JP2009028579A - Bubble generating apparatus - Google Patents

Bubble generating apparatus Download PDF

Info

Publication number
JP2009028579A
JP2009028579A JP2007192337A JP2007192337A JP2009028579A JP 2009028579 A JP2009028579 A JP 2009028579A JP 2007192337 A JP2007192337 A JP 2007192337A JP 2007192337 A JP2007192337 A JP 2007192337A JP 2009028579 A JP2009028579 A JP 2009028579A
Authority
JP
Japan
Prior art keywords
passage
side passage
liquid
introduction
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007192337A
Other languages
Japanese (ja)
Inventor
Hiroshi Tajima
博司 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIDA TECHNO FIRM KK
Original Assignee
NISHIDA TECHNO FIRM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIDA TECHNO FIRM KK filed Critical NISHIDA TECHNO FIRM KK
Priority to JP2007192337A priority Critical patent/JP2009028579A/en
Publication of JP2009028579A publication Critical patent/JP2009028579A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bubble generating apparatus capable of easily generating large and small bubbles including fine bubbles and larger bubbles in liquid discharged from an apparatus with simple structure. <P>SOLUTION: In the bubble generating apparatus, an outer cylinder 3 is provided, formed thereinside with a liquid passage 2 comprising an introducing side passage 21 and a discharge side passage 22, an inner cylinder 4 formed thereinside with a water sending passage 41 increasing flow speed is mounted in the introducing side passage 21 of the outer cylinder 3, an edge part 42 is formed on the downstream end side of the water sending passage 41 inside the inner cylinder 4, a given space 5 is formed in the inner circumferential direction at a boundary portion of the introducing side passage 21 on the nearest downstream side of the edge part 42 and the discharge side passage 22, an annular gas chamber 6 communicated with the space 5 is annularly formed between the outer circumference of the inner cylinder 4 and the inner circumference of the outer cylinder 3, the upstream end of the introducing side passage 21 is communicatedly connected to the liquid supply side via a pump 7, and a downstream end of a gas supply hose 8 with an upstream side communicated with the gas supply side is communicatedly connected to a suction port 61 of the annular gas chamber 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、例えば淡水、海水、その他の用途に応じて使用される各種の液体中に気体を混在化させる技術に係り、特に、簡単な構造で装置から吐出される液体中に微小気泡や大きめの気泡などの大小の気泡を容易に発生させる気泡発生装置に関するものである。   The present invention relates to a technique for mixing gas in various liquids used according to, for example, fresh water, sea water, and the like, and in particular, microbubbles and large size in liquid discharged from an apparatus with a simple structure. The present invention relates to a bubble generating device that easily generates large and small bubbles such as bubbles.

従来、例えば淡水、海水、その他の用途に応じて使用される各種の液体中に気体を混在化させて、大小の気泡を液体中に発生させることができる気泡発生装置が種々開発され、実用に供されている。   Conventionally, for example, various types of bubble generators that can generate large and small bubbles in a liquid by mixing gas in various liquids used according to, for example, fresh water, seawater, and the like have been put to practical use. It is provided.

しかしながら、従来の気泡発生装置は、その構造が一般に複雑であり、その結果、部品数も多く、コストが高くなり、また、内部の清掃などの作業の際には簡単に分解して内部の清掃を容易に行うことも困難であった。   However, the conventional bubble generating device is generally complicated in structure, and as a result, has a large number of parts and is expensive. In addition, the internal bubble cleaning device can be easily disassembled to clean the inside. It was also difficult to carry out.

この発明は、上記のような課題に鑑み、その課題を解決すべく創案されたものであって、その目的とするところは、簡単な構造で装置から吐出される液体中に微小気泡や大きめの気泡などの大小の気泡を容易に発生させることのできる気泡発生装置を提供することにある。   The present invention has been devised in view of the problems as described above to solve the problems. The object of the present invention is to form microbubbles or larger bubbles in the liquid discharged from the apparatus with a simple structure. An object of the present invention is to provide a bubble generating device capable of easily generating large and small bubbles such as bubbles.

以上の目的を達成するために、請求項1の発明は、導入側通路と吐出側通路とから構成される液体通路を内部に形成した外筒を設け、該外筒の内部の上記導入側通路に流速を高める送水通路が内部に形成された内筒を装着し、吐出側通路に向けて送水通路の内周面の内径がテーパー状に一旦縮小後に拡大し流速促進と水脈分離を促すエッジ部を上記内筒の内部の送水通路の下流端側に形成し、エッジ部直近下流側の導入側通路と吐出側通路との境界部分に所定の隙間を内周方向に形成し、上記隙間に連通する環状気室を上記内筒の外周と上記外筒の内周との間に環状に形成し、上記導入側通路の上流端をポンプを介して液体供給側に連通接続し、上流側が気体供給側に連通する気体供給ホースの下流端を上記環状気室の吸入口に連通接続した手段よりなるものである。   In order to achieve the above object, the invention of claim 1 is provided with an outer cylinder in which a liquid passage composed of an introduction side passage and a discharge side passage is formed, and the introduction side passage inside the outer cylinder. An edge part that has an inner cylinder with a water supply passage formed inside to increase the flow velocity and that the inner diameter of the inner peripheral surface of the water supply passage is once reduced in a taper shape toward the discharge side passage, and then promotes flow velocity and water pulse separation Is formed on the downstream end side of the water supply passage inside the inner cylinder, and a predetermined gap is formed in the inner circumferential direction at the boundary portion between the introduction side passage and the discharge side passage immediately downstream of the edge portion, and communicates with the gap. An annular air chamber is formed between the outer periphery of the inner cylinder and the inner periphery of the outer cylinder, the upstream end of the introduction side passage is connected to the liquid supply side via a pump, and the upstream side supplies gas. The downstream end of the gas supply hose communicating with the side is connected to the suction port of the annular air chamber. It is made from stage.

また、請求項2の発明は、導入側通路と吐出側通路とから構成される液体通路を内部に形成した外筒を設け、該外筒の内部の上記導入側通路に流速を高める送水通路が内部に形成された内筒を装着し、吐出側通路に向けて送水通路の内周面の内径がテーパー状に一旦縮小後に拡大し流速促進と水脈分離を促すエッジ部を上記内筒の内部の送水通路の下流端側に形成し、エッジ部直近下流側の導入側通路と吐出側通路との境界部分に所定の隙間を内周方向に形成し、上記隙間に連通する環状気室を上記内筒の外周と上記外筒の内周との間に環状に形成し、上記導入側通路の上流端をポンプを介して液体供給側に連通接続し、上流側が気体供給側に連通する気体供給ホースの下流端を上記環状気室の吸入口に連通接続し、気体供給側から流入する気体の流量を制御する流量制御弁を気体供給ホースに設けた手段よりなるものである。   According to a second aspect of the present invention, an outer cylinder having a liquid passage formed of an introduction side passage and a discharge side passage formed therein is provided, and a water supply passage for increasing the flow velocity is provided in the introduction side passage inside the outer cylinder. An inner cylinder formed inside is mounted, and the inner diameter of the inner peripheral surface of the water supply passage is once reduced to a taper shape toward the discharge side passage, and then an edge portion that promotes flow velocity promotion and water vein separation is provided inside the inner cylinder. Formed on the downstream end side of the water supply passage, a predetermined gap is formed in the inner circumferential direction at the boundary portion between the introduction side passage and the discharge side passage immediately downstream of the edge portion, and the annular air chamber communicating with the gap is A gas supply hose formed annularly between the outer periphery of the cylinder and the inner periphery of the outer cylinder, wherein the upstream end of the introduction side passage is connected to the liquid supply side via a pump, and the upstream side is connected to the gas supply side Is connected to the suction port of the annular air chamber and flows from the gas supply side. A flow control valve for controlling the flow rate of the body is made from means provided on the gas supply hose.

以上の記載より明らかなように、この発明に係る気泡発生装置によれば、次のような効果を奏するものである。
(1)内部の送水通路の下流端側にエッジ部が形成された内筒を外筒に挿入して結合するのみの構造であり、その構造が簡単であるため安価になると共に分解清掃が容易に行える。しかも、微細な加工を必要としないため加工費の低減が可能となり製品価格を低減できる。
(2)発生させる気泡の大きさは空気弁の開度や液体通路途中に設ける隙間により行うので、気泡の大きさを調整する機能を持つ装置などを通路の内部に配置する必要がなく、異物通過の障害がないため、異物の通過が容易に出来る。また、異物径が特定できればそれに合わせた設計が可能である。
(3)気体の吸引は上記隙間部で発生する負圧により自給式となる。導入側通路に挿入した内筒のエッジ部は吐出側通路に向けて急縮小拡大しているので、通過する液体はエッジ部を持って飛び越え吐出側通路へ連続的に移行し導入側通路の下流面と吐出側通路の上流面に設けられている隙間は空洞化し負圧状態となることで吸引力が生じ、液体に気体を吸引させることができる。
(4)液体中に発生させる気泡は気泡発生装置で生じさせる負圧で自給させるためにコンプレッサ−等の送気装置が不要となる。
(5)ホ−ス端に取り付ければ気泡混じりの水などの液体を対象物に噴射できる。
(6)微小気泡を含んだ液体の例えば水を水中に吐出することにより、水中で発生する微小気泡に水中の細かな塵芥を付着させ水面まで運び浮遊させれば除去が容易となり水の浄化が可能となる。
(7)管路途中、管端部への設置が可能である。
(8)吸入口から通常、水中に空気を微小化した気泡として混在化させるが、これとは別に複数種類の気体を気泡化させ混合することも可能である。また、循環させる液体(通常は淡水、海水)へ別な液体、例えば消毒剤、液肥料、着色剤などを混合させる事ができる。
(9)発生させる気泡の大きさは気体供給ホースに設けた流量制御弁の制御により行う事が出来るため、気泡発生装置と市販の水中ポンプに接続するだけで微小気泡を含む各種の大きさの気泡を液体中に混入でき、これを液体中に吐出することで液体中に各種の大きさの気泡を発生させることができる。
As is clear from the above description, the bubble generating device according to the present invention has the following effects.
(1) A structure in which an inner cylinder having an edge portion formed on the downstream end side of the internal water supply passage is simply inserted into the outer cylinder and coupled, and the structure is simple, so it is inexpensive and easy to disassemble and clean. It can be done. Moreover, since fine processing is not required, the processing cost can be reduced, and the product price can be reduced.
(2) Since the size of the generated bubble is determined by the opening of the air valve or a gap provided in the middle of the liquid passage, there is no need to arrange a device having a function of adjusting the size of the bubble inside the passage, Since there is no obstacle for passage, foreign substances can be easily passed. Moreover, if the foreign substance diameter can be specified, the design according to it can be performed.
(3) Gas suction is self-contained by the negative pressure generated in the gap. Since the edge portion of the inner cylinder inserted into the introduction side passage is rapidly reduced and enlarged toward the discharge side passage, the passing liquid jumps over the edge portion and continuously moves to the discharge side passage, and downstream of the introduction side passage. The gap provided between the surface and the upstream surface of the discharge-side passage is hollowed and becomes a negative pressure state, so that a suction force is generated and gas can be sucked into the liquid.
(4) Since the air bubbles generated in the liquid are self-supplied by the negative pressure generated by the air bubble generating device, an air supply device such as a compressor becomes unnecessary.
(5) If it is attached to the hose end, liquid such as water mixed with bubbles can be jetted onto the object.
(6) By discharging, for example, water of a liquid containing microbubbles into the water, if fine dust in the water is attached to the microbubbles generated in the water and carried to the surface of the water, it can be easily removed and the water can be purified. It becomes possible.
(7) Installation at the end of the pipe is possible in the middle of the pipe.
(8) Normally, air is mixed into the water as micronized bubbles from the suction port. Alternatively, a plurality of types of gas can be bubbled and mixed. Moreover, another liquid, for example, a disinfectant, a liquid fertilizer, a coloring agent, etc. can be mixed with the liquid (usually fresh water, seawater) to circulate.
(9) Since the size of the generated bubbles can be controlled by the flow control valve provided in the gas supply hose, various sizes including microbubbles can be obtained simply by connecting to the bubble generator and a commercially available submersible pump. Bubbles can be mixed in the liquid, and bubbles of various sizes can be generated in the liquid by discharging the bubbles into the liquid.

また、請求項2の発明に係る気泡発生装置によれば、前記の効果に加えて、内筒の導水部がテ−パ状に縮小しているため液体がよりスム−ズに流下できる。
According to the bubble generating device of the second aspect of the invention, in addition to the above-described effect, since the water guide portion of the inner cylinder is reduced in a taper shape, the liquid can flow more smoothly.

以下、図面に記載の発明を実施するための最良の形態に基づいて、この発明をより具体的に説明する。
ここで、図1は気泡発生装置を液体中に配置した全体構成図、図2(A)は気泡発生装置の側断面図、図2(B)は内筒の下流端の端部正面図、図3(A)は気泡発生装置の他の側断面図、図3(B)は内筒の他の下流端の端部正面図、図4は気泡発生装置の更に他の側断面図である。
Hereinafter, the present invention will be described more specifically based on the best mode for carrying out the invention described in the drawings.
Here, FIG. 1 is an overall configuration diagram in which the bubble generating device is disposed in the liquid, FIG. 2 (A) is a side sectional view of the bubble generating device, and FIG. 2 (B) is an end front view of the downstream end of the inner cylinder. 3A is another side cross-sectional view of the bubble generating device, FIG. 3B is an end front view of the other downstream end of the inner cylinder, and FIG. 4 is still another side cross-sectional view of the bubble generating device. .

図において、気泡発生装置1は、簡単な構造で例えば淡水、海水、その他の各種の液体中に微小気泡や大きめの気泡などの大小の気泡を容易に発生させる装置である。気泡発生装置1を構成する外筒3の内部には例えば円形断面の液体通路2が設けられている。液体通路2は導入側通路21と例えばこれより段差して内径が小なる吐出側通路22とから構成されている。導入側通路21の端部から導入された液体が液体通路2内を通過中に気体が液体中に吸引されて混入し、吐出側通路22の端部から吐出された液体中から気泡が発生する構造になっている。   In the figure, the bubble generating device 1 is a device that easily generates large and small bubbles such as microbubbles and large bubbles in fresh water, seawater, and other various liquids with a simple structure. For example, a liquid passage 2 having a circular cross section is provided inside the outer cylinder 3 constituting the bubble generating device 1. The liquid passage 2 includes an introduction-side passage 21 and, for example, a discharge-side passage 22 having a stepped diameter and a smaller inner diameter. While the liquid introduced from the end of the introduction side passage 21 passes through the liquid passage 2, the gas is sucked into the liquid and mixed, and bubbles are generated from the liquid discharged from the end of the discharge side passage 22. It has a structure.

気泡発生装置1を構成する外筒3は、その内部の液体通路2を構成する導入側通路21に内筒4が前後方向に向けて装着されている。内筒4は導入側通路21の流入側端部から吐出側通路22に向けて挿入されている。つまり、気泡発生装置1を構成する外筒3の内部に設けられた液体通路2は、内筒4が挿入された導入側通路21と吐出側通路22とに分けられる。   The outer cylinder 3 constituting the bubble generating device 1 has an inner cylinder 4 mounted in a front-rear direction in an introduction-side passage 21 constituting a liquid passage 2 therein. The inner cylinder 4 is inserted from the inflow side end of the introduction side passage 21 toward the discharge side passage 22. That is, the liquid passage 2 provided in the outer cylinder 3 constituting the bubble generating device 1 is divided into an introduction side passage 21 into which the inner cylinder 4 is inserted and a discharge side passage 22.

外筒3の内部に形成された導入側通路21の円形の直径は、前記したように吐出側通路22の円形の直径より大きく、その境界部分は例えば直角に段差している。つまり導入側通路21の境界部分は円形になっていて、その円形の内部にこれより小さな同心円形の吐出側通路22の端部が形成されている。直径が大きな導入側通路21から挿入された内筒4の先端はこの境界部分の例えば直角な段差部分で隙間5をあけて止められる。   The circular diameter of the introduction side passage 21 formed inside the outer cylinder 3 is larger than the circular diameter of the discharge side passage 22 as described above, and the boundary portion is stepped at a right angle, for example. That is, the boundary portion of the introduction side passage 21 is circular, and an end portion of the smaller concentric discharge side passage 22 is formed inside the circular shape. The tip of the inner cylinder 4 inserted from the introduction-side passage 21 having a large diameter is stopped with a gap 5 at, for example, a perpendicular step portion of the boundary portion.

そして、内筒4を導入側通路21の内部に挿入して装着したとき、導入側通路21に装着した内筒4と吐出側通路22との境界部分には通気溝として機能する所定の隙間5が常に形成される構造になっている。つまり、導入側通路21に挿入された内筒4と吐出側通路22とは所定の隙間5を形成して前後方向に連通接続されている。   When the inner cylinder 4 is inserted into the introduction side passage 21 and attached, a predetermined gap 5 that functions as a ventilation groove is formed at the boundary portion between the inner cylinder 4 attached to the introduction side passage 21 and the discharge side passage 22. The structure is always formed. That is, the inner cylinder 4 inserted into the introduction side passage 21 and the discharge side passage 22 form a predetermined gap 5 and are connected in communication in the front-rear direction.

外筒3の導入側通路21内に挿入されて装着される内筒4は筒状になっていて、内部に断面円形の送水通路41が形成されている。送水通路41は、導入側通路21及び吐出側通路22と共に液体通路2の一部を構成する。送水通路41の内径は内筒4が挿入される導入側通路21の内径よりも小さい。   The inner cylinder 4 that is inserted into the introduction-side passage 21 of the outer cylinder 3 and attached thereto has a cylindrical shape, and a water supply passage 41 having a circular cross section is formed therein. The water supply passage 41 constitutes a part of the liquid passage 2 together with the introduction side passage 21 and the discharge side passage 22. The inner diameter of the water supply passage 41 is smaller than the inner diameter of the introduction side passage 21 into which the inner cylinder 4 is inserted.

導入側通路21の上流端となる導入口21aから導入された液体は、導入側通路21を通過してこれよりも内径が小さな内筒4の送水通路41内に入ると、流体連続性の原理により流速が促進される。つまり、送水通路41は流速促進部として機能する。   When the liquid introduced from the introduction port 21a which is the upstream end of the introduction side passage 21 passes through the introduction side passage 21 and enters the water supply passage 41 of the inner cylinder 4 having a smaller inner diameter than this, the fluid continuity principle Facilitates the flow rate. That is, the water supply passage 41 functions as a flow velocity promoting part.

また、内筒4の内部に形成された流速促進部として機能する送水通路41には、その下流端側にエッジ部42がその内周面に形成されている。エッジ部42は吐出側通路22に向けて送水通路41の下流端内周面の内径がテーパー状に縮小した形状から形成されていて、流速促進と水脈分離を促す機能を果たす。   In addition, an edge portion 42 is formed on the inner peripheral surface of the water supply passage 41 functioning as a flow velocity promoting portion formed inside the inner cylinder 4 on the downstream end side. The edge portion 42 is formed in a shape in which the inner diameter of the inner peripheral surface of the downstream end of the water supply passage 41 is reduced in a tapered shape toward the discharge side passage 22, and fulfills a function of promoting flow velocity and promoting water pulse separation.

内筒4の送水通路41の下流端側にエッジ部42を設けたので、流速を有する液体はエッジ部42により内径がテーパー状に急激に縮小することで、流体の連続性により流速が促進されることになる。また、導入側通路21から吐出側通路22に流入する際に、エッジ部42により液体通路2の断面積が急縮急拡の状態になるので、エッジ部42を通過直後にその圧力が下がり、液体に吸引力が自然に生じる。   Since the edge portion 42 is provided on the downstream end side of the water supply passage 41 of the inner cylinder 4, the flow velocity of liquid having a flow velocity is rapidly reduced by the edge portion 42 due to the continuity of the fluid by the taper-shaped reduction of the inner diameter. Will be. Further, when flowing from the introduction side passage 21 into the discharge side passage 22, the cross-sectional area of the liquid passage 2 is rapidly contracted and rapidly expanded by the edge portion 42, so that the pressure decreases immediately after passing through the edge portion 42, Suction occurs naturally in the liquid.

しかも、エッジ部42の直下流端から液体通路2が吐出側通路22に向けてテーパー状に拡大しているので、エッジ部42を通過する液体は傾斜を持って飛び越え吐出側通路22へ連続的に移行して水脈分離が促進されて、エッジ部42の直下流の隅部には空洞が形成される。この空洞部分は隙間5に連通している。   In addition, since the liquid passage 2 expands in a tapered shape from the immediately downstream end of the edge portion 42 toward the discharge side passage 22, the liquid passing through the edge portion 42 jumps over the discharge side passage 22 with an inclination. The water vein separation is promoted and a cavity is formed in the corner portion immediately downstream of the edge portion 42. This hollow portion communicates with the gap 5.

そしてエッジ部42の直下流の隅部は空洞化し飛び越える液体で隅部の気体は連行され負圧状態となり吸引力が自然に生じるようになる。負圧状態となる隅部には隙間5が連通していて、吸引力が発生して境界部分に位置する隙間5から例えば空気などの気体を吐出側通路22を通過する液体中に吸引混入させて、吐出側通路22の吐出口22aから吐出された液体中に気泡を生成する構造になっている。   Then, the corner immediately downstream of the edge portion 42 is hollow and jumps over and the gas at the corner is entrained and becomes a negative pressure state, so that a suction force is naturally generated. A gap 5 communicates with the corner portion where the negative pressure state is established, and a suction force is generated and a gas such as air is sucked and mixed into the liquid passing through the discharge side passage 22 from the gap 5 located at the boundary portion. Thus, bubbles are generated in the liquid discharged from the discharge port 22a of the discharge side passage 22.

ところで、内筒4の内部に形成された送水通路41及びこのエッジ部42は、図2〜図4に図示するような形状を有している。
図2に示す内筒4にあっては、送水通路41の内径はエッジ部42と送水流入口41aを除いて内径は同一の例えば円形になっている。送水流入口41aはその内周縁が丸みを帯びて流入する液体との抵抗が小さくなるように形成されている。
By the way, the water supply passage 41 and this edge part 42 formed in the inside of the inner cylinder 4 have a shape as shown in FIGS.
In the inner cylinder 4 shown in FIG. 2, the inner diameter of the water supply passage 41 is the same, for example, circular except for the edge part 42 and the water supply inlet 41a. The water supply inlet 41a is formed so that the inner peripheral edge thereof is rounded and the resistance to the flowing liquid becomes small.

図2に図示する内筒4のエッジ部42は側面から見ると、頂部42aを挟んで図の右側の内面上側は吐出側通路22に向けて斜め下向きに傾斜し、頂部42aを挟んで図の右側の内面下側は吐出側通路22に向けて斜め上向きに傾斜して、内径は急激に縮小している。また、頂部42aを挟んで図の左側の内面上側は吐出側通路22に向けて斜め上向きに傾斜し、頂部42aを挟んで図の左側の下側は吐出側通路22に向けて斜め下向きに傾斜して、内径は拡大している。   When viewed from the side, the edge portion 42 of the inner cylinder 4 shown in FIG. 2 is inclined obliquely downward toward the discharge side passage 22 with the top portion 42a sandwiched between the top portion 42a and the top portion 42a. The lower side of the inner surface on the right side is inclined obliquely upward toward the discharge side passage 22, and the inner diameter is rapidly reduced. Further, the upper side of the inner surface on the left side of the figure is inclined obliquely upward toward the discharge side passage 22 across the top part 42a, and the lower side of the left side of the figure is inclined obliquely downward toward the discharge side path 22 across the top part 42a. And the inner diameter is expanding.

また、図2に図示する内筒4の下流端の端面には通気溝として機能する隙間5が確実に形成されるように、僅かな幅を有する端面凸面43又は端面凹面44が半径方向に少なくとも一つは形成されている。この端面凸面43が導入側通路21の下流端の段差面に当接することで、或いは端面凹面44が導入側通路21の下流端の段差面との間に隙間を形成することで、内筒4の下流端の端面と導入側通路21の下流端の段差面との間に通気溝として機能する隙間5が確実に形成されることになる。   Further, the end surface convex surface 43 or the end surface concave surface 44 having a slight width is at least in the radial direction so that the gap 5 functioning as a ventilation groove is reliably formed on the end surface of the downstream end of the inner cylinder 4 shown in FIG. One is formed. The end surface convex surface 43 abuts on the step surface at the downstream end of the introduction-side passage 21, or the end surface concave surface 44 forms a gap with the step surface at the downstream end of the introduction-side passage 21, whereby the inner cylinder 4 A gap 5 that functions as a ventilation groove is reliably formed between the end surface of the downstream end of the first passage and the step surface of the downstream end of the introduction-side passage 21.

一方、図3に図示する内筒4にあっては、送水通路41の断面が吐出側通路22に向けてテーパー状に縮小している。これにより、送水通路41内ではエッジ部42に近づくほどに流速が促進されることになる。これ以外は図2に図示する形状と同一になっている。   On the other hand, in the inner cylinder 4 shown in FIG. 3, the cross section of the water supply passage 41 is reduced in a tapered shape toward the discharge side passage 22. Thereby, the flow velocity is promoted in the water supply passage 41 as the edge portion 42 is approached. Other than this, the shape is the same as that shown in FIG.

また、図4に図示する内筒4にあっては、図2に図示するような端面凸面43或いは端面凹面44が内筒4の下流端の端面に形成されてなく、内筒4の送水通路41の送水流入口41aの外周側に環状突起面45が形成されている。また、導入側通路21はその内径が中間付近で導入口21a側が奥側より少し段差して大きくなっていて、その内径が大きくなった中間付近の段差面に内筒4の外周側の環状突起面45が当接して、内筒4の下流端の段差面が導入側通路21の下流端の段差面に当接せずに、通気溝として機能する一定の隙間5が形成される構造になっている。図4では送水通路41は図2と同じ断面形状であるが、図3の断面形状と同じであってもよい。   Further, in the inner cylinder 4 illustrated in FIG. 4, the end surface convex surface 43 or the end surface concave surface 44 as illustrated in FIG. 2 is not formed on the end surface of the downstream end of the inner cylinder 4, and the water supply passage of the inner cylinder 4 An annular projecting surface 45 is formed on the outer peripheral side of the water supply inlet 41a. The introduction side passage 21 has an inner diameter in the vicinity of the middle, and the introduction port 21a side is slightly stepped from the back side, and the annular protrusion on the outer peripheral side of the inner cylinder 4 is formed on the step surface near the middle where the inner diameter is increased. The surface 45 abuts, and the stepped surface at the downstream end of the inner cylinder 4 does not abut against the stepped surface at the downstream end of the introduction-side passage 21 so that a constant gap 5 that functions as a ventilation groove is formed. ing. In FIG. 4, the water supply passage 41 has the same cross-sectional shape as in FIG. 2, but may have the same cross-sectional shape as in FIG. 3.

内部に内筒4が挿入された導入側通路21には、吐出側通路22との境界側の内周にこれに挿入される内筒4の外径より大きな内径の円形穴が形成されている。環状気室6は内筒4の外径とこれより大きな内径の円形穴との隙間部分となる環状の空洞部分に形成されている。   In the introduction side passage 21 in which the inner cylinder 4 is inserted, a circular hole having an inner diameter larger than the outer diameter of the inner cylinder 4 inserted in the inner circumference on the boundary side with the discharge side passage 22 is formed. . The annular air chamber 6 is formed in an annular cavity portion that becomes a gap portion between the outer diameter of the inner cylinder 4 and a circular hole having an inner diameter larger than this.

導入側通路21の内周面には、シール溝21bがその円周方向に向けて形成されている。シール溝21bの断面は矩形状の形状をしている。シール溝21bには環状のシール材21cが取り付けられている。また、吐出側通路22の内周面には、必要に応じて撹拌溝22bがその円周方向に向けて形成されている。撹拌溝22bの断面は矩形状の形状をしている。吐出側通路22内を流れる液体はこの撹拌溝22bでさらに撹拌されることで、液体中に気体がさらに混入されることになる。   On the inner peripheral surface of the introduction side passage 21, a seal groove 21b is formed in the circumferential direction. The cross section of the seal groove 21b has a rectangular shape. An annular sealing material 21c is attached to the sealing groove 21b. A stirring groove 22b is formed on the inner peripheral surface of the discharge side passage 22 in the circumferential direction as necessary. The cross section of the stirring groove 22b has a rectangular shape. The liquid flowing in the discharge side passage 22 is further stirred by the stirring groove 22b, so that gas is further mixed into the liquid.

気泡発生装置1を構成する外筒3は、例えば円筒形状に形成されていて、中央部位の外形の直径がその前後の直径より少し大きな環状厚盤31で形成されている。この環状厚盤31には外周から内側の円形穴に向かって環状気室6に連通する吸入口61が形成されている。また、導入側通路21に液体が流入する側となる上流端の導入口21aの外周には後述の水中ポンプ7の端部に接続し易いように例えば螺旋螺子山が形成されている。   The outer cylinder 3 constituting the bubble generating device 1 is formed in, for example, a cylindrical shape, and is formed of an annular thick plate 31 whose outer diameter at the central portion is slightly larger than the front and rear diameters. The annular thick plate 31 is formed with a suction port 61 communicating with the annular air chamber 6 from the outer periphery toward the inner circular hole. Further, for example, a spiral screw thread is formed on the outer periphery of the upstream inlet 21a on the side where the liquid flows into the inlet passage 21 so as to be easily connected to an end of a submersible pump 7 described later.

液体通路2の外周の全周に形成される環状気室6の端部は通気溝として機能する上記隙間5に連通している。気体は吸入口61を通過して環状気室6に流入し、環状気室6の全周方向に行き渡った後に液体通路2の内周方向に形成された通気溝として機能する隙間5から吐出側通路22側でそこを通過する流速を有する液体中に吸引されて、吐出側通路22の吐出口22aから吐出された液体中に気泡を生じさせる。   An end portion of the annular air chamber 6 formed on the entire outer periphery of the liquid passage 2 communicates with the gap 5 functioning as a ventilation groove. The gas passes through the suction port 61 and flows into the annular air chamber 6, reaches the entire circumferential direction of the annular air chamber 6, and then discharges from the gap 5 that functions as a ventilation groove formed in the inner circumferential direction of the liquid passage 2. Bubbles are generated in the liquid that is sucked into the liquid having a flow velocity passing through the passage 22 side and discharged from the discharge port 22a of the discharge side passage 22.

水中に設置されたポンプ7は液体供給側から上記液体通路2の導入側通路21に液体を送り込むもので、導入側通路21の導入口21aはこのポンプ7に接続されている。ポンプ7は、液体通路2の吐出側通路22で液体中に隙間5から気体を吸引混入させる力を生じる流速で液体を送り込んでいる。ポンプ7はポンプ電源71を通じて電力が供給される。図ではポンプ7は液体中に設置されて使用される水中ポンプであるが、液体の外に設置されて使用される自吸式ポンプなどでもよい。この場合には、ポンプ7と導入側通路21の導入口21aとの間は図示しない液体供給ホースで連通接続されることになる。   The pump 7 installed in water feeds liquid from the liquid supply side to the introduction side passage 21 of the liquid passage 2, and the introduction port 21 a of the introduction side passage 21 is connected to the pump 7. The pump 7 feeds the liquid at a flow rate that generates a force for sucking and mixing gas into the liquid from the gap 5 in the discharge side passage 22 of the liquid passage 2. The pump 7 is supplied with power through a pump power supply 71. In the figure, the pump 7 is a submersible pump that is installed and used in a liquid, but may be a self-priming pump that is installed and used outside a liquid. In this case, the pump 7 and the introduction port 21a of the introduction side passage 21 are connected to each other by a liquid supply hose (not shown).

気体供給ホース8は、気泡発生装置1に例えば空気、オゾン、二酸化炭素或いはその他の用途に応じて使用される各種の気体を供給する際の気体の通路である。気体供給ホース8はその上流側が気体供給側、例えば大気中に開口されていたり、オゾン貯留タンク或いは二酸化炭素貯留タンク、その他の気体貯留タンクに接続される。   The gas supply hose 8 is a gas passage when supplying various types of gas used for the bubble generating device 1 according to, for example, air, ozone, carbon dioxide, or other applications. The upstream side of the gas supply hose 8 is connected to a gas supply side, for example, opened to the atmosphere, an ozone storage tank, a carbon dioxide storage tank, or another gas storage tank.

また、気体供給ホース8はその下流端が気泡発生装置1の一部を構成する上記環状気室6の吸入口61に連通接続されている。気体供給側の気体は気体供給ホース8を流れて環状気室6内に流入し、隙間5から吐出側通路22内の液体中に吸引されて溶解し、又気泡となる。   Further, the downstream end of the gas supply hose 8 is connected to the suction port 61 of the annular air chamber 6 constituting a part of the bubble generating device 1. The gas on the gas supply side flows through the gas supply hose 8 and flows into the annular air chamber 6, and is sucked into the liquid in the discharge side passage 22 from the gap 5 to be dissolved and becomes bubbles.

気体供給ホース8の途中には、気体供給側から吸引される気体の流量を調整する流量制御弁81が設けられている。この流量制御弁81を調整することにより、例えば流量を少なくすると液体中の気泡の直径を小さくして微小気泡を生成し易くし、逆に流量を多くすると液体中の気泡の直径が大きいものを生成し易くすることができる。   In the middle of the gas supply hose 8, a flow rate control valve 81 for adjusting the flow rate of the gas sucked from the gas supply side is provided. By adjusting the flow rate control valve 81, for example, when the flow rate is reduced, the diameter of bubbles in the liquid is reduced to facilitate the generation of microbubbles. Conversely, when the flow rate is increased, the diameter of bubbles in the liquid is increased. It can be easily generated.

次に、上記発明を実施するための最良の形態の構成に基づく気泡発生装置の動作について以下説明する。   Next, the operation of the bubble generating device based on the configuration of the best mode for carrying out the invention will be described below.

気泡発生装置1を構成する外筒3の導入側通路21の導入口21aを、例えば水中に設置されるポンプ7に接続する。また流量制御弁81と気泡発生装置1の外筒3を気体供給ホース8で繋ぐが、この場合、気体供給ホース8の下流端を気泡発生装置1の外筒3の環状厚盤31に形成された吸入口61に接続して繋ぐ。そして、例えば気体が空気、液体が水の場合には、気体供給ホース8の上流端を大気中に置き、気泡発生装置1を水中に配置する。   The introduction port 21a of the introduction side passage 21 of the outer cylinder 3 constituting the bubble generating device 1 is connected to, for example, a pump 7 installed in water. The flow control valve 81 and the outer cylinder 3 of the bubble generator 1 are connected by the gas supply hose 8. In this case, the downstream end of the gas supply hose 8 is formed on the annular thick plate 31 of the outer cylinder 3 of the bubble generator 1. Connect to the inlet 61. For example, when the gas is air and the liquid is water, the upstream end of the gas supply hose 8 is placed in the atmosphere, and the bubble generating device 1 is placed in the water.

この状態でポンプ7を駆動し送水すれば、その速度によって気泡発生装置1の導入側通路21と吐出側通路22との境界部分にできるエッジ部42を通過する水脈がエッジ部42の形状に追従せず傾斜を持って飛び越え、エッジ部42の直下流に渦と隅部に負圧発生部aを生じつつ連続的に導入側通路21に挿入された内筒4の内部を通過して吐出側通路22に移行する。   If the pump 7 is driven and water is supplied in this state, the water vein passing through the edge portion 42 formed at the boundary portion between the introduction side passage 21 and the discharge side passage 22 of the bubble generating device 1 follows the shape of the edge portion 42 according to the speed. Without being inclined, it jumps over, and passes through the inside of the inner cylinder 4 continuously inserted into the introduction side passage 21 while generating a vortex and a negative pressure generating portion a in the corner immediately downstream of the edge portion 42, and on the discharge side Transition to the passage 22.

この時、渦を生じた水脈が導入側通路21と吐出側通路22との境界部分の円周状の隅部の空気を連行し流下するのでこの部分は負圧発生部aとなる。円周状の隅部に発生した負圧は負圧発生部aに形成された隙間5を通じて環状気室6、環状気室6から流量制御弁81までの気体供給ホース8の管路を負圧とする。   At this time, the vortexed water vein entrains and flows down the air at the circumferential corner of the boundary portion between the introduction side passage 21 and the discharge side passage 22, so this portion becomes the negative pressure generating portion a. The negative pressure generated in the circumferential corner is negatively applied to the annular air chamber 6 through the gap 5 formed in the negative pressure generating portion a and the pipe of the gas supply hose 8 from the annular air chamber 6 to the flow control valve 81. And

この場合において、流量制御弁81を全閉とすれば負圧区域に大気が供給されず、気泡発生装置1の液体通路2内の送水中の水には吸引されず、気泡発生装置1からは通常の送水が行われる。   In this case, if the flow control valve 81 is fully closed, the atmosphere is not supplied to the negative pressure area, and is not sucked into the water being fed in the liquid passage 2 of the bubble generating device 1. Normal water supply is performed.

また、流量制御弁81を開放すれば導入側通路21と吐出側通路22との境界部分の円周状の隅部で発生する負圧によって運転前に環状気室6内に充満している水は、隙間5から液体通路2内を送水されている水脈中へ連行される。   Further, if the flow control valve 81 is opened, the water filled in the annular air chamber 6 before the operation by the negative pressure generated at the circumferential corner of the boundary portion between the introduction side passage 21 and the discharge side passage 22 is filled. Is taken from the gap 5 into the water vein that is fed through the liquid passage 2.

環状気室6内の水が無くなれば、環状気室6に連通する隙間5から空気を吸入し始め、気泡発生装置1の液体通路2内を送水されている水脈中へと連行され、送水中の水に吸引されて気泡混じりの水として吐出側通路22の吐出口22aから水中に放出される。   When the water in the annular air chamber 6 is exhausted, the air starts to be sucked through the gap 5 communicating with the annular air chamber 6 and is taken into the water vein that is fed through the liquid passage 2 of the bubble generating device 1. The water is sucked into the water and discharged into the water from the discharge port 22a of the discharge side passage 22 as water mixed with bubbles.

環状気室6及び隙間5を通じて液体通路2内を送水されている水脈中へ供給される空気量を制御する流量制御弁81の開度により負圧の程度が変化する。全開にすれば環状気室6内の圧力が大気圧に近づき、空気が大量に液体通路2内を送水されている水脈中へ連行され、気泡発生装置1から水中に吐出される気泡径が大きくなる。   The degree of negative pressure varies depending on the opening degree of the flow control valve 81 that controls the amount of air supplied to the water vein that is fed through the liquid passage 2 through the annular air chamber 6 and the gap 5. When fully open, the pressure in the annular air chamber 6 approaches the atmospheric pressure, a large amount of air is entrained into the water vein being fed through the liquid passage 2, and the bubble diameter discharged from the bubble generator 1 into the water is large. Become.

逆に空気量を制御する流量制御弁81の弁を絞っていけば環状気室6内の圧力が低下し、隙間5を通じて液体通路2内を送水されている水脈中への吸入量が減少し、混入する空気が微小化し水脈へ混入され、気泡発生装置1の外筒3から水中に吐出される気泡径が小さくなり、微小気泡を水中に発生させることが可能となる。   Conversely, if the valve of the flow control valve 81 that controls the amount of air is throttled, the pressure in the annular air chamber 6 decreases, and the amount of suction into the water vein that is fed through the liquid passage 2 through the gap 5 decreases. The mixed air is micronized and mixed into the water vein, the bubble diameter discharged into the water from the outer tube 3 of the bubble generating device 1 is reduced, and the microbubbles can be generated in the water.

なお、この発明は上記発明を実施するための最良の形態に限定されるものではなく、この発明の精神を逸脱しない範囲で種々の改変をなし得ることは勿論である。   Note that the present invention is not limited to the best mode for carrying out the invention, and various modifications can be made without departing from the spirit of the invention.

この発明を実施するための最良の形態を示す気泡発生装置を液体中に配置した全体構成図である。1 is an overall configuration diagram in which a bubble generating device showing the best mode for carrying out the present invention is disposed in a liquid. (A)はこの発明を実施するための最良の形態を示す気泡発生装置の側断面図である。 (B)はこの発明を実施するための最良の形態を示す内筒の下流端の端部正面図である。(A) is a side sectional view of a bubble generating device showing the best mode for carrying out the present invention. (B) is an end front view of the downstream end of the inner cylinder showing the best mode for carrying out the present invention. (A)はこの発明を実施するための最良の形態を示す気泡発生装置の他の側断面図である。 (B)はこの発明を実施するための最良の形態を示す内筒の他の下流端の端部正面図である。(A) is another sectional side view of the bubble generator which shows the best form for implementing this invention. (B) is the edge part front view of the other downstream end of the inner cylinder which shows the best form for implementing this invention. この発明を実施するための最良の形態を示す気泡発生装置の更に他の側断面図である。It is further another sectional side view of the bubble generator which shows the best form for implementing this invention.

符号の説明Explanation of symbols

1 気泡発生装置
2 液体通路
21 導入側通路
21a 導入口
21b シール溝
21c シール材
22 吐出側通路
22a 吐出口
22b 撹拌溝
3 外筒
31 環状厚盤
4 内筒
41 送水通路
41a 送水流入口
42 エッジ部
42a 頂部
43 端面凸面
44 端面凹面
45 環状突起面
5 隙間
6 環状気室
61 吸入口
7 ポンプ
71 ポンプ電源
8 気体供給ホース
81 流量制御弁
a 負圧発生部
DESCRIPTION OF SYMBOLS 1 Bubble generator 2 Liquid passage 21 Introduction side passage 21a Introduction port 21b Seal groove 21c Seal material 22 Discharge side passage 22a Discharge port 22b Stirring groove 3 Outer cylinder 31 Annular thick plate 4 Inner cylinder 41 Water supply passage 41a Water supply inlet 42 Edge part 42a Top portion 43 End surface convex surface 44 End surface concave surface 45 Annular projection surface 5 Clearance 6 Annular air chamber 61 Inlet 7 Pump 71 Pump power supply 8 Gas supply hose 81 Flow control valve a Negative pressure generating part

Claims (3)

導入側通路と吐出側通路とから構成される液体通路を内部に形成した外筒を設け、該外筒の内部の上記導入側通路に流速を高める送水通路が内部に形成された内筒を装着し、吐出側通路に向けて送水通路の内周面の内径がテーパー状に一旦縮小後に拡大し流速促進と水脈分離を促すエッジ部を上記内筒の内部の送水通路の下流端側に形成し、エッジ部直近下流側の導入側通路と吐出側通路との境界部分に所定の隙間を内周方向に形成し、上記隙間に連通する環状気室を上記内筒の外周と上記外筒の内周との間に環状に形成し、上記導入側通路の上流端をポンプを介して液体供給側に連通接続し、上流側が気体供給側に連通する気体供給ホースの下流端を上記環状気室の吸入口に連通接続したことを特徴とする気泡発生装置。 An outer cylinder having a liquid passage formed of an introduction side passage and a discharge side passage is provided inside, and an inner cylinder having a water supply passage formed therein is mounted in the introduction side passage in the outer cylinder. Then, the inner diameter of the inner peripheral surface of the water supply passage toward the discharge side passage is once reduced in a taper shape, and then an edge portion is formed on the downstream end side of the water supply passage inside the inner cylinder for enlarging the flow velocity and promoting water vein separation. A predetermined gap is formed in the inner circumferential direction at a boundary portion between the introduction side passage and the discharge side passage immediately downstream of the edge portion, and an annular air chamber communicating with the gap is formed between the outer circumference of the inner cylinder and the inner side of the outer cylinder. The upstream end of the introduction side passage is connected to the liquid supply side via a pump, and the downstream end of the gas supply hose whose upstream side is connected to the gas supply side is connected to the circumference of the annular air chamber. A bubble generating device characterized in that it is connected in communication with a suction port. 導入側通路と吐出側通路とから構成される液体通路を内部に形成した外筒を設け、該外筒の内部の上記導入側通路に流速を高める送水通路が内部に形成された内筒を装着し、吐出側通路に向けて送水通路の内周面の内径がテーパー状に一旦縮小後に拡大し流速促進と水脈分離を促すエッジ部を上記内筒の内部の送水通路の下流端側に形成し、エッジ部直近下流側の導入側通路と吐出側通路との境界部分に所定の隙間を内周方向に形成し、上記隙間に連通する環状気室を上記内筒の外周と上記外筒の内周との間に環状に形成し、上記導入側通路の上流端をポンプを介して液体供給側に連通接続し、上流側が気体供給側に連通する気体供給ホースの下流端を上記環状気室の吸入口に連通接続し、気体供給側から流入する気体の流量を制御する流量制御弁を気体供給ホースに設けたことを特徴とする気泡発生装置。 An outer cylinder having a liquid passage formed of an introduction side passage and a discharge side passage is provided inside, and an inner cylinder having a water supply passage formed therein is mounted in the introduction side passage in the outer cylinder. Then, the inner diameter of the inner peripheral surface of the water supply passage toward the discharge side passage is once reduced in a taper shape, and then an edge portion is formed on the downstream end side of the water supply passage inside the inner cylinder for enlarging the flow velocity and promoting water vein separation. A predetermined gap is formed in the inner circumferential direction at a boundary portion between the introduction side passage and the discharge side passage immediately downstream of the edge portion, and an annular air chamber communicating with the gap is formed between the outer circumference of the inner cylinder and the inner side of the outer cylinder. The upstream end of the introduction side passage is connected to the liquid supply side via a pump, and the downstream end of the gas supply hose whose upstream side is connected to the gas supply side is connected to the circumference of the annular air chamber. Flow rate that controls the flow rate of gas flowing in from the gas supply side, connected to the suction port Bubble generating device, characterized in that provided in the gas supply hose valve. エッジ部は、頂部を境にその両側に傾斜面を有する断面三角形状に突起するように送水通路の内周面に形成されている請求項1又は請求項2に記載の気泡発生装置。 The bubble generating device according to claim 1 or 2, wherein the edge portion is formed on the inner peripheral surface of the water supply passage so as to protrude in a triangular cross section having inclined surfaces on both sides of the top portion as a boundary.
JP2007192337A 2007-07-24 2007-07-24 Bubble generating apparatus Pending JP2009028579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192337A JP2009028579A (en) 2007-07-24 2007-07-24 Bubble generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192337A JP2009028579A (en) 2007-07-24 2007-07-24 Bubble generating apparatus

Publications (1)

Publication Number Publication Date
JP2009028579A true JP2009028579A (en) 2009-02-12

Family

ID=40399726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192337A Pending JP2009028579A (en) 2007-07-24 2007-07-24 Bubble generating apparatus

Country Status (1)

Country Link
JP (1) JP2009028579A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194326A (en) * 2010-03-19 2011-10-06 Institute Of National Colleges Of Technology Japan Bubble generator
WO2012105536A1 (en) * 2011-01-31 2012-08-09 独立行政法人国立高等専門学校機構 Super-micro bubble generator
JP2014033999A (en) * 2012-08-08 2014-02-24 Ok Engineering:Kk Bubble generating nozzle, and loop flow type bubble generating nozzle
JP2017042381A (en) * 2015-08-27 2017-03-02 宗信 蔡 Air purifier with water filtration medium
CN106994305A (en) * 2017-03-31 2017-08-01 浙江理工大学 It is adjustable into the Liqiud-gas mixing device of Air Bubble Size
WO2017138226A1 (en) * 2016-02-12 2017-08-17 三菱電機株式会社 Circulation piping system and system for supplying water containing carbon dioxide
WO2019106908A1 (en) * 2017-11-29 2019-06-06 東芝ライフスタイル株式会社 Microbubble generator, washing machine, and home appliance
JP2019098207A (en) * 2017-11-29 2019-06-24 東芝ライフスタイル株式会社 Fine bubble generator and washing machine
JP2020018996A (en) * 2018-08-02 2020-02-06 上海久田汽車零部件制造有限公司 Microbubble generator
JP2020022925A (en) * 2018-08-06 2020-02-13 東芝ライフスタイル株式会社 Fine bubble generator and household electronics
CN113026298A (en) * 2019-12-24 2021-06-25 青岛海尔洗衣机有限公司 Microbubble shower nozzle, microbubble treatment agent box subassembly and washing equipment
CN113026305A (en) * 2019-12-24 2021-06-25 青岛海尔洗衣机有限公司 Microbubble treating agent box assembly and washing equipment with same
WO2022160989A1 (en) * 2021-01-28 2022-08-04 青岛海尔洗衣机有限公司 Bubble generator and washing device having same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192300U (en) * 1987-12-08 1989-06-16
JPH09141073A (en) * 1995-11-15 1997-06-03 Toyo Technos Kk Air bubble-mixed water manufacturing apparatus
JP2002095942A (en) * 2000-09-22 2002-04-02 Yoshiyuki Sawada Gas dissolving device
JP2004066012A (en) * 2002-08-01 2004-03-04 Kenji Tanaka Aerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192300U (en) * 1987-12-08 1989-06-16
JPH09141073A (en) * 1995-11-15 1997-06-03 Toyo Technos Kk Air bubble-mixed water manufacturing apparatus
JP2002095942A (en) * 2000-09-22 2002-04-02 Yoshiyuki Sawada Gas dissolving device
JP2004066012A (en) * 2002-08-01 2004-03-04 Kenji Tanaka Aerator

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194326A (en) * 2010-03-19 2011-10-06 Institute Of National Colleges Of Technology Japan Bubble generator
WO2012105536A1 (en) * 2011-01-31 2012-08-09 独立行政法人国立高等専門学校機構 Super-micro bubble generator
JP5669031B2 (en) * 2011-01-31 2015-02-12 独立行政法人国立高等専門学校機構 Ultrafine bubble generator
JP2014033999A (en) * 2012-08-08 2014-02-24 Ok Engineering:Kk Bubble generating nozzle, and loop flow type bubble generating nozzle
JP2017042381A (en) * 2015-08-27 2017-03-02 宗信 蔡 Air purifier with water filtration medium
WO2017138226A1 (en) * 2016-02-12 2017-08-17 三菱電機株式会社 Circulation piping system and system for supplying water containing carbon dioxide
JP6192881B1 (en) * 2016-02-12 2017-09-06 三菱電機株式会社 Circulation piping system and carbon dioxide-containing water supply system
CN106994305A (en) * 2017-03-31 2017-08-01 浙江理工大学 It is adjustable into the Liqiud-gas mixing device of Air Bubble Size
WO2019106908A1 (en) * 2017-11-29 2019-06-06 東芝ライフスタイル株式会社 Microbubble generator, washing machine, and home appliance
JP2019098207A (en) * 2017-11-29 2019-06-24 東芝ライフスタイル株式会社 Fine bubble generator and washing machine
CN111417455A (en) * 2017-11-29 2020-07-14 东芝生活电器株式会社 Fine bubble generator, washing machine and household appliance
JP7112197B2 (en) 2017-11-29 2022-08-03 東芝ライフスタイル株式会社 Fine bubble generator and washing machine
US11504677B2 (en) 2017-11-29 2022-11-22 Toshiba Lifestyle Products & Services Corporation Microbubble generator, washing machine, and home appliance
JP2020018996A (en) * 2018-08-02 2020-02-06 上海久田汽車零部件制造有限公司 Microbubble generator
JP2020022925A (en) * 2018-08-06 2020-02-13 東芝ライフスタイル株式会社 Fine bubble generator and household electronics
JP7248388B2 (en) 2018-08-06 2023-03-29 東芝ライフスタイル株式会社 Fine bubble generator and home appliance
CN113026298A (en) * 2019-12-24 2021-06-25 青岛海尔洗衣机有限公司 Microbubble shower nozzle, microbubble treatment agent box subassembly and washing equipment
CN113026305A (en) * 2019-12-24 2021-06-25 青岛海尔洗衣机有限公司 Microbubble treating agent box assembly and washing equipment with same
WO2022160989A1 (en) * 2021-01-28 2022-08-04 青岛海尔洗衣机有限公司 Bubble generator and washing device having same

Similar Documents

Publication Publication Date Title
JP2009028579A (en) Bubble generating apparatus
KR102061846B1 (en) Fine bubble mixing device for aeration process
CN106660842B (en) Micro-bubble nozzle
JP2008062151A (en) Apparatus for generating bubble
JP2008086868A (en) Microbubble generator
CN107321204A (en) Microbubble generator
JP4929874B2 (en) Microbubble generator
JP5573879B2 (en) Microbubble generator
US20150258491A1 (en) Generation apparatus for dissolving gas in liquid and fluid nozzle
JP2007307450A (en) Bubble generating device
WO2001036105A1 (en) Micro-bubble generating nozzle and application device therefor
JP2010075838A (en) Bubble generation nozzle
JP2004060470A (en) Mixing structure of gas or the like for pressurizing centrifugal pump
US20210138410A1 (en) Microbubble generation device and microbubble generation method, and shower apparatus and oil-water separation apparatus having said microbubble generation device
JP4426612B2 (en) Fine bubble generation nozzle
JP2007117799A (en) Microbubble generator and microbubble generating apparatus using the same
JP2014097449A (en) Through-flow pump ultrafine bubble flow supply device
JP6449531B2 (en) Microbubble generator
JP2007000848A (en) Method for generating fine bubble
JP5276254B2 (en) Flush toilet equipment
JP2013000626A (en) Fine air bubble generator
JP2017136513A (en) Fine air bubble generating device, fine air bubble generating method, and shower device and oil water separating apparatus having the fine air bubble generating device
JP2012120997A (en) Method for producing microbubble and device therefor
KR20170096674A (en) micro-bubble generator
JP2010115586A (en) Microbubble generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100707

A977 Report on retrieval

Effective date: 20110920

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Effective date: 20120313

Free format text: JAPANESE INTERMEDIATE CODE: A02