JPH09240571A - Frictional resistance reducing device of ship - Google Patents

Frictional resistance reducing device of ship

Info

Publication number
JPH09240571A
JPH09240571A JP8081958A JP8195896A JPH09240571A JP H09240571 A JPH09240571 A JP H09240571A JP 8081958 A JP8081958 A JP 8081958A JP 8195896 A JP8195896 A JP 8195896A JP H09240571 A JPH09240571 A JP H09240571A
Authority
JP
Japan
Prior art keywords
air
hull
ship
frictional resistance
air blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8081958A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takahashi
義明 高橋
Yuki Yoshida
有希 吉田
Tadashi Oi
忠司 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP8081958A priority Critical patent/JPH09240571A/en
Publication of JPH09240571A publication Critical patent/JPH09240571A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Abstract

PROBLEM TO BE SOLVED: To cope with a change of draft, and to cover the submerged front surface of a hull with micro-bubbles by generating the micro-bubbles by small blowoff power. SOLUTION: Thin, long and cylindrical air blowoff units 7 in which many air blowoff ports 5 are provided in the region in which stream lines are directed to a bottom 3 or a stern in a submerged part of a bow part 2 of a hull 1 and in the position in which static pressure is low, and both ends are blocked are vertically attached into plural stages. The air blowoff units 7 are connected to a blower 9 through air supplying pipes 11. The air blowoff unit 7 to be used according to a change of draft is selected, pressurized air 13 is blown off from the air blowoff ports 5, and generated micro-bubbles 14 are fed on the stream lines 14 in respective positions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は航行時に船体表面に
作用する摩擦抵抗を低減できるようにした船舶の摩擦抵
抗低減装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frictional resistance reducing device for a ship which can reduce the frictional resistance acting on the surface of a hull during navigation.

【0002】[0002]

【従来の技術】船舶の航行時には、流体としての海水の
粘性のために船体の周りに海水による境界層が形成され
るが、この境界層の中では、海水の流速は船体表面が零
で船体表面から離れるに従い急激に大きく変化する傾向
にあり、船体の表面に海水の摩擦抵抗が作用し船体抵抗
の大きな要素の一つとなっている。
2. Description of the Related Art During the navigation of a ship, a boundary layer of seawater is formed around the hull due to the viscosity of seawater as a fluid. In this boundary layer, the flow velocity of the seawater is zero and the hull surface is zero. It tends to change drastically as the distance from the surface increases, and seawater frictional resistance acts on the surface of the hull, which is one of the major factors of hull resistance.

【0003】そのため、近年、上記船体の表面に作用す
る摩擦抵抗を減少させて推進性能を向上させるための研
究が進められており、その対策の一つとして、船体表面
から微小気泡(マイクロバブル)を噴出させ、船体の浸
水部(没水部)表面の境界層内に微小気泡を吹き込んで
船体の浸水部表面を微小気泡で覆うことにより船体表面
に作用する摩擦抵抗を低減することを狙ったマイクロバ
ブル推進法の研究が進められている。
[0003] Therefore, in recent years, studies have been made to improve the propulsion performance by reducing the frictional resistance acting on the surface of the hull, and as one of the measures, micro-bubbles (micro-bubbles) are generated from the hull surface. And injects microbubbles into the boundary layer on the surface of the hull's submerged part (submerged part) to cover the surface of the hull's submerged part with microbubbles, thereby reducing frictional resistance acting on the hull surface. Research on the microbubble propulsion method is ongoing.

【0004】マイクロバブル推進法を具現化するための
一つの方法として、空気ポンプ等の空気供給装置で発生
させた加圧空気を船底から水中へ吹き出させて、船底に
微小気泡による所要のボイドを形成させるようにするこ
とが考えられる。
[0004] As one method for realizing the microbubble propulsion method, pressurized air generated by an air supply device such as an air pump is blown out into the water from the bottom of a ship, and a required void due to microbubbles is formed on the bottom of the ship. It is conceivable to make it form.

【0005】[0005]

【発明が解決しようとする課題】ところが、加圧空気を
船底から水中に吹き出させて微小気泡を発生させる技術
では、吃水が深くなるほど船底部の静圧が大きくなるこ
とから、加圧空気吹き出し時のエネルギー消費が大き
く、摩擦抵抗低減によるエネルギー節約よりも、微小気
泡発生のためのエネルギー消費の方が大きくなってしま
うので、実用化を図る上で難点がある。
However, in the technique of generating fine air bubbles by blowing pressurized air into the water from the bottom of the ship, the static pressure at the bottom of the ship increases with the depth of water that is blown. Since the energy consumption for generating micro bubbles is larger than the energy consumption for reducing frictional resistance, there is a problem in practical application.

【0006】そこで、本発明は、小さな吹き出し圧力で
微小気泡を発生させて浸水部表面に所要のボイド率を生
じさせるようにすることにより船体摩擦抵抗を低減させ
ることができるような船舶の摩擦抵抗低減装置を提供し
ようとするものである。
In view of the above, according to the present invention, by generating minute bubbles with a small blowing pressure so as to generate a required void ratio on the surface of the flooded portion, the frictional resistance of the ship can be reduced. It is intended to provide a reduction device.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、船首部の船体表面の浸水部で船底や船尾
の方向へ流線が向かう領域で且つ静圧の小さい位置の船
側外板に、表面に多数の空気吹き出し口を穿設して両端
を閉塞した細長い筒型の空気吹き出し器を、船首尾方向
に向く配置として上下方向に複数段取り付け、且つ該各
空気吹き出し器を、空気送給管を介して加圧空気供給装
置に連通接続した構成とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention is directed to a side of a ship where a streamline is directed toward the bottom or stern of a ship in a flooded portion on the surface of the hull and where static pressure is small. On the outer plate, a long and thin cylindrical air blower having a large number of air blowout openings on its surface and closed at both ends is attached in a plurality of stages in the vertical direction so as to be oriented in the bow-stern direction. , And is connected to the pressurized air supply device through an air supply pipe.

【0008】吃水位置に合わせて最適高さ位置の空気吹
き出し器を選定し、該空気吹き出し器の空気吹き出し口
を通して水中へ加圧空気を吹き出させると、小さな吹き
出し圧力で微小気泡を発生させることができ、発生した
微小気泡が流線に乗って船底から船尾に至る各方向へ送
られることから、船体の浸水部表面を微小気泡で覆うこ
とができて浸水部のボイド率を向上させることができ、
船体に作用する摩擦抵抗を低減できるようになる。
When an air blower at the optimum height position is selected according to the position of the water drainage and pressurized air is blown into the water through the air blowout port of the air blower, minute bubbles can be generated with a small blowout pressure. Since the generated microbubbles are sent along the streamline in each direction from the bottom to the stern, the surface of the flooded part of the hull can be covered with the microbubbles and the void ratio of the flooded part can be improved. ,
The frictional resistance acting on the hull can be reduced.

【0009】又、各空気吹き出し器を船首尾方向で複数
分割し、且つ該各分割空気吹き出し器に、それぞれ空気
送給管を接続するようにした構成とすると、船速の変化
に応じて最適位置の分割空気吹き出し器から加圧空気を
吹き出させて微小気泡を発生させることができる。
Further, if each air blower is divided into a plurality of parts in the bow-stern direction, and an air supply pipe is connected to each of the divided air blowers, it is optimal according to changes in ship speed. The compressed air can be blown out from the divided air blower at the position to generate the micro bubbles.

【0010】更に、空気吹き出し器を、筒型構造に代え
て溝型構造とした空気吹き出し部材を船体表面に固定し
て構成するようにした場合は、空気吹き出し器を構成す
る部材重量が軽減されることから更に有利となる。
Further, when the air blower is constructed by fixing an air blower member having a groove structure instead of the tubular structure to the surface of the hull, the weight of the members constituting the air blower is reduced. Therefore, it is more advantageous.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1(イ)(ロ)(ハ)は本発明の実施の
一形態を示すもので、船体1の船首部2の浸水部で船底
3や船尾の方向へ流線4が向かうようになっている領域
で且つ静圧の小さい位置(吃水線D.Lよりもやや下側
位置)の船側外板15に、表面の壁部に多数の空気吹き
出し口(細孔)5を所要の配列ピッチで穿設して両端を
閉塞した細長い筒型構造として内部に空気室6を形成し
てなる空気吹き出し器7を、船首尾方向へ長くなる水平
方向の配置として上下方向に所要間隔で複数段(図では
2段)取り付ける。一方、船体1の船首部2上に、電動
機8によって駆動されるブロワ9を加圧空気供給装置と
して設置し、上記各空気吹き出し器7に一端を接続した
流量調整弁10付きの空気送給管11の他端を、分配へ
ッダー12を介して上記ブロワ9に接続し、ブロワ9に
て発生させた加圧空気13を空気送給管11を通し空気
吹き出し器7内に導入して空気吹き出し口5より吹き出
させることにより所要径の微小気泡14を発生させるよ
うにし、発生した微小気泡14を上記各方向へ向かう流
線4に乗せて流せるようにする。
1 (a), (b), and (c) show an embodiment of the present invention, in which a streamline 4 is directed toward the bottom 3 or the stern of a ship at the flooded part of the bow 2 of the hull 1. A large number of air outlets (pores) 5 are required in the wall of the surface of the ship-side outer plate 15 in the region where the static pressure is low and the position where static pressure is small (position slightly lower than the water line DL). A plurality of air blowers 7 each having a slender tubular structure in which both ends are closed at an arrangement pitch and each having an air chamber 6 formed therein are arranged in a horizontal direction extending in the bow-stern direction at predetermined intervals in a vertical direction. Attach the steps (two steps in the figure). On the other hand, a blower 9 driven by an electric motor 8 is installed as a pressurized air supply device on the bow 2 of the hull 1, and one end of each air blower 7 is connected to an air supply pipe with a flow rate adjusting valve 10. The other end of 11 is connected to the blower 9 through a distribution header 12, and the pressurized air 13 generated by the blower 9 is introduced into the air blower 7 through the air feed pipe 11 to blow out air. The minute bubbles 14 having a required diameter are generated by being blown out from the mouth 5, and the generated minute bubbles 14 are allowed to flow along the streamlines 4 extending in the respective directions.

【0013】上記空気吹き出し器7は、図1(ロ)に拡
大して示す如く、円形を押し潰した長円形の如き扁平断
面形状とし、且つ船体1の航行方向の前後端部を、船体
1の表面に対し滑かに連続するよう加工して閉塞するよ
うにしてあり、又、空気送給管11も、図1(ハ)に拡
大して示す如く、空気吹き出し器7と同様な扁平断面形
状としてある。
As shown in the enlarged view of FIG. 1 (b), the air blower 7 has a flat cross-sectional shape such as an oblong shape obtained by crushing a circle, and the front and rear ends of the hull 1 in the navigation direction have the hull 1 The surface of the air supply pipe 11 is closed so that it smoothly continues, and the air supply pipe 11 has a flat cross section similar to that of the air blower 7 as shown in an enlarged view in FIG. It is as a shape.

【0014】本発明者等は、船体形状が与えられると、
船体周りにおいて流線に沿って流れる微小気泡の乱流拡
散を考慮した運動と任意位置でのボイド率分布を求める
計算式を確立した。乱流拡散の影響は、等方性乱流の仮
定の基で乱数を用いて、X軸、Y軸、Z軸(上向き)方
向の流速を変動させ、微小気泡の軌跡に乱れを与えるこ
とにより考慮した。すなわち、微小気泡のランダムな運
動をモンテカルロ法により直接的にシミュレートした。
微小気泡の運動が計算されると、ボイド率は、ある時刻
における検査領域内(セル内)に存在する微小気泡の体
積で除することにより求めることができる。
[0014] The present inventors, given the hull shape,
A calculation formula for the motion considering the turbulent diffusion of microbubbles flowing along the streamline around the hull and the void fraction distribution at an arbitrary position was established. The influence of turbulent diffusion is obtained by changing the flow velocity in the X-axis, Y-axis, and Z-axis (upward) directions using random numbers based on the assumption of isotropic turbulence, and disturbing the trajectory of microbubbles. Considering. That is, the random motion of the microbubbles was directly simulated by the Monte Carlo method.
When the movement of the microbubbles is calculated, the void fraction can be obtained by dividing the void rate by the volume of the microbubbles existing in the inspection area (cell) at a certain time.

【0015】したがって、このようにして求めたボイド
率の分布を基に、摩擦抵抗低減に効果のある高いボイド
率が生じるような船首部2での流線4の軌跡を求めて、
上記の空気吹き出し器7の取り付け位置を決定した。
Therefore, on the basis of the void fraction distribution thus obtained, the locus of the streamline 4 at the bow 2 is obtained so that a high void fraction effective in reducing frictional resistance is obtained,
The attachment position of the air blower 7 was determined.

【0016】巡航速度での航行時に、そのときの吃水線
D.Lのレベルに応じて、流量調整弁10の開閉操作に
より使用する高さ位置の空気吹き出し器7を選定した
後、ブロワ9を電動機8で駆動して、加圧空気13を分
配ヘッダー12、空気送給管11を通し空気吹き出し器
7内に導き、空気吹き出し口5を通して水中へ吹き出さ
せるようにすると、発生した微小気泡14が流線4に乗
って流れることになるため、船底及び船側を微小気泡1
4で覆うことができて船体1の浸水部表面に微小気泡1
4によるボイドが形成されることになり、このボイドの
存在により船体1の摩擦抵抗を低減することができる。
When navigating at a cruising speed, the water line D. After selecting the air blower 7 at the height position to be used by opening / closing the flow rate adjusting valve 10 in accordance with the level of L, the blower 9 is driven by the electric motor 8 and the pressurized air 13 is supplied to the distribution header 12 and the air. When the air is blown into the air blower 7 through the feed pipe 11 and blown out into the water through the air blowout port 5, the generated fine bubbles 14 flow along the streamline 4, so that the bottom and the side of the boat are slightly moved. Bubbles 1
4, which can be covered with 4
4, a void is formed, and the presence of this void can reduce the frictional resistance of the hull 1.

【0017】上記において、微小気泡14は、加圧空気
13が空気吹き出し器7に穿設された空気吹き出し口5
を通過する際のオリフィス作用によって発生するもの
で、空気吹き出し口5と該空気吹き出し口5に接する水
との相対移動により容易且つ確実に気泡化される。しか
も、上記空気吹き出し器7は上下方向に複数段取り付け
てあって、吃水線D.Lの変化に応じて使用する空気吹
き出し器を選択できるため、静圧の最も小さい位置の空
気吹き出し口5から加圧空気13を吹き出させることが
できることにより、微小気泡14を発生させる際の空気
吹き出し動力は小さくて済む利点がある。又、上記空気
吹き出し器7及び該空気吹き出し器7と連通する空気送
給管11はいずれも船体1の表面から大きく出っ張らな
いように扁平形状としてあるため、航行時に大きな船体
抵抗が作用するようなことはない。更に、上記空気吹き
出し器7は、船体1の強度部材でないことから腐食の生
じにくい材質を任意に選定することができ、且つ船体1
に孔をあける必要がないことから船体1の構造強度に影
響を与えない点でも有利である。なお、上記空気吹き出
し口5の直径は、船体1の設計時において、巡航速度で
の航行時に最適直径の微小気泡14が発生させられるよ
うに選定するものであるが、船体1の航行速度の変更に
伴って微小気泡14の直径を変える必要が生じた際に
は、流量調整弁10の開度調整により加圧空気の供給流
量を調整することによって対応することができる。
In the above description, the minute air bubbles 14 are the air blowing ports 5 in which the pressurized air 13 is formed in the air blowing device 7.
It is generated by the action of an orifice when passing through, and is easily and reliably bubbled by the relative movement of the air outlet 5 and the water in contact with the air outlet 5. Moreover, the air blower 7 is attached in a plurality of stages in the vertical direction, so that the water line D. Since the air blower to be used can be selected according to the change in L, the pressurized air 13 can be blown out from the air blowout port 5 at the position where the static pressure is the smallest, so that the air blowout at the time of generating the minute bubbles 14 is performed. It has the advantage of requiring less power. Further, since the air blower 7 and the air supply pipe 11 communicating with the air blower 7 are both flat so as not to significantly protrude from the surface of the hull 1, a large hull resistance may occur during navigation. There is no such thing. Furthermore, since the air blower 7 is not a strength member of the hull 1, it is possible to arbitrarily select a material that is unlikely to cause corrosion, and the hull 1
It is also advantageous in that the structural strength of the hull 1 is not affected because it is not necessary to make a hole in the hole. The diameter of the air outlet 5 is selected when the hull 1 is designed so that the micro bubbles 14 having the optimum diameter are generated when the hull 1 travels at the cruise speed. However, the navigation speed of the hull 1 is changed. When it becomes necessary to change the diameter of the micro-bubbles 14 due to the above, it can be dealt with by adjusting the opening of the flow rate adjusting valve 10 to adjust the supply flow rate of the pressurized air.

【0018】次に、図2(イ)(ロ)は本発明の他の実
施の形態を示すもので、図1に示したと同様な構成にお
いて、各空気吹き出し器7を仕切り部6aによって内部
を長手方向に複数分割(図では2分割)してそれぞれ分
割空気吹き出し器7aを形成し、且つ該各分割空気吹き
出し器7a毎に、それぞれ分配ヘッダー12から導いた
空気送給管11を接続したものである。
Next, FIGS. 2 (a) and 2 (b) show another embodiment of the present invention. In the same structure as shown in FIG. 1, each air blower 7 is internally divided by a partition 6a. A plurality of split air blowers 7a are formed in the longitudinal direction (two splits in the figure), and each of the split air blowers 7a is connected to an air supply pipe 11 led from a distribution header 12. Is.

【0019】図2に示すように構成すると、吃水線D.
Lの変化のみならず、船速の変化に対し極め細かに対応
することができる。すなわち、船速が変化した場合、船
底3に向かう流線4の位置が微妙に変化するので、上述
した如く、流量調整弁10の開度調整により加圧空気1
3の供給流量を調整して微小気泡14の直径を変えるこ
とで、ある程度対応できるが、この際、流線4の位置の
変化に対応して、加圧空気13を吹き出させる分割空気
吹き出し器7aを使い分けるようにすることによって、
最適位置の分割空気吹き出し器7aから微小気泡14を
発生させることができる。この場合、各分割空気吹き出
し器7a用の流量調整弁10を開閉操作するが、船速に
応じて自動的に開閉制御できるようにしておくと更に便
利である。
When constructed as shown in FIG.
Not only the change in L but also the change in ship speed can be handled extremely finely. That is, when the ship speed changes, the position of the streamline 4 toward the ship bottom 3 changes subtly, so as described above, by adjusting the opening of the flow rate adjusting valve 10, the pressurized air 1
It can be dealt with to some extent by adjusting the supply flow rate of No. 3 and changing the diameter of the microbubbles 14. At this time, the divided air blower 7a for blowing the pressurized air 13 according to the change of the position of the streamline 4 is used. By properly using
The micro bubbles 14 can be generated from the split air blowing device 7a at the optimum position. In this case, the flow rate adjusting valve 10 for each of the split air blowers 7a is opened and closed, but it is more convenient if the opening and closing control can be automatically controlled according to the ship speed.

【0020】次に、図3(イ)(ロ)は空気吹き出し器
7や7aの他の形状例を示すもので、(イ)は矩形断面
形状とした場合を、又、(ロ)はD型断面形状とした場
合を示し、いずれも船体1の表面に向けて扁平させた形
状としたものである。
Next, FIGS. 3A and 3B show other examples of the shapes of the air blowers 7 and 7a. FIG. 3A shows the case of a rectangular cross section, and FIG. A case of a mold cross-section is shown, and each has a flattened shape toward the surface of the hull 1.

【0021】図3(イ)(ロ)に示す如き形状の筒型構
造とした空気吹き出し器7又は7aを採用しても上記実
施の形態の場合と同様な作用効果が奏し得られる。
Even if the air blower 7 or 7a having a tubular structure having a shape as shown in FIGS. 3A and 3B is adopted, the same operational effect as in the case of the above-described embodiment can be obtained.

【0022】又、図4(イ)(ロ)(ハ)は空気吹き出
し器7又は7aを筒型構造としたことに代えて、多数の
空気吹き出し口5を設けた各種形状の浅い溝型構造の空
気吹き出し部材7′を船体1の表面に溶接にて取り付け
ることにより、船側外板15とで空気吹き出し器7又は
7aを構成するようにしたものである。
4 (a), (b) and (c), instead of the air blower 7 or 7a having a cylindrical structure, a shallow groove type structure of various shapes provided with a large number of air blow ports 5 is provided. The air blowing member 7 ′ is attached to the surface of the hull 1 by welding to form the air blowing device 7 or 7 a with the ship side outer plate 15.

【0023】図4(イ)(ロ)(ハ)に示す如き空気吹
き出し部材7′を用いた場合には、筒型構造のものを用
いる場合に比して部材重量を軽減できる利点がある。
When the air blowing member 7'as shown in FIGS. 4A, 4B and 4C is used, there is an advantage that the member weight can be reduced as compared with the case of using the cylindrical structure.

【0024】なお、上記実施の形態では空気吹き出し器
7aは、長手方向で内部分割構造とした場合を示した
が、短尺に予め分割する構造としてもよいこと、すなわ
ち、長手方向で別体構造としてもよいこと、その他本発
明の要旨を逸脱しない範囲内において種々変更を加え得
ることは勿論である。
In the above embodiment, the air blower 7a is shown as having an internal division structure in the longitudinal direction. However, it may be divided in a short length in advance, that is, as a separate structure in the longitudinal direction. It goes without saying that various changes can be made without departing from the scope of the present invention.

【0025】[0025]

【発明の効果】以上述べた如く、本発明の船舶の摩擦抵
抗低減装置によれば、次の如き種々の優れた効果を発揮
する。 (1) 船首部における船体表面の浸水部にて船底や船尾の
方向へ流線が向かう領域で且つ静圧の小さい位置に、壁
部に多数の空気吹き出し口を穿設して両端を閉塞した細
長い筒型の空気吹き出し器を、船首尾方向に向く配置と
して上下方向に複数段取り付け、且つ該各空気吹き出し
器を、空気送給管を介して加圧空気供給装置に連通接続
した構成としてあるので、高さ位置の異なる空気吹き出
し器を選択して使用できることにより、吃水が変化して
も静圧の小さい位置から加圧空気を吹き出させることが
でき、加圧空気の吹き出し口を船底に設ける場合に比し
て小さな動力で微小気泡を発生させることができると共
に、発生させた微小気泡を流線に乗せて船底方向や船尾
方向へ向かうようにさせることができ、これにより、船
体の浸水部表面を微小気泡で覆って良好なボイドを形成
することができて、船体に作用する摩擦抵抗を低減する
ことができ、船舶の推進性能を飛躍的に向上させること
ができる。 (2) 各空気吹き出し器を船首尾方向で複数分割構造と
し、且つ該各分割空気吹き出し器に、それぞれ空気送給
管を接続するようにした構成とすることにより、任意の
位置の分割空気吹き出し器を使用できることから、吃水
の変化のみならず、船速の変化に対しても対処すること
ができ、最適位置から加圧空気を吹き出させて微小気泡
を発生させることができる。 (3) 空気吹き出し器を筒型構造に代えて溝型構造の空気
吹き出し部材を用い、該溝型の空気吹き出し部材と船体
表面とで空気吹き出し器を構成させるようにすると筒型
構造のものを用いる場合よりも重量を軽減することがで
きる。
As described above, the marine frictional resistance reduction device of the present invention exhibits various excellent effects as follows. (1) A large number of air outlets were bored in the wall at the position where the static pressure was small in the area where the streamline was directed toward the ship's bottom or stern at the waterlogged portion of the hull surface at the bow, and both ends were closed. A plurality of slender tubular air blowers are arranged in a vertical direction so as to be oriented in the bow-stern direction, and each of the air blowers is connected to a pressurized air supply device via an air feed pipe. Since it is possible to select and use air blowers with different height positions, pressurized air can be blown out from a position with a small static pressure even if the water level changes, and a blowout port for pressurized air is provided on the bottom of the ship. Micro bubbles can be generated with smaller power than in the case, and the generated micro bubbles can be placed on the streamline and directed toward the ship's bottom or stern. Fine surface It is possible to form a good void by covering it with small bubbles, reduce the frictional resistance acting on the hull, and dramatically improve the propulsion performance of the ship. (2) By dividing each air blower into a plurality of divided structures in the fore-and-aft direction and connecting the air supply pipes to each divided air blower, the divided air blowers at arbitrary positions Since it is possible to use a vessel, it is possible to cope not only with changes in drinking water but also with changes in ship speed, and it is possible to blow out pressurized air from the optimum position to generate minute bubbles. (3) Instead of the tubular structure of the air blower, an air blower having a groove type structure is used, and when the air blower is constituted by the groove type air blower member and the surface of the hull, a tubular structure is obtained. The weight can be reduced more than when it is used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の船舶の摩擦抵抗低減装置の実施の一形
態を示すもので、(イ)は船体船首部の概略側面図、
(ロ)は(イ)のA−A方向拡大矢視図、(ハ)は
(イ)のB−B方向拡大矢視図である。
FIG. 1 shows an embodiment of a frictional resistance reducing device for a ship according to the present invention, in which (a) is a schematic side view of a hull bow,
(B) is an enlarged arrow view of the (A) direction A-A, and (C) is an enlarged view of the BB direction arrow of (A).

【図2】本発明の他の実施の形態を示すもので、(イ)
は船体船首部の概略側面図、(ロ)は(イ)のC部を一
部切断して示す拡大図である。
FIG. 2 shows another embodiment of the present invention.
[Fig. 4] is a schematic side view of the bow of the hull, and (B) is an enlarged view showing a part C of (A).

【図3】空気吹き出し器の他の例を示すもので、(イ)
(ロ)はいずれも異なる形状を示す断面図である。
FIG. 3 shows another example of the air blower, in which (a)
(B) is a sectional view showing a different shape.

【図4】空気吹き出し器を溝型構造の空気吹き出し部材
を用いて構成する場合の例を示すもので、(イ)(ロ)
(ハ)はいずれも異なる形状を示す断面図である。
FIG. 4 shows an example in which an air blower is constructed by using an air blower having a groove type structure.
(C) is a sectional view showing a different shape.

【符号の説明】[Explanation of symbols]

1 船体 2 船首部 3 船底 4 流線 5 空気吹き出し口 6 空気室 7 空気吹き出し器 7a 空気吹き出し器 9 ブロワ(加圧空気供給装置) 11 空気送給管 15 船側外板 1 Hull 2 Bow Part 3 Ship Bottom 4 Streamline 5 Air Outlet 6 Air Chamber 7 Air Blower 7a Air Blower 9 Blower (Pressurized Air Supply Device) 11 Air Supply Pipe 15 Ship Side Plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 船首部の船体表面の浸水部で船底や船尾
の方向へ流線が向かう領域で且つ静圧の小さい位置の船
側外板に、表面に多数の空気吹き出し口を穿設して両端
を閉塞した細長い筒型の空気吹き出し器を、船首尾方向
に向く配置として上下方向に複数段取り付け、且つ該各
空気吹き出し器を、空気送給管を介して加圧空気供給装
置に連通接続した構成を有することを特徴とする船舶の
摩擦抵抗低減装置。
1. A large number of air outlets are formed on a surface of a ship-side outer plate at a position where a static pressure is small in a region where a streamline is directed toward a ship bottom or a stern in a flooded part of a hull surface of a bow. A plurality of slender cylindrical air blowers with both ends closed are attached in a plurality of stages in the vertical direction so as to face the bow-stern direction, and the air blowers are connected to a pressurized air supply device through an air feed pipe. A frictional resistance reduction device for a ship having the above-mentioned configuration.
【請求項2】 各空気吹き出し器を長手方向に複数分割
し、且つ該各分割空気吹き出し器に、それぞれ空気送給
管を接続するようにした請求項1記載の船舶の摩擦抵抗
低減装置。
2. The frictional resistance reduction device for a ship according to claim 1, wherein each air blower is divided into a plurality of pieces in the longitudinal direction, and an air supply pipe is connected to each of the divided air blowers.
【請求項3】 空気吹き出し器を、筒型構造に代えて溝
型構造とした空気吹き出し部材を船体表面に固定して構
成するようにした請求項1又は2記載の船舶の摩擦抵抗
低減装置。
3. The frictional resistance reduction device for a ship according to claim 1, wherein the air blower is constituted by fixing an air blower member having a groove structure instead of the cylindrical structure on the surface of the hull.
JP8081958A 1996-03-12 1996-03-12 Frictional resistance reducing device of ship Pending JPH09240571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8081958A JPH09240571A (en) 1996-03-12 1996-03-12 Frictional resistance reducing device of ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8081958A JPH09240571A (en) 1996-03-12 1996-03-12 Frictional resistance reducing device of ship

Publications (1)

Publication Number Publication Date
JPH09240571A true JPH09240571A (en) 1997-09-16

Family

ID=13761017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8081958A Pending JPH09240571A (en) 1996-03-12 1996-03-12 Frictional resistance reducing device of ship

Country Status (1)

Country Link
JP (1) JPH09240571A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100476542B1 (en) * 2001-03-29 2005-03-18 삼성중공업 주식회사 Method and device for diminish in drag by turbulent flow control of hull surface of ship
JP2008013128A (en) * 2006-07-07 2008-01-24 National Maritime Research Institute Hull friction resistance reduction device
JP2012066742A (en) * 2010-09-24 2012-04-05 Mitsubishi Heavy Ind Ltd Frictional resistance alleviating apparatus for ship
JP2013529570A (en) * 2010-06-22 2013-07-22 マースク・オリー・オ・ゲ・ガス・アクティーゼルスカブ Reduced resistance to ship hulls

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100476542B1 (en) * 2001-03-29 2005-03-18 삼성중공업 주식회사 Method and device for diminish in drag by turbulent flow control of hull surface of ship
JP2008013128A (en) * 2006-07-07 2008-01-24 National Maritime Research Institute Hull friction resistance reduction device
JP2013529570A (en) * 2010-06-22 2013-07-22 マースク・オリー・オ・ゲ・ガス・アクティーゼルスカブ Reduced resistance to ship hulls
US9611010B2 (en) 2010-06-22 2017-04-04 Pieter Karel Anton Kapteijn Reducing drag of a hull of a ship
JP2012066742A (en) * 2010-09-24 2012-04-05 Mitsubishi Heavy Ind Ltd Frictional resistance alleviating apparatus for ship

Similar Documents

Publication Publication Date Title
US6145459A (en) Friction-reducing ship and method for reducing skin friction
KR100188464B1 (en) Method and device of reducing friction on a navigating vehicle
US8011310B2 (en) Ship with reduced frictional resistance and its operation method
KR101260122B1 (en) Frictional-resistance reduced ship, and method for steering the same
JPH07156859A (en) Method to reduce friction of sailing body and friction reducing sailing body and generating method of microbubble used to reduce friction and device thereof
JP3185047B2 (en) Hull friction resistance reduction method
JPH09240571A (en) Frictional resistance reducing device of ship
JPH10175587A (en) Frictional resistance reducing device for ship
JPH1024891A (en) Friction resistance reducing device for ship
JPH10100989A (en) Frictional resistance reducing device for submarine ship
JPH10175588A (en) Frictional resistance reducing device for ship
JP2001106171A (en) Frictional resistance reduced-ship and method of reducing frictional resistance of hull
JPH1029587A (en) Frictional-resistance reduction device for vessel
JP2000128062A (en) Device to reduce friction resistance of ship
JP2001106173A (en) Frictional resistance reduced-ship
JPH1016876A (en) Frictional resistance reducing device for ship
KR100420830B1 (en) Air lubrication devices and method for ships utilizing a step and transverse riblet surface under the bottom
JPH09328095A (en) Cleaning device for air blow port on ship for generating fine bubble
JPH09267794A (en) Friction resistance reducing device for ship
JP2000128064A (en) Frictional resistance reduction ship and friction reduction method for hull
JPH09267793A (en) Friction resistance reducing device for ship
JPH10100984A (en) Frictional resistance reducer for ship
JPH09272491A (en) Air blowoff unit for generating small air bubbles for ship reducing in frictional resistance
JPH09226673A (en) Friction resistance reducing ship
JPH11291972A (en) Ship with reduced frictional resistance