JP2002191950A - Fine air bubble generator using special nozzle - Google Patents

Fine air bubble generator using special nozzle

Info

Publication number
JP2002191950A
JP2002191950A JP2000392677A JP2000392677A JP2002191950A JP 2002191950 A JP2002191950 A JP 2002191950A JP 2000392677 A JP2000392677 A JP 2000392677A JP 2000392677 A JP2000392677 A JP 2000392677A JP 2002191950 A JP2002191950 A JP 2002191950A
Authority
JP
Japan
Prior art keywords
liquid
nozzle
gas
bubbles
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000392677A
Other languages
Japanese (ja)
Inventor
Yoichiro Matsumoto
洋一郎 松本
Fumio Takemura
文男 竹村
Rabuha Mashan
ラブハ マシャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
New Energy and Industrial Technology Development Organization
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
New Energy and Industrial Technology Development Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, New Energy and Industrial Technology Development Organization filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000392677A priority Critical patent/JP2002191950A/en
Publication of JP2002191950A publication Critical patent/JP2002191950A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a uniform fine air bubble generator which produces uniform fine air bubbles and has a high energy efficiency. SOLUTION: A gas nozzle for discharging a gas is arranged at the central part and a group of nozzles consisting of a plurality of liquid nozzles for jetting a liquid is arranged on the surrounding part of it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は微小の気泡を均一に発
生させる微小気泡発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microbubble generator for generating microbubbles uniformly.

【0002】化学工業の分野において、化学反応を促進
させたり、液体中にガスを吸収させたりする場合の気泡
表面積を大きくする場合などに、微小気泡を発生させる
必要がある。
[0002] In the field of the chemical industry, it is necessary to generate microbubbles to promote a chemical reaction or to increase the surface area of bubbles when a gas is absorbed in a liquid.

【0003】本発明は、広くは化学工学の分野における
液相化学反応システムやガス吸収システムの効率向上に
寄与するものである。
The present invention contributes to improving the efficiency of a liquid-phase chemical reaction system and a gas absorption system in the field of chemical engineering.

【0004】[0004]

【従来の技術】気泡を発生させる従来技術としては、ノ
ズルから噴出する方法、液表面の波で気体を巻き込む方
法、キャビテーションを利用する方法、高速液流中に気
体を吹き出す方法などがある。
2. Description of the Related Art As a conventional technique for generating bubbles, there are a method of ejecting gas from a nozzle, a method of entraining gas by a wave on a liquid surface, a method of utilizing cavitation, and a method of blowing gas into a high-speed liquid flow.

【0005】[0005]

【発明が解決しようとする課題】ノズルを用いる方法
は、気泡径の制御が容易である。しかし、1mm以下の
気泡発生のためには100μm程度のノズルが必要にな
るので、微小気泡発生のためにはノズルの加工が難しく
なること、多量の気泡生成のためには効率が悪いこと、
保守に手間がかかることなどが問題になる。液表面の気
体巻き込み、高速液流を用いる方法は、気泡径の制御や
大径気泡の生成の抑制が難しい。また、キャビテーショ
ンによる生成は、一般的に投入エネルギに対する発生効
率が悪いという欠点がある。このようなことから、ここ
では、均一な微小気泡が生成でき、かつエネルギー効率
の高い発生装置の開発が望まれている。この発明は上記
の如き事情に鑑みてなされたものであって、均一な微小
気泡が生成でき、かつエネルギー効率の高い均一な微小
気泡発生装置を提供することを目的とするものである。
In the method using a nozzle, control of the bubble diameter is easy. However, since a nozzle of about 100 μm is required for generating bubbles of 1 mm or less, it is difficult to process the nozzle for generating minute bubbles, and it is inefficient for generating a large amount of bubbles,
The problem is that the maintenance is troublesome. In the method using gas entrainment on the liquid surface and high-speed liquid flow, it is difficult to control the bubble diameter and suppress the generation of large-diameter bubbles. In addition, generation by cavitation generally has a drawback that generation efficiency with respect to input energy is low. For these reasons, development of a generator that can generate uniform microbubbles and has high energy efficiency is desired here. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a uniform microbubble generator capable of generating uniform microbubbles and having high energy efficiency.

【0006】[0006]

【課題を解決するための手段】この目的に対応して、こ
の発明の微小気泡発生装置は、中心部に気体吐出用の気
体ノズルを配置し周囲部に複数の液体吹出し用の液体ノ
ズルからなるノズル群を配置してなることを特徴として
いる。
In response to this object, a microbubble generator according to the present invention has a gas nozzle for discharging gas at a central portion and a plurality of liquid nozzles for discharging liquid at a peripheral portion. It is characterized in that a nozzle group is arranged.

【0007】[0007]

【実施の形態】以下、この発明の詳細を一実施例を示す
図面について説明する。図1及び図2において、1は微
小気泡発生装置である。微小気泡発生装置1は気体吐出
用の気体ノズル2と液体吐出用の複数の液体ノズル3か
らなる液体ノズル群4とを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings showing an embodiment. 1 and 2, reference numeral 1 denotes a microbubble generator. The microbubble generator 1 includes a gas nozzle 2 for discharging gas and a liquid nozzle group 4 including a plurality of liquid nozzles 3 for discharging liquid.

【0008】気体ノズル2は1本若しくは複数本あって
微小気泡発生装置1の中心部に配置されていて、径は例
えば径が0.1〜10mmφであり、長さは1〜100
0mmである。液体ノズル群4の液体ノズル3は例えば
3本以上あって(この実施例の場合は8本)、気体ノズ
ル2の周囲にあって、0.5〜10mmφの円上に配置
されている。液体ノズル3の径は例えば0.01〜10
mmφである。気体ノズル2から吐出される気体の流速
は液体ノズル群4から吐出される液体の流速よりも小さ
く、例えば前者は10ml/min〜100ml/mi
nであり、後者は20ml/min〜1000ml/m
inである。
One or a plurality of gas nozzles 2 are arranged at the center of the microbubble generator 1 and have a diameter of, for example, 0.1 to 10 mmφ and a length of 1 to 100 mm.
0 mm. The number of the liquid nozzles 3 in the liquid nozzle group 4 is, for example, three or more (eight in the case of this embodiment), and the liquid nozzles 3 are arranged on a circle of 0.5 to 10 mmφ around the gas nozzle 2. The diameter of the liquid nozzle 3 is, for example, 0.01 to 10
mmφ. The flow velocity of the gas discharged from the gas nozzle 2 is smaller than the flow velocity of the liquid discharged from the liquid nozzle group 4, for example, the former is 10 ml / min to 100 ml / mi.
n, the latter being from 20 ml / min to 1000 ml / m
in.

【0009】このように構成された微小気泡発生装置1
を使用して微小気泡を発生させる場合には、微小気泡発
生装置1を液体中に浸漬させ、気体ノズル2から気体を
吐出させ、液体ノズル群4から液体を吐出させる。吐出
された気体は周囲から吐出した液体によって破砕され、
微小な気泡が液体中に発生する。
[0009] The microbubble generator 1 configured as described above.
When the microbubbles are generated by using the microbubbles, the microbubble generator 1 is immersed in the liquid, the gas is discharged from the gas nozzles 2, and the liquid is discharged from the liquid nozzle group 4. The discharged gas is crushed by the liquid discharged from the surroundings,
Micro bubbles are generated in the liquid.

【0010】[0010]

【実験例】本研究では、図3に示されるようなノズル出
口の断面形状を持つ円管を接着して製作した円管群ノズ
ルを中心に検討した。本ノズルは全てステンレス製であ
り、本実験で用いた最小孔径は500μmであるため、
加工方法によらず製作は非常に容易である。円管群は、
中心の直径1.0mm、長さ80mmのノズルと、周辺
部の直径0.5mm、長さ10mmの8本のノズルによ
り構成される。中心部と周辺部は別々の供給口に接続さ
れており、周辺部8本からは同じ流体が同一流量で噴出
する。このノズルを(w)600×(d)400×
(h)600mmのアクリル製水槽下部中央に固定し、
実験を行った。供給流体として、気相には空気、液相に
は濾過した水道水を用いた。 気泡群気泡径分布測定 サブミリオーダの微小気泡は、慣性が非常に小さいため
に搬送流体に容易に追従し、点電極プローブなどの接触
式センサでは正確に捉えることが難しい。そのため、大
径気泡の測定時よりも非接触測定法の導入が重要にな
る。本実験では、画像処理法を採用した。カメラは、高
速シャッタを備えたCMD式デジタルハイスピードカメ
ラ(NAC,Memorecam Ci)を使用した。
このカメラの空間解像度は572×432ピクセル、輝
度分解能は白黒モード時で8bit、この条件での最大
サンプルレートは500画像/sである。撮影は、光
源、水槽、カメラが一直線上に並ぶように配置して、前
方散乱光で行った。光源にはハロゲンランプを用いた。
水槽の光源側の面には拡散板としてトレーシングペーパ
ーを挿入し、疑似的な拡散光源とした。この構成では、
気泡は輪郭の鮮明な「影」としてカメラに記録されるた
め、側方散乱や前方散乱に比べて粒径測定の精度が向上
する。なお、撮影は白黒モードで行った。
[Experimental Example] In this study, the study focused on a circular tube group nozzle manufactured by bonding circular tubes having a nozzle outlet sectional shape as shown in FIG. Since the nozzles are all made of stainless steel and the minimum pore size used in this experiment is 500 μm,
The production is very easy regardless of the processing method. The tube group is
It is composed of a central nozzle having a diameter of 1.0 mm and a length of 80 mm, and eight peripheral nozzles having a diameter of 0.5 mm and a length of 10 mm. The central part and the peripheral part are connected to different supply ports, and the same fluid is ejected from the eight peripheral parts at the same flow rate. This nozzle is (w) 600 × (d) 400 ×
(H) fixed to the center of the lower part of a 600 mm acrylic water tank,
An experiment was performed. As the supply fluid, air was used for the gas phase, and filtered tap water was used for the liquid phase. Bubble group bubble diameter distribution measurement Sub-millimeter microbubbles have a very small inertia and easily follow the carrier fluid, making it difficult to accurately detect them with a contact sensor such as a point electrode probe. Therefore, it is more important to introduce a non-contact measurement method than when measuring a large-diameter bubble. In this experiment, an image processing method was adopted. The camera used was a CMD digital high-speed camera (NAC, Memorycam Ci) equipped with a high-speed shutter.
The spatial resolution of this camera is 572 × 432 pixels, the luminance resolution is 8 bits in the monochrome mode, and the maximum sample rate under this condition is 500 images / s. Photographing was performed using forward scattered light with the light source, aquarium, and camera arranged so as to be aligned. A halogen lamp was used as a light source.
Tracing paper was inserted as a diffusion plate on the surface of the water tank on the light source side to make a pseudo diffusion light source. In this configuration,
Bubbles are recorded in the camera as sharp "shadows", which improves the accuracy of particle size measurements compared to side scatter and forward scatter. The photography was performed in the black and white mode.

【0011】ハイスピードカメラで取得した気泡画像
は、無圧縮のまま8bitの磁気メディア(Iomeg
a,Jaz Drive)に記録され、撮影終了後にコ
ンピュータで汎用画像フォーマットに変換される。気泡
径は、コンピュータのソフトウェア上で背景処理、ノイ
ズ除去、二値化、気泡中心部のスポット除去、ラベリン
グ、気泡位置と面積等価直径の算出、気泡のエッジ検
出、重なっている気泡像の検出、気泡径の算出という処
理を連続的に行うことにより算出した。なお、画像処理
は、気泡が変形の有無により二種類の手順を踏んでい
る。
The bubble image obtained by the high-speed camera is an uncompressed 8-bit magnetic medium (Iomeg).
a, Jaz Drive), and is converted into a general-purpose image format by a computer after photographing is completed. The bubble diameter can be calculated using software on a computer, such as background processing, noise removal, binarization, spot removal at the center of the bubble, labeling, calculation of bubble position and area equivalent diameter, edge detection of bubbles, detection of overlapping bubble images, The calculation was performed by continuously performing the process of calculating the bubble diameter. Note that the image processing is performed in two types of procedures depending on whether or not the bubbles are deformed.

【0012】各実験条件での粒径分布や統計量は、10
枚から30枚程度の画像が求められた1000個以上の
気泡データを使って算出した。処理時間は、相互相関計
算を行う場合で通常1−2分、行わない場合で約10秒
であり、全て自動でバッチ処理されるようになってい
る。実験は、水と空気の出口を入れ替えて二種類を行っ
た。可視化実験の結果、中心部から空気を吹き出した場
合の方が小さい気泡が多く観察された。また、一次流空
気の流量QAを20ml/minに保ち、2次流の水の
流量QWを変化させた場合の可視化画像からは次のよう
な結果が得られた。水流量QWが0の場合、生成される
気泡径は4mm程度、気泡間隔は常に一定で、気泡供給
量が安定している。QWを100ml/minまで増加
させると、液相の乱れで気泡が大きく拡散し、僅かな微
小気泡の生成が確認されたが、大部分の気泡の大きさは
ほとんど変化しなかった。水の流量を更に増加させ、3
00ml/minに到達すると、流動様式は大幅に変化
し多量の微小気泡の生成が行われるようになる。レイノ
ズル数が完全に遷移レイノルズ数を超えるQW=500
ml/minでは、1mmオーダの気泡は完全に消滅
し、これ以降、水の流量を増加させても流動様式に大幅
な変化は観察されなかった。
The particle size distribution and statistics under each experimental condition are 10
The calculation was performed using data of 1,000 or more bubbles from which about 30 images were obtained. The processing time is usually 1-2 minutes when the cross-correlation calculation is performed, and about 10 seconds when the cross-correlation calculation is not performed, and the batch processing is performed automatically. In the experiment, two types of water and air outlets were exchanged. As a result of the visualization experiment, many small bubbles were observed when air was blown out from the center. The following results were obtained from the visualized image when the flow rate QA of the primary flow air was kept at 20 ml / min and the flow rate QW of the secondary flow water was changed. When the water flow rate QW is 0, the generated bubble diameter is about 4 mm, the bubble interval is always constant, and the bubble supply amount is stable. When QW was increased to 100 ml / min, bubbles were greatly diffused due to turbulence of the liquid phase, and generation of slight microbubbles was confirmed, but the size of most of the bubbles was hardly changed. Further increase the flow rate of water, 3
When the flow rate reaches 00 ml / min, the flow pattern changes drastically, and a large amount of microbubbles is generated. QW = 500 where the Reynolds number completely exceeds the transition Reynolds number
At ml / min, bubbles of the order of 1 mm disappeared completely, and no significant change in the flow pattern was observed thereafter even if the flow rate of water was increased.

【0013】図4に空気流量20ml/minの場合で
の粒径分布を示す。水の流量が0の場合には気泡径はほ
ぼ均一で、約4mmであった。この条件では微小気泡の
生成は全く行われない。水流量を300ml/minま
で増加させると、平均粒径は急激に減少し、分布も小粒
径にピークを持つ形状に変化する。更に水の流量を上げ
ると、分布はより小さい粒系側にシフトし、QW=90
0ml/minでは最大粒径は600μmにまで減少す
る。本実験で測定した中で最も平均粒径が小さかったの
は、水と空気の流量比が最大となるQA=10ml/m
in、QW=900ml/minの場合で、個数にして
99%が500μm以下、78%が200μm以下であ
った。この条件では、空気が間欠的に吹き出すために、
より安定しているQA=20ml/minとほとんど同
じ粒径分布を得た。
FIG. 4 shows the particle size distribution when the air flow rate is 20 ml / min. When the flow rate of water was 0, the bubble diameter was almost uniform and was about 4 mm. Under these conditions, no microbubbles are generated. When the water flow rate is increased to 300 ml / min, the average particle diameter sharply decreases, and the distribution changes to a shape having a peak at a small particle diameter. When the flow rate of water is further increased, the distribution shifts to a smaller grain system side, and QW = 90
At 0 ml / min, the maximum particle size decreases to 600 μm. The smallest average particle size among the measurements in this experiment is that QA = 10 ml / m at which the flow rate ratio between water and air is maximum.
When in and QW = 900 ml / min, 99% was 500 μm or less and 78% was 200 μm or less in terms of the number. In this condition, because air intermittently blows out,
A more stable particle size distribution almost equal to QA = 20 ml / min was obtained.

【0014】QA=20ml/min、QW=900m
l/minのときのSauter平均径は約300μm
であった。単なるノズルから空気を静止した水に吹き出
した場合には、径の減少とともに浮力も急激に減少する
ために、同じSauter平均径を実現させるためには
少なくとも数μmオーダの直径の管を100本程度必要
とし、あまり現実的でない。このことからも、円管群ノ
ズルの微粒化の促進効果は大きいといえる。
QA = 20 ml / min, QW = 900 m
Sauter mean diameter at 1 / min is about 300 μm
Met. If air is simply blown out from a nozzle into stationary water, the buoyancy decreases sharply as the diameter decreases. To achieve the same Sauter average diameter, at least about 100 pipes with a diameter on the order of several μm are required. Need and not very realistic. From this, it can be said that the effect of promoting the atomization of the tube group nozzle is great.

【0015】[0015]

【発明の効果】以上の説明から明らかな通り、この発明
によれば、均一な気泡が発生でき、かつエネルギー効果
の高い微小気泡発生装置を得ることができる。
As is apparent from the above description, according to the present invention, it is possible to obtain a microbubble generating device which can generate uniform bubbles and has a high energy effect.

【0016】[0016]

【図面の簡単な説明】[Brief description of the drawings]

【図1】微小気泡発生装置の斜視説明図。FIG. 1 is an explanatory perspective view of a microbubble generator.

【図2】微小気泡発生装置の横断面説明図。FIG. 2 is an explanatory cross-sectional view of the microbubble generator.

【図3】円管郡ノズルを示す断面図。FIG. 3 is a sectional view showing a circular tube group nozzle.

【図4】気泡の粒径分布を示すグラフ。FIG. 4 is a graph showing the particle size distribution of bubbles.

【符号の説明】[Explanation of symbols]

1 微小気泡発生装置 2 気体ノズル 3 液体ノズル 4 液体ノズル群 DESCRIPTION OF SYMBOLS 1 Microbubble generator 2 Gas nozzle 3 Liquid nozzle 4 Liquid nozzle group

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 洋一郎 東京都練馬区早宮1−42−20−302 (72)発明者 竹村 文男 茨城県つくば市並木1丁目2番地 工業技 術院機械技術研究所内 (72)発明者 マシャン ラブハ 東京都豊島区東池袋3丁目1番1号 新エ ネルギー・産業技術総合開発機構内 Fターム(参考) 4G035 AB04 AC15 AE13  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoichiro Matsumoto 1-42-20-302 Hayamiya, Nerima-ku, Tokyo (72) Inventor Fumio Takemura 1-2-2 Namiki, Tsukuba, Ibaraki Pref. (72) Inventor Mashan Labha F-term in the New Energy and Industrial Technology Development Organization 3-1-1 Higashiikebukuro, Toshima-ku, Tokyo 4G035 AB04 AC15 AE13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】中心部に気体吐出用の気体ノズルを配置し
周囲部に複数の液体吹出し用の液体ノズルからなるノズ
ル群を配置してなることを特徴とする微小気泡発生装
置。
1. A microbubble generating apparatus comprising: a gas nozzle for discharging a gas at a central portion; and a nozzle group including a plurality of liquid nozzles for discharging a liquid at a peripheral portion.
【請求項2】前記気体吹出し用のノズルからの吐出速度
よりも前記ノズル群からの吐出速度の方が大きいことを
特徴とする請求項1記載の微小気泡発生装置。
2. The microbubble generator according to claim 1, wherein the discharge speed from the nozzle group is higher than the discharge speed from the gas blowing nozzle.
JP2000392677A 2000-12-25 2000-12-25 Fine air bubble generator using special nozzle Pending JP2002191950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000392677A JP2002191950A (en) 2000-12-25 2000-12-25 Fine air bubble generator using special nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000392677A JP2002191950A (en) 2000-12-25 2000-12-25 Fine air bubble generator using special nozzle

Publications (1)

Publication Number Publication Date
JP2002191950A true JP2002191950A (en) 2002-07-10

Family

ID=18858628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000392677A Pending JP2002191950A (en) 2000-12-25 2000-12-25 Fine air bubble generator using special nozzle

Country Status (1)

Country Link
JP (1) JP2002191950A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114059A (en) * 2006-12-11 2009-05-28 Opt Creation:Kk Apparatus and method for producing nanobubble liquid
US9861942B1 (en) * 2016-06-20 2018-01-09 Rarelyte Corporation Virtual orifice bubble generator to produce custom foam
CN110898698A (en) * 2018-09-17 2020-03-24 浙江大学 Microbubble generator and gas-liquid reactor comprising same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036105A1 (en) * 1999-11-15 2001-05-25 Aura Tec Co., Ltd. Micro-bubble generating nozzle and application device therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036105A1 (en) * 1999-11-15 2001-05-25 Aura Tec Co., Ltd. Micro-bubble generating nozzle and application device therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114059A (en) * 2006-12-11 2009-05-28 Opt Creation:Kk Apparatus and method for producing nanobubble liquid
JP4481342B2 (en) * 2006-12-11 2010-06-16 株式会社オプトクリエーション Nano bubble water production apparatus and production method
US9416329B2 (en) 2006-12-11 2016-08-16 Opt Creation, Inc. Apparatus and process for production of nanobubble liquid
US9861942B1 (en) * 2016-06-20 2018-01-09 Rarelyte Corporation Virtual orifice bubble generator to produce custom foam
CN110898698A (en) * 2018-09-17 2020-03-24 浙江大学 Microbubble generator and gas-liquid reactor comprising same

Similar Documents

Publication Publication Date Title
Gordiychuk et al. Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator
Zhang et al. Experimental investigations of interactions between a laser-induced cavitation bubble and a spherical particle
Blenkinsopp et al. Void fraction measurements in breaking waves
Harby et al. An experimental investigation on the characteristics of submerged horizontal gas jets in liquid ambient
Mandroyan et al. Modification of the ultrasound induced activity by the presence of an electrode in a sono-reactor working at two low frequencies (20 and 40 kHz). Part II: Mapping flow velocities by particle image velocimetry (PIV)
Radi et al. Experimental evidence of new three-dimensional modes in the wake of a rotating cylinder
Vyas et al. Imaging and analysis of individual cavitation microbubbles around dental ultrasonic scalers
CN105738648B (en) The On-line Measuring Method of particle speed in a kind of heterogeneous system
JP4545666B2 (en) Fluid measuring device and fluid measuring method
JP2002191950A (en) Fine air bubble generator using special nozzle
CZ103895A3 (en) Apparatus for dissolving gases in liquids
Nowak et al. Acoustic streaming and bubble translation at a cavitating ultrasonic horn
JP6047210B1 (en) Aeration stirrer
JP2022188187A (en) Fine bubble feeding device and fine bubble analysis system
Schlender et al. Sono-chemiluminescence (SCL) in a high-pressure double stage homogenization processes
Seo et al. Enhancement of momentum transfer of bubble swarms using an ejector with water injection
US20050058014A1 (en) Fluid mixing reaction enhancement method using micro device, and micro device
Biswas et al. Effect of single and multiple bubbles on a thin vortex ring
Liu et al. Microbubble generation driven by the oscillation in a self‐excited fluidic oscillator
Boziuk et al. Dynamics of vapor bubble condensation under directional ultrasonic actuation
Yoo et al. Method for measuring bubble size under low-light conditions for mass transfer enhancement in industrial-scale systems
Liu et al. Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface
Basso et al. Initial Results from the Experimental and Computational Study of Microbubble Generation
Zhang et al. Velocity characteristics of air-mist jet during secondary cooling of continuous casting using PIV and LDV
Smith et al. X-ray measurements of plunging breaking solitary waves

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050810