JPH08230762A - Equipment for generating micro bubble - Google Patents

Equipment for generating micro bubble

Info

Publication number
JPH08230762A
JPH08230762A JP7032725A JP3272595A JPH08230762A JP H08230762 A JPH08230762 A JP H08230762A JP 7032725 A JP7032725 A JP 7032725A JP 3272595 A JP3272595 A JP 3272595A JP H08230762 A JPH08230762 A JP H08230762A
Authority
JP
Japan
Prior art keywords
transfer pipe
pressurized
water
bubbles
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7032725A
Other languages
Japanese (ja)
Inventor
Yoji Kato
洋治 加藤
Tadashi Oi
忠司 大井
Yoshiaki Takahashi
義明 高橋
Osamu Watanabe
修 渡辺
Hideo Mitsutake
英生 光武
Shoichi Maruyama
尚一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP7032725A priority Critical patent/JPH08230762A/en
Publication of JPH08230762A publication Critical patent/JPH08230762A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE: To reduce the energy consumption by ejecting the compressed air into a fluid transfer pipe through a fiber film to generate bubbles, and efficiently generating the bubble-water mixed fluid containing fine bubbles with a simple structure. CONSTITUTION: When a pressurized water feeding system 1 is operated, the pressurized water is fed into a fluid transfer pipe 3 to generate the flowing water, and ejected from a bubble-water mixed fluid ejecting part 9 into the sea water. When a compressed air feeding system 2 is operated, the compressed air is fed from a compressed air transfer pipe 4 into a communicating part 5, and ejected into the fluid transfer pipe 3 through a branched pipe 4a, a braided sleeve 6, a fiber film 7, and pores 8a in a masking layer 8 in this order. The compressed air is ejected from the pores 8a in the masking layer 8 as the air flow of small diameter, and a number of bubbles of small diameter are generated and transferred to the bubble-water mixed fluid ejecting part 9. Bubbles are ejected from a fluid ejecting port 11 provided on a submerged surface 10 of a navigating vehicle device diagonally rearward of the navigating vehicle to reduce the friction of the navigating vehicle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、航走体の摩擦を低減す
る際に使用されるマイクロバブルの発生装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microbubble generator used for reducing the friction of a vehicle.

【0002】[0002]

【従来の技術】船舶等の摩擦低減を図るために、船体の
表面に気泡または空気層を介在させる方法が提案されて
いる。気泡を水中に噴出させる技術として、(1)特開
昭50−83992号、(2)特開昭53−13628
9号、(3)特開昭60−139586号、(4)特開
昭61−71290号、(5)実開昭61−39691
号、(6)実開昭61−128185号が提案されてい
る。
2. Description of the Related Art In order to reduce the friction of a ship or the like, a method has been proposed in which a bubble or an air layer is interposed on the surface of the hull. Techniques for ejecting bubbles into water include (1) JP-A-50-83992 and (2) JP-A-53-13628.
No. 9, (3) JP-A-60-139586, (4) JP-A-61-71290, (5) Jitsukai 61-39691.
No. 6, (6) Japanese Utility Model Publication No. 61-128185 is proposed.

【0003】そして、これらの技術では、気泡を噴出さ
せる方法として、空気ポンプで発生させた加圧空気を複
数の穴や多孔板から水中に噴出させるようにしている。
In these techniques, as a method of ejecting bubbles, pressurized air generated by an air pump is ejected into water through a plurality of holes or perforated plates.

【0004】[0004]

【発明が解決しようとする課題】しかし、前述した
(1)ないし(6)の技術は、以下の課題を有している
ため、いずれも実用化されていないのが実情である。 (a)加圧空気のみを複数の穴から噴出する方法である
と、微細な気泡を得ることが困難で、気泡が浮力に基づ
く上昇力によって船体から離れ易く、摩擦抵抗低減範囲
が小さくなる。 (b)多孔質板から微細な気泡を直接船体外に吹き出す技
術では、多孔質板での気泡吹き出し時における圧力損失
に基づくエネルギ消費と船体外に噴出するエネルギ消費
の合計が大きくなって、摩擦抵抗低減によるエネルギ節
約よりも、気泡吹き出しのためのエネルギ消費の方が多
くなる。
However, since the above-mentioned techniques (1) to (6) have the following problems, none of them is practically used. (a) With the method of ejecting only pressurized air from a plurality of holes, it is difficult to obtain fine bubbles, the bubbles easily separate from the hull due to the lifting force based on the buoyancy, and the frictional resistance reduction range becomes small. (b) In the technology that blows out minute bubbles directly from the porous plate to the outside of the hull, the total of energy consumption due to pressure loss when bubbles are blown on the porous plate and the energy consumption to jet outside the hull become large, resulting in friction. More energy is consumed to blow bubbles than to save energy by reducing resistance.

【0005】本発明は、これらの事情に鑑みてなされた
もので、以下の目的を有するものである。 微細な気泡を含む気泡水混合流体を少ないエネルギ消
費で発生させること。 空気吹き出し位置の設定を容易にするとともに、気泡
相互の接触を抑制して気泡粒の保持を行うこと。 加圧空気の送り込み流路の確保を容易にし、かつ加圧
空気の送り込み性を向上させること。 気泡発生部分の構造を単純化し、かつ、仕様変化の対
応性を向上させること。 気泡量や流体の流量調整を容易にすること。
The present invention has been made in view of these circumstances, and has the following objects. To generate a bubble-water mixed fluid containing fine bubbles with low energy consumption. To facilitate the setting of the air blowing position and to hold the air bubbles by suppressing the mutual contact of air bubbles. To make it easy to secure a flow path for pressurized air and improve the ability to send pressurized air. To simplify the structure of the bubble generation part and improve the adaptability to changes in specifications. Make it easy to adjust the amount of bubbles and the flow rate of fluid.

【0006】[0006]

【課題を解決するための手段】本発明に係わるマイクロ
バブルの発生装置は、加圧水供給手段に接続される流体
移送管と、該流体移送管の内部に配され内外を連通状態
とする連通部が設けられる加圧気体移送管と、該加圧気
体移送管に接続され加圧気体を送り込んで連通部を経由
して流体移送管内に噴出させる加圧気体供給手段とを具
備し、連通部に繊維膜を設ける技術を採用している。こ
の場合、繊維膜を金属網により、例えば繊維膜が流体側
に位置する配置で支持する技術を併用することが好まし
い。さらに、加圧気体移送管の管壁に複数の貫通孔を形
成し、金属網をこれら貫通孔の形成範囲の管壁上に配す
ることが一層好ましい。このとき使用する繊維膜として
は、例えば、合成繊維製の繊維膜が適しており、金属網
としては、例えば、ステンレス製等の金属網・編組スリ
ーブが適している。一方、マイクロバブルの発生装置に
おける他の手段として、ケーシングと、該ケーシングの
内部に平行状態に配され加圧水プレナム部と加圧空気プ
レナム部とを区画する繊維膜と、加圧水プレナム部に対
して接続状態に配される加圧水供給手段と、加圧空気プ
レナム部に対して接続状態に配される加圧気体供給手段
とを具備する技術を採用している。上記いずれのマイク
ロバブルの発生装置においても、繊維膜に多数の細孔を
有するマスキング層を配する技術、例えば繊維膜の流体
が流通する側にマスキング層を配する技術を併用するこ
とが好ましい。このマスキング層としては、例えばスク
リーン印刷等で合成樹脂系塗料やゴム系塗料等を塗布固
化させたもの、熱収縮性フィルム等のプラスチックフィ
ルムを密着させたもの等が好適である。また、本発明に
あっては、以下の技術が有効である。 1)空気以外の気体、水以外の液体に対して適用するこ
と。 2)繊維膜やマスキング層の孔径、数、気体量、流水の
移送速度等の組み合わせを各種設定すること。
A micro-bubble generating device according to the present invention comprises a fluid transfer pipe connected to a pressurized water supply means and a communication portion disposed inside the fluid transfer pipe and in communication with the inside and outside. The pressurizing gas transfer pipe is provided, and the pressurizing gas supply means is connected to the pressurizing gas transfer pipe and sends the pressurizing gas to eject the pressurizing gas into the fluid transfer pipe through the communicating part. The technology to provide the membrane is adopted. In this case, it is preferable to also use a technique of supporting the fiber membrane with a metal net, for example, in a configuration in which the fiber membrane is located on the fluid side. Furthermore, it is more preferable to form a plurality of through holes in the tube wall of the pressurized gas transfer tube and dispose the metal net on the tube wall in the area where these through holes are formed. As the fiber film used at this time, for example, a fiber film made of synthetic fiber is suitable, and as the metal net, for example, a metal net / braided sleeve made of stainless steel is suitable. On the other hand, as another means in the device for generating microbubbles, a casing, a fiber membrane that is arranged in parallel inside the casing and divides the pressurized water plenum portion and the pressurized air plenum portion, and is connected to the pressurized water plenum portion. The technique employs a pressurized water supply means arranged in a state and a pressurized gas supply means arranged in a connected state with respect to the pressurized air plenum portion. In any of the above microbubble generators, it is preferable to use a technique of arranging a masking layer having a large number of pores on the fiber membrane, for example, a technique of arranging a masking layer on the side of the fiber membrane on which the fluid flows. As the masking layer, for example, a synthetic resin-based paint, a rubber-based paint or the like applied and solidified by screen printing, or a plastic film such as a heat-shrinkable film adhered thereto is suitable. Further, the following techniques are effective in the present invention. 1) Applicable to gases other than air and liquids other than water. 2) To set various combinations such as the pore diameter, the number, the gas amount, and the transfer speed of running water of the fiber membrane and the masking layer.

【0007】[0007]

【作用】加圧水供給手段からの加圧水は、流体移送管の
内部あるいは加圧水プレナム部に送り込まれ、加圧気体
供給手段からの加圧空気は、加圧気体移送管あるいは加
圧空気プレナム部に送り込まれて、繊維膜やマスキング
層を経由して流体移送管あるいは加圧水プレナム部を流
れる流体中に噴出させられる。加圧空気の噴出は、繊維
膜やマスキング層を経由して行われるために、複数箇所
から繊維膜やマスキング層の孔径に応じた細い空気流が
形成されて、空気流が分断されやすくなるとともに、流
水によって切断されて径の小さな気泡(マイクロバブ
ル)が多数生成される。これら多数の気泡は、流水に混
合した状態となり、以下、小さな気泡径を保持したま
ま、流体移送管中あるいは加圧水プレナム部中を所望箇
所まで移送される。繊維膜は金属網によって支持される
ことにより、剛性が高められる。また、繊維膜に多数の
細孔を有するマスキング層が配される場合は、これら細
孔の径や間隔が任意に設定可能となり、隣接して生成さ
れる気泡間に間隔が確保されるので、隣接する気泡相互
の接触による気泡の巨大化現象の発生が抑制される。
The pressurized water from the pressurized water supply means is sent to the inside of the fluid transfer pipe or the pressurized water plenum part, and the pressurized air from the pressurized gas supply means is sent to the pressurized gas transfer pipe or the pressurized air plenum part. And is jetted into the fluid flowing through the fluid transfer pipe or the pressurized water plenum through the fiber membrane and the masking layer. Since the pressurized air is ejected through the fiber membrane and the masking layer, a thin air flow corresponding to the pore diameter of the fiber membrane and the masking layer is formed from multiple locations, and the air flow is easily divided. , It is cut by running water and many small bubbles (micro bubbles) are generated. A large number of these bubbles are mixed with running water, and thereafter, are transferred to a desired position in the fluid transfer pipe or the pressurized water plenum while maintaining the small bubble diameter. Since the fiber membrane is supported by the metal net, the rigidity is increased. Also, when a masking layer having a large number of pores is arranged in the fiber membrane, the diameter and spacing of these pores can be set arbitrarily, and the spacing is secured between adjacent bubbles, It is possible to suppress the occurrence of the bubble enlargement phenomenon due to the contact between the adjacent bubbles.

【0008】[0008]

【実施例】以下、本発明のマイクロバブルの発生装置の
実施例について、図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the microbubble generator of the present invention will be described below with reference to the drawings.

【0009】〔第1実施例〕図1および図2は、本発明
に係わるマイクロバブルの発生装置の第1実施例を示す
もので、図において、符号1は加圧水供給系(加圧水供
給手段)、2は加圧空気供給系(加圧気体供給手段)、
3は流体移送管、4は加圧空気移送管(加圧気体移送
管)、5は連通部、6は編組スリーブ(金属網)、7は
繊維膜、8はマスキング層、9は気泡水混合流体噴出部
を示している。
[First Embodiment] FIGS. 1 and 2 show a first embodiment of a microbubble generator according to the present invention. In the drawings, reference numeral 1 is a pressurized water supply system (pressurized water supply means). 2 is a pressurized air supply system (pressurized gas supply means),
3 is a fluid transfer pipe, 4 is a pressurized air transfer pipe (pressurized gas transfer pipe), 5 is a communicating portion, 6 is a braided sleeve (metal mesh), 7 is a fiber membrane, 8 is a masking layer, and 9 is bubble water mixing. The fluid ejection part is shown.

【0010】前記加圧水供給系1は、例えば船体の没水
面に設けた吸水口、海水(水)を吸水して加圧水を発生
させるためのポンプ、加圧水の流量・圧力を制御する制
御手段、給水圧力を計測するための給水圧力計や、給水
量を計測するための液量計等を有するものが適用され、
流体移送管3に接続される。
The pressurized water supply system 1 is, for example, a water inlet provided on the submerged surface of a ship, a pump for absorbing seawater (water) to generate pressurized water, a control means for controlling the flow rate / pressure of the pressurized water, and a water supply pressure. A water supply pressure gauge for measuring water, a liquid meter for measuring the water supply, etc. are applied.
It is connected to the fluid transfer pipe 3.

【0011】前記加圧空気供給系2は、空気(大気)を
吸引して加圧するためのブロア、空気(大気)の流量・
圧力を制御する制御機構を備えたものが適用されるとと
もに、加圧空気移送管4に接続される。
The pressurized air supply system 2 is a blower for sucking and pressurizing air (atmosphere), and a flow rate of air (atmosphere).
A device having a control mechanism for controlling the pressure is applied and is connected to the pressurized air transfer pipe 4.

【0012】前記流体移送管3は、加圧水供給系1と気
泡水混合流体噴出部9との間に接続状態に配される。
The fluid transfer pipe 3 is connected between the pressurized water supply system 1 and the bubbling water mixed fluid jetting portion 9.

【0013】前記加圧空気移送管4は、図1に示すよう
に、流体移送管3の管壁を気密に貫通して流体移送管3
の内部に挿入され、先端に複数分割状態の分岐管4aが
下流方向に向けて取り付けられており、これら分岐管4
aを利用して連通部5が配設される。
As shown in FIG. 1, the pressurized air transfer tube 4 penetrates the tube wall of the fluid transfer tube 3 in an airtight manner, and the fluid transfer tube 3 is provided.
Of the branch pipe 4a is inserted into the inside of the
The communication portion 5 is arranged by utilizing a.

【0014】前記連通部5は、図2に示すように、複数
の分岐管4aに適宜数の貫通孔4bを形成しておいて、
これら貫通孔4bの形成範囲の分岐管4aの外周に、編
組スリーブ6、繊維膜7およびマスキング層8を順次積
層状態に配したものである。そして分岐管4aの先端に
は、キャップを取り付ける等によって管穴を閉塞した状
態の閉塞部4cが配され、閉塞部4cの近傍には、分岐
管4aおよび連通部5の全体強度を確保するための支持
翼5aが一体に配される。
As shown in FIG. 2, the communicating portion 5 has a plurality of branch pipes 4a formed with an appropriate number of through holes 4b.
The braided sleeve 6, the fiber film 7 and the masking layer 8 are sequentially laminated in the outer periphery of the branch pipe 4a in the area where the through holes 4b are formed. At the tip of the branch pipe 4a, a closing portion 4c in which the pipe hole is closed by attaching a cap or the like is arranged, and in order to secure the overall strength of the branch pipe 4a and the communicating portion 5 in the vicinity of the closing portion 4c. The supporting wings 5a of the above are integrally arranged.

【0015】前記編組スリーブ6は、分岐管4aの貫通
孔4bの上を一体に覆うとともに、加圧空気の挿通する
中空層を形成した状態で繊維膜7を支持するものであ
り、ステンレスワイヤ製の編組スリーブ等が適用され
る。
The braided sleeve 6 integrally covers the through hole 4b of the branch pipe 4a and supports the fiber membrane 7 in a state where a hollow layer through which pressurized air is inserted is formed. The braided sleeve 6 is made of stainless wire. Braided sleeves, etc. are applicable.

【0016】前記繊維膜7は、編組スリーブ6の上に密
接状態に配され、空気流を分割して挿通させるための織
目を多数有している例えばポリエステル100%布地等
が適用される。
The fiber membrane 7 is made of, for example, 100% polyester cloth or the like, which is arranged in close contact with the braided sleeve 6 and has a large number of weaves for dividing and inserting the air flow.

【0017】前記マスキング層8は、繊維膜7の外表面
に、スクリーン印刷等の手法で合成樹脂系塗膜を薄く形
成するとともに、繊維膜7の織目の多数を覆って、一部
に間隔をあけて多数の細孔8aを形成するようにしたも
のである。これら細孔8aの径は、例えば100μm程
度とされ、細孔8aの間隔は、所定通気量に対応して設
定される。
The masking layer 8 is formed by thinly forming a synthetic resin coating film on the outer surface of the fiber film 7 by a method such as screen printing and also covering a large number of the weaves of the fiber film 7 with a space between them. To form a large number of pores 8a. The diameter of the pores 8a is, for example, about 100 μm, and the interval between the pores 8a is set according to a predetermined air flow rate.

【0018】前記気泡水混合流体噴出部9は、船舶等の
航走体の摩擦低減対象表面である没水表面10に設けら
れ、流体移送管3に接続されて、空気と水とを所望の割
合で混合した気泡水混合流体を海水(水)中に、例えば
航走体の斜め後方に噴出する複数の流体噴出口11を有
している。
The bubbling water mixed fluid jetting portion 9 is provided on a submerged surface 10 which is a friction reduction target surface of a navigation body such as a ship, and is connected to a fluid transfer pipe 3 so that air and water can be supplied as desired. It has a plurality of fluid ejection ports 11 for ejecting the bubbly water mixed fluid mixed at a ratio into seawater (water), for example, obliquely rearward of the running body.

【0019】このように構成されているマイクロバブル
の発生装置では、加圧水供給系1を作動させると、加圧
水が流体移送管3に送り込まれて、流体移送管3の内部
に流水が発生するとともに、気泡水混合流体噴出部9か
ら海水(水)中に噴出する。
In the micro-bubble generator having the above-described structure, when the pressurized water supply system 1 is operated, the pressurized water is sent to the fluid transfer pipe 3 to generate running water inside the fluid transfer pipe 3. Bubbling water mixed fluid jetting portion 9 jets it into seawater (water).

【0020】また、加圧空気供給系2を作動させると、
加圧空気が加圧空気移送管4から連通部5の内部に送り
込まれて、分岐管4a、編組スリーブ6、繊維膜7、マ
スキング層8の細孔8aを順に経由して流体移送管3の
中に噴出させられる。加圧空気は、マスキング層8の細
孔8aから細い空気流となって噴出するために、切断さ
れやすい状態であるとともに、流水との交差によって切
断されて、径の小さな気泡(マイクロバブル)が多数生
成されて、流水に混合した状態となり、以下、小さな径
の気泡のまま、流体移送管3によって気泡水混合流体噴
出部9まで移送される。
When the pressurized air supply system 2 is operated,
Pressurized air is sent from the pressurized air transfer pipe 4 into the inside of the communication part 5, and passes through the branch pipe 4a, the braided sleeve 6, the fiber membrane 7, and the pores 8a of the masking layer 8 in that order to the fluid transfer pipe 3. It is made to spout in. The pressurized air is jetted from the pores 8a of the masking layer 8 as a thin air flow, so that the pressurized air is in a state of being easily cut, and is also cut by the intersection with running water to generate air bubbles (micro bubbles) having a small diameter. A large number of them are generated and mixed with running water, and thereafter, bubbles having a small diameter are transferred to the bubble-water mixed fluid jetting unit 9 by the fluid transfer pipe 3 as they are.

【0021】上記のようにして得られた気泡水混合流体
は、航走体の没水表面10に設けられた流体噴出口11
から航走体の斜め後方に噴出されて航走体の摩擦低減に
供されるとともに、航走体の斜め後方に噴出されること
により、航走体の推進力として働く。
The bubbling water mixed fluid obtained as described above is used as the fluid jet 11 provided on the submerged surface 10 of the vehicle.
It is jetted obliquely rearward of the vehicle and is used for reducing the friction of the vehicle, and is jetted obliquely rearward of the vehicle to act as propulsive force of the vehicle.

【0022】上記マイクロバブルの発生装置において
は、気泡水混合流体の生成に際しての主な圧力損失は、
連通部5にて発生する。連通部5は、貫通孔4bを有す
る分岐管4a、編組スリーブ6、繊維膜7、細孔8aを
有するマスキング層8から構成されていて、連通部5で
の主な圧力損失は、マスキング層8の細孔8aの挿通抵
抗に基づくものとみなすことができる。よって、小さい
エネルギ消費にて気泡水混合流体の生成を達成すること
ができる。
In the above-mentioned micro-bubble generator, the main pressure loss at the time of producing the bubble-water mixed fluid is
It occurs in the communication section 5. The communication portion 5 is composed of a branch pipe 4a having a through hole 4b, a braided sleeve 6, a fiber membrane 7, and a masking layer 8 having pores 8a. The main pressure loss in the communication portion 5 is the masking layer 8 It can be considered that it is based on the insertion resistance of the pores 8a. Therefore, the generation of the bubbly water mixed fluid can be achieved with a small energy consumption.

【0023】〔第2実施例〕図3は、本発明に係わるマ
イクロバブルの発生装置の第2実施例における連通部5
を示すもので、第1実施例と比較して分岐管4aおよび
繊維膜7が省略され、加圧空気移送管4の先端に重なり
長さLをもって固定された剛性を有する編組スリーブ6
と、この編組スリーブ6の上に形成され多数の細孔8a
を有するマスキング層8とから構成されている。この第
2実施例にあっても、前述の第1実施例と同様の作用効
果を奏することができる。
[Second Embodiment] FIG. 3 shows a communication part 5 in a second embodiment of the micro-bubble generator according to the present invention.
In comparison with the first embodiment, the branch pipe 4a and the fiber membrane 7 are omitted, and the braided sleeve 6 having rigidity is fixed to the tip of the pressurized air transfer pipe 4 with a length L.
And a large number of pores 8a formed on the braided sleeve 6.
And a masking layer 8 having Even in the second embodiment, it is possible to obtain the same effects as the first embodiment.

【0024】〔第3実施例〕図4は、本発明に係わるマ
イクロバブルの発生装置の第3実施例を示すもので、符
号20はケーシング、21は加圧水プレナム部、22は
加圧空気プレナム部を示している。
[Third Embodiment] FIG. 4 shows a third embodiment of the microbubble generator according to the present invention. Reference numeral 20 is a casing, 21 is a pressurized water plenum portion, and 22 is a pressurized air plenum portion. Is shown.

【0025】ケーシング20は、角筒状に形成されてお
り、加圧水供給系1と気泡水混合流体噴出部9との間に
接続状態に配され、内部が平行状態に取り付けられた複
数の繊維膜7で区画され、層状空間が交互に加圧水プレ
ナム部21、加圧空気プレナム部22とされている。ま
た、ケーシング20の側部には、加圧空気供給系2から
の加圧空気(加圧気体)を各加圧空気プレナム部22に
誘導する加圧空気移送管4が接続状態に取り付けられて
いる。また、ケーシング20の上流端部には、図4
(b)に示すように、流体移送管3との接続を容易にす
るヘッダ23が配され、繊維膜7の上流端部とケーシン
グ20との間には、三角形状の誘導板24が繊維膜7を
張設するよう取り付けられている。さらに、ケーシング
20と気泡水混合流体噴出部9との接続箇所も同様の構
造とされている。なお、繊維膜7の表面には、前述した
マスキング層8が配される。
The casing 20 is formed in a rectangular tube shape, is arranged in a connected state between the pressurized water supply system 1 and the bubbling water mixed fluid jetting section 9, and has a plurality of fiber membranes attached in parallel to each other. 7 and the layered spaces are alternately formed as a pressurized water plenum portion 21 and a pressurized air plenum portion 22. Further, a pressurized air transfer pipe 4 for guiding the pressurized air (pressurized gas) from the pressurized air supply system 2 to each pressurized air plenum 22 is attached to a side portion of the casing 20 in a connected state. There is. In addition, at the upstream end of the casing 20, as shown in FIG.
As shown in (b), a header 23 that facilitates connection with the fluid transfer pipe 3 is disposed, and a triangular guide plate 24 is provided between the upstream end of the fiber membrane 7 and the casing 20. It is attached so as to stretch 7. Further, the connecting portion between the casing 20 and the bubbling water mixed fluid ejection portion 9 has the same structure. The above-mentioned masking layer 8 is arranged on the surface of the fiber film 7.

【0026】このように構成されている第3実施例にあ
っては、図4(b)に矢印で示すように、加圧水が加圧
水プレナム部21に送り込まれるとともに、加圧空気が
加圧空気移送管4を介して加圧空気プレナム部22の内
部に送り込まれて、加圧空気が繊維膜7を経由して加圧
水プレナム部21に噴出させられる。このとき、加圧水
プレナム部21の内部に流水が発生しているので、加圧
空気が繊維膜7およびマスキング層8の細孔8aによっ
て分割され、細い空気流となって噴出し、流水との交差
によって切断されて径の小さな気泡(マイクロバブル)
が多数生成される。以下、微細な気泡を含む気泡水混合
流体が気泡水混合流体噴出部9まで移送される。
In the third embodiment constructed as described above, as shown by the arrow in FIG. 4B, the pressurized water is sent to the pressurized water plenum portion 21 and the pressurized air is transferred by the pressurized air. The compressed air is sent into the inside of the pressurized air plenum portion 22 via the pipe 4, and the pressurized air is ejected to the pressurized water plenum portion 21 via the fiber membrane 7. At this time, since running water is generated inside the pressurized water plenum portion 21, the pressurized air is divided by the fine pores 8a of the fiber membrane 7 and the masking layer 8 to form a thin air flow, which jets out and intersects with the running water. Bubbles with a small diameter (micro bubbles) that are cut by
Are generated in large numbers. Thereafter, the bubble-water mixed fluid containing fine bubbles is transferred to the bubble-water mixed fluid jetting section 9.

【0027】[0027]

【発明の効果】本発明のマイクロバブルの発生装置にあ
っては、以下の効果を奏する。 (1)流体移送管内に繊維膜を経由して加圧空気を噴出
させて気泡生成を行うことにより、微細な気泡を含む気
泡水混合流体を簡単な構造で効率よく発生させることが
でき、船底から直接的に気泡を発生させる場合に比べて
少ないエネルギ消費となる。 (2)マスキング層の細孔を間隔を有した状態で形成す
ると、隣接して生成される気泡間に間隔が確保され、隣
接する気泡どうしの接触を抑制して気泡粒の保持を行う
ことができる。 (3)気泡を気泡水混合流体として気泡水混合流体噴出
部まで移送することにより、気泡量や流体の流量調整を
容易にし、送り込み性を高めることができる。 (4)金属網や加圧気体移送管の上に繊維膜やマスキン
グ層を設けることにより、気泡発生部分の構造を単純化
し、仕様変化に対する対応性を向上させることができ
る。
The microbubble generator of the present invention has the following effects. (1) By injecting pressurized air into the fluid transfer pipe via the fiber membrane to generate bubbles, it is possible to efficiently generate a bubble-water mixed fluid containing fine bubbles with a simple structure. Energy consumption is lower than that in the case of directly generating bubbles. (2) When the pores of the masking layer are formed in a state of having an interval, an interval is ensured between the bubbles that are generated adjacent to each other, and contact between adjacent bubbles can be suppressed to hold the bubble particles. it can. (3) By transferring the bubbles as the bubble-water mixed fluid to the bubble-water mixed fluid jetting portion, it is possible to easily adjust the amount of bubbles and the flow rate of the fluid, and to improve the feedability. (4) By providing the fiber film or the masking layer on the metal net or the pressurized gas transfer pipe, the structure of the bubble generating portion can be simplified and the adaptability to the specification change can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のマイクロバブルの発生装置の第1実施
例を示すもので、(a)は一部を断面した正面図、
(b)は(a)におけるX−X線矢視断面図である。
FIG. 1 shows a first embodiment of a micro-bubble generator of the present invention, (a) is a partially sectional front view,
(B) is a sectional view taken along the line XX in (a).

【図2】図1の連通部を示すもので、斜視図および拡大
断面図である。
FIG. 2 is a perspective view and an enlarged cross-sectional view showing the communicating portion of FIG.

【図3】本発明に係わるマイクロバブルの発生装置の第
2実施例における連通部を示す一部を断面した正面図で
ある。
FIG. 3 is a partially sectional front view showing a communication part in a second embodiment of the microbubble generator according to the present invention.

【図4】本発明に係わるマイクロバブルの発生装置の第
3実施例を示す一部の記載を省略した斜視図、および正
断面図である。
4A and 4B are a perspective view and a cross-sectional view showing a third embodiment of a micro-bubble generator according to the present invention, in which a part of the description is omitted.

【符号の説明】[Explanation of symbols]

1 加圧水供給系(加圧水供給手段) 2 加圧空気供給系(加圧気体供給手段) 3 流体移送管 4 加圧空気移送管(加圧気体移送管) 4a 分岐管 4b 貫通孔 4c 閉塞部 5 連通部 5a 支持翼 6 編組スリーブ(金属網) 7 繊維膜 8 マスキング層 8a 細孔 9 気泡水混合流体噴出部 10 没水表面 11 流体噴出口 20 ケーシング 21 加圧水プレナム部 22 加圧空気プレナム部 23 ヘッダ 24 誘導板 1 pressurized water supply system (pressurized water supply means) 2 pressurized air supply system (pressurized gas supply means) 3 fluid transfer pipe 4 pressurized air transfer pipe (pressurized gas transfer pipe) 4a branch pipe 4b through hole 4c closed part 5 communication Part 5a Supporting blade 6 Braided sleeve (metal mesh) 7 Fiber film 8 Masking layer 8a Pore 9 Bubble water mixed fluid ejection part 10 Submerged surface 11 Fluid ejection port 20 Casing 21 Pressurized water plenum part 22 Pressurized air plenum part 23 Header 24 Guide plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 義明 東京都江東区豊洲二丁目1番1号 石川島 播磨重工業株式会社東京第一工場内 (72)発明者 渡辺 修 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 (72)発明者 光武 英生 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 (72)発明者 丸山 尚一 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Yoshiaki Takahashi, Yoshiaki Takahashi, 2-1-1 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries, Ltd. Tokyo No. 1 factory (72) Osamu Watanabe Shinchu, Isogo-ku, Yokohama-shi, Kanagawa Haramachi No. 1 Ishikawajima-Harima Heavy Industries Co., Ltd. Technical Research Institute (72) Inventor Hideo Mitsutake No. 1 Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Ishikawajima Harima Heavy Industries Co., Ltd. Technical Research Institute (72) Inventor Shoichi Maruyama Yokohama, Kanagawa No. 1 Shin-Nakahara-cho, Isogo-ku, Ishi Ishikawajima Harima Heavy Industries Ltd. Technical Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 気泡水混合流体を発生させる装置であっ
て、 加圧水供給手段(1)に接続される流体移送管(3)
と、 該流体移送管の内部に配され内外を連通状態とする連通
部(5)が設けられる加圧気体移送管(4)と、 該加圧気体移送管に接続され加圧気体を送り込んで連通
部を経由して流体移送管内に噴出させる加圧気体供給手
段(2)とを具備し、 連通部に繊維膜(7)が設けられることを特徴とするマ
イクロバブルの発生装置。
1. A device for generating a bubbling water mixed fluid, comprising a fluid transfer pipe (3) connected to a pressurized water supply means (1).
A pressurized gas transfer pipe (4) provided inside the fluid transfer pipe and having a communication part (5) for communicating the inside and the outside, and a pressurized gas connected to the pressurized gas transfer pipe to send pressurized gas. A device for generating microbubbles, comprising: a pressurized gas supply means (2) for ejecting into a fluid transfer pipe via a communication part, and a fiber membrane (7) provided in the communication part.
【請求項2】 繊維膜(7)が金属網(6)により支持
されることを特徴とする請求項1記載のマイクロバブル
の発生装置。
2. Microbubble generator according to claim 1, characterized in that the fiber membrane (7) is supported by a metal mesh (6).
【請求項3】 加圧気体移送管(4)の管壁に複数の貫
通孔(4b)が形成されるとともに、該貫通孔の形成範
囲の管壁上に金属網(6)が配されることを特徴とする
請求項2記載のマイクロバブルの発生装置。
3. A plurality of through holes (4b) are formed on the pipe wall of the pressurized gas transfer pipe (4), and a metal mesh (6) is arranged on the pipe wall in the range where the through holes are formed. The microbubble generator according to claim 2, wherein
【請求項4】 気泡水混合流体を発生させる装置であっ
て、 ケーシング(20)と、 該ケーシングの内部に平行状態に配され加圧水プレナム
部(21)と加圧空気プレナム部(22)とを区画する
繊維膜(7)と、 加圧水プレナム部に対して接続状態に配される加圧水供
給手段(1)と、 加圧空気プレナム部に対して接続状態に配される加圧気
体供給手段(2)とを具備することを特徴とするマイク
ロバブルの発生装置。
4. A device for generating a bubbling water mixed fluid, comprising: a casing (20); and a pressurized water plenum portion (21) and a pressurized air plenum portion (22) arranged in parallel inside the casing. The partitioning fiber membrane (7), the pressurized water supply means (1) arranged in a connected state to the pressurized water plenum portion, and the pressurized gas supply means (2) arranged in a connected state to the pressurized air plenum portion. ) And a micro-bubble generator.
【請求項5】 繊維膜(7)に多数の細孔(8a)を有
するマスキング層(8)が配されることを特徴とする請
求項1、2、3または4記載のマイクロバブルの発生装
置。
5. The device for generating microbubbles according to claim 1, 2, 3 or 4, wherein the fiber membrane (7) is provided with a masking layer (8) having a large number of pores (8a). .
JP7032725A 1995-02-21 1995-02-21 Equipment for generating micro bubble Withdrawn JPH08230762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7032725A JPH08230762A (en) 1995-02-21 1995-02-21 Equipment for generating micro bubble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7032725A JPH08230762A (en) 1995-02-21 1995-02-21 Equipment for generating micro bubble

Publications (1)

Publication Number Publication Date
JPH08230762A true JPH08230762A (en) 1996-09-10

Family

ID=12366826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7032725A Withdrawn JPH08230762A (en) 1995-02-21 1995-02-21 Equipment for generating micro bubble

Country Status (1)

Country Link
JP (1) JPH08230762A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155604A (en) * 2008-12-26 2010-07-15 Pusan National Univ Industry-Univ Corp Foundation Method for generating micro-bubble on solid surface
CN101900154A (en) * 2010-08-04 2010-12-01 南京工业大学 Energy-saving anti-corrosive equilibrium flow field turbolator
CN102849195A (en) * 2012-09-18 2013-01-02 南通中远川崎船舶工程有限公司 Guide pipe device for stem
CN109895936A (en) * 2019-03-06 2019-06-18 武汉理工大学 Submarine navigation device mucus damping device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155604A (en) * 2008-12-26 2010-07-15 Pusan National Univ Industry-Univ Corp Foundation Method for generating micro-bubble on solid surface
CN101900154A (en) * 2010-08-04 2010-12-01 南京工业大学 Energy-saving anti-corrosive equilibrium flow field turbolator
CN102849195A (en) * 2012-09-18 2013-01-02 南通中远川崎船舶工程有限公司 Guide pipe device for stem
CN109895936A (en) * 2019-03-06 2019-06-18 武汉理工大学 Submarine navigation device mucus damping device

Similar Documents

Publication Publication Date Title
US5117882A (en) Microbubble-generating and dispensing devices and methods
US6145459A (en) Friction-reducing ship and method for reducing skin friction
WO1994026583A1 (en) Method of reducing friction on cruising body, cruising body with reduced friction, method of and apparatus for generating microbubbles for use in reduction of friction
JP2009274705A (en) Frictional resistance reduction ship and method for operating the same
JP4866990B2 (en) Hull frictional resistance reduction device
JPH07156859A (en) Method to reduce friction of sailing body and friction reducing sailing body and generating method of microbubble used to reduce friction and device thereof
JPH08230762A (en) Equipment for generating micro bubble
JPH08225094A (en) Microbubble generating device
JPH08230763A (en) Equipment for generating micro bubble
JPH0451397B2 (en)
JP2002002582A (en) Friction resistance reducing ship
JPH10109684A (en) Micro-bubble generating device
JPH08239084A (en) Friction-reduced ship
WO2010098361A1 (en) Method for generating air bubbles in an apparatus for reducing friction resistance in a ship
JPH09151913A (en) Method of reducing friction of ship etc and friction reduced ship
JPH08229371A (en) Microbubble generator
JPH08230761A (en) Equipment for generating micro bubble
JPH11321775A (en) Friction resistance reducing type ship
JPH08230760A (en) Equipment for generating micro bubble
JPH08225095A (en) Microbubble generating device
JPH08239083A (en) Friction-reduced ship
JPH08229372A (en) Microbubble jetting device
JP2001106171A (en) Frictional resistance reduced-ship and method of reducing frictional resistance of hull
JPH09151914A (en) Micro-bubble generator
JPH10119875A (en) Micro bubble generater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507