JP2023086210A - Bubble generation device and bubble generator - Google Patents

Bubble generation device and bubble generator Download PDF

Info

Publication number
JP2023086210A
JP2023086210A JP2021200568A JP2021200568A JP2023086210A JP 2023086210 A JP2023086210 A JP 2023086210A JP 2021200568 A JP2021200568 A JP 2021200568A JP 2021200568 A JP2021200568 A JP 2021200568A JP 2023086210 A JP2023086210 A JP 2023086210A
Authority
JP
Japan
Prior art keywords
liquid
inflow
hole
spiral
throttle hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021200568A
Other languages
Japanese (ja)
Other versions
JP7546921B2 (en
Inventor
康洋 水上
Yasuhiro Mizukami
真輝 平江
Masateru Hirae
隆宏 奥村
Takahiro Okumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Science Inc Japan
Original Assignee
Science Inc Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Science Inc Japan filed Critical Science Inc Japan
Priority to JP2021200568A priority Critical patent/JP7546921B2/en
Publication of JP2023086210A publication Critical patent/JP2023086210A/en
Application granted granted Critical
Publication of JP7546921B2 publication Critical patent/JP7546921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)
  • Accessories For Mixers (AREA)

Abstract

To provide a bubble generation device which can mix and dissolve a large amount of micro-sized air bubbles and nano-sized air bubbles into a liquid and discharge the mixture, and to provide a bubble generator.SOLUTION: The invention includes: a liquid contraction hole 41 formed at a nozzle body 19; a liquid guide core 47 having first and second spiral surfaces 55, 56; and a liquid closing plate 46. The liquid guide core 47 is formed integral with the liquid closing plate 46. The liquid closing plate 46 has first and second liquid introduction holes 55, 56. The liquid guide core 47 is attached to the liquid contraction hole 41 from the side of an inflow passage 8, and the liquid closing plate 46 is placed in contact with the nozzle body 19 to close the liquid contraction hole 41. First and second liquid passages δ1, δ2 having spiral shapes are formed between the liquid guide core 47 and the liquid contraction hole 41. A liquid flows into the inflow passage 8 and then flows from the inflow passage 8 into the first and second liquid passages δ1, δ2 through first and second liquid introduction holes 51, 52.SELECTED DRAWING: Figure 9

Description

本発明は、マイクロ単位の気泡、及びナノ単位の気泡を液体に混入、溶け込ませて、マイクロ単位の気泡及びナノ単位の気泡が混入、溶け込んだ液体を流出するバブル発生装置、及びバブル発生器に関する。 TECHNICAL FIELD The present invention relates to a bubble generator and a bubble generator for mixing and dissolving micro-unit bubbles and nano-unit bubbles in a liquid, and for discharging the liquid in which the micro-unit bubbles and nano-unit bubbles are mixed and dissolved. .

バブルを発生する技術として、特許文献1は、マイクロバブル発生装置を開示する。マクロバブル発生装置は、ボルダ、インレットアダプター及びミキシングアダプターを備え、各アダプターは、ホルダに取付けられる。インレットアダプターは、液体流路中に、ミキシングアラプターに向けて段々に縮径する液体絞り穴を有する。ミキシングアダプターは、液体流出口に向けて段々に拡径する液体流路を有する。
マイクロバブル発生装置は、液体流入口から液体をインレットアダプターの液体絞り穴に流入して、液体をミキシングアラプターの液体流路を噴射する。マイクルバブル発生装置は、絞り穴の噴出側で空気を液体に混合して、ミキシングアダプターの液体流路にてマイクロバブルを発生する。
As a technique for generating bubbles, Patent Literature 1 discloses a microbubble generator. The macrobubble generator comprises a boulder, an inlet adapter and a mixing adapter, each adapter being attached to a holder. The inlet adapter has a liquid throttle hole in the liquid flow path that tapers toward the mixing adapter. The mixing adapter has a liquid channel that tapers toward the liquid outlet.
The microbubble generator causes the liquid to flow from the liquid inlet into the liquid throttle hole of the inlet adapter, and ejects the liquid through the liquid channel of the mixing adapter. The microbubble generator mixes air with the liquid on the ejection side of the throttle hole to generate microbubbles in the liquid channel of the mixing adapter.

特開2015-93219号公報JP 2015-93219 A

特許文献1では、液体絞り穴から液体を噴出して、空気と混合することで、空気を粉砕(剪断)して、ある程度のマイクロバブルを発生できるものの、更に液体に混入、溶け込ませるマイクロバブルの量を増加し、及びナノ単位のバブルを混入、溶け込ませることが望まれている。 In Patent Document 1, liquid is ejected from a liquid throttle hole and mixed with air to pulverize (shear) the air and generate a certain amount of microbubbles. It is desired to increase the amount and to incorporate and dissolve nano-scale bubbles.

本発明は、多量のマイクロ単位の気泡及びナノ単位の気泡を液体に混入、溶け込ませて流出できるバブル発生装置、及びバブル発生器を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a bubble generating device and a bubble generator capable of mixing and dissolving a large amount of micro-unit bubbles and nano-unit bubbles in a liquid and allowing them to flow out.

本発明に係る請求項1は、流入路、流出路、前記流入路に開口する流入口及び前記流出路に開口する流出口を有し、液体が前記流入口から前記流入路に流入され、前記流出路を流れる液体を前記流出口から流出する流れ筒体と、前記流入路及び前記流出路の間の前記流れ筒体内に配置され、前記流入路を前記流出路から閉塞するノズル本体、及び前記ノズル本体に形成され、前記流入路から流入される液体を前記流出路に噴射するノズル穴を有する噴射ノズルと、前記噴射ノズルに配置されるバブル発生器と、を備え、前記バブル発生器は、前記ノズル本体に形成され、前記流入路及び前記ノズル穴に連通される液体絞り穴と、板状に形成される液体閉塞板、及び円錐渦巻き状に形成される液体ガイドコアを有する液体ガイドと、を備え、前記液体絞り穴は、前記流入路側から縮径しつつ延在される円錐穴に形成され、前記液体閉塞板は、前記液体閉塞板を貫通して、前記液体閉塞板の板表面及び板裏面に開口される複数の液体導入穴を有し、前記液体ガイドコアは、同一の渦巻き状に形成される前記液体導入穴と同数の渦巻き面を有し、前記液体ガイドコアの円錐底面を前記液体閉塞板の前記板表面に当接して、前記液体閉塞板と一体にされ、前記各渦巻き面は、前記液体ガイドコアの円錐側面に交差して、前記液体ガイドコアの前記円錐底面及び円錐上面の間に配置され、前記円錐底面から前記円錐上面に向けて縮径しつつ渦巻き状に形成され、前記円錐底面側の渦巻き面端を前記各液体導入穴内に突出して配置され、前記液体ガイドは、前記液体ガイドコアを前記流入路側から前記液体絞り穴に挿入し、前記液体閉塞板の前記板表面を前記流入路側から前記ノズル本体に当接して前記液体絞り穴を閉塞し、前記円錐側面及び前記液体絞り穴の円錐内周面の間に隙間を隔てて、前記液体ガイドコアを前記円錐上面から前記液体絞り穴内に挿入し、前記液体ガイドコアの前記各渦巻き面、及び前記液体絞り穴の前記円錐内周面の間に、渦巻き状の複数の液体流路を形成しつつ前記液体ガイドコアを前記液体絞り穴内に装着して、前記ノズル本体に配置され、前記各液体流路は、前記ノズル穴に開口され、前記各渦巻き面の前記渦巻き面端から前記各液体導入穴に開口され、及び前記各液体導入穴を通して前記流入路に連通されることを特徴とするバブル発生装置である。 Claim 1 according to the present invention has an inflow path, an outflow path, an inflow opening opening in the inflow path, and an outflow opening opening in the outflow path, and a liquid flows into the inflow path from the inflow opening, and the liquid flows into the inflow path from the inflow opening. a flow cylinder for causing the liquid flowing in the outflow passage to flow out from the outflow port; a nozzle body disposed in the flow cylinder between the inflow passage and the outflow passage to block the inflow passage from the outflow passage; an injection nozzle formed in a nozzle body and having a nozzle hole for injecting the liquid flowing in from the inflow passage to the outflow passage; and a bubble generator arranged in the injection nozzle, wherein the bubble generator comprises: a liquid guide having a liquid restriction hole formed in the nozzle body and communicating with the inflow passage and the nozzle hole, a liquid blocking plate formed in a plate shape, and a liquid guide core formed in a conical spiral; wherein the liquid throttle hole is formed in a conical hole extending from the inflow path side while decreasing in diameter, and the liquid blockage plate penetrates the liquid blockage plate to form a plate surface of the liquid blockage plate and The liquid guide core has a plurality of liquid introduction holes opened in the back surface of the plate, the liquid guide core has the same number of spiral surfaces as the liquid introduction holes formed in the same spiral shape, and the conical bottom surface of the liquid guide core abutting the plate surface of the liquid-obstruction plate and being integrated with the liquid-obstruction plate, each of the spiral surfaces intersecting the conical side surface of the liquid guide core, the conical bottom surface and conical surface of the liquid guide core; The liquid guide is arranged between the upper surfaces, is formed in a spiral shape while decreasing in diameter from the conical bottom surface toward the conical upper surface, and is arranged so that the end of the spiral surface on the conical bottom surface side protrudes into each of the liquid introduction holes. inserts the liquid guide core into the liquid throttle hole from the inflow path side, the plate surface of the liquid blocking plate abuts against the nozzle body from the inflow path side to block the liquid throttle hole, and the conical side surface and the liquid guide core is inserted into the liquid throttle hole from the conical upper surface with a gap between the conical inner peripheral surface of the liquid throttle hole, and the spiral surfaces of the liquid guide core and the liquid throttle hole The liquid guide core is mounted in the liquid throttle hole while forming a plurality of spiral liquid flow paths between the conical inner peripheral surfaces of the nozzle body, and each of the liquid flow paths is The bubble generating device is characterized in that it is open to the nozzle hole, is open to the liquid introduction hole from the spiral surface end of each spiral surface, and communicates with the inflow passage through the liquid introduction hole. .

本発明に係る請求項1では、液体は、流入口から流入路に流入する。流入路を流れる液体は、液体閉塞板の板裏面に沿って各液体導入穴に流入される。流入路を流れる液体は、流入路から直接、各液体導入穴に流入される。各液体導入穴に流入した液体は、各渦巻き面の渦巻き面端から各液体流路に流入される。
これにより、請求項1では、液体を、各液体導入穴から各液体流路に連続して流入でき、常に、安定した流量(一定流量)の液体を各液体流路に流入できる。
請求項1では、液体は、各液体流路を流れることで、多量のマイクロ単位の気泡(マイクロバブル)及びナノ単位の気泡(ウルトラファインバブル)の混入、溶け込んだバブル水となる。マイクロバブル及びウルトラファインバブルの混入、溶け込んだバブル水は、渦巻き状の各液体流路によって渦流(旋回流)にされて、ノズル穴から流出路に噴射される。なお、国際基準化機構(ISO)の国際規格「ISO20480-1」には、1マクロメートル(μm)以上100マイクロメート(μm)の気泡を「マイクロバブル」、1マイクロメートル(μm)未満の気泡を「ウルトラファンバブル」と定めている(以下、同様)。
According to claim 1 of the present invention, the liquid flows into the inflow channel from the inflow port. The liquid flowing through the inflow channel flows into each liquid introduction hole along the back surface of the liquid blocking plate. The liquid flowing through the inflow channel directly flows into each liquid introduction hole from the inflow channel. The liquid that has flowed into each liquid introduction hole flows into each liquid channel from the spiral surface end of each spiral surface.
Thus, in the first aspect, liquid can be continuously introduced from each liquid introduction hole into each liquid channel, and a stable flow rate (constant flow rate) of liquid can always be introduced into each liquid channel.
According to claim 1, the liquid becomes bubble water in which a large amount of micro-unit bubbles (microbubbles) and nano-unit bubbles (ultra-fine bubbles) are mixed and dissolved by flowing through each liquid channel. The bubble water mixed with and dissolved in microbubbles and ultra-fine bubbles is swirled (swirling flow) by each spiral liquid channel and jetted from the nozzle hole to the outflow channel. In addition, in the international standard "ISO20480-1" of the International Organization for Standardization (ISO), bubbles of 1 micrometer (μm) or more and 100 micrometers (μm) are "microbubbles", and bubbles of less than 1 micrometer (μm) is defined as “Ultra Fun Bubble” (same below).

本発明に係る請求項2では、前記流れ筒体の前記流入路に接続される気体導入管と、前記気体導入管に配置される逆止弁と、を備え、前記気体導入管は、一方の管端を前記流入路に連通し、及び他方の管端から気体が流入され、前記逆止弁は、前記気体導入管の一方の管端側への流れを許容し、他方の管端側への流れを阻止することを特徴とする請求項1に記載のバブル発生装置である。 According to claim 2 of the present invention, a gas introduction pipe connected to the inflow path of the flow cylinder and a check valve arranged in the gas introduction pipe are provided, and the gas introduction pipe A pipe end is communicated with the inflow passage, and gas is introduced from the other pipe end, and the check valve allows the flow to the one pipe end side of the gas introduction pipe and to the other pipe end side. 2. The bubble generator according to claim 1, wherein the flow of is blocked.

本発明の請求項2では、流入路を流れる液体に気体を混入でき、液体に気体の混入する気体混入液体を各液体導入穴から各液体流路に流入できる。 According to claim 2 of the present invention, the gas can be mixed with the liquid flowing through the inflow path, and the gas-mixed liquid in which the gas is mixed with the liquid can flow into each liquid flow path through each liquid introduction hole.

本発明に係る請求項3は、前記流入路は、前記液体絞り穴及び前記流入口の間に配置され、前記液体絞り穴から拡径される気液流入穴と、前記気液流入穴及び前記流出口の間に配置され、前記気液流入穴から縮径される第1流入絞り穴と、前記第1流入絞り穴及び前記流出口の間に配置され、前記第1流入絞り穴から縮径され、液体が前記流入口から流入される第2流入絞り穴と、を有し、前記気体導入管は、一方の管端を前記第1流入絞り穴に連通して、前記流入路に接続されることを特徴とする請求項2に記載のバブル発生装置である。 According to a third aspect of the present invention, the inflow path is arranged between the liquid throttle hole and the inflow port, and includes a gas-liquid inflow hole having a diameter enlarged from the liquid throttle hole, the gas-liquid inflow hole and the gas-liquid inflow hole. a first inflow throttle hole arranged between the outflow ports and having a reduced diameter from the gas-liquid inflow hole; and a first inflow throttle hole arranged between the first inflow throttle hole and the outflow port and having a diameter reduced from the first inflow throttle hole. and a second inflow throttle hole through which liquid flows in from the inflow port, and the gas introduction pipe has one pipe end communicating with the first inflow throttle hole and is connected to the inflow path. The bubble generator according to claim 2, characterized in that:

本発明に係る請求項3では、第2流入絞り穴から第1流入絞り穴に噴射される液体は、第1流入絞り穴を流れることで、マイクロバブル及びウルトラファインバブルの混入、溶け込んだバブル水となる。マイクロバブル及びウルトラファインバブルの混入、溶け込んだバブル水を各液体導入穴から各液体流路に流入できる。 According to claim 3 of the present invention, the liquid jetted from the second inflow throttle hole to the first inflow throttle hole mixes microbubbles and ultra-fine bubbles and dissolves bubble water by flowing through the first inflow throttle hole. becomes. Bubble water in which microbubbles and ultra-fine bubbles are mixed and dissolved can flow into each liquid channel from each liquid introduction hole.

本発明に係る請求項4は、ノズル本体、及び前記ノズル本体に形成され、流入路から流入される液体を噴射するノズル穴を有する噴射ノズルに配置されるバブル発生器であって、前記ノズル本体に形成され、前記流入路及び前記ノズル穴に連通される液体絞り穴と、板状に形成される液体閉塞板、及び円錐渦巻き状に形成される液体ガイドコアを有する液体ガイドと、を備え、前記液体絞り穴は、前記流入路側から縮径しつつ延在される円錐穴に形成され、前記液体閉塞板は、前記液体閉塞板を貫通して、前記液体閉塞板の板表面及び板裏面に開口される複数の液体導入穴を有し、前記液体ガイドコアは、同一の渦巻き状に形成される前記液体導入穴と同数の渦巻き面を有し、前記液体ガイドコアの円錐底面を前記液体閉塞板の前記板表面に当接して、前記液体閉塞板と一体にされ、前記各渦巻き面は、前記液体ガイドコアの円錐側面に交差して、前記液体ガイドコアの前記円錐底面及び円錐上面の間に配置され、前記円錐底面から前記円錐上面に向けて縮径しつつ渦巻き状に形成され、前記円錐底面側の渦巻き面端を前記各液体導入穴内に突出して配置され、前記液体ガイドは、前記液体ガイドコアを前記流入路側から前記液体絞り穴に挿入し、及び前記液体閉塞板の板表面を前記流入路側から前記ノズル本体に当接して前記液体絞り穴を閉塞し、前記円錐側面及び前記円錐内周面の間に隙間を隔てて、前記液体ガイドコアを前記円錐上面から前記液体絞り穴内に挿入し、前記各渦巻き面及び前記液体絞り穴の円錐内周面の間に、渦巻き状の複数の液体流路を形成しつつ前記液体ガイドコアを前記液体絞り穴内に装着して、前記ノズル本体に配置され、前記各液体流路は、前記ノズル穴に開口され、前記各渦巻き面の前記渦巻き面端から前記各液体導入穴に開口され、及び前記各液体導入穴を通して前記流入路に連通されることを特徴とするバブル発生器である。 According to a fourth aspect of the present invention, there is provided a bubble generator arranged in an injection nozzle having a nozzle body and a nozzle hole formed in the nozzle body for injecting a liquid flowing in from an inflow passage, wherein the nozzle body and a liquid guide having a liquid throttle hole communicating with the inflow passage and the nozzle hole, a liquid blocking plate formed in a plate shape, and a liquid guide core formed in a conical spiral, The liquid throttle hole is formed in a conical hole that extends from the inflow path side while decreasing in diameter, and the liquid blockage plate penetrates through the liquid blockage plate to form a plate surface and a plate back surface of the liquid blockage plate. The liquid guide core has a plurality of open liquid introduction holes, the liquid guide core has the same number of spiral surfaces as the liquid introduction holes formed in the same spiral shape, and the conical bottom surface of the liquid guide core forms the liquid blockage. abutting the plate surface of a plate and integral with the liquid closure plate, each of the spiral surfaces intersecting the conical side surface of the liquid guide core and between the conical bottom surface and the conical top surface of the liquid guide core; is formed in a spiral while decreasing in diameter from the bottom of the cone toward the top of the cone, the end of the spiral surface on the side of the bottom of the cone protrudes into each of the liquid introduction holes, and the liquid guide is arranged in the A liquid guide core is inserted into the liquid throttle hole from the inflow path side, and a plate surface of the liquid blocking plate abuts against the nozzle main body from the inflow path side to block the liquid throttle hole, and the conical side surface and the conical The liquid guide core is inserted into the liquid throttle hole from the conical upper surface with a gap between the inner peripheral surfaces, and a plurality of spiral spirals are provided between the spiral surfaces and the conical inner peripheral surface of the liquid throttle hole. The liquid guide core is mounted in the liquid throttle hole while forming the liquid flow path, and is arranged in the nozzle main body, the liquid flow path is opened to the nozzle hole, and the spiral of each spiral surface The bubble generator is characterized in that the liquid introduction holes are opened from the surface end and communicated with the inflow path through the liquid introduction holes.

本発明に係る請求項4では、液体は、流入口から流入路に流入する。流入路を流れる液体は、液体閉塞板の板裏面に沿って各液体導入穴に流入される。流入路を流れる液体は、流入路から直接、各液体導入穴に流入される。各液体導入穴に流入した液体は、各渦巻き面の渦巻き面端から各液体流路に流入される。
これにより、請求項4では、液体を、各液体導入穴から各液体流路に連続して流入でき、常に、安定した流量(一定流量)の液体を各液体流路に流入できる。
請求項4では、液体は、各液体流路を流れることで、多量のマイクロ単位の気泡(マイクロバブル)及びナノ単位の気泡(ウルトラファインバブル)の混入、溶け込んだバブル水となる。マイクロバブル及びウルトラファインバブルの混入、溶け込んだバブル水は、渦巻き状の各液体流路によって渦流(旋回流)にされて、ノズル穴から噴射される。
According to claim 4 of the present invention, the liquid flows into the inflow channel from the inflow port. The liquid flowing through the inflow channel flows into each liquid introduction hole along the back surface of the liquid blocking plate. The liquid flowing through the inflow channel directly flows into each liquid introduction hole from the inflow channel. The liquid that has flowed into each liquid introduction hole flows into each liquid channel from the spiral surface end of each spiral surface.
Thus, in the fourth aspect, the liquid can be continuously introduced from each liquid introduction hole into each liquid channel, and a stable flow rate (constant flow rate) of liquid can always be introduced into each liquid channel.
According to claim 4, the liquid flows through each liquid channel to become bubble water in which a large amount of micro-unit bubbles (microbubbles) and nano-unit bubbles (ultra-fine bubbles) are mixed and dissolved. The bubble water mixed with and dissolved in microbubbles and ultra-fine bubbles is made into a swirling flow (swirling flow) by each spiral liquid flow path, and is jetted from a nozzle hole.

本発明は、多量のマイクロバブル及びウルトラファインバブルの混入、溶け込んだ液体を発生できる。 The present invention can generate a liquid in which a large amount of microbubbles and ultrafine bubbles are mixed and dissolved.

バブル発生装置を示す上方斜視図である。It is an upper perspective view which shows a bubble generator. バブル発生装置を示す下方斜視図である。It is a downward perspective view which shows a bubble generator. バブル発生装置を示す正面図である。It is a front view which shows a bubble generator. バブル発生装置を示す側面図である。It is a side view which shows a bubble generator. バブル発生装置を示す平面図(上面図)である。It is a top view (top view) which shows a bubble generator. バブル発生装置を示す底面図(下面図)である。It is a bottom view (bottom view) which shows a bubble generator. バブル発生装置(バブル発生器)を示す図であって、図3のA-A断面図である。FIG. 4 is a view showing the bubble generator (bubble generator), and is a cross-sectional view taken along the line AA in FIG. 3; 図7のC部分拡大図である。FIG. 8 is an enlarged view of part C of FIG. 7; 図8の一部拡大図である。FIG. 9 is a partially enlarged view of FIG. 8; バブル発生装置(バブル発生器)を示す図であって、図4のB-B断面拡大図である。FIG. 5 is a view showing the bubble generator (bubble generator), and is an enlarged cross-sectional view taken along line BB of FIG. 4. FIG. 液体ガイド(液体閉塞板、液体ガイドコア)を示す正面上方斜視図である。FIG. 4 is a front upper perspective view showing a liquid guide (liquid blocking plate, liquid guide core); 液体ガイド(液体閉塞板、液体ガイドコア)を示す側面上方斜視図である。FIG. 3 is a side upper perspective view showing a liquid guide (liquid blocking plate, liquid guide core); 液体ガイド(液体閉塞板、液体ガイドコア)を示す平面図(上面図)であって、液体導入穴、及び液体ガイドコアの配置関係を示す図である。FIG. 4 is a plan view (top view) showing the liquid guide (liquid blocking plate, liquid guide core), showing the arrangement relationship between the liquid introduction hole and the liquid guide core. 液体ガイド(液体閉塞板、液体ガイドコア)を示す平面図(上面図)でって、液体ガイドコアの最大コア幅、各渦巻き面の一方の渦巻き面端の面端幅を示す図である。FIG. 3 is a plan view (top view) showing the liquid guide (liquid blocking plate, liquid guide core), showing the maximum core width of the liquid guide core and the surface edge width of one spiral surface end of each spiral surface. 液体ガイド(液体閉塞板、液体ガイドコア)を示す平面図(上面図)であって、各渦巻き面の配置関係を示す図である。FIG. 4 is a plan view (top view) showing the liquid guide (liquid blocking plate, liquid guide core), showing the arrangement relationship of each spiral surface. 液体ガイド(液体閉塞板、液体ガイドコア)を示す底面図(下面図)である。FIG. 4 is a bottom view (bottom view) showing a liquid guide (liquid blocking plate, liquid guide core). 液体ガイド(液体閉塞板、液体ガイドコア)を示す左側面図である。Fig. 2 is a left side view showing a liquid guide (liquid blocking plate, liquid guide core);

本発明に係るバブル発生装置(バブル発生器)について、図1乃至図17を参照して説明する。 A bubble generator (bubble generator) according to the present invention will be described with reference to FIGS. 1 to 17. FIG.

図1乃至図17において、バブル発生装置Xは、流れ筒体1(流れ円筒体)、噴射ノズルY、バブル発生器Z、気体導入管2、及び逆止弁3を備える。 1 to 17, the bubble generator X includes a flow cylinder 1 (flow cylinder), an injection nozzle Y, a bubble generator Z, a gas introduction pipe 2, and a check valve 3.

流れ筒体1は、図1乃至図17に示すように、流入筒本体5(流入円筒本体)、流出筒本体6(流出円筒本体)、連結筒本体7、流入路8、流入口9、流出路10、流出口11、気体導入穴12(気体導入路)、及び継手管15(ミニマルストレート)を有する。 1 to 17, the flow cylinder 1 includes an inflow cylinder body 5 (inflow cylinder body), an outflow cylinder body 6 (outflow cylinder body), a connecting cylinder body 7, an inflow passage 8, an inflow port 9, and an outflow cylinder body. It has a channel 10, an outlet port 11, a gas introduction hole 12 (gas introduction channel), and a joint pipe 15 (minimal straight).

流入筒本体5(流入円筒本体)は、円筒状(円筒体)に形成される。流入筒本体5は、図1乃至図10に示すように、流入筒部13、及び雄ネジ部14を有する。 The inflow tube main body 5 (inflow cylindrical main body) is formed in a cylindrical shape (cylindrical body). The inflow tube main body 5 has an inflow tube portion 13 and a male screw portion 14 as shown in FIGS. 1 to 10 .

流入筒部13(流入円筒部)は、図1乃至図4、及び図6乃至図9に示すように、円筒状(円筒体)に形成される。 The inflow tubular portion 13 (inflow cylindrical portion) is formed in a cylindrical shape (cylindrical body) as shown in FIGS. 1 to 4 and 6 to 9 .

雄ネジ部14は、図7及び図8に示すように、流入筒部13に形成される。雄ネジ部14は、流入筒部13(流入筒本体5、流れ筒体1)の筒中心線aの方向Aにおいて、流入筒部13の一方の筒端13A側(一方の流入筒端側)に配置される。雄ネジ部14は、流入筒部13の外周面に形成される。 The male screw portion 14 is formed in the inflow tube portion 13 as shown in FIGS. 7 and 8 . The male threaded portion 14 is located on one cylinder end 13A side of the inflow cylinder portion 13 (one inflow cylinder end side) in the direction A of the cylinder center line a of the inflow cylinder portion 13 (inflow cylinder main body 5, flow cylinder body 1). placed in The male screw portion 14 is formed on the outer peripheral surface of the inflow tubular portion 13 .

流出筒本体6(流出円筒本体)は、合成樹脂等で円筒状(円筒体)に形成される。流出筒本体6は、図1乃至図5、及び図7乃至図10に示すように、流出筒部18、及びノズル閉塞部19(ノズル本体)を有する。 The outflow tube main body 6 (outflow cylindrical main body) is formed in a cylindrical shape (cylindrical body) from synthetic resin or the like. The outflow tube main body 6 has an outflow tube portion 18 and a nozzle closing portion 19 (nozzle main body), as shown in FIGS. 1 to 5 and 7 to 10 .

流出筒部18(流出円筒部)は、図1乃至図5、及び図7乃至図10に示すように、合成樹脂等で円筒状(円筒体)に形成される。 As shown in FIGS. 1 to 5 and 7 to 10, the outflow tubular portion 18 (outflow cylindrical portion) is formed in a cylindrical shape (cylindrical body) from synthetic resin or the like.

ノズル閉塞部19(ノズル閉塞板)は、合成樹脂等で円形状に形成される。ノズル閉塞部19は、図7乃至図10に示すように、流出筒部18(流出筒本体6、流れ筒体1)の筒中心線aの方向Aにおいて、流出筒部18の一方の筒端18A側(一方の流出筒端側)に配置される。ノズル閉塞部19は、流出筒部18の一方の筒端18A(一方の流出筒端)を閉塞して、流出筒部18に固定される。ノズル閉塞部19は、流出筒部18と一体に形成される。ノズル閉塞部19は、図7乃至図9に示すように、流出筒部18(流出筒本体6)の径外方向(径方向)において、流出筒部18の外周面から突出される。
ノズル閉塞部19(ノズル本体)は、図7乃至図9に示すように、ノズル段差部20を有する。ノズル段差部20は、流出筒部18の外周面から流出筒部18の径外方向[流れ筒体1(流出筒部18)の筒中心線aと直交する方向]に突出して形成される。ノズル段差部20は、流出筒部18(流出筒本体6)の周方向(円周方向)にわたって配置される。
The nozzle blocking portion 19 (nozzle blocking plate) is made of synthetic resin or the like and formed in a circular shape. As shown in FIGS. 7 to 10, the nozzle closing portion 19 is arranged at one end of the outflow cylinder portion 18 (outflow cylinder main body 6, flow cylinder body 1) in the direction A of the center line a of the outflow cylinder portion 18. It is arranged on the 18A side (one outflow cylinder end side). The nozzle blocking part 19 is fixed to the outflow cylinder part 18 by closing one cylinder end 18A (one outflow cylinder end) of the outflow cylinder part 18 . The nozzle closing portion 19 is formed integrally with the outflow cylinder portion 18 . As shown in FIGS. 7 to 9, the nozzle closing portion 19 protrudes from the outer peripheral surface of the outflow cylinder portion 18 (outflow cylinder main body 6) in the radially outward direction (radial direction).
The nozzle closing portion 19 (nozzle main body) has a nozzle stepped portion 20 as shown in FIGS. 7 to 9 . The nozzle stepped portion 20 is formed so as to protrude from the outer peripheral surface of the outflow cylinder portion 18 in the radially outer direction of the outflow cylinder portion 18 [the direction orthogonal to the cylinder center line a of the flow cylinder body 1 (outflow cylinder portion 18)]. The nozzle stepped portion 20 is arranged along the circumferential direction (circumferential direction) of the outflow tube portion 18 (outflow tube main body 6).

連結筒本体7(連結円筒本体)は、円筒状(円筒体)に形成される。連結筒本体7は、図1乃至図10に示すように、連結筒部22、筒閉塞板23及び連結穴24を有する。 The connecting tube main body 7 (connecting cylindrical main body) is formed in a cylindrical shape (cylindrical body). The connecting tube main body 7 has a connecting tube portion 22, a tube closing plate 23 and a connecting hole 24, as shown in FIGS.

連結筒部22(連結円筒部)は、図1乃至図10に示すように、筒状(筒体)に形成される。連結筒部22は、図8及び図9に示すように、雌ネジ部25を有する。雌ネジ部25は、連結筒本体7(流れ筒体1)の筒中心線aの方向Aにおいて、連結筒部22の他方の筒端22B側(他方の連結筒端)に配置される。連結筒部22の内周面に形成される。 The connecting tube portion 22 (connecting cylindrical portion) is formed in a tubular shape (cylindrical body) as shown in FIGS. 1 to 10 . The connecting tube portion 22 has a female screw portion 25 as shown in FIGS. 8 and 9 . The female threaded portion 25 is arranged on the other tube end 22B side (the other coupling tube end) of the coupling tube portion 22 in the direction A of the tube center line a of the coupling tube main body 7 (flow tube 1). It is formed on the inner peripheral surface of the connecting tube portion 22 .

筒閉塞板23は、図1乃至図9に示すように、連結筒部22(連結筒本体7)の筒中心線aの方向Aにおいて、連結筒部22の一方の筒端22A(一方の連結筒端)を閉塞して、連結筒部22に固定される。筒閉塞板23は、連結筒部22と一体に形成される。 As shown in FIGS. 1 to 9, the tube closing plate 23 is located at one tube end 22A (one coupling tube) of the coupling tube section 22 (one coupling tube main body 7) in the direction A of the tube center line a of the coupling tube section 22 (coupling tube main body 7). (cylinder end) is closed and fixed to the connecting cylinder portion 22 . The tube closing plate 23 is formed integrally with the connecting tube portion 22 .

連結穴24は、図1、図5、図8及び図9に示すように、筒閉塞板23に形成される。連結穴24は、円形穴に形成され、連結筒部22と同心に配置される。連結穴24は、連結筒部22の筒中心線aの方向Aにおいて、筒閉塞板23を貫通して、連結筒部22内に開口される。 The connecting hole 24 is formed in the tube closing plate 23 as shown in FIGS. The connecting hole 24 is formed in a circular hole and arranged concentrically with the connecting tubular portion 22 . The connecting hole 24 passes through the tube closing plate 23 in the direction A of the tube center line a of the connecting tube portion 22 and opens into the connecting tube portion 22 .

流入路8(流入穴)は、図2、及び図6乃至図9に示すように、流入筒本体5(流入筒部13)に形成される。流入路8は、例えば、円形穴に形成される。流入路8は、流入筒部13(流入筒本体5)の筒中心線aの方向Aにおいて、流入筒部13を貫通して、流入筒部13の各筒端13A,13Bに開口される。 The inflow path 8 (inflow hole) is formed in the inflow tube main body 5 (inflow tube portion 13), as shown in FIGS. 2 and 6 to 9 . The inflow channel 8 is formed, for example, as a circular hole. The inflow passage 8 passes through the inflow tubular portion 13 in the direction A of the cylinder center line a of the inflow tubular portion 13 (inflow tubular main body 5 ) and is opened at the respective tubular ends 13A and 13B of the inflow tubular portion 13 .

流入口9は、図2、図6及び図7示すように、流入筒部13(流入筒本体5)に形成される。流入口9は、流入筒部13(流入路8)と同心に配置される。流入口9は、流入筒部13の他方の筒端13B(他方の流入筒端)に開口し、及び流入路8に開口する。流入口9は、流入路8に連通される。 The inflow port 9 is formed in the inflow cylinder part 13 (inflow cylinder main body 5), as shown in FIGS. The inflow port 9 is arranged concentrically with the inflow tubular portion 13 (inflow path 8). The inflow port 9 opens to the other tubular end 13B (the other inflow tubular end) of the inflow tubular portion 13 and to the inflow passage 8 . The inflow port 9 communicates with the inflow path 8 .

流入路8は、図2、図6乃至図9に示すように、気液流入穴26、第1流入絞り穴27、第2流入絞り穴28及び流入開放穴29を有する。 The inflow path 8 has a gas-liquid inflow hole 26, a first inflow throttle hole 27, a second inflow throttle hole 28, and an inflow open hole 29, as shown in FIGS.

気液流入穴26は、図7乃至図9に示すように、流入筒部13(流入筒本体5)に形成される。気液流入穴26は、流入筒部13と同心に配置される。気液流入穴26は、流入筒部13の筒中心線aの方向Aにおいて、流入筒部13の一方の筒端13A及び流入口9の間に配置される。気液流入穴26は、流入筒部13の一方の筒端13Aに開口される。気液流入穴26は、流入筒部13(流れ筒体1)の筒中心線aの方向Aにおいて、流入筒部13の一方の筒端13Aから流入口9(流入筒部13の他方の筒端13B)に向けて延在される。
気液流入穴26は、流入筒部13の筒中心線aの方向Aに穴長さLAを有する。気液流入穴26の穴長さLAは、50mm(又は50mm以上)である(LA≧50mm)。気液流入穴26は、円形状に形成され、穴直径D1(混合穴直径)の円形穴である。
The gas-liquid inflow hole 26 is formed in the inflow tube portion 13 (inflow tube main body 5), as shown in FIGS. 7 to 9 . The gas-liquid inflow hole 26 is arranged concentrically with the inflow tubular portion 13 . The gas-liquid inflow hole 26 is arranged between one cylinder end 13A of the inflow cylinder part 13 and the inflow port 9 in the direction A of the cylinder center line a of the inflow cylinder part 13 . The gas-liquid inflow hole 26 is opened at one cylinder end 13A of the inflow cylinder part 13 . The gas-liquid inflow hole 26 extends from one end 13A of the inflow cylinder 13 to the inflow port 9 (the other cylinder of the inflow cylinder 13) in the direction A of the cylinder center line a of the inflow cylinder 13 (flow cylinder 1). end 13B).
The gas-liquid inflow hole 26 has a hole length LA in the direction A of the tube center line a of the inflow tube portion 13 . The hole length LA of the gas-liquid inflow hole 26 is 50 mm (or 50 mm or more) (LA≧50 mm). The gas-liquid inflow hole 26 is a circular hole formed in a circular shape and having a hole diameter D1 (mixing hole diameter).

第1流入絞り穴27は、図7に示すように、流入筒部13(流入筒本体5)に形成される。第1流入絞り穴27は、気液流入穴26(流入筒部13)と同心に配置される。第1流入絞り穴27は、流入筒部13の筒中心線aの方向Aにおいて、気液流入穴26及び流入口9の間に配置される。第1流入絞り穴27は、気液流入穴26から縮径されて、気液流入穴26に連通(開口)される。
第1流入絞り穴27は、流入筒部13の筒中心線aの方向Aにおいて、気液流入穴26から流入口9(流入筒部13の他方の筒端13B)に向けて延在される。
第1流入絞り穴27は、円形状に形成され、穴直径D2(第1絞り穴直径)の円形穴である。第1流れ絞り穴27の穴直径D2は、気液流入穴26の穴直径D1より小径である(D2<D1)。
The first inflow throttle hole 27 is formed in the inflow tube portion 13 (inflow tube main body 5), as shown in FIG. The first inflow throttle hole 27 is arranged concentrically with the gas-liquid inflow hole 26 (inflow cylindrical portion 13). The first inflow throttle hole 27 is arranged between the gas/liquid inflow hole 26 and the inflow port 9 in the direction A of the cylinder center line a of the inflow cylinder portion 13 . The first inflow throttle hole 27 is reduced in diameter from the gas/liquid inflow hole 26 and communicates (opens) with the gas/liquid inflow hole 26 .
The first inflow throttle hole 27 extends from the gas-liquid inflow hole 26 toward the inflow port 9 (the other cylindrical end 13B of the inflow cylindrical portion 13) in the direction A of the cylinder center line a of the inflow cylindrical portion 13. .
The first inflow throttle hole 27 is a circular hole formed in a circular shape and having a hole diameter D2 (first throttle hole diameter). The hole diameter D2 of the first flow throttle hole 27 is smaller than the hole diameter D1 of the gas-liquid inflow hole 26 (D2<D1).

第2流入絞り穴28は、図6及び図7に示すように、流入筒部13(流入筒本体5)に形成される。第2流入絞り穴28は、気液流入穴26及び第1流入絞り穴27(流入筒部13)と同心に配置される。第2流入絞り穴28は、流入筒部13の筒中心線aの方向Aにおいて、第1流入絞り穴27及び流入口9(流入筒部13の他方の筒端13B)の間に配置される。第2流入絞り穴28は、第1流入絞り穴27から縮径されて、第1流入絞り穴27に連通(開口)される。第2流入絞り穴28は、液体(水)が流入口9から流入される。
第2流入絞り穴28は、流入筒部13の筒中心線aの方向Aにおいて、第1流入絞り穴27から流入口9(流入筒部13の他方の筒端13B)に向けて延在される。
第2流入絞り穴28は、円形状に形成され、穴直径D3(第2絞り穴直径)の円形穴である。第2流入絞り穴28の穴直径D3は、第1流入絞り穴28の穴直径D2より小径である(D3<D2)。
As shown in FIGS. 6 and 7, the second inflow throttle hole 28 is formed in the inflow tube portion 13 (inflow tube main body 5). The second inflow throttle hole 28 is arranged concentrically with the gas-liquid inflow hole 26 and the first inflow throttle hole 27 (inflow cylindrical portion 13). The second inflow throttle hole 28 is arranged between the first inflow throttle hole 27 and the inflow port 9 (the other tubular end 13B of the inflow tubular portion 13) in the direction A of the tube center line a of the inflow tubular portion 13. . The second inflow throttle hole 28 is reduced in diameter from the first inflow throttle hole 27 and communicates (opens) with the first inflow throttle hole 27 . Liquid (water) flows into the second inflow throttle hole 28 from the inflow port 9 .
The second inflow throttle hole 28 extends from the first inflow throttle hole 27 toward the inflow port 9 (the other tubular end 13B of the inflow tubular portion 13) in the direction A of the cylinder center line a of the inflow tubular portion 13. be.
The second inflow throttle hole 28 is a circular hole formed in a circular shape and having a hole diameter D3 (second throttle hole diameter). The hole diameter D3 of the second inflow throttle hole 28 is smaller than the hole diameter D2 of the first inflow throttle hole 28 (D3<D2).

流入開放穴29は、図2、図6及び図7に示すように、流入筒部13(流入筒本体5)に形成される。流入開放穴29は、第2流入絞り穴28(流入筒部13)と同心に配置される。流入開放穴29は、流入筒部13の筒中心線aの方向Aにおいて、第2流入絞り穴28及び流入口9(流入筒部13の他方の筒端13B)の間に配置される。流入開放穴29は、第2流入絞り穴28から拡径されて、流入口9及び第2流入絞り穴28に連通(開口)される。
流入開放穴29は、流入筒部13の筒中心線aの方向Aにおいて、第1流入絞り穴28から流入筒部13の他方の筒端13B(流入口9)まで延在されて、流入筒部13の他方の筒端13Bに開口される。
The inflow open hole 29 is formed in the inflow tube portion 13 (inflow tube main body 5), as shown in FIGS. The inflow open hole 29 is arranged concentrically with the second inflow throttle hole 28 (inflow cylindrical portion 13). The inflow open hole 29 is arranged between the second inflow restrictor hole 28 and the inflow port 9 (the other cylindrical end 13B of the inflow cylindrical portion 13) in the direction A of the cylinder center line a of the inflow cylindrical portion 13. As shown in FIG. The inflow open hole 29 is expanded in diameter from the second inflow throttle hole 28 and communicates (opens) with the inflow port 9 and the second inflow throttle hole 28 .
The inflow open hole 29 extends from the first inflow throttle hole 28 to the other cylindrical end 13B (inflow port 9) of the inflow cylindrical portion 13 in the direction A of the cylinder center line a of the inflow cylindrical portion 13. The other cylindrical end 13B of the portion 13 is opened.

流出路10(流出穴)は、図1、図5、図7乃至図9に示すように、流出筒部18(流出筒本体6)に形成される。流出路10は、例えば、円形穴に形成される。流出路10は、流出筒部18(流出筒本体6)の筒中心線aの方向Aにおいて、流出筒部18の一方の筒端18A側(ノズル閉塞部19)及び他方の筒端18Bの間に配置される。流出路10は、流出筒部18(流れ筒体1)の筒中心線aの方向Aにおいて、ノズル閉塞部19から流出筒部18の他方の筒端18Bまで延されて、流出筒部18の他方の筒端18Bに開口される。
流出路10(流出穴)は、流出筒部18の筒中心線aの方向Aにおいて、ノズル閉塞部19(流出筒部18の一方の筒端18A側)から流出筒部18の他方の筒端18Bに向けて拡径しつつ延在されて、流出筒部18の他方の筒端18Bに開口される。
The outflow path 10 (outflow hole) is formed in the outflow tube portion 18 (outflow tube main body 6), as shown in FIGS. Outflow channel 10 is formed, for example, as a circular hole. The outflow passage 10 extends between one end 18A (nozzle closing portion 19) and the other end 18B of the outflow cylinder portion 18 (outflow cylinder main body 6) in the direction A of the cylinder center line a of the outflow cylinder portion 18 (outflow cylinder main body 6). placed in The outflow passage 10 extends from the nozzle closing portion 19 to the other end 18B of the outflow cylinder portion 18 in the direction A of the cylinder center line a of the outflow cylinder portion 18 (flow cylinder 1). It is opened at the other cylindrical end 18B.
The outflow passage 10 (outflow hole) extends from the nozzle closing portion 19 (one end 18A side of the outflow cylinder portion 18) to the other end of the outflow cylinder portion 18 in the direction A of the cylinder center line a of the outflow cylinder portion 18. It extends toward 18B while increasing in diameter, and opens at the other tubular end 18B of the outflow tubular portion 18 .

流出口11は、図1、図5及び図7に示すように、流出筒部18(流出筒本体6)に形成される。流出口11は、流出筒部18(流出路10)と同心に配置される。流出口11は、流出筒部18の他方の筒端18B(他方の流出筒端)に開口し、及び流出路10に開口する。流出口11は、流出路10に連通される。 The outflow port 11 is formed in the outflow tube portion 18 (outflow tube main body 6), as shown in FIGS. The outflow port 11 is arranged concentrically with the outflow tubular portion 18 (outflow path 10). The outflow port 11 opens to the other tubular end 18</b>B (the other outflow tubular end) of the outflow tubular portion 18 and to the outflow path 10 . The outflow port 11 communicates with the outflow path 10 .

気体導入穴12(気体導入路)は、図3及び図7に示すように、流入筒部13(流入筒本体5)に形成される。気体導入穴12は、流入路8に連通される。
気体導入穴12は、流入筒部13の筒中心線aの方向Aにおいて、第2流入絞り穴28に隣接して、第1流入絞り穴27の第2流入絞り穴28側に配置される。
気体導入穴12は、流入筒部13の筒中心線aと直交する方向(流入筒部13の径方向)において、流入筒部13を貫通して、第1流入絞り穴27及び流入筒部13の外周面に開口される。気体導入穴12は、第1流入絞り穴27に連通される。
As shown in FIGS. 3 and 7, the gas introduction hole 12 (gas introduction path) is formed in the inflow tube portion 13 (inflow tube main body 5). The gas introduction hole 12 communicates with the inflow path 8 .
The gas introduction hole 12 is arranged adjacent to the second inflow throttle hole 28 on the second inflow throttle hole 28 side of the first inflow throttle hole 27 in the direction A of the cylinder center line a of the inflow cylinder portion 13 .
The gas introduction hole 12 penetrates the inflow tubular portion 13 in a direction orthogonal to the tube center line a of the inflow tubular portion 13 (radial direction of the inflow tubular portion 13) to form the first inflow throttle hole 27 and the inflow tubular portion 13. is opened on the outer peripheral surface of the The gas introduction hole 12 communicates with the first inflow throttle hole 27 .

継手管15は、図4及び図7に示すように、気体導入穴12と同心に配置される。継手管15は、一方の継手管端側を気体導入穴12に気密に挿入して、流入筒部13(流れ筒体1)に取付けられる。継手管15は、一方の継手管端側を気体導入穴12に螺入(螺着)して、流入筒部13に配置される。継手管15は、他方の継手管端側を流入筒部13(流れ筒体1)の外周面から突出して配置される。
これにより、継手管15の一方の継手管端は、気体導入穴12(気体導入絞り穴)を通して、流入路8(第1流入絞り穴27)に連通される。
The joint pipe 15 is arranged concentrically with the gas introduction hole 12, as shown in FIGS. The joint pipe 15 is attached to the inflow tubular portion 13 (flow tubular body 1) by airtightly inserting one joint pipe end side into the gas introduction hole 12 . The joint pipe 15 is disposed in the inflow tubular portion 13 with one joint pipe end side screwed into the gas introduction hole 12 . The joint pipe 15 is arranged so that the other joint pipe end side protrudes from the outer peripheral surface of the inflow tubular portion 13 (flow tubular body 1).
As a result, one joint pipe end of the joint pipe 15 is communicated with the inflow passage 8 (first inflow throttle hole 27) through the gas introduction hole 12 (gas introduction throttle hole).

流れ筒体1は、図1乃至図10に示すように、連結筒本体7によって、流入筒本体5及び流出筒本体6を連結して構成される。 As shown in FIGS. 1 to 10 , the flow tube 1 is configured by connecting an inflow tube main body 5 and an outflow tube main body 6 with a connecting tube main body 7 .

流れ筒体1において、流入筒本体5(流入筒部13)は、図8及び図9に示すように、流入筒部13の一方の筒端13Aを流出筒部18の一方の筒端18A(ノズル閉塞部19)に対峙(対向)して、流出筒本体6(流出筒部18)と同心に配置される。
流出筒本体6(流出筒部18)は、図8及び図9に示すように、流出筒部18の一方の筒端18A(ノズル閉塞部19)を流入筒部13の一方の筒端13Aに対峙(対向)して、流入筒本体5(流入筒部13)と同心に配置される。
これにより、流入筒本体5(流入筒部13)及び流出筒本体6(流出筒部18)は、図1乃至図4、及び図7に示すように、流れ筒体1の筒中心線aの方向Aに並列して、同心に配置される。
In the flow cylinder 1, the inflow cylinder main body 5 (inflow cylinder part 13), as shown in FIGS. It is arranged concentrically with the outflow cylinder main body 6 (outflow cylinder part 18) so as to face (oppose) the nozzle blocking part 19).
As shown in FIGS. 8 and 9, the outflow cylinder main body 6 (outflow cylinder portion 18) has one cylinder end 18A (nozzle blocking portion 19) of the outflow cylinder portion 18 connected to one cylinder end 13A of the inflow cylinder portion 13. It is arranged concentrically with the inflow tube main body 5 (inflow tube portion 13) so as to face each other (oppose).
As a result, the inflow tube main body 5 (inflow tube portion 13) and the outflow tube main body 6 (outflow tube portion 18) are aligned along the tube center line a of the flow tube body 1, as shown in FIGS. Concentrically arranged parallel to direction A.

流れ筒体1において、連結筒本体7(連結筒部22)は、図7乃至図9に示すように、連結筒部22の他方の筒端22Bを流入口9(流入筒部13の他方の筒端13B)に向けて配置され、連結穴24内に流出筒部18を挿入して、流出筒部18に外嵌される。連結筒本体7は、流出筒部18の他方の筒端18Bから流出筒部18を連結穴24に挿入し、筒閉塞板23をノズル段差部20(ノズル閉塞部19)に当接して、流出筒部18の一方の筒端18A側(ノズル閉塞部19)を連結筒部22内に配置する。流出筒部18(流出筒本体6)は、流出筒部18の他方の筒端18Bから連結穴24に挿入されて、ノズル閉塞部19(一方の筒端18A側)を連結筒部22内に配置する。流出筒部18は、図7乃至図9に示すように、連結筒部22の他方の筒端22Bからノズル閉塞部19(ノズル本体)を連結筒部22内に挿入する。流出筒部18は、ノズル閉塞部19(ノズル本体)の外周面を連結筒部22の内周面に密接しつつ、ノズル閉塞部19(ノズル本体)を連結筒部22内に収納する。流出筒部18の他方の筒端18B側は、図1乃至図4、及び図7に示すように、流出筒部18(流れ筒体1)の筒中心線aの方向Aにおいて、連結筒本体7の連結穴24から突出して延在される。 In the flow cylinder 1, the connecting cylinder main body 7 (connecting cylinder portion 22) has the other cylinder end 22B of the connecting cylinder portion 22 connected to the inflow port 9 (the other end of the inflow cylinder portion 13), as shown in FIGS. The outflow cylinder portion 18 is inserted into the connecting hole 24 and fitted on the outflow cylinder portion 18 . The connecting tube main body 7 inserts the outflow tube part 18 from the other tube end 18B of the outflow tube part 18 into the connecting hole 24, and the tube blocking plate 23 is brought into contact with the nozzle stepped part 20 (nozzle blocking part 19). One cylindrical end 18A side (nozzle blocking portion 19) of the cylindrical portion 18 is arranged inside the connecting cylindrical portion 22. As shown in FIG. The outflow cylinder portion 18 (outflow cylinder main body 6) is inserted into the connecting hole 24 from the other cylinder end 18B of the outflow cylinder portion 18, and the nozzle closing portion 19 (one cylinder end 18A side) is inserted into the connecting cylinder portion 22. Deploy. As shown in FIGS. 7 to 9, the outflow tube portion 18 inserts the nozzle closing portion 19 (nozzle main body) into the connection tube portion 22 from the other tube end 22B of the connection tube portion 22 . The outflow tube portion 18 accommodates the nozzle closing portion 19 (nozzle body) in the connecting tube portion 22 while keeping the outer peripheral surface of the nozzle closing portion 19 (nozzle body) in close contact with the inner peripheral surface of the connecting tube portion 22 . The other tube end 18B side of the outflow tube portion 18 is, as shown in FIGS. It protrudes from the connection hole 24 of 7 and extends.

流れ筒体1において、連結筒本体7(連結筒部22)は、図7乃至図9に示すように、連結筒部22の他方の筒端22Bから流入筒部13の一方の筒端13A側を連結筒部22内に挿入して、流入筒部13(流入筒本体5)に外嵌される。流入筒部13(流入筒本体5)は、流入筒部13の一方の筒端13Aから連結筒部22内に挿入されて、一方の筒端13A側を連結筒部内に配置する。流入筒部13の他方の筒端13B側は、図1乃至図4、及び図7に示すように、流出筒部18(流れ筒体1)の筒中心線aの方向Aにおいて、連結筒部22の他方の筒端22Bから突出して延在される。
連結筒本体7(連結筒部22)は、図7乃至図9に示すように、雌ネジ部25を流入筒部13の雄ネジ部14に螺着して、流入筒部13の一方の筒端13A側に取付けられる。
In the flow cylinder 1, the connecting cylinder main body 7 (connecting cylinder part 22) extends from the other cylinder end 22B of the connecting cylinder part 22 to the one cylinder end 13A of the inflow cylinder part 13, as shown in FIGS. is inserted into the connecting tube portion 22 and fitted to the inflow tube portion 13 (inflow tube main body 5). The inflow cylinder part 13 (inflow cylinder main body 5) is inserted into the connection cylinder part 22 from one cylinder end 13A of the inflow cylinder part 13, and the one cylinder end 13A side is arranged in the connection cylinder part. As shown in FIGS. 1 to 4 and 7, the other tube end 13B side of the inflow tube part 13 is located in the direction A of the tube center line a of the outflow tube part 18 (flow tube body 1). 22 is projected and extended from the other cylindrical end 22B.
As shown in FIGS. 7 to 9, the connecting tube main body 7 (connecting tube portion 22) has a female threaded portion 25 screwed to the male threaded portion 14 of the inflow tube portion 13, and is connected to one tube of the inflow tube portion 13. It is attached to the end 13A side.

流れ筒体1において、連結筒本体7(連結筒部22)と、流出筒本体6(流出筒部18)及び流入筒本体5(流入筒部13)は、図8及び図9に示すように、複数のシールリング31,32によって密封(密閉)される。各シールリング31,32は、合成ゴム、合成樹脂等の弾性材料で円環状に形成される。各シールリング31,32は、流れ筒体1の筒中心線aの方向Aにおいて、各シールリング31,32の間に間隔を隔てて、連結筒部22の一方の筒端22A側の内周面及びノズル閉塞部19(流出筒部18)の外周面の間と、連結筒部22の他方の筒端22B側の内周面及び流入筒部13の一方の筒端13A側の外周面の間に配置される。 In the flow cylinder 1, the connecting cylinder main body 7 (connecting cylinder portion 22), the outflow cylinder main body 6 (outflow cylinder portion 18), and the inflow cylinder main body 5 (inflow cylinder portion 13) are arranged as shown in FIGS. , are sealed (sealed) by a plurality of seal rings 31 and 32 . Each seal ring 31, 32 is formed in an annular shape with an elastic material such as synthetic rubber or synthetic resin. The seal rings 31 and 32 are spaced apart from each other in the direction A of the tube center line a of the flow tube 1 so as to form an inner periphery of the connecting tube portion 22 on one tube end 22A side. between the surface and the outer peripheral surface of the nozzle blocking portion 19 (outflow tubular portion 18), and between the inner peripheral surface on the other tubular end 22B side of the connecting tubular portion 22 and the outer peripheral surface on the one tubular end 13A side of the inflow tubular portion 13. placed in between.

流れ筒体1において、連結筒本体7(連結筒部22)は、図8及び図9に示すように、連結筒部22の内周面及びノズル閉塞部19(ノズル本体)の外周面の間にシールリング31を配置して、流出筒部18に外嵌される。シールリング31は、ノズル閉塞部19に外嵌されて、連結筒部22の内周面及びノズル閉塞部19の外周面に密接される。
流れ筒体1において、連結筒本体7(連結筒部22)は、図8及び図9に示すように、連結筒部22の内周面及び流入筒部13(流入筒部13の一方の筒端13A側)の外周面の間にシールリング32を配置して、流入筒部13の一方の筒端13A側に外嵌される。シールリング32は、流入筒部13の一方の筒端13A側に外嵌されて、連結筒部22の内周面及び流入筒部13(流入筒部13の一方の筒端13A側)の外周面に密接される。
これにより、流れ筒体1内(流入路8、流出路10)は、各シールリング31,32によって密封(密閉)される。
連結筒本体7(連結筒部22)と流出筒本体6(流出筒部18)、連結筒本体7(連結筒部22)と流入筒本体5(流入筒部13)は、図8及び図9に示すように、各シールリング31,32によって密封(密閉)され、流入筒本体5及び流出筒本体6は、連結筒本体7によって連結される。
In the flow cylinder 1, the connecting cylinder main body 7 (connecting cylinder part 22) is located between the inner peripheral surface of the connecting cylinder part 22 and the outer peripheral surface of the nozzle closing part 19 (nozzle body), as shown in FIGS. A seal ring 31 is placed on the outer surface of the outflow cylinder portion 18 . The seal ring 31 is fitted onto the nozzle closing portion 19 and brought into close contact with the inner peripheral surface of the connecting tube portion 22 and the outer peripheral surface of the nozzle closing portion 19 .
In the flow cylinder 1, the connecting cylinder main body 7 (connecting cylinder part 22), as shown in FIGS. A seal ring 32 is arranged between the outer peripheral surfaces of the ends 13A) and is fitted onto one cylindrical end 13A side of the inflow cylindrical portion 13 . The seal ring 32 is externally fitted on one cylindrical end 13A side of the inflow cylindrical portion 13 to seal the inner peripheral surface of the connecting cylindrical portion 22 and the outer periphery of the inflow cylindrical portion 13 (one cylindrical end 13A side of the inflow cylindrical portion 13). close to the surface.
As a result, the inside of the flow cylinder 1 (the inflow path 8 and the outflow path 10) is sealed (sealed) by the seal rings 31 and 32. As shown in FIG.
The connecting cylinder main body 7 (connecting cylinder portion 22) and the outflow cylinder main body 6 (outflow cylinder portion 18), the connecting cylinder main body 7 (connecting cylinder portion 22) and the inflow cylinder main body 5 (inflow cylinder portion 13) are shown in FIGS. , the inflow tube main body 5 and the outflow tube main body 6 are connected by the connecting tube main body 7, which is sealed (sealed) by the respective seal rings 31 and 32. As shown in FIG.

噴射ノズルYは、図7乃至図10に示すように、流入路8(気液流入穴26)及び流出路10の間の流れ筒体1(流出筒本体6、流出筒部18)に配置される。
噴射ノズルYは、図7乃至図10に示すように、ノズル本体19、及びノズル穴35(絞り穴)を有する。
As shown in FIGS. 7 to 10, the injection nozzle Y is arranged in the flow tube 1 (outflow tube main body 6, outflow tube portion 18) between the inflow path 8 (gas-liquid inflow hole 26) and the outflow path 10. be.
The injection nozzle Y, as shown in FIGS. 7 to 10, has a nozzle body 19 and a nozzle hole 35 (throttle hole).

ノズル本体19は、図7乃至図9に示すように、流入路8及び流出路10の間の流れ筒体1内に配置される。ノズル本体19は、ノズル閉塞部19であって、流出筒部18の一方の筒端18Aを閉塞する。ノズル本体19は、ノズル閉塞部で構成される。ノズル本体19は、ノズル本体19の外周面を連結筒部22の内周面に密接して、流入路8及び流出路10の間の流れ筒体1内に配置される。
ノズル本体19(ノズル閉塞部)は、図8及び図9に示すように、流入路8(気液流入穴26)に対峙(対向)するノズル平面36を有する。ノズル平面36は、円形状(円形平面)に形成されて、気液流入穴26に対峙(対向)して配置される。ノズル平面36は、流出筒部18(流れ筒体1)の筒中心線aと直交して形成(配置)される。ノズル平面36は、流出筒部18(流れ筒体1、流出筒本体6)の周方向(円周方向)にわたって形成される。
これにより、ノズル本体19(ノズル平面36)は、図7乃至図10に示すように、流れ筒体1内を流入路8及び流出路10に区画して、流入路8を流出路10から閉塞(遮断)する。
The nozzle body 19 is arranged in the flow tube 1 between the inlet channel 8 and the outlet channel 10, as shown in FIGS. 7-9. The nozzle main body 19 is a nozzle closing portion 19 and closes one cylinder end 18A of the outflow cylinder portion 18 . The nozzle body 19 is composed of a nozzle closing portion. The nozzle body 19 is arranged in the flow tube 1 between the inflow path 8 and the outflow path 10 with the outer peripheral surface of the nozzle body 19 in close contact with the inner peripheral surface of the connecting tube portion 22 .
As shown in FIGS. 8 and 9, the nozzle main body 19 (nozzle closing portion) has a nozzle plane 36 that faces (opposes) the inflow path 8 (gas-liquid inflow hole 26). The nozzle plane 36 is formed in a circular shape (circular plane) and arranged to face (oppose) the gas-liquid inflow hole 26 . The nozzle plane 36 is formed (arranged) perpendicular to the cylinder center line a of the outflow cylinder part 18 (flow cylinder 1). The nozzle plane 36 is formed along the circumferential direction (circumferential direction) of the outflow cylinder portion 18 (flow cylinder 1, outflow cylinder main body 6).
7 to 10, the nozzle body 19 (nozzle plane 36) partitions the interior of the flow tube 1 into an inflow passage 8 and an outflow passage 10, and closes the inflow passage 8 from the outflow passage 10. (Cut off.

ノズル穴35は、図7乃至図9に示すように、ノズル本体19(ノズル閉塞部)に形成される。ノズル穴35は、流出路10(流出筒部18、流入路8)と同心に配置される。ノズル穴35は、流出筒部18(流れ筒体1)の筒中心線aの方向Aに延在して、流出路10(流出穴)に開口(連通)される。ノズル穴35は、流出筒部18(流れ筒体1)の筒中心線aの方向Aにおいて、流出路10から縮径されて、流入路8側(気液流入穴26側)に延在される。ノズル穴35は、円形状に形成され、穴直径d1(ノズル穴直径)の円形穴に形成される。ノズル穴35の穴直径d1は、気液流入穴26の穴直径D1より小径である(d1<D1)。 The nozzle hole 35 is formed in the nozzle main body 19 (nozzle closing portion), as shown in FIGS. The nozzle hole 35 is arranged concentrically with the outflow path 10 (the outflow tubular portion 18, the inflow path 8). The nozzle hole 35 extends in the direction A of the tube center line a of the outflow tube portion 18 (flow tube 1) and opens (communicates) with the outflow path 10 (outflow hole). The nozzle hole 35 is reduced in diameter from the outflow passage 10 in the direction A of the cylinder center line a of the outflow cylinder portion 18 (flow cylinder 1) and extends toward the inflow passage 8 side (gas-liquid inflow hole 26 side). be. The nozzle hole 35 is formed in a circular shape with a hole diameter d1 (nozzle hole diameter). The hole diameter d1 of the nozzle hole 35 is smaller than the hole diameter D1 of the gas-liquid inflow hole 26 (d1<D1).

バブル発生器Zは、図5、及び図7乃至図10に示すように、流れ筒体1内(流入路8)において、噴射ノズルY(ノズル本体19)に配置される。バブル発生器Yは、図9乃至図7に示すように、液体絞り穴41、液体ガイド45を備える。 As shown in FIGS. 5 and 7 to 10, the bubble generator Z is arranged in the injection nozzle Y (nozzle body 19) inside the flow cylinder 1 (inflow path 8). The bubble generator Y has a liquid throttle hole 41 and a liquid guide 45, as shown in FIGS.

液体絞り穴41は、図8及び図9に示すように、ノズル本体19(ノズル閉塞部)に形成される。液体絞り穴41は、ノズル穴35及び流入路8(気液流入穴26)と同心に配置される。
液体絞り穴41は、流出筒部18(流れ筒体1)の筒中心線aの方向Aにおいて、ノズル本体19を貫通して、ノズル穴35及び流入路8(気液流入穴26)に連通される。液体絞り穴41は、流出筒部18(流れ筒体1)の筒中心線aの方向Aにおいて、ノズル穴35及び気液流入穴26に開口される。液体絞り穴41は、ノズル平面36に開口して、気液流入穴26に連通される。
As shown in FIGS. 8 and 9, the liquid throttle hole 41 is formed in the nozzle body 19 (nozzle closing portion). The liquid throttle hole 41 is arranged concentrically with the nozzle hole 35 and the inflow path 8 (gas-liquid inflow hole 26).
The liquid throttle hole 41 penetrates the nozzle body 19 in the direction A of the cylinder center line a of the outflow cylinder part 18 (flow cylinder 1) and communicates with the nozzle hole 35 and the inflow passage 8 (gas-liquid inflow hole 26). be done. The liquid throttle hole 41 is opened to the nozzle hole 35 and the gas-liquid inflow hole 26 in the direction A of the cylinder center line a of the outflow cylinder portion 18 (flow cylinder 1). The liquid throttle hole 41 opens to the nozzle plane 36 and communicates with the gas-liquid inflow hole 26 .

液体絞り穴41は、図8及び図9に示すように、流れ筒体1の筒中心線aの方向Aにおいて、流入路8側(気液流入穴26側)から縮径しつつ延在される円錐穴(円錐台形穴)に形成される。液体絞り穴41は、流れ筒体1の筒中心線aの方向Aにおいて、流入路8(気液流入穴26)からノズル穴35に向けて段々に縮径しつつ延在される円錐穴に形成される。
液体絞り穴41は、図9に示すように、流れ筒体1の筒中心線a(流入路9の穴中心線a)の方向Aに穴長さM1を有する。
液体絞り穴41は、図9に示すように、流入路8(気液流入穴26、ノズル平面36)に開口する穴直径dM(穴下直径)を有し、及びノズル穴35に開口する穴直径d1(穴上直径)を有する。液体絞り穴41の穴直径dMは、ノズル平面36に開口する穴直径であって、気液流入穴26の穴直径D1より小径である(dM<D1)。液体絞り穴41の穴直径dMは、穴直径d1より大経である(d1<dM)。液体絞り穴41の穴直径d1は、ノズル穴35の穴直径d1と同一径である。
As shown in FIGS. 8 and 9, the liquid throttle hole 41 extends from the side of the inflow passage 8 (side of the gas-liquid inflow hole 26) in the direction A of the cylinder center line a of the flow cylinder 1 while decreasing in diameter. formed into a conical hole (truncated conical hole). The liquid throttle hole 41 is a conical hole that extends from the inflow passage 8 (gas-liquid inflow hole 26) toward the nozzle hole 35 in the direction A of the cylinder center line a of the flow cylinder 1 while gradually decreasing in diameter. It is formed.
As shown in FIG. 9, the liquid throttle hole 41 has a hole length M1 in the direction A of the tube center line a of the flow tube 1 (the hole center line a of the inflow passage 9).
As shown in FIG. 9, the liquid throttle hole 41 has a hole diameter dM (lower hole diameter) opening to the inflow path 8 (air-liquid inflow hole 26, nozzle plane 36) and a hole opening to the nozzle hole 35. It has a diameter d1 (hole diameter). The hole diameter dM of the liquid throttle hole 41 is the hole diameter opening to the nozzle plane 36, and is smaller than the hole diameter D1 of the gas-liquid inflow hole 26 (dM<D1). The hole diameter dM of the liquid throttle hole 41 is larger than the hole diameter d1 (d1<dM). The hole diameter d1 of the liquid throttle hole 41 is the same diameter as the hole diameter d1 of the nozzle hole 35 .

液体絞り穴41をノズル本体19に形成すると、気液流入穴26(流入路8)は、図7乃至図9に示すように、流れ筒体1(流入筒部13)の筒中心線aの方向Aにおいて、液体絞り穴41及び流入口9(第1流入絞り穴27)の間に配置されて、液体絞り穴41から拡径される。気液流入穴26は、図8及び図9に示すように、液体絞り穴41にノズル段差面36A(ノズル段差平面)を有して、液体絞り穴41から拡径して形成される。ノズル段差面36Aは、ノズル平面36の一部である。ノズル段差面36Aは、流れ筒体1の筒中心線aと直交する方向において、ノズル本体19の外周面及び液体絞り穴41の間のノズル平面36であって、流れ筒体1の周方向(円周方向)にわたって形成される。 When the liquid throttle hole 41 is formed in the nozzle body 19, the gas/liquid inflow hole 26 (inflow path 8) is aligned with the center line a of the flow tube 1 (inflow tube portion 13) as shown in FIGS. In the direction A, it is arranged between the liquid throttle hole 41 and the inlet 9 (the first inlet throttle hole 27 ) and widens from the liquid throttle hole 41 . As shown in FIGS. 8 and 9, the gas-liquid inflow hole 26 has a nozzle step surface 36A (nozzle step plane) in the liquid throttle hole 41 and is formed by increasing the diameter from the liquid throttle hole 41 . The nozzle step surface 36A is part of the nozzle plane 36. As shown in FIG. The nozzle stepped surface 36A is the nozzle plane 36 between the outer peripheral surface of the nozzle body 19 and the liquid throttle hole 41 in the direction perpendicular to the cylinder center line a of the flow cylinder 1, and extends in the circumferential direction of the flow cylinder 1 ( circumferential direction).

液体ガイド45は、図7乃至図17に示すように、液体閉塞板46(液体ガイド板)、及び液体ガイドコア47を有する。 The liquid guide 45 has a liquid blocking plate 46 (liquid guide plate) and a liquid guide core 47, as shown in FIGS.

液体閉塞板46は、図11乃至図17に示すように、合成樹脂で板状(円形平板)に形成に形成される(液体閉塞円板)。液体閉塞板46は、板厚さ方向に板表面46A(閉塞板表面)及び板裏面46B(閉塞板裏面)を有する。板表面46A及び板裏面46Bは、板厚さ方向に板厚さ間隔(板厚さT)を有して平行に配置される。 As shown in FIGS. 11 to 17, the liquid blocking plate 46 is made of synthetic resin and formed into a plate shape (circular flat plate) (liquid blocking disk). The liquid blocking plate 46 has a plate surface 46A (blocking plate surface) and a plate back surface 46B (blocking plate back surface) in the plate thickness direction. The plate surface 46A and the plate back surface 46B are arranged in parallel with a plate thickness interval (plate thickness T) in the plate thickness direction.

液体閉塞板46は、図11乃至図17に示すように、複数の液体導入穴であって、例えば、第1及び第2液体導入穴51,52を有する。第1及び第2液体導入穴51,52は、図16に示すように、液体閉塞板46の周方向(円周方向)において、第1及び第2液体導入穴51,52の間に角度180度(180°)の導入穴角度θAの間隔を隔て配置される。第1及び第2液体導入穴51,52は、図13に示すように、液体閉塞板46の板中心線CLを中心として、液体閉塞板46に位置する半径rp(直径dp)の円RO上に配置される。第1及び第2液体導入穴51,52は、例えば、円形穴に形成されて、第1及び第2液体導入穴51,52の穴中心線HLを円ROに一致(位置)して配置される。
第1及び第2液体導入穴51,52は、図11乃至図17に示すように、液体閉塞板46の板中心線CLの方向において、液体閉塞板46を貫通して、液体閉塞板46の板表面46A及び板裏面46Bに開口される。
As shown in FIGS. 11 to 17, the liquid blocking plate 46 has a plurality of liquid introduction holes, such as first and second liquid introduction holes 51 and 52 . As shown in FIG. 16, the first and second liquid introduction holes 51 and 52 are arranged at an angle of 180 between the first and second liquid introduction holes 51 and 52 in the circumferential direction (circumferential direction) of the liquid blocking plate 46 . They are spaced apart by an inlet hole angle θA of degrees (180°). As shown in FIG. 13, the first and second liquid introduction holes 51 and 52 are formed on a circle RO with a radius rp (diameter dp) located in the liquid blocking plate 46 with the plate center line CL of the liquid blocking plate 46 as the center. placed in The first and second liquid introduction holes 51 and 52 are formed, for example, as circular holes, and arranged such that the hole center lines HL of the first and second liquid introduction holes 51 and 52 coincide (position) with the circle RO. be.
As shown in FIGS. 11 to 17, the first and second liquid introduction holes 51 and 52 pass through the liquid blockage plate 46 in the direction of the plate center line CL of the liquid blockage plate 46, and extend through the liquid blockage plate 46. Openings are provided on the plate front surface 46A and the plate back surface 46B.

液体ガイドコア47は、図11乃至図17に示すように、円錐渦巻き状(円錐螺旋状、又は円錐台形の渦巻き状)に形成される。
液体ガイドコア47は、図11乃至図17に示すように、円錐上面47A、円錐底面47B(円錐底平面)、円錐側面47C、及び液体導入穴51,52と同数の渦巻き面であって、例えば、第1及び第2渦巻面55,56を有する。
As shown in FIGS. 11 to 17, the liquid guide core 47 is formed in a conical spiral shape (conical spiral shape or truncated conical spiral shape).
As shown in FIGS. 11 to 17, the liquid guide core 47 has a conical top surface 47A, a conical bottom surface 47B (conical bottom plane), a conical side surface 47C, and the same number of spiral surfaces as the liquid introduction holes 51 and 52. For example, , first and second spiral surfaces 55 , 56 .

第1及び第2渦巻き面55,56は、図11乃至図15、及び図17に示すように、同一渦巻き状に形成される。第1及び第2渦巻き面55,56は、図11乃至図13、及び図17に示すように、液体ガイドコア47の円錐側面47Cに交差して、円錐底面47B及び円錐上面47Aの間に配置される。
第1及び第2渦巻き面55,56は、液体ガイドコア47の円錐中心線LXを対称点として点対称に配置される。第2渦巻き面56は、円錐中心線LXを中心として、第1渦巻き面55の位置から角度:180度(180°)だけ回転して配置される。
第1及び第2渦巻き面55,56は、円錐底面47Bから円錐上面47Aに向けて縮径しつつ渦巻き状に形成されて、円錐上面47Aまで延在される。
The first and second spiral surfaces 55 and 56 are formed in the same spiral shape as shown in FIGS. 11-15 and 17 . The first and second spiral surfaces 55, 56 intersect the conical side surface 47C of the liquid guide core 47 and are located between the conical bottom surface 47B and the conical top surface 47A, as shown in FIGS. be done.
The first and second spiral surfaces 55 and 56 are arranged symmetrically with respect to the cone center line LX of the liquid guide core 47 . The second spiral surface 56 is rotated by an angle of 180 degrees (180°) from the position of the first spiral surface 55 about the cone centerline LX.
The first and second spiral surfaces 55 and 56 are spirally formed while decreasing in diameter from the conical bottom surface 47B toward the conical top surface 47A, and extend to the conical top surface 47A.

第1及び第2渦巻き面55,56は、図11乃至図17に示すように、円錐底面47B側の渦巻き面端55A,56A(一方の渦巻き面端)、及び円錐上面47A側の渦巻き面端55B,56B(他方の渦巻き面端)を有する。一方の各渦巻き面端55A,56Aは、円錐底面47Bに連続して形成され、他方の渦巻き面端55B,56Bは、円錐上面47Aに連続して形成される。
第1及び第2渦巻き面55,56において、一方の渦巻き面端55A,56Aは、図15に示すように、液体ガイドコア47の円錐中心線LXと直交する第1直交方向HX(コア幅方向)において、各渦巻き面端55A,56Aの間に面端間隔hxを隔てて配置される。一方の各渦巻き面端55A,56Aは、図15に示すように、第1直交方向HXに面端幅hyを有して延在されて、円錐底面47Bに直交し、渦巻き面端55A,56Bの両側の円錐側面47Cに交差して配置される。
これにより、一方の各渦巻き面端55A,56A側は、第1直交方向HXにおいて、各渦巻き面端55A,56A側にコア幅間隔hxを隔てて平行に配置される。
As shown in FIGS. 11 to 17, the first and second spiral surfaces 55 and 56 are spiral surface ends 55A and 56A (one spiral surface end) on the conical bottom surface 47B side and spiral surface ends on the conical top surface 47A side. 55B, 56B (the other spiral face end). One of the spiral surface ends 55A and 56A is formed continuously with the conical bottom surface 47B, and the other spiral surface ends 55B and 56B are formed continuously with the conical top surface 47A.
As shown in FIG. 15, one spiral surface end 55A, 56A of the first and second spiral surfaces 55, 56 extends in a first orthogonal direction HX (core width direction) perpendicular to the cone center line LX of the liquid guide core 47. ), the spiral face ends 55A and 56A are arranged with a face end interval hx therebetween. As shown in FIG. 15, each spiral surface end 55A, 56A extends with a surface end width hy in the first orthogonal direction HX, perpendicular to the conical bottom surface 47B, and spiral surface ends 55A, 56B. are placed across the conical side surfaces 47C on both sides of the .
As a result, the spiral surface ends 55A and 56A on one side are arranged parallel to the spiral surface ends 55A and 56A with a core width interval hx in the first orthogonal direction HX.

液体ガイドコア47は、図17に示すように、円錐中心線LXの方向にガイド高さGを有する。ガイド高さGは、円錐中心線LXの方向において、円錐上面47A及び円錐底面47Bの間の高さであって、液体絞り穴41の穴長さM1と略同一の高さ(同一高さ、又は僅かに長い高さ)にする。
液体ガイドコア47は、図14に示すように、第1直交方向HX(コア幅方向)において、円錐底面47B(円錐側面47C)の最大コア幅GH(コア幅)を有する。最大コア幅GHは、一方の各渦巻き面端55A,56Aと交差する円錐側面47Cのうち、最も外側に位置する渦巻き面端55A側の円錐側面47Cと、最も外側に位置する渦巻き面端56A側の円錐側面47Cの間のコア幅である。最大コア幅GHは、第1及び第2液体導入穴51,52を配置する円ROの直径dpと略同一の幅(円ROの直径dpと同一の幅又は円ROの直径dpより僅かに広い幅)である。
The liquid guide core 47 has a guide height G in the direction of the cone centerline LX, as shown in FIG. The guide height G is the height between the cone top surface 47A and the cone bottom surface 47B in the direction of the cone center line LX, and is approximately the same height as the hole length M1 of the liquid throttle hole 41 (same height, or slightly longer height).
As shown in FIG. 14, the liquid guide core 47 has a maximum core width GH (core width) of the conical bottom surface 47B (conical side surface 47C) in the first orthogonal direction HX (core width direction). Among the conical side surfaces 47C intersecting the one spiral surface ends 55A and 56A, the maximum core width GH is defined by the conical side surface 47C on the outermost spiral surface end 55A side and the outermost spiral surface end 56A side. is the core width between the conical sides 47C of the . The maximum core width GH is substantially the same width as the diameter dp of the circle RO on which the first and second liquid introduction holes 51 and 52 are arranged (the same width as the diameter dp of the circle RO or slightly wider than the diameter dp of the circle RO). width).

液体閉塞板46及び液体ガイドコア47は、図11乃至図17に示すように、例えば、合成樹脂で一体に形成される。 The liquid blocking plate 46 and the liquid guide core 47 are integrally formed of synthetic resin, for example, as shown in FIGS. 11 to 17 .

液体ガイドコア47は、液体閉塞板46と同心に配置される。液体ガイドコア47は、図11乃至17に示すように、液体ガイドコア47の円錐中心線LXを液体閉塞板46の板中心線CLに一致(位置)して配置される。 The liquid guide core 47 is arranged concentrically with the liquid blocking plate 46 . As shown in FIGS. 11 to 17, the liquid guide core 47 is arranged so that the conical center line LX of the liquid guide core 47 coincides (positions) with the plate center line CL of the liquid blocking plate 46 .

液体ガイドコア47は、液体ガイドコア47の円錐底面47Bを液体閉塞板46の板表面46Aに当接して、液体閉塞板46と一体にされる。液体ガイドコア47は、液体閉塞板46に固定される。
液体ガイドコア47は、図11乃至図13、及び図16に示すように、第1及び第2渦巻き面55,56の一方の渦巻き面端55A,56A(一方の渦巻き面端55A,56A側)を各液体導入穴51,52内に突出して、液体閉塞板46に固定される。液体ガイドコア47は、一方の各渦巻き面端55A,56A側に対峙(対向)する円錐底面47Bを、第1及び第2渦巻き面55,56の一方の渦巻き面端55A,56A側と共に、液体閉塞板46の各液体導入穴51,52内に突出して、液体閉塞板46と一体に形成される。
The liquid guide core 47 is integrated with the liquid blocking plate 46 by abutting the conical bottom surface 47B of the liquid guiding core 47 against the plate surface 46A of the liquid blocking plate 46 . The liquid guide core 47 is fixed to the liquid blocking plate 46 .
As shown in FIGS. 11 to 13 and 16, the liquid guide core 47 is provided on one spiral surface end 55A, 56A of the first and second spiral surfaces 55, 56 (one spiral surface end 55A, 56A side). protrude into the liquid introduction holes 51 and 52 and are fixed to the liquid blocking plate 46 . The liquid guide core 47 has a conical bottom surface 47B that faces (opposes) one of the spiral surface ends 55A and 56A along with one of the spiral surface ends 55A and 56A of the first and second spiral surfaces 55 and 56. It protrudes into each of the liquid introduction holes 51 and 52 of the closure plate 46 and is integrally formed with the liquid closure plate 46 .

液体ガイドコア47は、図14に示すように、液体閉塞板46の周方向(円ROの周方向)において、第1渦巻き面55の一方の渦巻き面端55Aと、第1液体導入穴51の穴中心線HL及び円錐中心線LX(液体閉塞板46の板中心線CL)を結ぶ第1中心基準線LYとの間に面端角度θYを隔てて、第1渦巻き面55の一方の渦巻き面端55Aを第1液体導入穴51内に突出して配置される。面端角度θYは、例えば、角度0度(0°)以上、角度30度(30°)以下である(0°≦θ≦30°)。
液体ガイドコア47は、図14に示すように、液体閉塞板46の周方向(円ROの周方向)において、第2渦巻き面56の一方の渦巻き面端56Aと、第2液体導入穴52の穴中心線HL及び円錐中心線LX(液体閉塞板46の板中心線CL)を結ぶ第2中心基準線LZとの間に面端角度θYを隔てて、第2渦巻き面56の一方の渦巻き面端56Aを第2液体導入穴52内に突出して配置する。
液体ガイドコア47は、図13及び図14に示すように、第1及び第2渦巻き面55,56を円RO内(各液体導入穴51,52を配置する円ROの内側)に配置して、第1及び第2渦巻き面55,56の一方の渦巻き面端55A,56A(一方の渦巻き面端55A,56A側)を第1及び第2各液体導入穴51,52内に突出する。
As shown in FIG. 14, the liquid guide core 47 has one spiral surface end 55A of the first spiral surface 55 and the first liquid introduction hole 51 in the circumferential direction of the liquid blockage plate 46 (the circumferential direction of the circle RO). One spiral surface of the first spiral surface 55 is separated from the first center reference line LY connecting the hole center line HL and the cone center line LX (the plate center line CL of the liquid blocking plate 46) with a face end angle θY. The end 55A is arranged to protrude into the first liquid introduction hole 51 . The face end angle θY is, for example, an angle of 0 degree (0°) or more and an angle of 30 degrees (30°) or less (0°≦θ≦30°).
As shown in FIG. 14, the liquid guide core 47 has one spiral surface end 56A of the second spiral surface 56 and the second liquid introduction hole 52 in the circumferential direction of the liquid blockage plate 46 (the circumferential direction of the circle RO). One spiral surface of the second spiral surface 56 is separated from the second center reference line LZ connecting the hole center line HL and the cone center line LX (the plate center line CL of the liquid blocking plate 46) with a surface end angle θY. The end 56A is arranged so as to protrude into the second liquid introduction hole 52 .
As shown in FIGS. 13 and 14, the liquid guide core 47 has the first and second spiral surfaces 55 and 56 arranged inside the circle RO (inside the circle RO where the liquid introduction holes 51 and 52 are arranged). , one spiral surface end 55A, 56A (one spiral surface end 55A, 56A side) of the first and second spiral surfaces 55, 56 protrudes into the first and second liquid introduction holes 51, 52, respectively.

第1及び第2渦巻き面55,56は、図11乃至図16に示すように、一方の渦巻き面端55A,56A(液体ガイドコア47の円錐底面47B側の渦巻き面端55A,56A)を第1及び第2液体導入穴51,52内に突出して配置される。第1渦巻き面55は、一方の渦巻き面端55A(一方の渦巻き面端55A側)を第1液体導入穴51内に突出して配置される。第2渦巻き面56は、一方の渦巻き面端56A(一方の渦巻き面56A側)を第2液体導入穴52内に突出して配置される。
第1及び第2渦巻き面55,56は、図16に示すように、一方の渦巻き面端55A,56A側の第1及び第2渦巻き面55,56(円錐底面47B側の第1及び第2渦巻き面55,56の一部)に対峙(対向)する円錐底面47Bと共に、一方の渦巻き面端55A,56A(一方の渦巻き面端55A,56A側)を第1及び第2液体導入穴51,52に突出して配置される。
第1渦巻き面55は、図14に示すように、一方の渦巻き面端55Aと、第1中心基準LYとの間に面端角度θYを隔てて、第1渦巻き面55の一方の渦巻き面端55A(一方の渦巻き面端55A側)を第1液体導入穴51内に突出して配置される。
第2渦巻き面56は、図14に示すように、一方の渦巻き面端56Aと、第2中心基準線LZとの間に面端角度θYを隔てて、第2渦巻き面56の一方の渦巻き面端56A(一方の渦巻き面端56A側)を第2液体導入穴52内に突出して配置される。
第1及び第2渦巻き面55,56は、図13及び図14に示すように、一方の渦巻き面端55A,56A(一方の渦巻き面端55A,56A側)を円RO内(第1及び第2液体導入穴51,52を配置する円ROの内側)に突出して配置される。
As shown in FIGS. 11 to 16, the first and second spiral surfaces 55 and 56 have one spiral surface ends 55A and 56A (the spiral surface ends 55A and 56A on the conical bottom surface 47B side of the liquid guide core 47) as the first spiral surface. It is arranged so as to protrude into the first and second liquid introduction holes 51 and 52 . The first spiral surface 55 is arranged so that one spiral surface end 55A (one spiral surface end 55A side) protrudes into the first liquid introduction hole 51 . The second spiral surface 56 is arranged such that one spiral surface end 56A (one spiral surface 56A side) protrudes into the second liquid introduction hole 52 .
As shown in FIG. 16, the first and second spiral surfaces 55, 56 are the first and second spiral surfaces 55, 56 on one spiral surface end 55A, 56A side (the first and second spiral surfaces on the conical bottom surface 47B side). One spiral surface end 55A, 56A (one spiral surface end 55A, 56A side) is formed into the first and second liquid introduction holes 51, 56A, 55A, 56B. 52 is protruded.
As shown in FIG. 14, the first spiral surface 55 is separated from one spiral surface end 55A and the first center reference LY by a surface end angle θY. 55A (one spiral surface end 55A side) is arranged to protrude into the first liquid introduction hole 51 .
As shown in FIG. 14, the second spiral surface 56 is separated by a surface end angle θY between one spiral surface end 56A and the second center reference line LZ. The end 56A (one spiral surface end 56A side) is arranged to protrude into the second liquid introduction hole 52 .
As shown in FIGS. 13 and 14, the first and second spiral surfaces 55 and 56 have one spiral surface end 55A and 56A (one spiral surface end 55A and 56A side) within the circle RO (the first and second spiral surfaces). 2 inside the circle RO where the liquid introduction holes 51 and 52 are arranged.

バブル発生器Zにおいて、液体ガイド45は、図7乃至図10に示すように、流れ筒体1内(流入路8及び流出路10の間の流れ筒体1内)に配置される。液体ガイド45は、流れ筒体1内において、噴射ノズルY(ノズル本体19)に配置される。 In the bubble generator Z, the liquid guide 45 is arranged inside the flow tube 1 (inside the flow tube 1 between the inlet channel 8 and the outlet channel 10), as shown in FIGS. The liquid guide 45 is arranged in the jet nozzle Y (nozzle body 19 ) inside the flow cylinder 1 .

液体ガイド45は、図7乃至図10に示すように、液体ガイドコア47を流入路8側(気液流入穴26側)から液体絞り穴41に挿入して、流れ筒体1内に配置される。
液体ガイド45は、液体ガイドコア47を円錐上面47A(液体閉塞板46の板表面46A)から液体絞り穴41内に挿入して配置される。
液体ガイド45は、液体ガイドコア47の円錐中心線LX(液体閉塞板46の板中心線CL)を流れ筒体1の筒中心線a(ノズル穴35及び液体絞り穴41の穴中心線)に一致(位置)して、液体絞り穴41と同心に配置される。
As shown in FIGS. 7 to 10, the liquid guide 45 is arranged in the flow cylinder 1 by inserting the liquid guide core 47 into the liquid restriction hole 41 from the side of the inflow path 8 (the side of the gas-liquid inflow hole 26). be.
The liquid guide 45 is arranged by inserting the liquid guide core 47 into the liquid restriction hole 41 from the conical upper surface 47A (the plate surface 46A of the liquid closing plate 46).
The liquid guide 45 aligns the cone center line LX of the liquid guide core 47 (the plate center line CL of the liquid blocking plate 46) with the tube center line a of the flow tube 1 (the hole center line of the nozzle hole 35 and the liquid throttle hole 41). It is aligned (positioned) and arranged concentrically with the liquid throttle hole 41 .

液体ガイド45は、図7乃至図9に示すように、流れ筒体1の筒中心線aの方向Aにおいて、液体閉塞板46を流入筒部13(流入筒本体5)の一方の筒端13A及びノズル本体19のノズル段差面36A(ノズル平面36)の間(各シールリング31,32の間)に挿入して配置される。液体ガイド45は、液体閉塞板46の板表面46Aを流入路8側(液体混合流入穴26側)からノズル段差面36A(ノズル本体19)に当接して、液体絞り穴41を流入路8側(気液流入穴26側)から閉塞して配置される。
液体閉塞板46(液体閉塞板46の外周側)は、図8及び図9に示すように、液体閉塞板46の板表面46Aをノズル段差面36A(ノズル本体19)に当接し、及び液体閉塞板46の板裏面46Bを流入筒部13(流入筒本体5)の一方の筒端13Aに密接して、ノズル本体19のノズル段差面36A及び流入筒部13(流入筒本体5)の一方の筒端13Aの間に配置(挿入)される。液体閉塞板46(液体閉塞板46の外周側)は、筒閉塞板23をノズル段差部20に当接した連結筒部22(連結筒本体7)の一方の回転(流入口9に向かう回転)によって、ノズル本体19(ノズル段差面36A)及び流入筒部13の一方の筒端13Aに密着される。
As shown in FIGS. 7 to 9, the liquid guide 45 is arranged so that the liquid blocking plate 46 extends along one end 13A of the inflow cylinder portion 13 (inflow cylinder main body 5) in the direction A of the cylinder center line a of the flow cylinder 1. As shown in FIGS. and between the nozzle step surface 36A (nozzle flat surface 36) of the nozzle main body 19 (between the seal rings 31 and 32). The liquid guide 45 abuts the plate surface 46A of the liquid blocking plate 46 from the inflow path 8 side (liquid mixing inflow hole 26 side) to the nozzle stepped surface 36A (nozzle body 19), and moves the liquid restriction hole 41 toward the inflow path 8 side. It is arranged so as to be closed from (air-liquid inflow hole 26 side).
As shown in FIGS. 8 and 9, the liquid blockage plate 46 (on the outer peripheral side of the liquid blockage plate 46) abuts the plate surface 46A of the liquid blockage plate 46 against the nozzle stepped surface 36A (nozzle body 19) and closes the liquid. The plate back surface 46B of the plate 46 is brought into close contact with one end 13A of the inflow cylinder portion 13 (inflow cylinder main body 5), and the nozzle stepped surface 36A of the nozzle body 19 and one of the inflow cylinder portion 13 (inflow cylinder main body 5) It is arranged (inserted) between the tube ends 13A. The liquid blockage plate 46 (on the outer peripheral side of the liquid blockage plate 46) rotates in one direction (rotation toward the inlet 9) of the connection cylinder portion 22 (connection cylinder main body 7) in which the cylinder blockage plate 23 is in contact with the nozzle stepped portion 20. , the nozzle main body 19 (nozzle stepped surface 36A) and one cylindrical end 13A of the inflow cylindrical portion 13 are brought into close contact with each other.

液体ガイド45は、図9及び図10に示すように、液体ガイドコア47の円錐側面47C,及び液体絞り穴41の円錐内周面41Aの間に隙間を隔てて、液体ガイドコア47を円錐上面47Aから液体絞り穴41内に挿入して配置される。
液体ガイド45は、図9及び図10に示すように、液体ガイドコア47の第1及び第2渦巻き面55,56(各渦巻き面)、液体ガイドコア47の円錐側面47C、及び液体絞り穴41の円錐内周面41Aの間に、渦巻き状の複数の液体流路であって、液体導入穴51,52と同数の第1及び第2液体流路δ1,δ2を形成しつつ、液体ガイドコア47を液体絞り穴41内に装着して配置される。
As shown in FIGS. 9 and 10, the liquid guide core 45 is provided with a gap between the conical side surface 47C of the liquid guide core 47 and the conical inner peripheral surface 41A of the liquid restricting hole 41 so that the liquid guide core 47 is formed on the conical upper surface. It is inserted into the liquid throttle hole 41 from 47A.
9 and 10, the liquid guide 45 includes the first and second spiral surfaces 55, 56 (each spiral surface) of the liquid guide core 47, the conical side surface 47C of the liquid guide core 47, and the liquid throttle hole 41. Between the conical inner peripheral surface 41A of the liquid guide core, while forming a plurality of spiral liquid flow paths, the first and second liquid flow paths δ1, δ2 of the same number as the liquid introduction holes 51, 52 47 is mounted and positioned within the liquid restriction hole 41 .

液体ガイドコア47は、図8乃至図10に示すように、流入路8側(気液流入穴26側)から液体絞り穴41内に挿入される。液体ガイドコア47は、円錐上面47Aから液体絞り穴41内に挿入される。
液体ガイドコア47は、円錐中心線LXを液体絞り穴41の穴中心線に一致(位置)して、液体絞り穴41内に配置される。液体ガイドコア47は、円錐側面47C及び液体絞り穴41の円錐内周面41Aの間に隙間を隔てて、円錐上面47Aから液体絞り穴41内に挿入される。
これにより、液体ガイドコア47は、図9及び図10に示すように、第1及び第2渦巻き面55,56(各渦巻き面)、液体絞り穴41の円錐内周面41A、及び円錐側面47Cの間に、渦巻き状の第1及び第2液体流路δ1,δ2を形成して、液体絞り穴41内に装着される。
液体ガイドコア47及び液体絞り穴41は、第1及び第2渦巻き面55,56(各渦巻き面)に沿って渦巻き状(螺旋状)の第1及び第2液体流路δ1,δ2(複数の液体流路δ1,δ2,…)を形成する。
As shown in FIGS. 8 to 10, the liquid guide core 47 is inserted into the liquid restriction hole 41 from the side of the inflow passage 8 (the side of the gas/liquid inflow hole 26). The liquid guide core 47 is inserted into the liquid throttle hole 41 from the conical upper surface 47A.
The liquid guide core 47 is arranged in the liquid throttle hole 41 with the cone centerline LX aligned (positioned) with the hole centerline of the liquid throttle hole 41 . The liquid guide core 47 is inserted into the liquid throttle hole 41 from the conical upper surface 47A with a gap between the conical side surface 47C and the conical inner peripheral surface 41A of the liquid throttle hole 41 .
9 and 10, the liquid guide core 47 has first and second spiral surfaces 55 and 56 (each spiral surface), the conical inner circumferential surface 41A of the liquid throttle hole 41, and the conical side surface 47C. In between, spiral first and second liquid flow paths δ1 and δ2 are formed and mounted in the liquid throttle hole 41 .
The liquid guide core 47 and the liquid throttle hole 41 are arranged along the first and second spiral surfaces 55 and 56 (each spiral surface) to form first and second spiral liquid flow paths δ1 and δ2 (a plurality of ) are formed.

第1及び第2液体流路δ1,δ2(複数の液体流路)は、図9及び図10に示すように、液体ガイドコア47の第1及び第2渦巻き面55,56(各渦巻き面)、液体絞り穴41の円錐内周面41A、及び液体ガイドコア47の円錐側面47Cの間に渦巻き状に形成される。
第1及び第2液体流路δ1,δ2は、図9に示すように、円錐中心線LXの方向において、第1及び第2渦巻き面55,56の一方の渦巻き面端55A,56A(液体ガイドコア47の円錐底面47B)から他方の渦巻き面端55B,56B(液体ガイドコア47の円錐上面47A)に渦巻き状に延在されて、ノズル穴35内(又はノズル穴35側の液体絞り穴41内)に開口される。第1及び第2液体流路δ1,δ2(複数の液体流路)は、ノズル穴35(又は液体絞り穴41を通してノズル穴35)に連通される。
第1及び第2液体流路δ1,δ2(複数の液体流路)は、図9に示すように、第1及び第2液体導入穴51,52内に突出する第1及び第2渦巻き面55,56の一方の渦巻き面端55A,56Aから第1及び第2液体導入穴51,52に開口される。第1及び第2液体流路δ1,δ2は、第1及び第2渦巻き面55,56の一方の渦巻き面端55A,56A(一方の渦巻き面端55A,56A側)を通して、第1及び第2液体導入穴51,52に開口される。
第1及び第2液体流路δ1,δ2は、第1及び第2液体導入穴51,51を通して流入路8(気液流入穴26)に連通され、及びノズル穴35を通して流出路10に連通される。
これにより、流れ筒体1において、流入路8(気液流入穴26)、及び流出路10は、図7乃至図9に示すように、液体ガイド45(バブル発生器Z)の第1及び第2液体導入穴51,51、第1及び第2液体流路δ1,δ2、及びノズル本体19(噴射ノズルY)のノズル穴35を通して連通される。
As shown in FIGS. 9 and 10, the first and second liquid flow paths .delta.1 and .delta.2 (plurality of liquid flow paths) are formed by first and second spiral surfaces 55 and 56 (each spiral surface) of the liquid guide core 47. , the conical inner peripheral surface 41A of the liquid restricting hole 41 and the conical side surface 47C of the liquid guide core 47. As shown in FIG.
As shown in FIG. 9, the first and second liquid flow paths .delta.1 and .delta.2 are formed in the direction of the cone center line LX by one spiral surface ends 55A and 56A (liquid guides) of the first and second spiral surfaces 55 and 56. spirally extending from the conical bottom surface 47B of the core 47) to the other spiral surface ends 55B and 56B (the conical upper surface 47A of the liquid guide core 47), and the liquid throttle hole 41 in the nozzle hole 35 (or the liquid throttle hole 41 on the side of the nozzle hole 35). inside). The first and second liquid flow paths δ1 and δ2 (a plurality of liquid flow paths) communicate with the nozzle hole 35 (or the nozzle hole 35 through the liquid throttle hole 41).
As shown in FIG. 9, the first and second liquid flow paths δ1, δ2 (plurality of liquid flow paths) are formed by first and second spiral surfaces 55 protruding into the first and second liquid introduction holes 51, 52. , 56 are opened to the first and second liquid introduction holes 51 and 52 from one spiral surface ends 55A and 56A. The first and second liquid flow paths δ1, δ2 pass through one spiral surface end 55A, 56A (one spiral surface end 55A, 56A side) of the first and second spiral surfaces 55, 56, and flow through the first and second liquid flow paths δ1, δ2. The liquid introduction holes 51 and 52 are opened.
The first and second liquid flow paths δ1, δ2 communicate with the inflow path 8 (gas-liquid inflow hole 26) through the first and second liquid introduction holes 51, 51, and communicate with the outflow path 10 through the nozzle hole 35. be.
As a result, in the flow cylinder 1, the inflow path 8 (gas-liquid inflow hole 26) and the outflow path 10 are arranged in the first and second positions of the liquid guide 45 (bubble generator Z) as shown in FIGS. The two liquid introduction holes 51, 51, the first and second liquid flow paths .delta.1, .delta.2, and the nozzle hole 35 of the nozzle body 19 (ejection nozzle Y) communicate with each other.

気体導入管2(気体導入管体)は、図4及び図7に示すように、一方の導入管端2A側を継手管15の他方の継手管端側(流入筒部13の外周面から突出する他方の継手管端側)に気密に外嵌して、継手管15に連結される。
これにより、気体導入管2は、一方の導入管端2A(一方の管端)を流入路8(第1流入絞り穴27)に連通して配置される。気体導入管2は、継手管15、及び気体導入穴12を通して、第1流入絞り穴27(流入路8)に連通される。
気体導入管2は、他方の導入管端2B(他方の管端)から気体(空気)が流入される。
As shown in FIGS. 4 and 7, the gas introduction pipe 2 (gas introduction pipe body) has one introduction pipe end 2A protruding from the other joint pipe end side of the joint pipe 15 (from the outer peripheral surface of the inflow cylindrical portion 13). (the other end of the joint pipe) is airtightly fitted and connected to the joint pipe 15 .
As a result, the gas introduction pipe 2 is arranged such that one introduction pipe end 2A (one pipe end) communicates with the inflow passage 8 (first inflow throttle hole 27). The gas introduction pipe 2 communicates with the first inflow throttle hole 27 (inflow passage 8) through the joint pipe 15 and the gas introduction hole 12 .
Gas (air) flows into the gas introduction pipe 2 from the other introduction pipe end 2B (the other pipe end).

逆止弁3は、図4及び図7に示すように、気体導入管2の他方の導入管端2B及び継手管15の間の気体導入管2に配置されて、気体導入管2に連通される。
逆止弁3は、気体導入管2の一方の導入管端2A側への流れを許容し、他方の導入管端2B側への流れを阻止(規制、禁止)する。
逆止弁3は、気体導入管2の他方の管端2Bから一方の管端2Aに流れる気体の流れによって開弁されて、気体導入管2の一方の導入管端2A側への気体の流れを許容する。逆止弁3は、気体導入管2の一方の管端2Aから他方の管端2Bへの流れによって閉弁されて、他方の導入管端2B側への流れを阻止(規制、禁止)する。
The check valve 3 is arranged in the gas introduction pipe 2 between the other introduction pipe end 2B of the gas introduction pipe 2 and the joint pipe 15 and communicated with the gas introduction pipe 2, as shown in FIGS. be.
The check valve 3 permits the flow toward one of the introduction pipe ends 2A of the gas introduction pipe 2 and blocks (restricts or prohibits) the flow to the other introduction pipe end 2B.
The check valve 3 is opened by the flow of gas from the other pipe end 2B of the gas introduction pipe 2 to the one pipe end 2A of the gas introduction pipe 2, and the gas flows toward the one introduction pipe end 2A of the gas introduction pipe 2. allow. The check valve 3 is closed by the flow from one pipe end 2A of the gas introduction pipe 2 to the other pipe end 2B, and blocks (restricts or prohibits) the flow to the other introduction pipe end 2B side.

バブル発生装置X(バブル発生器Y)は、図4及び図7に示すように、液体供給源71に接続され、液体供給源71から液体が流入される。液体供給源71は、例えば、水(水道水)を供給する水供給源であって、流れ筒体1の流入口9(流入路8)に接続されて、流入路8に水(加圧水)を流入する。流れ筒体1は、図7に示すように、液体が流入口9から流入路8に流入され、流出路10を流れる水を流出口11から流出する。 The bubble generator X (bubble generator Y) is connected to a liquid supply source 71 and receives liquid from the liquid supply source 71, as shown in FIGS. The liquid supply source 71 is, for example, a water supply source that supplies water (tap water), and is connected to the inflow port 9 (inflow path 8) of the flow cylinder 1 to supply water (pressurized water) to the inflow path 8. influx. As shown in FIG. 7 , the flow tube 1 allows liquid to flow into the inflow channel 8 from the inflow port 9 , and allows water flowing through the outflow channel 10 to flow out from the outflow port 11 .

水供給源71(液体供給源)から供給される水(加圧水)は、図7に示すように、流入口9から流入開放穴29(流入路8)に流入される。流入開放穴29に流入した水は、第2流入絞り穴28に流入され、第2流入絞り穴28から第1流入絞り穴27に噴射される。
第2流入絞り穴28は、水の流速を増加しつつ減圧して、水(加圧水)を第1流入絞り穴27に噴射する。水(加圧水)は、第2流入絞り穴28によって流速を増加されつつ減圧されて、第2流入絞り穴28から第1流入絞り穴27に噴射される。
Water (pressurized water) supplied from a water supply source 71 (liquid supply source) flows into the inflow open hole 29 (inflow passage 8) from the inflow port 9, as shown in FIG. The water that has flowed into the inflow open hole 29 flows into the second inflow throttle hole 28 and is jetted from the second inflow throttle hole 28 to the first inflow throttle hole 27 .
The second inflow throttle hole 28 reduces the pressure while increasing the flow rate of water, and injects water (pressurized water) into the first inflow throttle hole 27 . The water (pressurized water) is decompressed while increasing the flow velocity by the second inflow throttle hole 28 and is jetted from the second inflow throttle hole 28 to the first inflow throttle hole 27 .

第1流入絞り穴27(流入路8)に噴射された水は、図7に示すように、第1流入絞り穴27を流れて、気液流入穴26に噴射される。
気体導入管2の空気(気体)は、図4及び図7に示すように、第1流入絞り穴27を流れる水(加圧水)の流れによって、第1流入絞り穴27(流入路8)に引っ張られて、気体導入管2の他方の管端2Bから一方の管端2A側(逆止弁3側)に流がれる。逆止弁3は、気体導入管2の他方の管端2Bから一方の管端2A側(逆止弁3側)への空気(気体)の流れによって開弁される。
空気(外気)は、逆止弁3の開弁によって、他方の管端2Bから気体導入管2内に流入し、逆止弁3、継手管15及び気体導入穴12を通して、第1流入絞り穴27(流入路8)に噴射される。気体導入穴12は、気体導入管2を流れる空気を第1流入絞り穴27に噴射する。第1流入絞り穴27(流入路8)に噴射された空気は、第1流入絞り穴27を流れる水に混入(混合)されて、第1流入絞り穴27から水(液体)と共に気液流入穴26に噴射される。第1流入絞り穴27は、第1流出絞り穴27を流れる水(液体)に噴射された空気(気体)が混入する空気混入水(気体混入水)の流速を増加しつつ減圧して、気液流入穴26に噴射する。
The water jetted into the first inflow throttle hole 27 (inflow path 8) flows through the first inflow throttle hole 27 and is jetted into the gas-liquid inflow hole 26, as shown in FIG.
As shown in FIGS. 4 and 7, the air (gas) in the gas introduction pipe 2 is drawn into the first inflow throttle hole 27 (inflow path 8) by the flow of water (pressurized water) flowing through the first inflow throttle hole 27. and flows from the other pipe end 2B of the gas introduction pipe 2 to the one pipe end 2A side (the check valve 3 side). The check valve 3 is opened by the flow of air (gas) from the other pipe end 2B of the gas introduction pipe 2 to the one pipe end 2A side (the check valve 3 side).
Air (outside air) flows into the gas introduction pipe 2 from the other pipe end 2B by opening the check valve 3, passes through the check valve 3, the joint pipe 15, and the gas introduction hole 12, and enters the first inflow throttle hole. 27 (inflow passage 8). The gas introduction hole 12 injects the air flowing through the gas introduction pipe 2 to the first inflow throttle hole 27 . The air injected into the first inflow throttle hole 27 (inflow path 8) is mixed (mixed) with the water flowing through the first inflow throttle hole 27, and flows into gas-liquid together with water (liquid) from the first inflow throttle hole 27. It is injected into hole 26 . The first inflow throttle hole 27 reduces the pressure of air-entrained water (gas-entrained water) in which air (gas) is injected into the water (liquid) flowing through the first outflow throttle hole 27 while increasing the flow velocity of the water (liquid). Inject into the liquid inflow hole 26 .

第1流入絞り穴27から気液流入穴26に空気混入水を噴射すると、第1流入絞り穴27の出口側(気液流入穴26側)で負圧状態となる。
第1流入絞り穴27の出口側を負圧状態にすることで、第1流入絞り穴27から気液流入穴26に噴射される高圧及び乱流の空気混入水(水、空気)は、第1流入絞り穴27の出口部分を通過する際、減圧による気泡析出と、水中(液体中)の空気(気体)が乱流により粉砕(剪断)され、マイクロ単位の気泡(空気のマイクロバブル)及びナノ単位の気泡(空気のウルトラファンバブル)の混入及び溶け込んだバブル水(一次バブル水)となる。
When the air-mixed water is injected from the first inflow throttle hole 27 to the gas-liquid inflow hole 26, the outlet side of the first inflow throttle hole 27 (gas-liquid inflow hole 26 side) becomes a negative pressure state.
By setting the outlet side of the first inflow throttle hole 27 to a negative pressure state, the high-pressure and turbulent aerated water (water, air) jetted from the first inflow throttle hole 27 to the gas-liquid inflow hole 26 is 1. When passing through the outlet of the inflow throttle hole 27, air bubbles are deposited due to reduced pressure, and the air (gas) in water (in the liquid) is pulverized (sheared) by turbulent flow, resulting in micro-unit bubbles (air microbubbles) and It becomes bubble water (primary bubble water) mixed with and dissolved in nano-unit air bubbles (ultrafan bubbles of air).

一次バブル水は、図7に示すように、第1流入絞り穴27を流れて、第1流入絞り穴27から気液流入穴26(気液貯留流入穴)に噴射される。
気液流入穴26に噴射された一次バブル水(バブル水)は、図7乃至図9に示すように、気液流入穴26を流れて、第1及び第2液体導入穴51,52(バブル発生器Z)に流入される。一次バブル水は、気液流入穴26によって流れ筒体1の筒中心線aの方向Aに向かう流れに整流されつつ、液体閉塞板46の板裏面46B(バブル発生器Z)に向けて気液流入穴26を流れる。気液流入穴26を流れる一次バブル水は、図9に示すように、液体閉塞板46の板裏面46Bに沿って流れて、第1及び第2液体導入穴51,52に流入する。また、気液流入穴26を流れる一次バブル水は、直接、第1及び第2液体導入穴51,52に流入する。
気液流入穴26(流入路8)を流れる一次バブル水(液体)は、液体閉塞板46の板裏面46Bによって第1及び第2液体導入穴51,52に案内されて、第1及び第2液体導入穴51,52内に流入される。気液流入穴26(流入路8)を流れる一次バブル水(液体)は、気液流入穴26(流入路8)から直接、第1及び第2液体導入穴51,52に流入される。
これにより、一次バブル水(液体)を、第1及び第2液体導入穴51,52(各液体導入穴)から第1及び第2液体流路δ1,δ2(各液体流路)に連続して流入でき、常に、安定した流量(一定流量)の一次バブル水(液体)を第1及び第2液体流路δ1,δ2(液体流路)に流入できる。
As shown in FIG. 7, the primary bubble water flows through the first inflow throttle hole 27 and is jetted from the first inflow throttle hole 27 to the gas-liquid inflow hole 26 (gas-liquid storage inflow hole).
As shown in FIGS. 7 to 9, the primary bubble water (bubble water) injected into the gas-liquid inflow hole 26 flows through the gas-liquid inflow hole 26 and enters the first and second liquid introduction holes 51 and 52 (bubble water). into the generator Z). The primary bubble water is rectified by the gas-liquid inflow hole 26 into a flow toward the direction A of the tube center line a of the flow tube 1, and flows toward the back surface 46B (bubble generator Z) of the liquid blocking plate 46. It flows through the inflow hole 26 . The primary bubble water flowing through the gas-liquid inflow hole 26 flows along the back surface 46B of the liquid blocking plate 46 and flows into the first and second liquid introduction holes 51 and 52, as shown in FIG. Also, the primary bubble water flowing through the gas-liquid inflow hole 26 directly flows into the first and second liquid introduction holes 51 and 52 .
The primary bubble water (liquid) flowing through the gas-liquid inflow hole 26 (inflow path 8) is guided by the back surface 46B of the liquid blocking plate 46 to the first and second liquid introduction holes 51, 52, and It flows into the liquid introduction holes 51 and 52 . The primary bubble water (liquid) flowing through the gas-liquid inflow hole 26 (inflow path 8) directly flows into the first and second liquid introduction holes 51 and 52 from the gas-liquid inflow hole 26 (inflow path 8).
As a result, the primary bubble water (liquid) is continuously supplied from the first and second liquid introduction holes 51 and 52 (each liquid introduction hole) to the first and second liquid flow paths δ1 and δ2 (each liquid flow path). A stable flow rate (constant flow rate) of primary bubble water (liquid) can always flow into the first and second liquid channels δ1 and δ2 (liquid channels).

第1及び第2液体導入穴51,52に流入した一次バブル水(バブル水)は、図9及び図10に示すように、第1及び第2液体導入穴51,52内の第1及び第2渦巻き面55,56の一方の渦巻き面端55A,56Aから直接、第1及び第2液体流路δ1,δ2に流入する。 The primary bubble water (bubble water) that has flowed into the first and second liquid introduction holes 51 and 52 flows into the first and second liquid introduction holes 51 and 52 as shown in FIGS. From one spiral surface end 55A, 56A of the two spiral surfaces 55, 56, the liquid directly flows into the first and second liquid flow paths δ1, δ2.

第1及び第2液体流路δ1,δ2に流入した一次バブル水(バブル水)は、図9及び図10に示すように、渦巻き状の第1及び第2液体流路δ1,δ2を流れて、ノズル穴35に噴射(噴出)され、更に、ノズル穴35を通って、ノズル穴35(噴射ノズルY)から流出路10に噴射される。
一次バブル水(水及び空気)は、液体ガイドコア47の円錐底面47B(第1及び第2渦巻き面55,56の一方の渦巻き面端55A,56A)から円錐上面47Aに向かって第1及び第2液体流路δ1,δ2を流れるに従って、徐々に流速を高め、及び徐々に減圧されて、ノズル穴35から流出路10(流出穴)に噴射される。
これにより、ノズル穴35に噴射されたバブル水は、図7乃至図9に示すように、流出路10内のノズル穴35側で高圧の乱流(渦流、旋回流)となる。
渦巻き状の第1及び第2液体流路δ1,δ2は、液体ガイドコア47の円錐中心線LX回りの渦流(液体絞り穴41、ノズル穴35の穴中心線回りの渦流)を流出路10(流出穴)に形成(発生)する。
The primary bubble water (bubble water) that has flowed into the first and second liquid flow paths δ1 and δ2 flows through the first and second spiral liquid flow paths δ1 and δ2 as shown in FIGS. , is jetted (jetted) into the nozzle hole 35 , and further passed through the nozzle hole 35 and jetted from the nozzle hole 35 (injection nozzle Y) to the outflow path 10 .
Primary bubble water (water and air) flows from the conical bottom surface 47B (one spiral surface end 55A, 56A of the first and second spiral surfaces 55, 56) of the liquid guide core 47 toward the conical upper surface 47A. As the liquid flows through the two liquid flow paths δ1 and δ2, the flow velocity is gradually increased and the pressure is gradually reduced, and the liquid is jetted from the nozzle hole 35 to the outflow path 10 (outflow hole).
As a result, the bubbled water injected into the nozzle hole 35 becomes a high-pressure turbulent flow (swirling flow) on the side of the nozzle hole 35 in the outflow passage 10, as shown in FIGS.
The spiral first and second liquid flow paths δ1 and δ2 cause eddy currents around the center line LX of the cone of the liquid guide core 47 (eddy currents around the center lines of the liquid throttle hole 41 and the nozzle hole 35) to the outflow channel 10 ( outflow holes).

ノズル穴35から流出路10(流出穴)にバブル水を噴射すると、図9に示すように、ノズル穴35の出口側(ノズル穴35の流出路10側)で負圧状態となる。
ノズル穴35の出口側を負圧状態にすることで、第1及び第2液体流路δ1,δ2からノズル穴35に噴射された高圧及び乱流の一次バブル水(空気、水)は、ノズル穴35の出口部分を通過する際、減圧による気泡析出と、水中(液体中)の空気(気体)が乱流により粉砕(剪断)され、一次バブル水より更に、多量のマイクロバブル及びウルトラファインバブルの混入、溶け込んだバブル水(二次バブル水)となる。
二次バブル水(バブル水)は、図7乃至図9に示すように、ノズル穴35から流出路10に噴射される。ノズル穴35は、流入路8から流入されるバブル水(液体)を流出路10に噴射(噴出)する。ノズル穴35は、渦流(旋回流)の二次バブル水を流出路1に噴射(噴出)する。
When bubbled water is jetted from the nozzle hole 35 to the outflow path 10 (outflow hole), as shown in FIG. 9, the outlet side of the nozzle hole 35 (the outflow path 10 side of the nozzle hole 35) becomes a negative pressure state.
By setting the outlet side of the nozzle hole 35 to a negative pressure state, the high-pressure and turbulent primary bubble water (air, water) jetted from the first and second liquid flow paths δ1 and δ2 into the nozzle hole 35 is When passing through the exit part of the hole 35, air bubbles are deposited by decompression, and the air (gas) in the water (in the liquid) is pulverized (sheared) by turbulent flow, resulting in a larger amount of microbubbles and ultra-fine bubbles than the primary bubble water. is mixed and melted into bubble water (secondary bubble water).
The secondary bubble water (bubble water) is jetted from the nozzle hole 35 to the outflow passage 10 as shown in FIGS. 7 to 9 . The nozzle hole 35 injects (jets) the bubble water (liquid) flowing from the inflow path 8 to the outflow path 10 . The nozzle hole 35 injects (spouts) secondary bubble water in a swirl flow (swirling flow) into the outflow passage 1 .

二次バブル水は、図7に示すように、渦流(旋回流)にて乱流となり、流出路10を流れる。二次バブル水中(液体中)の気泡は、渦流の乱流によって、二次バブル水より更に、多量のマイクロバブル及びウルトラファインバブルに粉砕(剪断)されて、多量のマイクロバブル及びウルトラファインバブルの混入、溶け込んだ三次バブル水(バブル水)となって、流出路10を流れる。流出路10(流出穴)を流れる三次バブル水(バブル水)は、流出口11から流出される。 The secondary bubble water, as shown in FIG. The bubbles in the secondary bubble water (in the liquid) are pulverized (sheared) into a larger amount of microbubbles and ultra-fine bubbles than the secondary bubble water by the turbulent flow of the eddy current, resulting in a large amount of micro-bubbles and ultra-fine bubbles. The mixed and dissolved tertiary bubble water (bubble water) flows through the outflow path 10 . The tertiary bubble water (bubble water) flowing through the outflow path 10 (outflow hole) is discharged from the outflow port 11 .

バブル発生装置X(バブル発生器Y)は、気体導入管2(一方の管端2A)から水素を流入路8(第1流入絞り穴27)に噴射して良い。
バブル発生装置X(バブル発生器Y)において、気体導入管2の他方の管端2Bに水素供給源を接続する。水素供給源から供給される水素(気体)は、気体導入管2、継手管15、及び気体導入穴12を通して、気体導入穴12から流入路8(第1流入絞り穴27)に噴射する。
The bubble generator X (bubble generator Y) may inject hydrogen from the gas introduction pipe 2 (one pipe end 2A) into the inflow passage 8 (first inflow throttle hole 27).
A hydrogen supply source is connected to the other pipe end 2B of the gas introduction pipe 2 in the bubble generator X (bubble generator Y). Hydrogen (gas) supplied from the hydrogen supply source passes through the gas introduction pipe 2 , the joint pipe 15 , and the gas introduction hole 12 and is injected from the gas introduction hole 12 into the inflow passage 8 (first inflow throttle hole 27 ).

本発明は、マイクロ単位(マイクロバブル)、及びナノ単位(ウルトラファインバブル)を液体に混入、溶け込ませるのに最適できる。 The present invention is suitable for mixing and dissolving micro units (microbubbles) and nano units (ultrafine bubbles) in liquids.

X バブル発生装置
Y 噴射ノズル
Z バブル発生器
1 流れ筒体
8 流入路(流入穴)
9 流入口
10 流出路(流出穴)
11 流出口
19 ノズル本体(ノズル閉塞部)
35 ノズル穴
41 液体絞り穴
41A 円錐内周面
45 液体ガイド
46 液体閉塞板
46A 板表面
46B 板裏面
47 液体ガイドコア
47A 円錐上面
47B 円錐底面(円錐底平面)
47C 円錐側面
51 第1液体導入穴(液体導入穴)
52 第2液体導入穴(液体導入穴)
55 第1渦巻き面(渦巻き面)
55A 一方の渦巻き面端(第1渦巻き面)
56 第2渦巻き面(渦巻き面)
56A 一方の渦巻き面端(第2渦巻き面)
δ1 第1液体流路(液体流路)
δ2 第2液体流路(液体流路)
X Bubble generator Y Injection nozzle Z Bubble generator 1 Flow cylinder 8 Inflow path (inflow hole)
9 inflow port 10 outflow path (outflow hole)
11 outflow port 19 nozzle body (nozzle blocking part)
35 Nozzle hole 41 Liquid throttle hole 41A Conical inner peripheral surface 45 Liquid guide 46 Liquid blocking plate 46A Plate surface 46B Plate rear surface 47 Liquid guide core 47A Conical upper surface 47B Conical bottom surface (conical bottom plane)
47C conical side 51 first liquid introduction hole (liquid introduction hole)
52 second liquid introduction hole (liquid introduction hole)
55 first spiral surface (spiral surface)
55A One spiral surface end (first spiral surface)
56 second spiral surface (spiral surface)
56A One spiral surface end (second spiral surface)
δ1 first liquid channel (liquid channel)
δ2 second liquid channel (liquid channel)

Claims (4)

流入路、流出路、前記流入路に開口する流入口及び前記流出路に開口する流出口を有し、液体が前記流入口から前記流入路に流入され、前記流出路を流れる液体を前記流出口から流出する流れ筒体と、
前記流入路及び前記流出路の間の前記流れ筒体内に配置され、前記流入路を前記流出路から閉塞するノズル本体、及び前記ノズル本体に形成され、前記流入路から流入される液体を前記流出路に噴射するノズル穴を有する噴射ノズルと、
前記噴射ノズルに配置されるバブル発生器と、を備え、
前記バブル発生器は、
前記ノズル本体に形成され、前記流入路及び前記ノズル穴に連通される液体絞り穴と、
板状に形成される液体閉塞板、及び円錐渦巻き状に形成される液体ガイドコアを有する液体ガイドと、を備え、
前記液体絞り穴は、
前記流入路側から縮径しつつ延在される円錐穴に形成され、
前記液体閉塞板は、
前記液体閉塞板を貫通して、前記液体閉塞板の板表面及び板裏面に開口される複数の液体導入穴を有し、
前記液体ガイドコアは、
同一の渦巻き状に形成される前記液体導入穴と同数の渦巻き面を有し、
前記液体ガイドコアの円錐底面を前記液体閉塞板の前記板表面に当接して、前記液体閉塞板と一体にされ、
前記各渦巻き面は、
前記液体ガイドコアの円錐側面に交差して、前記液体ガイドコアの前記円錐底面及び円錐上面の間に配置され、
前記円錐底面から前記円錐上面に向けて縮径しつつ渦巻き状に形成され、
前記円錐底面側の渦巻き面端を前記各液体導入穴内に突出して配置され、
前記液体ガイドは、
前記液体ガイドコアを前記流入路側から前記液体絞り穴に挿入し、前記液体閉塞板の前記板表面を前記流入路側から前記ノズル本体に当接して前記液体絞り穴を閉塞し、
前記円錐側面及び前記液体絞り穴の円錐内周面の間に隙間を隔てて、前記液体ガイドコアを前記円錐上面から前記液体絞り穴内に挿入し、
前記液体ガイドコアの前記各渦巻き面、及び前記液体絞り穴の前記円錐内周面の間に、渦巻き状の複数の液体流路を形成しつつ前記液体ガイドコアを前記液体絞り穴内に装着して、前記ノズル本体に配置され、
前記各液体流路は、
前記ノズル穴に開口され、
前記各渦巻き面の前記渦巻き面端から前記各液体導入穴に開口され、及び前記各液体導入穴を通して前記流入路に連通される
ことを特徴とするバブル発生装置。
an inflow path, an outflow path, an inflow opening to the inflow path, and an outflow opening to the outflow path, wherein liquid flows into the inflow path from the inflow opening and flows through the outflow path to the outflow opening; a flow cylinder flowing out of the
a nozzle body disposed in the flow cylinder between the inflow path and the outflow path and blocking the inflow path from the outflow path; an injection nozzle having a nozzle hole for injecting into the passage;
a bubble generator disposed on the injection nozzle;
The bubble generator is
a liquid throttle hole formed in the nozzle body and communicating with the inflow passage and the nozzle hole;
a liquid blocking plate formed in a plate shape, and a liquid guide having a liquid guide core formed in a conical spiral,
The liquid throttle hole is
Formed in a conical hole extending from the inflow passage side while decreasing in diameter,
The liquid blocking plate is
having a plurality of liquid introduction holes penetrating through the liquid blockage plate and opening on the plate surface and the plate back surface of the liquid blockage plate;
The liquid guide core is
having the same number of spiral surfaces as the liquid introduction holes formed in the same spiral shape,
The conical bottom surface of the liquid guide core is brought into contact with the plate surface of the liquid clogging plate so as to be integrated with the liquid clogging plate,
Each of the spiral surfaces,
disposed between the conical bottom surface and the conical top surface of the liquid guide core, intersecting the conical side surface of the liquid guide core;
Formed in a spiral while decreasing in diameter from the bottom surface of the cone toward the top surface of the cone,
The end of the spiral surface on the side of the conical bottom surface is arranged so as to protrude into each of the liquid introduction holes,
The liquid guide is
inserting the liquid guide core into the liquid throttle hole from the inflow path side, and closing the liquid throttle hole by abutting the plate surface of the liquid blocking plate against the nozzle body from the inflow path side;
inserting the liquid guide core into the liquid throttle hole from the conical upper surface with a gap between the conical side surface and the conical inner peripheral surface of the liquid throttle hole;
A plurality of spiral liquid flow paths are formed between the spiral surfaces of the liquid guide core and the conical inner peripheral surface of the liquid throttle hole, and the liquid guide core is mounted in the liquid throttle hole. , disposed on the nozzle body,
each of the liquid flow paths,
opened in the nozzle hole,
The bubble generating device is characterized in that the spiral face end of each spiral face opens into each of the liquid introduction holes and communicates with the inflow path through each of the liquid introduction holes.
前記流れ筒体の前記流入路に接続される気体導入管と、
前記気体導入管に配置される逆止弁と、を備え、
前記気体導入管は、
一方の管端を前記流入路に連通し、及び他方の管端から気体が流入され、
前記逆止弁は、
前記気体導入管の一方の管端側への流れを許容し、他方の管端側への流れを阻止する
ことを特徴とする請求項1に記載のバブル発生装置。
a gas introduction pipe connected to the inflow path of the flow cylinder;
a check valve arranged in the gas introduction pipe,
The gas introduction pipe is
One pipe end is communicated with the inflow passage, and gas is flowed in from the other pipe end,
The check valve is
2. The bubble generator according to claim 1, wherein the gas introduction pipe allows a flow to one pipe end side and blocks a flow to the other pipe end side.
前記流入路は、
前記液体絞り穴及び前記流入口の間に配置され、前記液体絞り穴から拡径される気液流入穴と、
前記気液流入穴及び前記流出口の間に配置され、前記気液流入穴から縮径される第1流入絞り穴と、
前記第1流入絞り穴及び前記流出口の間に配置され、前記第1流入絞り穴から縮径され、液体が前記流入口から流入される第2流入絞り穴と、を有し、
前記気体導入管は、
一方の管端を前記第1流入絞り穴に連通して、前記流入路に接続される
ことを特徴とする請求項2に記載のバブル発生装置。
The inflow path is
a gas-liquid inflow hole disposed between the liquid throttle hole and the inlet and having a diameter enlarged from the liquid throttle hole;
a first inflow throttle hole disposed between the gas/liquid inflow hole and the outflow port and having a reduced diameter from the gas/liquid inflow hole;
a second inflow throttle hole disposed between the first inflow throttle hole and the outflow port, the diameter of the second inflow throttle hole being reduced from the first inflow throttle hole, and liquid flowing in from the inflow port;
The gas introduction pipe is
3. The bubble generator according to claim 2, wherein one pipe end communicates with the first inflow throttle hole and is connected to the inflow path.
ノズル本体、及び前記ノズル本体に形成され、流入路から流入される液体を噴射するノズル穴を有する噴射ノズルに配置されるバブル発生器であって、
前記ノズル本体に形成され、前記流入路及び前記ノズル穴に連通される液体絞り穴と、
板状に形成される液体閉塞板、及び円錐渦巻き状に形成される液体ガイドコアを有する液体ガイドと、を備え、
前記液体絞り穴は、
前記流入路側から縮径しつつ延在される円錐穴に形成され、
前記液体閉塞板は、
前記液体閉塞板を貫通して、前記液体閉塞板の板表面及び板裏面に開口される複数の液体導入穴を有し、
前記液体ガイドコアは、
同一の渦巻き状に形成される前記液体導入穴と同数の渦巻き面を有し、
前記液体ガイドコアの円錐底面を前記液体閉塞板の前記板表面に当接して、前記液体閉塞板と一体にされ、
前記各渦巻き面は、
前記液体ガイドコアの円錐側面に交差して、前記液体ガイドコアの前記円錐底面及び円錐上面の間に配置され、
前記円錐底面から前記円錐上面に向けて縮径しつつ渦巻き状に形成され、
前記円錐底面側の渦巻き面端を前記各液体導入穴内に突出して配置され、
前記液体ガイドは、
前記液体ガイドコアを前記流入路側から前記液体絞り穴に挿入し、及び前記液体閉塞板の板表面を前記流入路側から前記ノズル本体に当接して前記液体絞り穴を閉塞し、
前記円錐側面及び前記液体絞り穴の円錐内周面の間に隙間を隔てて、前記液体ガイドコアを前記円錐上面から前記液体絞り穴内に挿入し、
前記各渦巻き面及び前記液体絞り穴の円錐内周面の間に、渦巻き状の複数の液体流路を形成しつつ前記液体ガイドコアを前記液体絞り穴内に装着して、前記ノズル本体に配置され、
前記各液体流路は、
前記ノズル穴に開口され、
前記各渦巻き面の前記渦巻き面端から前記各液体導入穴に開口され、及び前記各液体導入穴を通して前記流入路に連通される
ことを特徴とするバブル発生器。
A bubble generator arranged in an injection nozzle having a nozzle body and a nozzle hole formed in the nozzle body for injecting a liquid flowing in from an inflow passage,
a liquid throttle hole formed in the nozzle body and communicating with the inflow passage and the nozzle hole;
a liquid blocking plate formed in a plate shape, and a liquid guide having a liquid guide core formed in a conical spiral,
The liquid throttle hole is
Formed in a conical hole extending from the inflow passage side while decreasing in diameter,
The liquid blocking plate is
having a plurality of liquid introduction holes penetrating through the liquid blockage plate and opening on the plate surface and the plate back surface of the liquid blockage plate;
The liquid guide core is
having the same number of spiral surfaces as the liquid introduction holes formed in the same spiral shape,
The conical bottom surface of the liquid guide core is brought into contact with the plate surface of the liquid clogging plate so as to be integrated with the liquid clogging plate,
Each of the spiral surfaces,
disposed between the conical bottom surface and the conical top surface of the liquid guide core, intersecting the conical side surface of the liquid guide core;
Formed in a spiral while decreasing in diameter from the bottom surface of the cone toward the top surface of the cone,
The end of the spiral surface on the side of the conical bottom surface is arranged so as to protrude into each of the liquid introduction holes,
The liquid guide is
inserting the liquid guide core into the liquid throttle hole from the inflow path side, and closing the liquid throttle hole by abutting the plate surface of the liquid blocking plate against the nozzle body from the inflow path side;
inserting the liquid guide core into the liquid throttle hole from the conical upper surface with a gap between the conical side surface and the conical inner peripheral surface of the liquid throttle hole;
A plurality of spiral liquid flow paths are formed between each of the spiral surfaces and the conical inner peripheral surface of the liquid throttle hole, and the liquid guide core is mounted in the liquid throttle hole and arranged in the nozzle body. ,
each of the liquid flow paths,
opened in the nozzle hole,
The bubble generator is characterized in that the spiral surface ends of the spiral surfaces are opened to the respective liquid introduction holes, and communicated with the inflow passages through the respective liquid introduction holes.
JP2021200568A 2021-12-10 2021-12-10 Bubble generating device and bubble generator Active JP7546921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021200568A JP7546921B2 (en) 2021-12-10 2021-12-10 Bubble generating device and bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021200568A JP7546921B2 (en) 2021-12-10 2021-12-10 Bubble generating device and bubble generator

Publications (2)

Publication Number Publication Date
JP2023086210A true JP2023086210A (en) 2023-06-22
JP7546921B2 JP7546921B2 (en) 2024-09-09

Family

ID=86850476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021200568A Active JP7546921B2 (en) 2021-12-10 2021-12-10 Bubble generating device and bubble generator

Country Status (1)

Country Link
JP (1) JP7546921B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036105A1 (en) 1999-11-15 2001-05-25 Aura Tec Co., Ltd. Micro-bubble generating nozzle and application device therefor
JP2003190843A (en) 2001-12-26 2003-07-08 Honda Motor Co Ltd Spray nozzle
JP2010075838A (en) 2008-09-25 2010-04-08 Itaken:Kk Bubble generation nozzle
JP2013220383A (en) 2012-04-17 2013-10-28 Sharp Corp Gas/liquid mixer
JP6842249B2 (en) 2016-06-24 2021-03-17 日東精工株式会社 Fine bubble generation nozzle
JP6557871B1 (en) 2018-06-12 2019-08-14 株式会社Okutec Fluid mixing apparatus and emulsion preparation method

Also Published As

Publication number Publication date
JP7546921B2 (en) 2024-09-09

Similar Documents

Publication Publication Date Title
US11980898B2 (en) Showerhead and bubble generating unit
KR101483412B1 (en) Micro bubble nozzle
JP6717991B2 (en) Shower head and mist generation unit
JP6971487B2 (en) Bubble generator
JP2017225961A (en) Fine bubble generation nozzle
KR101144921B1 (en) Apparatus Generating Micro/Nano Bubbles And System Using The Same
FI111054B (en) Nozzle for coating surfaces
JP2010188046A (en) Shower device
JP2023086210A (en) Bubble generation device and bubble generator
JP2019166493A (en) Fine bubble generation nozzle
JP2008161829A (en) Bubble generator
JP6075674B1 (en) Fluid mixing device
JP7053047B2 (en) Bubble generator
JP2020127932A (en) Ultrafine bubble generation device and ultrafine bubble generation apparatus
US20240198300A1 (en) Device and method for dispersing gases into liquids
CN116019585A (en) Foam-making nozzle device of personal care equipment and personal care equipment
CN117580648B (en) Mist generating nozzle
JP2020081995A (en) Spray nozzle
WO2024135639A1 (en) Fluid mixer
JP7034503B2 (en) Mist spray
CN212609786U (en) Multi-nozzle baffling aeration device
JP2023108296A (en) Fine bubble generation nozzle
CN117597190B (en) Bubble liquid generating nozzle
JP2020058977A (en) Mixer and ejection unit for use in the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240821

R150 Certificate of patent or registration of utility model

Ref document number: 7546921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150