistance of a hull. SOLUTION: An opening part 5 extending in the direction of a stern is formed in the region of the streamline 4 of the bow part 2 of a hull 1. A porous plate 7 in which a number of small air blow-out ports 6 are formed at given pitches is mounted in the opening part 5, and a sea chest 8 is integrally attached to the inside of the porous plate 7 to form an air blow-out apparatus 9. The air blow-out port 6 of the air blow-out apparatus 9 is formed obliquely along the streamline 4 and the inclination angle is set according to the thickness of the boundary layer 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は航行時に船体表面に
作用する摩擦抵抗を低減させるために船体表面を微小気
泡で覆うようにさせる船舶の摩擦抵抗低減装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for reducing frictional resistance of a marine vessel in which the surface of the hull is covered with microbubbles in order to reduce the frictional resistance acting on the hull surface during navigation.

【0002】[0002]

【従来の技術】船舶の航行時には、流体としての海水の
粘性のために船体の周りに海水による境界層が形成され
るが、この境界層の中では、海水の流速は船体表面が零
で船体表面から離れるに従い急激に大きく変化する傾向
にあり、船体の表面に海水の摩擦抵抗が作用し船体抵抗
の大きな要素の一つとなっている。
2. Description of the Related Art During the navigation of a ship, a boundary layer of seawater is formed around the hull due to the viscosity of seawater as a fluid. In this boundary layer, the flow velocity of the seawater is zero and the hull surface is zero. It tends to change drastically as the distance from the surface increases, and seawater frictional resistance acts on the surface of the hull, which is one of the major factors of hull resistance.

【0003】そのため、近年、上記船体の表面に作用す
る摩擦抵抗を減少させて推進性能を向上させるための研
究が進められており、その対策の一つとして、船体表面
から微小気泡(マイクロバブル)を噴出させ、船体の浸
水部(没水部)表面の境界層内に微小気泡を送り込んで
船体の浸水部表面を微小気泡で覆うことにより船体表面
に作用する摩擦抵抗を低減することを狙ったマイクロバ
ブル推進法の研究が進められている。
[0003] Therefore, in recent years, studies have been made to improve the propulsion performance by reducing the frictional resistance acting on the surface of the hull, and as one of the measures, micro-bubbles (micro-bubbles) are generated from the hull surface. And blow the microbubbles into the boundary layer of the submerged part (submerged part) of the hull to cover the submerged surface of the hull with the microbubbles, thereby reducing the frictional resistance acting on the hull surface. Research on the microbubble propulsion method is ongoing.

【0004】マイクロバブル推進法を具現化するための
一つの方法として、空気ポンプ等の空気供給装置で発生
させた加圧空気を船底から水中へ吹き出させて、船底に
微小気泡による所要のボイドを形成させるようにするこ
とが考えられる。
[0004] As one method for realizing the microbubble propulsion method, pressurized air generated by an air supply device such as an air pump is blown out into the water from the bottom of a ship, and a required void due to microbubbles is formed on the bottom of the ship. It is conceivable to make it form.

【0005】しかしながら、加圧空気を船底から水中に
吹き出させて微小気泡を発生させる技術では、船底部の
静圧が大きいことから、加圧空気吹き出し時のエネルギ
ー消費が大きく、摩擦抵抗低減によるエネルギー節約よ
りも、微小気泡発生のためのエネルギー消費の方が大き
くなってしまうので、実用化を図る上で難点がある。
[0005] However, in the technique of blowing out pressurized air into the water from the bottom of the ship to generate microbubbles, since the static pressure at the bottom of the ship is large, energy consumption at the time of blowing out the pressurized air is large, and energy due to reduction of frictional resistance is reduced. Since energy consumption for generating microbubbles is larger than saving, there is a problem in practical use.

【0006】そこで、本発明者等は、加圧空気の吹き出
し位置を、静圧の小さいところに定め且つ発生させた微
小気泡を船底や船側に沿わせて流すことができれば、マ
イクロバブル推進法を実用化できることを見出し、上記
空気吹き出し口の位置を静圧の小さい所要個所に設定す
べく、船体形状が与えられると、船体周りにおいて流線
に沿って流れる微小気泡の乱流拡散を考慮した運動と任
意位置でのボイド率分布を求める計算式を確立した。こ
の計算式では、乱流拡散の影響は、等方性乱流の仮定の
基で乱数を用いて、X軸、Y軸、Z軸(上向き)方向の
流速を変動させ、微小気泡の軌跡に乱れを与えることに
より考慮した。すなわち、微小気泡のランダムな運動を
モンテカルロ法により直接的にシミュレートした。微小
気泡の運動が計算されると、ボイド率は、ある時刻にお
ける検査領域内(セル内)に存在する微小気泡の体積を
検査領域(セル)の体積で除することにより求めること
ができるので、このようにして求めたボイド率の分布を
基に、摩擦抵抗低減に効果のある高いボイド率が生じる
ような船首部での流線を求めることによって、上記加圧
空気の吹き出し位置を決定することができる。
Accordingly, the present inventors have determined the position of blowing out the pressurized air at a place where the static pressure is small, and if the generated microbubbles can flow along the bottom or side of the ship, the microbubble propulsion method is proposed. When the hull shape is given in order to set the position of the air outlet at a required position with a small static pressure, the motion considering the turbulent diffusion of microbubbles flowing along streamlines around the hull And the formula to calculate the void fraction distribution at an arbitrary position was established. In this calculation formula, the influence of turbulent diffusion is calculated by changing the flow velocity in the X-axis, Y-axis, and Z-axis (upward) directions using random numbers based on the assumption of isotropic turbulence. Considered by giving a turbulence. That is, the random motion of the microbubbles was directly simulated by the Monte Carlo method. When the motion of the microbubbles is calculated, the void fraction can be obtained by dividing the volume of the microbubbles existing in the inspection area (cell) at a certain time by the volume of the inspection area (cell). By determining the streamline at the bow such that a high void ratio effective for reducing the frictional resistance is generated based on the void ratio distribution obtained in this manner, the position of the compressed air to be blown is determined. Can be.

【0007】[0007]

【発明が解決しようとする課題】ところが、加圧空気の
吹き出し位置を決定して船首部に空気吹き出し口を設け
た場合でも、発生させた微小気泡はすべてが境界層内に
送り込まれるものではないので、境界層外へ飛び出た微
小気泡は主流速を乱すことにより造波抵抗の一因になる
ことが考えられる。
However, even when the position of the pressurized air is determined and the air outlet is provided at the bow, not all of the generated microbubbles are sent into the boundary layer. Therefore, it is conceivable that the microbubbles jumping out of the boundary layer disturb the main flow velocity and contribute to the wave resistance.

【0008】そこで、本発明は、より多くの微小気泡を
境界層内に送り込むことができるようにして造波抵抗を
極減することができるような船舶の摩擦抵抗低減装置を
提供しようとするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a frictional resistance reducing apparatus for a ship which can send more microbubbles into the boundary layer and can minimize wave making resistance. It is.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するために、船首部の船側外板の所要位置に開口部を
設け、該開口部に、小径の空気吹き出し口を所要の配列
ピッチで多数穿設してなる多孔板を取り付け、該多孔板
の内側に空気吹き出し口を取り囲むようにシーチェスト
を一体に取り付けて空気吹き出し器を構成し、且つ上記
空気吹き出し口を、流線に沿う方向へ向けて斜めに穿設
した構成とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an opening at a required position of a hull outer plate of a bow, and a small-diameter air outlet is provided in the opening in a required arrangement. Attach a perforated plate formed by drilling a large number at a pitch, form an air blower by integrally attaching a sea chest to the inside of the perforated plate so as to surround the air blowout port, and connect the air blowout port to a streamline. It is configured to be pierced diagonally toward the direction along.

【0010】空気吹き出し口が流線に沿う方向へ向けて
斜めになっていることから、多くの微小気泡を境界層内
に送り込むことができるようになる。
[0010] Since the air outlet is inclined toward the direction along the streamline, many microbubbles can be sent into the boundary layer.

【0011】又、空気吹き出し口の角度を、船体表面に
形成される境界層の厚さに応じ境界層が薄い位置から厚
い位置へ次第に大きくなるように設定した構成とするこ
とによって、境界層内へより多くの微小気泡を送り込む
ことができる。
The angle of the air outlet is set so that the boundary layer is gradually increased from a thin position to a thick position according to the thickness of the boundary layer formed on the hull surface. More microbubbles can be sent to the

【0012】更に、船側外板に開口部を設け且つ該開口
部に多孔板を取り付けて空気吹き出し器を構成すること
に代えて、上記開口部に相当する位置の船側外板に空気
吹き出し口を直接穿設して空気吹き出し器を構成するよ
うにすると、船体の構造強度的に有利となる。
Further, instead of providing an opening in the ship-side outer plate and attaching a perforated plate to the opening to form an air blower, an air blow-out port is provided in the ship-side outer plate at a position corresponding to the opening. If the air blower is constructed by directly piercing, it is advantageous in terms of the structural strength of the hull.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1(イ)(ロ)(ハ)は本発明の実施の
一形態を示すもので、船体1の船首部2の浸水部で船底
3や船尾の各方向へ流線4が向かうようになっている領
域で且つ静圧の小さい位置(吃水線DLよりもやや下側
位置)の船体外板1aに、船首尾方向に長い開口部5を
設けて、該開口部5に、多数の空気吹き出し口(細孔)
6を所要のピッチで穿設した多孔板7を取り付け、且つ
該多孔板7の内側に、空気吹き出し口6を取り囲むよう
にシーチェスト8を設けて空気吹き出し器9を構成す
る。
FIGS. 1 (a), 1 (b) and 1 (c) show an embodiment of the present invention, in which a streamline 4 flows in each direction of a bottom 3 and a stern at a flooded portion of a bow 2 of a hull 1. FIG. A long opening 5 is provided in the hull skin 1a at a position where the static pressure is small (a position slightly lower than the draft line DL) in a region where the static pressure is low, and a large number of openings 5 are provided in the opening 5. Air outlet (pore)
A perforated plate 7 in which holes 6 are perforated at a required pitch is attached, and a sea chest 8 is provided inside the perforated plate 7 so as to surround the air outlet 6 to constitute an air blowing device 9.

【0015】一方、船体1の船首部2の甲板上に、電動
機10によって駆動されるブロワ11を加圧空気供給装
置として設置して図示しない空気取入口に接続し、該ブ
ロワ11に一端を接続した流量調整弁12付きの空気送
給管13の他端側を、分配ヘッダー14を介し複数に分
岐して、該各分岐空気送給管13aの先端を上記空気吹
き出し器9の長手方向所要間隔位置に接続し、ブロワ1
1を電動機10で駆動することにより、加圧空気15を
空気送給管13、分配ヘッダー14、空気送給管13a
を通し空気吹き出し器9内に導けるようにする。
On the other hand, a blower 11 driven by an electric motor 10 is installed as a pressurized air supply device on the deck of the bow 2 of the hull 1 and connected to an air inlet (not shown), and one end is connected to the blower 11. The other end of the air supply pipe 13 provided with the flow control valve 12 is branched into a plurality of parts via the distribution header 14, and the leading end of each of the branch air supply pipes 13 a is separated by a required longitudinal direction distance of the air blower 9. Connect to position, blower 1
1 is driven by the electric motor 10 so that the pressurized air 15 is supplied to the air supply pipe 13, the distribution header 14, and the air supply pipe 13a.
Through the air blower 9.

【0016】又、上記吹き出し器9の空気吹き出し口6
は、流線4に沿う方向へ向けて多孔板7の表面に対し斜
めに穿設し、且つ該空気吹き出し口6の穿設角度は、船
体表面に形成される境界層16の厚さb(船首から船尾
へ向けて次第に厚くなっている)に応じて境界層16が
薄い位置から厚い位置へ次第に大きくなるように設置し
(α1 <α2 <α3 <…<αn )、空気吹き出し口6を
通して加圧空気15を水中へ吹き出させることにより発
生させた微小気泡15aのほとんどを境界層16内へ送
り込めるようにする。なお、上記空気吹き出し口6の穿
設角度は20°〜90°の範囲としてある。
The air outlet 6 of the blower 9
Is formed obliquely with respect to the surface of the perforated plate 7 in the direction along the streamline 4, and the angle at which the air outlet 6 is formed has a thickness b () of the boundary layer 16 formed on the hull surface. The boundary layer 16 is set so as to gradually increase from a thin position to a thick position (α 123 <... <Α n ) in accordance with the thickness (α 123 <... <Α n ). Most of the microbubbles 15 a generated by blowing the pressurized air 15 into the water through the port 6 can be sent into the boundary layer 16. In addition, the piercing angle of the air outlet 6 is in a range of 20 ° to 90 °.

【0017】巡航速度での航行時に、ブロワ11を電動
機10で駆動して、加圧空気15を空気吹き出し器9内
に導き、空気吹き出し口6を通して水中へ吹き出させる
ようにすると、上記空気吹き出し口6が流線4に沿う方
向へ向けて斜め穿設されていることから、発生した微小
気泡15aは境界層16内に送り込まれて流線4に乗っ
て流れることになり、前端から発生させられた微小気泡
15aは船底3へ入るような流線4に沿って流れ、後端
側に近いほど微小気泡15aは船側に沿って流れるよう
になる。更にこの際、上記空気吹き出し口6の穿設角度
は、船体表面に形成される境界層16の厚さに応じて境
界層16が薄い位置から厚い位置へ次第に大きくなるよ
うに設定してあることから、発生した微小気泡15aは
境界層16外へ飛び出しにくく、ほとんどが効果的に境
界層16内に送り込まれるようになる。したがって、主
流速を乱すことがなく、造波抵抗を増大させることなく
船体表面を微小気泡15aで覆うことができて、船体1
の摩擦抵抗を低減することができる。
At the time of cruising at a cruising speed, the blower 11 is driven by the electric motor 10 to guide the pressurized air 15 into the air blower 9 and blow it out into the water through the air blowout port 6. 6 is obliquely drilled in the direction along the streamline 4, the generated microbubbles 15a are sent into the boundary layer 16 and flow on the streamline 4, and are generated from the front end. The microbubbles 15a flow along a streamline 4 that enters the bottom 3 of the ship, and the microbubbles 15a flow along the side of the ship nearer to the rear end. Further, at this time, the piercing angle of the air outlet 6 is set so that the boundary layer 16 gradually increases from a thin position to a thick position according to the thickness of the boundary layer 16 formed on the hull surface. Therefore, the generated microbubbles 15a are unlikely to fly out of the boundary layer 16, and most of them are effectively sent into the boundary layer 16. Therefore, the hull surface can be covered with the microbubbles 15a without disturbing the main flow velocity and without increasing the wave-making resistance.
Frictional resistance can be reduced.

【0018】上記において、微小気泡15aは、加圧空
気15が空気吹き出し器9の多孔板7に有する空気吹き
出し口6を通過する際のオリフィス作用によって発生す
るもので、空気吹き出し口6と該空気吹き出し口6に接
する水との相対移動により容易且つ確実に気泡化され
る。なお、上記空気吹き出し口6の直径は、船体1の設
計時において、巡航速度での航行時に最適直径の微小気
泡15aが発生させられるように選定するものである
が、船体1の航行速度の変更に伴って微小気泡15aの
直径を変える必要が生じた際には、流量調整弁12の開
度調整により加圧空気の供給流量を調整することによっ
て対応することができる。
In the above description, the microbubbles 15a are generated by an orifice effect when the pressurized air 15 passes through the air outlet 6 of the perforated plate 7 of the air blower 9, and the air outlet 6 and the air Bubbles are easily and reliably bubbled by relative movement with water in contact with the outlet 6. The diameter of the air outlet 6 is selected when designing the hull 1 so that the microbubbles 15a having the optimum diameter can be generated at the time of cruising at a cruising speed. When the diameter of the microbubbles 15a needs to be changed in accordance with the above, it can be dealt with by adjusting the supply flow rate of the pressurized air by adjusting the opening degree of the flow control valve 12.

【0019】次に、図2は本発明の他の実施の形態を示
すもので、船側外板1aに開口部5を設けて該開口部5
に多孔板7を取り付け、且つ該多孔板7にシーチェスト
8を一体化させることにより空気吹き出し器9を構成す
ることに代えて、開口部5を形成する位置の船側外板1
aに、空気吹き出し口6を直接穿設してシーチェスト8
を一体化させることにより空気吹き出し器9を構成する
ようにしたものである。
Next, FIG. 2 shows another embodiment of the present invention, in which an opening 5 is provided in the ship side outer plate 1a.
Instead of forming the air blower 9 by attaching the perforated plate 7 to the perforated plate 7 and integrating the sea chest 8 with the perforated plate 7, the ship-side outer plate 1 at the position where the opening 5 is formed is provided.
a, an air outlet 6 is directly formed in the sea chest 8.
Are integrated to form the air blowing device 9.

【0020】図2に示すように構成すると、船側外板1
aに大きな開口部5を設ける必要がないので、船体1の
構造強度的に有利となる。
When constructed as shown in FIG.
Since there is no need to provide the large opening 5 in the position a, the structure of the hull 1 is advantageous in terms of structural strength.

【0021】なお、図1及び図2の実施の形態におい
て、一連の長い空気吹き出し器9の内部に仕切りを設け
て長手方向に分割構造としてもよいこと、その他本発明
の要旨を逸脱しない範囲内において種々変更を加え得る
ことは勿論である。
In the embodiment shown in FIGS. 1 and 2, a partition may be provided inside the series of long air blowers 9 to form a divided structure in the longitudinal direction. It goes without saying that various changes can be made in.

【0022】[0022]

【発明の効果】以上述べた如く、本発明の船舶の摩擦抵
抗低減装置によれば、次の如き優れた効果を発揮する。 (1) 船首部の船側外板の所要位置に開口部を設け、該開
口部に、小径の空気吹き出し口を所要の配列ピッチで多
数穿設してなる多孔板を取り付け、該多孔板の内側に空
気吹き出し口を取り囲むようにシーチェストを一体に取
り付けて空気吹き出し器を構成し、且つ上記空気吹き出
し口を、流線に沿う方向へ向けて斜めに穿設した構成と
してあるので、多くの微小気泡を境界層内に送り込むこ
とができ、これにより、主流速を乱すことがなく、造波
抵抗を増大させることなく船体表面を微小気泡で覆うこ
とができて、船体の摩擦抵抗を低減することができ、船
舶の推進性能を飛躍的に向上させることができる。 (2) 空気吹き出し口の角度を、船体表面に形成される境
界層の厚さに応じ境界層が薄い位置から厚い位置へ次第
に大きくなるように設定した構成とすることによって、
境界層内へより多くの微小気泡を送り込むことができ、
造波抵抗を極減することが可能となる。 (3) 船側外板に開口部を設け且つ該開口部に多孔板を取
り付けて空気吹き出し器を構成することに代えて、上記
開口部に相当する位置の船側外板に空気吹き出し口を直
接穿設して空気吹き出し器を構成するようにすることに
よって、船体の構造強度的に有利となる。
As described above, the apparatus for reducing frictional resistance of a ship according to the present invention exhibits the following excellent effects. (1) An opening is provided at a required position on the hull outer panel at the bow, and a perforated plate formed by drilling a large number of small-diameter air outlets at a required arrangement pitch is attached to the opening. A sea chest is integrally attached so as to surround the air outlet, thereby forming an air blower, and the air outlet is formed obliquely in a direction along a streamline, so that many minute Bubbles can be sent into the boundary layer, so that the hull surface can be covered with microbubbles without disturbing the main flow velocity and without increasing wave-making resistance, reducing the frictional resistance of the hull And the propulsion performance of the ship can be dramatically improved. (2) By setting the angle of the air outlet so that the boundary layer gradually increases from a thin position to a thick position according to the thickness of the boundary layer formed on the hull surface,
More microbubbles can be sent into the boundary layer,
Wave-making resistance can be minimized. (3) Instead of providing an opening in the ship-side outer plate and attaching a perforated plate to the opening to form an air blower, an air outlet is directly formed in the ship-side outer plate at a position corresponding to the opening. By providing the air blower, it is advantageous in terms of the structural strength of the hull.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の船舶の摩擦抵抗低減装置の実施の一形
態を示すもので、(イ)は船首部の側面図、(ロ)は
(イ)のA−A線拡大矢視図、(ハ)は境界層の厚さ分
布を示す一例図である。
FIG. 1 shows an embodiment of a frictional resistance reducing device for a ship according to the present invention, in which (a) is a side view of a bow portion, (b) is an enlarged view taken along line AA of (a), (C) is an example showing the thickness distribution of the boundary layer.

【図2】本発明の他の実施の形態を示す空気吹き出し器
の拡大切断平面図である。
FIG. 2 is an enlarged cut-away plan view of an air blowing device showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 船体 1a 船側外板 2 船首部 4 流線 5 開口部 6 空気吹き出し口 7 多孔板 8 シーチェスト 16 境界層 DESCRIPTION OF SYMBOLS 1 Hull 1a Ship side skin 2 Bow part 4 Streamline 5 Opening 6 Air outlet 7 Perforated plate 8 Sea chest 16 Boundary layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 船首部の船側外板の所要位置に開口部を
設け、該開口部に、小径の空気吹き出し口を所要の配列
ピッチで多数穿設してなる多孔板を取り付け、該多孔板
の内側に空気吹き出し口を取り囲むようにシーチェスト
を一体に取り付けて空気吹き出し器を構成し、且つ上記
空気吹き出し口を、流線に沿う方向へ向けて斜めに穿設
した構成を有することを特徴とする船舶の摩擦抵抗低減
装置。
An opening is provided at a required position of a side shell of a bow, and a perforated plate having a large number of small-diameter air outlets perforated at a required arrangement pitch is attached to the opening. A sea chest is integrally attached so as to surround the air outlet inside the air blower to form an air blower, and the air outlet is obliquely formed in a direction along a streamline. Device for reducing frictional resistance of ships.
【請求項2】 空気吹き出し口の角度を、船体表面に形
成される境界層の厚さに応じ境界層が薄い位置から厚い
位置へ次第に大きくなるように設定した請求項1記載の
船舶の摩擦抵抗低減装置。
2. The frictional resistance of a ship according to claim 1, wherein the angle of the air outlet is set so that the boundary layer gradually increases from a thin position to a thick position according to the thickness of the boundary layer formed on the hull surface. Reduction device.
【請求項3】 船側外板に開口部を設け且つ該開口部に
多孔板を取り付けて空気吹き出し器を構成することに代
えて、上記開口部に相当する位置の船側外板に空気吹き
出し口を直接穿設して空気吹き出し器を構成するように
した請求項1又は2記載の船舶の摩擦抵抗低減装置。
3. An air blower is provided on the ship-side outer plate at a position corresponding to the opening, instead of providing an air blower by providing an opening in the ship-side outer plate and attaching a perforated plate to the opening. 3. The apparatus for reducing frictional resistance of a ship according to claim 1, wherein the air blowing device is formed by directly drilling.
JP8353926A 1996-12-19 1996-12-19 Frictional resistance reducing device for ship Pending JPH10175587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8353926A JPH10175587A (en) 1996-12-19 1996-12-19 Frictional resistance reducing device for ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8353926A JPH10175587A (en) 1996-12-19 1996-12-19 Frictional resistance reducing device for ship

Publications (1)

Publication Number Publication Date
JPH10175587A true JPH10175587A (en) 1998-06-30

Family

ID=18434159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8353926A Pending JPH10175587A (en) 1996-12-19 1996-12-19 Frictional resistance reducing device for ship

Country Status (1)

Country Link
JP (1) JPH10175587A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224823A (en) * 2005-02-17 2006-08-31 Mitsubishi Heavy Ind Ltd Underwater traveling vessel and its control method
EP2272748A1 (en) * 2008-04-17 2011-01-12 K&I Inc. Frictional-resistance reduced ship, and method for steering the same
WO2011161187A1 (en) 2010-06-22 2011-12-29 Mærsk Olie Og Gas A/S Reducing drag of a hull of a ship
JP2012214061A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Method for manufacturing ship with reduced frictional resistance
WO2015189660A1 (en) 2014-06-11 2015-12-17 Monotricat Srl C.R. Hull for low drag boats
JP2017096402A (en) * 2015-11-24 2017-06-01 国立研究開発法人 海上・港湾・航空技術研究所 Frictional resistance reducing method, structure with reduced frictional resistance and method for forming electrodes for reducing frictional resistance
CN112109859A (en) * 2020-09-25 2020-12-22 哈尔滨工程大学 Experimental system for simulating ship bottom bubble transportation environment through artificial ventilation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616662B2 (en) * 2005-02-17 2011-01-19 三菱重工業株式会社 Underwater vehicle and its control method
JP2006224823A (en) * 2005-02-17 2006-08-31 Mitsubishi Heavy Ind Ltd Underwater traveling vessel and its control method
EP2272748A1 (en) * 2008-04-17 2011-01-12 K&I Inc. Frictional-resistance reduced ship, and method for steering the same
EP2277770A1 (en) * 2008-04-17 2011-01-26 K&I Inc. Frictional resistance reduced ship and method of operating thereof
EP2277770A4 (en) * 2008-04-17 2013-06-26 Yoshiaki Takahashi Frictional resistance reduced ship and method of operating thereof
EP2272748A4 (en) * 2008-04-17 2013-06-26 Yoshiaki Takahashi Frictional-resistance reduced ship, and method for steering the same
US9611010B2 (en) 2010-06-22 2017-04-04 Pieter Karel Anton Kapteijn Reducing drag of a hull of a ship
WO2011161187A1 (en) 2010-06-22 2011-12-29 Mærsk Olie Og Gas A/S Reducing drag of a hull of a ship
DK201070283A (en) * 2010-06-22 2012-02-02 Maersk Olie & Gas Reducing drag of a hull of a ship
JP2012214061A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Method for manufacturing ship with reduced frictional resistance
WO2015189660A1 (en) 2014-06-11 2015-12-17 Monotricat Srl C.R. Hull for low drag boats
JP2017096402A (en) * 2015-11-24 2017-06-01 国立研究開発法人 海上・港湾・航空技術研究所 Frictional resistance reducing method, structure with reduced frictional resistance and method for forming electrodes for reducing frictional resistance
CN112109859A (en) * 2020-09-25 2020-12-22 哈尔滨工程大学 Experimental system for simulating ship bottom bubble transportation environment through artificial ventilation method

Similar Documents

Publication Publication Date Title
EP3042842B1 (en) Resistance reduction apparatus for ship and ship provided therewith
JPH07156859A (en) Method to reduce friction of sailing body and friction reducing sailing body and generating method of microbubble used to reduce friction and device thereof
JPH10175587A (en) Frictional resistance reducing device for ship
JP3185047B2 (en) Hull friction resistance reduction method
JPH1024891A (en) Friction resistance reducing device for ship
JPH10175588A (en) Frictional resistance reducing device for ship
JPH10100989A (en) Frictional resistance reducing device for submarine ship
JPH09240571A (en) Frictional resistance reducing device of ship
US20020029731A1 (en) Method of reducing frictional resistance of a hull, and frictional resistance reducing vessel
RU2299152C1 (en) Two-mode water scoop of hovercraft water-jet propeller
JP2001278178A (en) Method of reducing frictional resistance of hull, and frictional resistance reduced ship
JP2001106171A (en) Frictional resistance reduced-ship and method of reducing frictional resistance of hull
JP2000128062A (en) Device to reduce friction resistance of ship
JP2000142555A (en) Device for reducing friction resistance of ship
JPH09267793A (en) Friction resistance reducing device for ship
JPH1035578A (en) Friction resistance reduction device for ship
JP2001106173A (en) Frictional resistance reduced-ship
JPH1029587A (en) Frictional-resistance reduction device for vessel
JPH11180381A (en) Frictional resistance reduced ship
JP2000128064A (en) Frictional resistance reduction ship and friction reduction method for hull
JPH1016876A (en) Frictional resistance reducing device for ship
JPH09267794A (en) Friction resistance reducing device for ship
JPH09328095A (en) Cleaning device for air blow port on ship for generating fine bubble
JPH11227674A (en) Method for reduction of hull frictional resistance
JPH10226388A (en) Friction resistance reducing ship