JPH08230761A - Equipment for generating micro bubble - Google Patents
Equipment for generating micro bubbleInfo
- Publication number
- JPH08230761A JPH08230761A JP7032724A JP3272495A JPH08230761A JP H08230761 A JPH08230761 A JP H08230761A JP 7032724 A JP7032724 A JP 7032724A JP 3272495 A JP3272495 A JP 3272495A JP H08230761 A JPH08230761 A JP H08230761A
- Authority
- JP
- Japan
- Prior art keywords
- water
- transfer pipe
- fluid transfer
- pores
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/10—Measures concerning design or construction of watercraft hulls
Landscapes
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、航走体の摩擦を低減す
る際に使用されるマイクロバブルの発生装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microbubble generator used for reducing the friction of a vehicle.
【0002】[0002]
【従来の技術】船舶等の摩擦低減を図るために、船体の
表面に気泡または空気層を介在させる方法が提案されて
いる。気泡を水中に噴出させる技術として、(1)特開
昭50−83992号、(2)特開昭53−13628
9号、(3)特開昭60−139586号、(4)特開
昭61−71290号、(5)実開昭61−39691
号、(6)実開昭61−128185号が提案されてい
る。2. Description of the Related Art In order to reduce the friction of a ship or the like, a method has been proposed in which a bubble or an air layer is interposed on the surface of the hull. Techniques for ejecting bubbles into water include (1) JP-A-50-83992 and (2) JP-A-53-13628.
No. 9, (3) JP-A-60-139586, (4) JP-A-61-71290, (5) Jitsukai 61-39691.
No. 6, (6) Japanese Utility Model Publication No. 61-128185 is proposed.
【0003】そして、これらの技術では、気泡を噴出さ
せる方法として、空気ポンプで発生させた加圧空気を複
数の穴や多孔板から水中に噴出させるようにしている。In these techniques, as a method of ejecting bubbles, pressurized air generated by an air pump is ejected into water through a plurality of holes or perforated plates.
【0004】[0004]
【発明が解決しようとする課題】しかし、加圧空気のみ
を複数の穴から噴出する方法であると、微細な気泡を得
ることが困難で、気泡が浮力に基づく上昇力によって船
体から離れ易く、摩擦抵抗低減範囲が小さくなり、多孔
質板から微細な気泡を吹き出す技術では、多孔質板での
気泡吹き出し時における圧力損失に基づくエネルギ消費
が大きくなって、摩擦抵抗低減によるエネルギ節約より
も、気泡吹き出しのためのエネルギ消費の方が多くなっ
て、実用性が損われてしまう等の難点があり、前述した
(1)ないし(6)の技術は、いずれも実用化に至って
いないのが実情である。However, with the method of ejecting only pressurized air from a plurality of holes, it is difficult to obtain fine bubbles, and the bubbles easily separate from the hull due to the lifting force based on buoyancy. In the technology that reduces the frictional resistance reduction range and blows out fine bubbles from the porous plate, the energy consumption based on the pressure loss when bubbles are blown out on the porous plate becomes large, and the energy saving by reducing the frictional resistance is more important than the energy saving. There is a drawback that the energy consumption for blowing out is increased and the practicality is impaired. In reality, none of the above-mentioned technologies (1) to (6) have been put to practical use. is there.
【0005】本発明は、これらの事情に鑑みてなされた
もので、以下の目的を有するものである。 気泡水混合流体の気泡量を大きくすること。 気泡水混合流体の発生効率を高めること。 気泡水混合流体中の気泡密度を均一化すること。 気泡水混合流体の移送性を向上させること。 気泡水混合流体中の気泡径を小さくすること。The present invention has been made in view of these circumstances, and has the following objects. Increase the amount of bubbles in the mixed fluid. To increase the generation efficiency of bubbly water mixed fluid. To homogenize the bubble density in a mixed fluid. Improving the transferability of the bubbly water mixed fluid. To reduce the bubble diameter in the mixed fluid.
【0006】[0006]
【課題を解決するための手段】本発明に係るマイクロバ
ブルの発生装置では、加圧水供給手段に接続され側壁に
多数の細孔が明けられた流体移送管と、該流体移送管の
内部に挿入状態に配され流水に旋回流を付与する旋回流
発生手段と、流体移送管の回りを囲んだ状態に配され細
孔に連通状態のガスチャンバと、該ガスチャンバに接続
され加圧気体を送り込んで細孔から噴出させる加圧気体
供給手段とを具備する技術が採用される。また、マイク
ロバブルの発生装置として、加圧水供給手段に接続され
加圧水が挿通させられる流体移送管と、該流体移送管の
内部に配され表面に中空部と連通状態の多数の細孔が明
けられかつ流水との交差により回転させられる中空プロ
ペラと、該中空プロペラの中空部に接続され加圧気体を
送り込む加圧気体供給手段とを具備する技術も採用され
る。流体移送管の内部に中空プロペラを配する場合に
は、流体移送管の外方と中空プロペラとを接続して回転
力を伝達する回転力伝達系と、回転力伝達系に接続され
中空プロペラを強制回転させる回転駆動源とを具備する
技術を付加することが好適である。中空プロペラである
場合、プロペラ軸が中空状態に形成され、該プロペラ軸
の中空部分に対して接続状態の接続穴の回りにプロペラ
軸の回転を許容する接続ハウジングが配され、該接続ハ
ウジングに加圧気体供給手段が接続される技術を付加す
ることが行なわれる。流体移送管の外部と中空プロペラ
とを接続する回転力伝達系として、フレキシブルワイヤ
が有効である。中空プロペラのプロペラ軸を支持する手
段としては、スイベルジョイントが好適である。In the device for generating microbubbles according to the present invention, a fluid transfer pipe connected to a pressurized water supply means and having a large number of pores formed in its side wall, and an inserted state inside the fluid transfer pipe. A swirl flow generating means for providing a swirl flow to the flowing water, a gas chamber arranged around the fluid transfer pipe and in communication with the pores, and a pressurized gas fed into the gas chamber to send pressurized gas. A technique provided with a pressurized gas supply means for ejecting from the pores is adopted. In addition, as a device for generating microbubbles, a fluid transfer pipe connected to a pressurized water supply means and through which pressurized water is inserted, and a large number of pores that are arranged inside the fluid transfer pipe and are in communication with the hollow portion are formed in the surface. A technique including a hollow propeller that is rotated by the intersection with running water and a pressurized gas supply unit that is connected to the hollow portion of the hollow propeller and sends a pressurized gas is also adopted. When arranging the hollow propeller inside the fluid transfer pipe, the outside of the fluid transfer pipe and the hollow propeller are connected to each other to transmit a rotational force, and a hollow propeller connected to the rotational force transmission system is installed. It is preferable to add a technique including a rotation drive source for forced rotation. In the case of a hollow propeller, the propeller shaft is formed in a hollow state, and a connection housing that allows rotation of the propeller shaft around a connection hole in a connected state with respect to the hollow portion of the propeller shaft is arranged, and is connected to the connection housing. A technique is added to which the pressurized gas supply means is connected. A flexible wire is effective as a rotational force transmission system that connects the outside of the fluid transfer pipe and the hollow propeller. A swivel joint is suitable as a means for supporting the propeller shaft of the hollow propeller.
【0007】[0007]
【作用】加圧水供給手段からの加圧水は、流体移送管に
送り出されるが、その途中に旋回羽根等の旋回流発生手
段が介在していることにより、流水に旋回力が付与され
て旋回流となる。一方、加圧気体供給手段からの加圧空
気は、ガスチャンバの内部に送り込まれ、多数の細孔か
ら流体移送管を流れる流水中に噴出させられる。細孔か
ら流水中に噴出させられた空気流は、自身が細められて
分断され易くなっていることに加えて、流水により順次
下流に移送されるとともに、流水が旋回していることに
より、流水の流量は一定で、細孔と流水との相対速度が
上げるため、流水との交差時に空気流は容易に切断され
て細分化が図られ、径の小さな気泡となって流水に混合
した状態となり、以下、流体移送管によって所望箇所の
気泡水噴出部まで移送され、航走体の摩擦低減に供せら
れる。気泡水混合流体の気泡は、細孔の径,数,気体
量,流水の移送速度,旋回速度等によって、量や気泡率
が設定される。流体移送管の内部に、中空プロペラが配
され、中空プロペラの中空部に加圧気体が送り込まれて
多数の細孔から噴出させられる場合には、中空プロペラ
自身が回転自在な状態であると、流水との交差により中
空プロペラが回転させられ、中空プロペラの回転ととも
に細孔からの空気流の噴出位置が変動する。細孔が流体
移送管の半径方向に均一に配されていると、流体移送管
の半径方向の各所で空気が噴出し、空気流の切断による
気泡の生成がむらなく行なわれ、流体中の気泡密度が均
一化する。また、中空プロペラの回転により、細孔と流
水の相対的な速度が上がり、気泡の細分化が図られる。
回転駆動源の作動により回転力を回転力伝達系を経由し
て中空プロペラに伝達し、中空プロペラを強制回転させ
ている場合には、中空プロペラを所望の回転速度とする
とともに、加圧空気を接続ハウジング及び中空穴を経由
して中空部に送り込んで細孔から噴出させることによ
り、気泡の一層の細分化が図られるとともに、大量の気
泡発生が可能になり、加えて中空プロペラの回転によっ
て、気泡水混合流体に下流への駆動力が付与され移送性
が向上する。The pressurized water from the pressurized water supply means is sent out to the fluid transfer pipe, and the swirl flow generating means such as swirl vanes is interposed in the middle of the fluid transfer pipe so that swirl force is applied to the running water to form a swirl flow. . On the other hand, the pressurized air from the pressurized gas supply means is sent into the gas chamber and ejected from a large number of pores into flowing water flowing through the fluid transfer pipe. The airflow ejected from the pores into the running water is not only thinned and easily divided, but also is sequentially transferred to the downstream by the running water, and the running water is swirling. The flow rate is constant and the relative velocity between the pores and running water increases, so the air flow is easily broken and subdivided at the time of intersection with the running water, forming bubbles with small diameters and mixing with the running water. After that, the fluid is transferred to a bubbling water jetting portion at a desired position by the fluid transfer pipe and is used for reducing the friction of the running body. The amount and bubble ratio of the bubbles of the bubble-water mixed fluid are set according to the diameter and number of pores, the amount of gas, the flow velocity of the flowing water, the swirling velocity, and the like. Inside the fluid transfer pipe, a hollow propeller is arranged, and when pressurized gas is sent to the hollow portion of the hollow propeller and ejected from a large number of pores, the hollow propeller itself is in a rotatable state, The hollow propeller is rotated by the intersection with the flowing water, and the jet position of the airflow from the pores is changed with the rotation of the hollow propeller. If the pores are evenly arranged in the radial direction of the fluid transfer tube, air will be ejected at various points in the radial direction of the fluid transfer tube, and air bubbles will be generated evenly by cutting the air flow. The density becomes uniform. In addition, the rotation of the hollow propeller increases the relative speed of the pores and the flowing water, and the bubbles are subdivided.
When the hollow propeller is forcibly rotated by transmitting the rotational force to the hollow propeller through the rotational force transmission system by the operation of the rotary drive source, the hollow propeller is set to a desired rotational speed and pressurized air is supplied. By sending it to the hollow part through the connection housing and the hollow hole and ejecting it from the pores, it is possible to further subdivide the bubbles and generate a large amount of bubbles, and in addition, by the rotation of the hollow propeller, A downstream driving force is applied to the bubbly water mixed fluid to improve the transferability.
【0008】[0008]
【実施例】以下、本発明に係るマイクロバブルの発生装
置の実施例について、図面を参照して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a microbubble generator according to the present invention will be described below with reference to the drawings.
【0009】図1は、本発明に係るマイクロバブルの発
生装置の第1実施例を示しており、符号1は加圧水供給
系(加圧水供給手段)、2は加圧空気供給系(加圧気体
供給手段)、3は流体移送管、4は旋回羽根(旋回流発
生手段)、5はガスチャンバ、6は気泡混合水噴出部
(気泡水混合流体噴出部)である。FIG. 1 shows a first embodiment of a microbubble generator according to the present invention. Reference numeral 1 is a pressurized water supply system (pressurized water supply means), and 2 is a pressurized air supply system (pressurized gas supply). (Means), 3 is a fluid transfer pipe, 4 is a swirl vane (swirl flow generating means), 5 is a gas chamber, and 6 is a bubble-mixed water jetting section (bubble-water mixed fluid jetting section).
【0010】前記加圧水供給系1は、例えば船体の没水
面に設けた吸水口、海水(水)を吸水して加圧水を発生
させるためのポンプ、加圧水の流量・圧力を制御する制
御手段、給水圧力を計測するための給水圧力計や、給水
量を計測するための液量計等を有するものが適用され、
流体移送管3に接続される。The pressurized water supply system 1 is, for example, a water inlet provided on the submerged surface of a ship, a pump for absorbing seawater (water) to generate pressurized water, a control means for controlling the flow rate / pressure of the pressurized water, and a water supply pressure. A water supply pressure gauge for measuring water, a liquid meter for measuring the water supply, etc. are applied.
It is connected to the fluid transfer pipe 3.
【0011】前記加圧空気供給系2は、空気(大気)を
吸引して加圧するためのブロア、空気量を制御する流量
制御手段、空気圧力を計測するための給気圧力計や供給
量を計測するためのガス量計等を有するものが適用され
るとともに、加圧気体供給管2aによりガスチャンバ5
に接続される。The pressurized air supply system 2 includes a blower for sucking and pressurizing air (atmosphere), a flow rate control means for controlling the amount of air, a supply pressure gauge for measuring the air pressure, and a supply amount. What has a gas meter etc. for measurement is applied, and the gas chamber 5 is provided by the pressurized gas supply pipe 2a.
Connected to.
【0012】前記流体移送管3は、加圧水供給系1と気
泡混合水噴出部6との間に接続状態に配され、ガスチャ
ンバ5に囲まれた部分の側壁3aに、周方向及び長手方
向にほぼ均一な間隔を空けて多数の細孔3bが明けられ
たものが採用される。そして、多数の細孔3bの形成範
囲は、旋回羽根4の下流位置近傍となるように設定され
る。The fluid transfer pipe 3 is arranged in a connected state between the pressurized water supply system 1 and the bubble-mixed water jetting part 6, and is provided on the side wall 3a surrounded by the gas chamber 5 in the circumferential direction and the longitudinal direction. The one in which a large number of pores 3b are opened at substantially uniform intervals is adopted. The formation range of the large number of pores 3b is set to be near the downstream position of the swirl vane 4.
【0013】前記旋回羽根4は、複数枚の羽根に捻りを
付与した状態のものを流体移送管3の内部に挿入して、
一体に固定すること等により構成される。The swirl vane 4 is formed by inserting a plurality of vanes in a twisted state into the fluid transfer pipe 3.
It is configured by fixing it integrally.
【0014】前記ガスチャンバ5は、流体移送管3の回
りを、多数の細孔3bの形成位置で囲んで、加圧空気を
貯留するための空気プレナム部5aが形成される。In the gas chamber 5, an air plenum 5a for storing pressurized air is formed by surrounding the fluid transfer pipe 3 at a position where a large number of pores 3b are formed.
【0015】前記気泡混合水噴出部6は、船舶等の航走
体の摩擦低減対象表面である船体の表面に配されて、空
気と水とを所望の比率で混合した気泡水混合流体を海水
(水)中に、例えば斜め後方に向けて噴出するスリット
状または小孔状の噴出口を有するものが適用される。The bubble-mixed water jetting section 6 is arranged on the surface of the hull, which is the surface for friction reduction of a running body such as a ship, and mixes air-water in a desired ratio with a sea-water mixture. In (water), for example, one having a slit-shaped or small-hole-shaped ejection port ejecting obliquely rearward is applied.
【0016】このように構成されている図1例のマイク
ロバブルの発生装置では、加圧水供給系1を作動させる
と、吸水された海水等の水が加圧されて流体移送管3に
送り出され、流体移送管3の内部に流水が発生する。こ
の流水は、流体移送管3の途中に旋回羽根4が介在して
いることにより、流水の方向に回転を付与する旋回力が
付与され、旋回羽根4の下流では矢印で示すような旋回
流となり、細孔と流水の相対速度が上がるため、容易に
気泡が発生される。このように発生した気泡水混合流体
が気泡混合水噴出部6まで移送され、気泡混合水噴出部
6から海水(水)中に噴出する。In the micro-bubble generator of the example shown in FIG. 1 configured as described above, when the pressurized water supply system 1 is operated, the absorbed water such as seawater is pressurized and sent to the fluid transfer pipe 3. Running water is generated inside the fluid transfer pipe 3. The swirl vanes 4 are provided in the middle of the fluid transfer pipe 3 so that swirl force imparting rotation in the direction of the swirl is imparted to this running water, and a swirling flow as indicated by an arrow is provided downstream of the swirling vanes 4. Since the relative speed of the pores and the flowing water increases, bubbles are easily generated. The bubble-water mixed fluid thus generated is transferred to the bubble-mixed water jetting unit 6 and jetted from the bubble-mixed water jetting unit 6 into seawater (water).
【0017】また、加圧空気供給系2を作動させると、
加圧空気が加圧気体供給管2aを経由してガスチャンバ
5の空気プレナム部5aに送り込まれ、加圧空気が、多
数の細孔3bから流水中に噴出させられる。When the pressurized air supply system 2 is operated,
The pressurized air is sent to the air plenum portion 5a of the gas chamber 5 via the pressurized gas supply pipe 2a, and the pressurized air is jetted into the running water from the large number of pores 3b.
【0018】この場合にあって、流体移送管3の内部に
流水が発生していると、細孔3bから噴出する気体流と
旋回流とが交差状態となり、旋回流の移動速度が十分で
ある際には、旋回流によって気体流が切断される現象が
発生する。例えば、細孔3bの口径が小さく、水の移動
速度が大きい場合には、気体流が旋回流の方向に頻繁に
切断されることに基づいて、多数の径の小さな気泡が生
成されて流水に混入した状態となり、気泡水混合流体が
流体移送管3によって所望箇所の気泡混合水噴出部6ま
で移送される。なお、気泡水混合流体の気泡は、細孔3
bの大きさ,数,気体量,流水の移送速度,旋回速度等
によって、気泡径、量及び気泡率が設定される。In this case, if running water is generated inside the fluid transfer pipe 3, the gas flow ejected from the pores 3b and the swirling flow intersect with each other, and the swirling flow moves at a sufficient speed. At this time, a phenomenon occurs in which the gas flow is cut by the swirling flow. For example, when the diameter of the pores 3b is small and the moving speed of water is high, a large number of small bubbles are generated in the running water because the gas flow is frequently cut in the direction of the swirling flow. In the mixed state, the bubble-water mixed fluid is transferred by the fluid transfer pipe 3 to the bubble-mixed water jetting section 6 at a desired position. It should be noted that the bubbles of the bubble-water mixed fluid have pores 3
The bubble diameter, amount, and bubble rate are set by the size and number of b, the amount of gas, the flow speed of the flowing water, the swirling speed, and the like.
【0019】図2は、本発明に係るマイクロバブルの発
生装置の第2実施例を示しており、図1に示した流体移
送管3の内部に、中空プロペラ7が回転可能に配され
て、該中空プロペラ7から加圧空気の噴出が行なわれ
る。該中空プロペラ7は、加圧空気が送り込まれる中空
部7aと、該中空部7aと外部とを連通させ加圧空気を
流水中に噴出させるための多数の細孔7bと、回転支持
及び加圧空気供給を行なう中空状態のプロペラ軸7c
と、該プロペラ軸7cに形成される中空穴7dとを有す
るものが適用される。そして、流体移送管3には、前述
の加圧気体供給管2aが、貫通部11により気密状態に
かつ内外貫通状態に配され、加圧気体供給管2aに一体
に配される支持ブラケット12に、スイベルジョイント
13及び軸受け14が配されて、加圧気体供給管2aと
中空プロペラ7の中空部7aとが、スイベルジョイント
13及び中空穴7dにより接続される。FIG. 2 shows a second embodiment of the device for generating microbubbles according to the present invention, in which a hollow propeller 7 is rotatably arranged inside the fluid transfer pipe 3 shown in FIG. Pressurized air is ejected from the hollow propeller 7. The hollow propeller 7 has a hollow portion 7a into which pressurized air is sent, a large number of pores 7b for communicating the hollow portion 7a with the outside and ejecting the pressurized air into running water, rotation support and pressurization. Hollow propeller shaft 7c for supplying air
And a hollow hole 7d formed in the propeller shaft 7c are applied. The above-mentioned pressurized gas supply pipe 2a is arranged in the fluid transfer pipe 3 in an airtight state and in an inside / outside penetrating state by the penetrating portion 11, and is attached to the support bracket 12 which is arranged integrally with the pressurized gas supply pipe 2a. The swivel joint 13 and the bearing 14 are arranged so that the pressurized gas supply pipe 2a and the hollow portion 7a of the hollow propeller 7 are connected by the swivel joint 13 and the hollow hole 7d.
【0020】該第2実施例では、流体移送管3の内部に
白抜きの矢印で示すような流水が形成されているととも
に、加圧空気供給系2からの加圧空気が加圧気体供給管
2aを経由してスイベルジョイント13に送り込まれる
と、非回転部分から回転部分であるプロペラ軸7cの中
空穴7dへと加圧空気が引き継がれて中空部7aに送り
込まれ、多数の細孔7bから流水中に分割状態の空気流
が噴出させられ、気泡の生成が行なわれる。この際に、
中空プロペラ7は、スイベルジョイント13及び軸受け
14によって回転可能に支持されているから、流水との
交差により回転力が付与される。したがって、中空プロ
ペラ7の回転とともに細孔7bによる空気流の噴出位置
が周方向に変動する。このため、細孔と流水の相対速度
が速くなり、容易に気泡が生じる。細孔7bが流体移送
管3の半径方向に均一に配されている場合には、中空プ
ロペラ7の回転により、加圧気体供給管2aの内部断面
の各所で空気流の噴出が行なわれて、流水との交差に基
づく切断による気泡の生成がむらなく行なわれ、気泡密
度が均一化した状態の気泡水混合流体が流体移送管3の
下流に送り出される。In the second embodiment, running water as shown by an outlined arrow is formed inside the fluid transfer pipe 3, and the pressurized air from the pressurized air supply system 2 is supplied to the pressurized gas supply pipe. When it is sent to the swivel joint 13 via 2a, the pressurized air is taken over from the non-rotating part to the hollow hole 7d of the propeller shaft 7c, which is the rotating part, and is sent to the hollow part 7a. A split air stream is ejected into the running water to generate bubbles. At this time,
Since the hollow propeller 7 is rotatably supported by the swivel joint 13 and the bearing 14, a rotational force is applied by the intersection with the running water. Therefore, as the hollow propeller 7 rotates, the jet position of the airflow from the pores 7b fluctuates in the circumferential direction. For this reason, the relative speed of the pores and the flowing water is increased, and bubbles are easily generated. When the pores 7b are evenly arranged in the radial direction of the fluid transfer pipe 3, the rotation of the hollow propeller 7 causes the air flow to be ejected at various points on the inner cross section of the pressurized gas supply pipe 2a. The bubbles are uniformly generated by the cutting based on the intersection with the running water, and the bubble-water mixed fluid having the uniform bubble density is sent to the downstream of the fluid transfer pipe 3.
【0021】次いで、図3は、本発明に係るマイクロバ
ブルの発生装置の第3実施例を示している。該第3実施
例にあっては、図2例の技術に加えて、流体移送管3の
外方に配され中空プロペラ7を強制回転させるための回
転駆動源21と、該回転駆動源21と中空プロペラ7と
を接続して回転力を伝達するためのフレキシブルワイヤ
からなる回転力伝達系22と、加圧気体供給管2a及び
回転力伝達系22を気密・液密状態及び回転許容状態に
挿通させる貫通部11と、プロペラ軸7cの回転を許容
した状態とするとともに加圧気体供給管2aに接続され
る接続ハウジング23と、プロペラ軸7cの中空穴7d
を接続ハウジング23の内部に接続する接続穴7eとを
有している。Next, FIG. 3 shows a third embodiment of the micro-bubble generator according to the present invention. In the third embodiment, in addition to the technique of FIG. 2, a rotary drive source 21 arranged outside the fluid transfer pipe 3 for forcibly rotating the hollow propeller 7, and the rotary drive source 21. Insert the rotating force transmission system 22 made of a flexible wire for connecting the hollow propeller 7 and transmitting the rotating force, and the pressurized gas supply pipe 2a and the rotating force transmission system 22 in an airtight / liquid-tight state and a rotation-allowed state. The penetrating portion 11, the connecting housing 23 that allows the rotation of the propeller shaft 7c and is connected to the pressurized gas supply pipe 2a, and the hollow hole 7d of the propeller shaft 7c.
To the inside of the connection housing 23.
【0022】第3実施例では、回転駆動源21を作動さ
せると、回転力が回転力伝達系22を経由して流体移送
管3の内部のプロペラ軸7cに伝達され、中空プロペラ
7が所望の回転速度で回転させられるとともに、加圧空
気供給系2からの加圧空気が、接続ハウジング23、接
続穴7e、中空穴7d、中空部7aを経由して、細孔7
bから空気流として噴出させられることにより、空気流
と流水との回転方向の交差速度(相対速度)が大きくな
って、気泡の一層の細分化が図られるとともに、空気流
量の制限が少なくなって大量の気泡発生が可能になる。
加えて、中空プロペラ7の回転によって、気泡水混合流
体を下流方向に駆動することにより移送性が向上する。In the third embodiment, when the rotary drive source 21 is operated, the rotational force is transmitted to the propeller shaft 7c inside the fluid transfer pipe 3 via the rotational force transmission system 22, so that the hollow propeller 7 is desired. The compressed air from the compressed air supply system 2 is rotated at a rotational speed, and the compressed air from the compressed air supply system 2 passes through the connection housing 23, the connection hole 7e, the hollow hole 7d, and the hollow portion 7a,
By being ejected from b as an air flow, the crossing speed (relative speed) of the air flow and running water in the rotation direction increases, and the air bubbles are further subdivided and the air flow rate limit is reduced. A large amount of bubbles can be generated.
In addition, the rotation of the hollow propeller 7 drives the bubble-water mixed fluid in the downstream direction, thereby improving the transferability.
【0023】[0023]
【発明の効果】本発明に係るマイクロバブルの発生装置
にあっては、以下の効果を奏する。 (1) 側壁に多数の細孔が明けられた流体移送管と、
流体移送管の内部に挿入される旋回流発生手段と、細孔
から加圧気体を送り込んで噴出させる加圧気体供給手段
とを具備して、流水を旋回状態とすることにより、細孔
近傍の水の移動速度を大きくして空気流の切断を頻繁に
し、気泡水混合流体の発生効率を高めることができる。 (2) 流体移送管の内部に、中空プロペラを配して加
圧気体を送り込んで、流水中に噴出させることにより、
流体中にむらなく気泡を混合して、気泡水混合流体中の
気泡密度を均一化することができる。 (3) 流体移送管の内部に中空プロペラを配し、回転
駆動源によって強制回転させることにより、空気流と流
水との交差部分の速度を大きくして、空気流を微細に切
断した径の小さな気泡を大量に生成し、かつ気泡水混合
流体の気泡量を大きくすることができる。 (4) 中空プロペラの回転によって気泡水混合流体を
下流に駆動することにより、気泡水混合流体の移送性を
向上させることができる。 (5) 気泡水混合流体として摩擦低減箇所に送り込む
ことにより、気泡を単独で吹き込む技術と比較して、流
体の吹き出しのためのエネルギ消費を少なくして、摩擦
低減時の実用性を高めることができる。The microbubble generating device according to the present invention has the following effects. (1) A fluid transfer tube having a large number of pores on its side wall,
A swirl flow generating means inserted into the fluid transfer pipe and a pressurized gas supply means for feeding and ejecting pressurized gas from the pores are provided, and the swirling state of the running water is provided to generate a swirling state. It is possible to increase the moving speed of water, frequently cut the air flow, and improve the generation efficiency of the bubbly water mixed fluid. (2) By arranging a hollow propeller inside the fluid transfer pipe, feeding a pressurized gas and jetting it into running water,
It is possible to uniformly mix bubbles in the fluid and make the bubble density in the bubble-water mixed fluid uniform. (3) By placing a hollow propeller inside the fluid transfer pipe and forcibly rotating it by a rotary drive source, the speed of the intersection of the air flow and running water is increased, and the air flow is finely cut to a small diameter. It is possible to generate a large amount of bubbles and increase the amount of bubbles in the bubble-water mixed fluid. (4) By transporting the bubbly water mixed fluid downstream by the rotation of the hollow propeller, the transportability of the bubbly water mixed fluid can be improved. (5) Compared with the technique of blowing bubbles alone, by sending the bubble-water mixed fluid to the friction-reduced portion, the energy consumption for blowing the fluid can be reduced and the practicality at the time of friction reduction can be improved. it can.
【図1】本発明に係るマイクロバブルの発生装置の第1
実施例を示すブロック図を併記した正断面図である。FIG. 1 is a first microbubble generator according to the present invention.
FIG. 3 is a front sectional view with a block diagram showing an embodiment together.
【図2】本発明に係るマイクロバブルの発生装置の第2
実施例を示す一部を破断した正面図である。FIG. 2 is a second microbubble generator according to the present invention.
It is the front view which fractured | ruptured a part which shows an Example.
【図3】本発明に係るマイクロバブルの発生装置の第3
実施例を示す一部を破断した正面図である。FIG. 3 is a third embodiment of the microbubble generator according to the present invention.
It is the front view which fractured | ruptured a part which shows an Example.
1 加圧水供給系(加圧水供給手段) 2 加圧空気供給系(加圧気体供給手段) 2a 加圧気体供給管 3 流体移送管 3a 側壁 3b 細孔 4 旋回羽根(旋回流発生手段) 5 ガスチャンバ 5a 空気プレナム部 6 気泡混合水噴出部(気泡水混合流体噴出部) 7 中空プロペラ 7a 中空部 7b 細孔 7c プロペラ軸 7d 中空穴 7e 接続穴 11 貫通部 12 支持ブラケット 13 スイベルジョイント 14 軸受け 21 回転駆動源 22 回転力伝達系 23 接続ハウジング 1 Pressurized Water Supply System (Pressurized Water Supply Means) 2 Pressurized Air Supply System (Pressurized Gas Supply Means) 2a Pressurized Gas Supply Pipe 3 Fluid Transfer Pipe 3a Side Wall 3b Pores 4 Swirling Blades (Swirl Flow Generation Means) 5 Gas Chamber 5a Air plenum 6 Bubble mixed water jetting part (bubble water mixed fluid jetting part) 7 Hollow propeller 7a Hollow part 7b Pore 7c Propeller shaft 7d Hollow hole 7e Connection hole 11 Penetration part 12 Support bracket 13 Swivel joint 14 Bearing 21 Rotational drive source 22 torque transmission system 23 connection housing
フロントページの続き (72)発明者 高橋 義明 東京都江東区豊洲二丁目1番1号 石川島 播磨重工業株式会社東京第一工場内 (72)発明者 渡辺 修 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 (72)発明者 光武 英生 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 (72)発明者 丸山 尚一 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内Front Page Continuation (72) Inventor Yoshiaki Takahashi 2-1-1 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Ltd. Tokyo No. 1 Factory (72) Inventor Osamu Watanabe 1 Shinshinarahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Ishikawajima Harima Heavy Industries Ltd. Technical Research Institute (72) Inventor Hideo Mitsutake 1 Shin-Nakahara-cho, Isogo-ku, Yokohama-shi Kanagawa Ishikawajima Harima Heavy Industries Ltd. Technical Research Institute (72) Inventor Shoichi Maruyama Isogo-ku, Yokohama-shi Kanagawa Prefecture Shin-Nakahara Town No. 1 Ishi Kawashima Harima Heavy Industries Ltd. Technical Research Institute
Claims (4)
て、加圧水供給手段(1)に接続され側壁(3a)に多
数の細孔(3b)が明けられた流体移送管(3)と、該
流体移送管の内部に挿入状態に配され流水に旋回流を付
与する旋回流発生手段(4)と、流体移送管の回りを囲
んだ状態に配され細孔に連通状態のガスチャンバ(5)
と、該ガスチャンバに接続され加圧気体を送り込んで細
孔から噴出させる加圧気体供給手段(2)とを具備する
ことを特徴とするマイクロバブルの発生装置。1. A fluid transfer pipe (3) for generating a bubbling water mixed fluid, comprising: a fluid transfer pipe (3) connected to a pressurized water supply means (1) and having a large number of pores (3b) formed in a side wall (3a) thereof. A swirl flow generating means (4) which is disposed inside the fluid transfer pipe and which imparts a swirl flow to the flowing water, and a gas chamber (5) which is disposed around the fluid transfer pipe and is in communication with the pores. )
And a pressurized gas supply means (2) which is connected to the gas chamber and which feeds pressurized gas and ejects it from the pores.
て、加圧水供給手段(1)に接続され加圧水が挿通させ
られる流体移送管(3)と、該流体移送管の内部に配さ
れ表面に中空部(7a)と連通状態の多数の細孔(7
b)が明けられかつ流水との交差により回転させられる
中空プロペラ(7)と、該中空プロペラの中空部に接続
され加圧気体を送り込む加圧気体供給手段(2)とを具
備することを特徴とするマイクロバブルの発生装置。2. A device for generating a bubbling water mixed fluid, comprising a fluid transfer pipe (3) which is connected to a pressurized water supply means (1) and through which pressurized water is inserted, and a surface which is arranged inside the fluid transfer pipe. Many pores (7) communicating with the hollow part (7a)
b) A hollow propeller (7) which is opened and is rotated by crossing with running water, and a pressurized gas supply means (2) which is connected to the hollow portion of the hollow propeller and sends a pressurized gas. Micro bubble generator.
(7)とを接続して回転力を伝達する回転力伝達系(2
2)と、回転力伝達系に接続され中空プロペラを強制回
転させる回転駆動源(21)とを具備することを特徴と
する請求項2記載のマイクロバブルの発生装置。3. A rotational force transmission system (2) for transmitting rotational force by connecting the outside of the fluid transfer pipe (3) and the hollow propeller (7).
The device for generating microbubbles according to claim 2, comprising 2) and a rotary drive source (21) connected to a rotational force transmission system to forcibly rotate the hollow propeller.
c)に中空穴(7d)が形成され、該プロペラ軸(7
c)の回りに、プロペラ軸の回転を許容するとともに中
空穴に接続状態の接続ハウジング(23)が配され、該
接続ハウジングに加圧気体供給手段(2)が接続される
ことを特徴とする請求項2または3記載のマイクロバブ
ルの発生装置。4. A propeller shaft (7) of a hollow propeller (7).
A hollow hole (7d) is formed in c), and the propeller shaft (7
The connection housing (23) which allows the rotation of the propeller shaft and is connected to the hollow hole is arranged around c), and the pressurized gas supply means (2) is connected to the connection housing. The device for generating microbubbles according to claim 2 or 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7032724A JPH08230761A (en) | 1995-02-21 | 1995-02-21 | Equipment for generating micro bubble |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7032724A JPH08230761A (en) | 1995-02-21 | 1995-02-21 | Equipment for generating micro bubble |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08230761A true JPH08230761A (en) | 1996-09-10 |
Family
ID=12366798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7032724A Withdrawn JPH08230761A (en) | 1995-02-21 | 1995-02-21 | Equipment for generating micro bubble |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08230761A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015129431A1 (en) * | 2014-02-28 | 2015-09-03 | 三菱重工業株式会社 | Frictional resistance reduction device for ship |
KR20170001131A (en) * | 2015-06-25 | 2017-01-04 | 삼성중공업 주식회사 | Apparatus for reducing frictional-resistance |
CN109550172A (en) * | 2019-01-17 | 2019-04-02 | 湖南科技大学 | A kind of lotion foam-generating device and its working method for fire extinguishing |
CN110567147A (en) * | 2019-09-25 | 2019-12-13 | 芜湖美的厨卫电器制造有限公司 | water heater |
CN113387453A (en) * | 2021-07-15 | 2021-09-14 | 中建安装集团有限公司 | Gas-liquid vertical annular cutting micro-interface cavitation mixing equipment |
-
1995
- 1995-02-21 JP JP7032724A patent/JPH08230761A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015129431A1 (en) * | 2014-02-28 | 2015-09-03 | 三菱重工業株式会社 | Frictional resistance reduction device for ship |
JP2015163492A (en) * | 2014-02-28 | 2015-09-10 | 三菱重工業株式会社 | Friction reduction device of ship |
KR20170001131A (en) * | 2015-06-25 | 2017-01-04 | 삼성중공업 주식회사 | Apparatus for reducing frictional-resistance |
CN109550172A (en) * | 2019-01-17 | 2019-04-02 | 湖南科技大学 | A kind of lotion foam-generating device and its working method for fire extinguishing |
CN110567147A (en) * | 2019-09-25 | 2019-12-13 | 芜湖美的厨卫电器制造有限公司 | water heater |
CN110567147B (en) * | 2019-09-25 | 2021-10-15 | 芜湖美的厨卫电器制造有限公司 | Water heater |
CN113387453A (en) * | 2021-07-15 | 2021-09-14 | 中建安装集团有限公司 | Gas-liquid vertical annular cutting micro-interface cavitation mixing equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1994026583A1 (en) | Method of reducing friction on cruising body, cruising body with reduced friction, method of and apparatus for generating microbubbles for use in reduction of friction | |
JP6103517B2 (en) | Cross-flow pump ultrafine bubble flow supply device | |
WO1990005583A1 (en) | Liquid-gas mixing device | |
JP2014097449A5 (en) | ||
JP4866990B2 (en) | Hull frictional resistance reduction device | |
JPH08230761A (en) | Equipment for generating micro bubble | |
JPH08230763A (en) | Equipment for generating micro bubble | |
JP3058595B2 (en) | Gas-liquid mixing device | |
JP2001058142A (en) | Microbubble discharging nozzle, container equipped with nozzle and discharge accelerating cylinder | |
JPH08225094A (en) | Microbubble generating device | |
US3643438A (en) | Jet engines | |
JP2016064812A (en) | Hull fluid resistance reduction device | |
JPH08229371A (en) | Microbubble generator | |
JPH08229370A (en) | Microbubble generator | |
JPH09151913A (en) | Method of reducing friction of ship etc and friction reduced ship | |
JPH08239084A (en) | Friction-reduced ship | |
JPH08230762A (en) | Equipment for generating micro bubble | |
JPH1159563A (en) | Friction reducing ship and air generator | |
JPH10216794A (en) | Water area purifying device | |
JPH08230760A (en) | Equipment for generating micro bubble | |
JPH08230764A (en) | Equipment for generating micro bubble | |
JP2599278Y2 (en) | Ship with bubble generator | |
JPH08225095A (en) | Microbubble generating device | |
JP2001328584A (en) | Frictional resistance-reduced ship | |
JPH08229372A (en) | Microbubble jetting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020507 |