JP6449531B2 - Microbubble generator - Google Patents

Microbubble generator Download PDF

Info

Publication number
JP6449531B2
JP6449531B2 JP2013098111A JP2013098111A JP6449531B2 JP 6449531 B2 JP6449531 B2 JP 6449531B2 JP 2013098111 A JP2013098111 A JP 2013098111A JP 2013098111 A JP2013098111 A JP 2013098111A JP 6449531 B2 JP6449531 B2 JP 6449531B2
Authority
JP
Japan
Prior art keywords
gas
liquid
vortex
jet
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013098111A
Other languages
Japanese (ja)
Other versions
JP2014217803A (en
Inventor
修平 大坪
修平 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YBM Co Ltd
Original Assignee
YBM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YBM Co Ltd filed Critical YBM Co Ltd
Priority to JP2013098111A priority Critical patent/JP6449531B2/en
Publication of JP2014217803A publication Critical patent/JP2014217803A/en
Application granted granted Critical
Publication of JP6449531B2 publication Critical patent/JP6449531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)

Description

本発明は、微細気泡を発生するための微細気泡発生装置に関する。さらに詳しくは、直径がナノメートルオーダーの微細気泡(ナノバブル)を発生するための微細気泡発生装置に関する。    The present invention relates to a microbubble generator for generating microbubbles. More specifically, the present invention relates to a microbubble generator for generating microbubbles (nanobubbles) having a diameter of the order of nanometers.

近年、ナノバブル(例えば、直径が1マイクロメートル以下の気泡)、マイクロバブル(例えば、発生時の直径が50マイクロメートル以下の気泡)等と呼ばれている微細気泡は、いろいろな優れた特性があることが見出され、各種分野で活用されようとしている。例えば、ナノバブルの特性を発見して、ナノバブルが各種物体の洗浄、汚濁水の浄化等に利用できることを開示したナノバブルの利用方法及び装置に関する技術が知られている(例えば、特許文献1参照)。この特許文献1には、ナノバブルを電気分解法により生成する方法、装置が開示されている。しかしながら、この装置は、超純水製造装置、超音波発生装置、電気分解用電源装置等が必要とし、もっと簡素な構成の装置の開発が要望されていた。そこで、このような微細気泡を発生するための発生装置及び発生方法についても、種々の提案がされている。   In recent years, microbubbles called nanobubbles (for example, bubbles having a diameter of 1 μm or less), microbubbles (for example, bubbles having a diameter of 50 μm or less when generated) have various excellent characteristics. It has been discovered and is being used in various fields. For example, a technology relating to a nanobubble utilization method and apparatus that discloses that the characteristics of nanobubbles are discovered and that nanobubbles can be used for cleaning various objects, purifying contaminated water, and the like is known (see, for example, Patent Document 1). Patent Document 1 discloses a method and apparatus for generating nanobubbles by electrolysis. However, this apparatus requires an ultrapure water production apparatus, an ultrasonic generator, an electrolysis power supply apparatus, etc., and development of an apparatus having a simpler configuration has been demanded. Therefore, various proposals have also been made for a generating apparatus and a generating method for generating such fine bubbles.

例えば、筒状部材、第1端壁部材、第2端壁部材とによって画定される流体旋回室と、流体旋回室内に接線方向から導入する流体導入孔と、中心線方向から流体を吐出する流体吐出孔とを備える気体旋回剪断装置を有した微細気泡発生装置に関する技術が知られている(例えば、特許文献2、3参照)。さらに、一端側が他端側に向けて突出する円錐形状又は円錐台形状の壁体で閉口され、他端側が開口している円筒形スペースを有する容器本体と、気体導入孔と、接線方向に開設された加圧液体導入口とからなる旋回式微細気泡発生装置に関する技術も知られている(例えば、特許文献4参照)。   For example, a fluid swirl chamber defined by a cylindrical member, a first end wall member, and a second end wall member, a fluid introduction hole that is introduced into the fluid swirl chamber from a tangential direction, and a fluid that discharges fluid from the centerline direction A technique related to a fine bubble generating device having a gas swirl shear device including a discharge hole is known (see, for example, Patent Documents 2 and 3). Furthermore, a container body having a cylindrical space that is closed by a conical or frustoconical wall projecting at one end side toward the other end side and opened at the other end side, a gas introduction hole, and a tangential direction are established. There is also known a technique related to a swirling fine bubble generating apparatus including a pressurized liquid introduction port (see, for example, Patent Document 4).

特開2004−121962号公報JP 2004-121962 A 特許第4129290号公報Japanese Patent No. 4129290 特許第4118939号公報Japanese Patent No. 4118939 特許第4725707号公報Japanese Patent No. 4725707

特許文献2、3に記載された微細気泡発生装置は、円筒状の流体旋回室内に生じる旋回流による剪断力で気体を微細化するものである。また、特許文献4に記載された旋回式微細気泡発生装置は、装置容器の開口部である出口から気体が噴出されるとき、噴出と同時に発生する旋回速度差により、気体渦管部が切断されることにより直径10〜20μmの微細気泡が発生されるものである。   The fine bubble generator described in Patent Documents 2 and 3 refines a gas by a shearing force generated by a swirling flow generated in a cylindrical fluid swirling chamber. Further, in the swirl type fine bubble generator described in Patent Document 4, when gas is ejected from the outlet which is an opening of the apparatus container, the gas vortex tube portion is cut due to the swirl speed difference generated simultaneously with the ejection. As a result, fine bubbles having a diameter of 10 to 20 μm are generated.

一方、微細気泡は、マイクロバブルよりナノバブルのほうが各種特性が優れていると言われている。また、ナノメートルオーダーの微細気泡でも、直径が数百ナノメートルオーダーの微細気泡より、数十ナノメートルオーダーの微細気泡のほうが、いろいろな特性が優れていると言われている。しかしながら、前述した特許文献2〜4に記載された技術は、このような点、例えば直径が数十ナノメートルオーダーの微細気泡を確実に、効率よく発生させるためには、まだ改良改善の余地が残っているものであった。   On the other hand, it is said that nanobubbles are superior in various properties to microbubbles than microbubbles. In addition, even in the case of microbubbles with a nanometer order, it is said that microbubbles with a diameter of several tens of nanometers have various characteristics superior to those with a diameter of several hundreds of nanometers. However, the techniques described in Patent Documents 2 to 4 described above still have room for improvement and improvement in order to reliably and efficiently generate such points, for example, fine bubbles having a diameter of several tens of nanometers. It was what remained.

そのため、従来の直径がナノメートルオーダーの微細気泡より、さらに直径が微小なナノメートルオーダーの微細気泡を発生する方法、装置の開発が要望されている。
本発明の目的は、直径がナノメートルオーダーの微細気泡を確実に、効率よく発生させることができる微細気泡発生装置を提供することにある。
Therefore, there is a demand for the development of a method and apparatus for generating nanometer-order fine bubbles having a smaller diameter than conventional fine bubbles having a diameter of nanometer order.
An object of the present invention is to provide a microbubble generator capable of reliably and efficiently generating microbubbles having a diameter of the order of nanometers.

本発明は、前記目的を達成するために次の手段をとる。
本発明1の微細気泡発生装置は、
吸い込んだ液体(5)を所定の圧力に加圧して吐出するためのポンプであって、前記液体の吸込口(20)の近傍に気体(6)の供給口を設け、羽根車の回転により、前記液体内に前記気体の気泡が混合された気液混合流体(7)を吐出するための渦流ポンプである気液混合ポンプ(10)と、
前記気液混合流体(7)が噴射される噴射ノズル(32)を有する直方体状の箱部材であって、内部に3次元の扁平空間(V)を形成し、前記気液混合流体(7)が前記噴射ノズル(32)から前記扁平空間(V)に噴射されるとき、気泡の発生、圧壊を行うキャビテーションを起こすとともに、前記気液混合流体(7)が噴射された噴流流体が揺れながら前記扁平空間(V)内で渦を巻いて流れる渦流とを発生し、前記気泡の圧壊によるエネルギーと前記渦流によるせん断力とで、前記気泡を微細気泡に微細化する噴流式微細気泡発生部(30)と、
前記噴流式微細気泡発生部(30)は、前記扁平空間(V)が、前記空間の概ねの高さをHで、それの概ねの幅をWで表し、前記噴射ノズル(32)の開口の有効直径をD1で表すと、前記噴流は長さ方向に向いて前記空間の概ねの中心線の方向に噴射され、前記渦流の発生条件として、D1<H、W/H>4、且つ、W<Lであることを特徴とする。
The present invention takes the following means in order to achieve the object.
The fine bubble generator of the present invention 1
A pump for pressurizing and discharging the sucked liquid (5) to a predetermined pressure, provided with a gas (6) supply port in the vicinity of the liquid suction port (20), and by rotating the impeller, A gas-liquid mixing pump (10) which is a vortex pump for discharging a gas-liquid mixed fluid (7) in which the gas bubbles are mixed in the liquid;
A rectangular parallelepiped box member having an injection nozzle (32) through which the gas-liquid mixed fluid (7) is injected, wherein a three-dimensional flat space (V) is formed therein, and the gas-liquid mixed fluid (7) Is injected into the flat space (V) from the injection nozzle (32), causing cavitation to generate and crush bubbles, and the jet fluid from which the gas-liquid mixed fluid (7) is injected shakes A jet-type microbubble generator (30) that generates a vortex that flows in a vortex in a flat space (V), and that refines the bubble into a microbubble by the energy of the bubble collapse and the shearing force of the vortex. )When,
In the jet type fine bubble generating part (30), in the flat space (V), an approximate height of the space is represented by H, an approximate width thereof is represented by W, and an opening of the spray nozzle (32) is formed . When the effective diameter is represented by D1, the jet is jetted in the direction of the length and in the direction of the center line of the space, and the conditions for generating the vortex are D1 <H, W / H> 4 , and W <L .

本発明2の微細気泡発生装置は、本発明1において、前記液体は水であり、前記気体は空気であり、前記微細気泡は、直径がナノメートルレベルの微細気泡であることを特徴とする。   The fine bubble generating apparatus of the present invention 2 is characterized in that, in the present invention 1, the liquid is water, the gas is air, and the fine bubbles are fine bubbles having a nanometer level in diameter.

本発明の微細気泡発生装置は、気液混合ポンプで発生させた微細気泡を、噴流発生部におけるキャビテーション現象において、気泡が圧壊するときに生じるエネルギーと、噴流発生室内におけるコアンダ効果等による渦流により生じるせん断力とにより、微細気泡をさらに微細化し、従来の微細気泡より、さらに微細化された直径がナノメートルオーダーの微細気泡を確実に、効率よく発生することができる。また、この微細気泡発生装置は、構成が簡素であり、高品質のナノメートルオーダーの微細気泡を信頼性高く発生することができる。   The fine bubble generating apparatus of the present invention generates fine bubbles generated by a gas-liquid mixing pump by vortex flow due to energy generated when bubbles are crushed in a cavitation phenomenon in a jet generating portion, and by a Coanda effect in a jet generating chamber. With the shearing force, the fine bubbles can be further refined, and fine bubbles with a finer diameter of nanometer order can be reliably and efficiently generated than the conventional fine bubbles. Moreover, this microbubble generator has a simple configuration and can reliably generate high-quality nanometer-order microbubbles.

この微細気泡発生装置で発生させた直径がナノメートルオーダーの微細気泡は、被洗浄物の洗浄を従来のものより効果的に行うことができる。例えば、放射性物質(例えば、放射性セシウム)が付着した被洗浄物の除染を行うと従来のものより放射性物質濃度が低下し、確実に除染を行うことができる。   Fine bubbles with a diameter of nanometer order generated by this fine bubble generator can more effectively clean the object to be cleaned than conventional ones. For example, if the object to be cleaned to which a radioactive substance (for example, radioactive cesium) is attached is decontaminated, the concentration of the radioactive substance is lower than that of the conventional one, and the decontamination can be performed reliably.

図1は、本発明の実施の形態の微細気泡発生装置の概要を示す構成図である。FIG. 1 is a configuration diagram showing an outline of a microbubble generator according to an embodiment of the present invention. 図2は、微細気泡発生装置を構成する気液混合ポンプの構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of the gas-liquid mixing pump constituting the fine bubble generating device. 図3は、微細気泡発生装置を構成する噴流式微細気泡発生部の微細気泡発生室における噴流発生原理を模式的に示した正面図である。FIG. 3 is a front view schematically showing the principle of jet generation in the fine bubble generation chamber of the jet type fine bubble generation unit constituting the fine bubble generation device. 図4は、図3をB−B線で切断した断面図である。4 is a cross-sectional view of FIG. 3 taken along line BB.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の実施の形態の微細気泡発生装置の概要を示す構成図である。図2は、微細気泡発生装置を構成する気液混合ポンプの構成を示す断面図である。図3は、微細気泡発生装置を構成する噴流式微細気泡発生部の微細気泡発生室における噴流発生原理を模式的に示した正面図、図4は、図3をB−B線で切断した断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing an outline of a microbubble generator according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing the configuration of the gas-liquid mixing pump constituting the fine bubble generating device. FIG. 3 is a front view schematically showing the principle of jet generation in the fine bubble generating chamber of the jet type fine bubble generating portion constituting the fine bubble generating device, and FIG. 4 is a cross-sectional view of FIG. 3 taken along the line BB. FIG.

図1に示すように、本発明の微細気泡発生装置1は、液体と空気とを混合して吐出するための気液混合ポンプ(渦流ポンプ)10、微細気泡〔例えば、直径がナノメートル(nm)オーダーの微細気泡〕を発生し、微細気泡を気液混合流体に混合するための噴流式微細気泡発生部30、気液混合ポンプ10の流体吐出部21と噴流式微細気泡発生部30の流体入口部との間に設けられる接続流路41、噴流式微細気泡発生部30の流体出口部33側に設けられる送出流路45等から構成されている。なお、この実施の形態の説明では、液体5を水(例えば、水道水)、気体6を空気として説明を行うが、液体5が他の種類の液体、気体6が他の種類の気体であってもよいことはいうまでもない。   As shown in FIG. 1, a microbubble generator 1 according to the present invention includes a gas-liquid mixing pump (vortex pump) 10 for mixing and discharging liquid and air, microbubbles [for example, a nanometer (nm ) Order micro-bubbles], and the micro-bubble generating unit 30 for mixing the micro-bubbles with the gas-liquid mixed fluid, the fluid discharge unit 21 of the gas-liquid mixing pump 10 and the fluid of the jet-type micro-bubble generating unit 30 A connection flow path 41 provided between the inlet and the inlet, a delivery flow path 45 provided on the fluid outlet 33 side of the jet-type fine bubble generator 30, and the like. In the description of this embodiment, the liquid 5 is water (for example, tap water) and the gas 6 is air. However, the liquid 5 is another type of liquid, and the gas 6 is another type of gas. Needless to say, it may be.

接続流路41には、第1圧力調整バルブ42、第1圧力計43が接続されている。第1圧力調整バルブ42は、接続流路41内を流れる気液混合流体(この形態では、気液混合水)7の圧力を所定の圧力P1(例えば、0.5〜0.2MPa)に調整するためのバルブであり、気液混合流体7の圧力は第1圧力計43で確認することができる。送出流路45には、第2圧力調整バルブ46、第2圧力計47が接続されている。第2圧力調整バルブ46は、送出流路45内を流れる微細気泡含有液体(この形態では、微細気泡含有水)8の圧力を所定の圧力P2(例えば、0.4〜0.1MPa)に調整するためのバルブであり、送出流路45内の微細気泡含有液体8の圧力は、第2圧力計47で確認することができる。気液混合流体7の圧力P1は、微細気泡含有液体8の圧力P2より大きくなるように設定されている。   A first pressure adjustment valve 42 and a first pressure gauge 43 are connected to the connection flow path 41. The first pressure adjustment valve 42 adjusts the pressure of the gas-liquid mixed fluid (in this embodiment, gas-liquid mixed water) 7 flowing in the connection channel 41 to a predetermined pressure P1 (for example, 0.5 to 0.2 MPa). The pressure of the gas-liquid mixed fluid 7 can be confirmed with the first pressure gauge 43. A second pressure adjusting valve 46 and a second pressure gauge 47 are connected to the delivery channel 45. The second pressure adjustment valve 46 adjusts the pressure of the fine bubble-containing liquid (in this embodiment, fine bubble-containing water) 8 flowing in the delivery channel 45 to a predetermined pressure P2 (for example, 0.4 to 0.1 MPa). The pressure of the fine bubble-containing liquid 8 in the delivery channel 45 can be confirmed with a second pressure gauge 47. The pressure P1 of the gas-liquid mixed fluid 7 is set to be larger than the pressure P2 of the fine bubble-containing liquid 8.

次に、気液混合ポンプである渦流ポンプ10について、図2に基づいて説明を行う。
図2に示されるように、渦流ポンプ10は、液体吸込口20および流体吐出口21を有するポンプ本体11と、ポンプ本体11内に設けられる羽根車14と、空気供給ノズル22等から構成されている。ポンプ本体11内には、環状の昇圧流路16が形成され、この昇圧流路16の入口部17に液体吸込口20が連通形成されている。昇圧流路16の出口部18には、流体吐出口21が連通形成され、昇圧流路16の入口部17と出口部18との間には隔離部19が形成されている。
Next, the vortex pump 10 which is a gas-liquid mixing pump will be described with reference to FIG.
As shown in FIG. 2, the vortex pump 10 includes a pump body 11 having a liquid suction port 20 and a fluid discharge port 21, an impeller 14 provided in the pump body 11, an air supply nozzle 22, and the like. Yes. An annular boost channel 16 is formed in the pump body 11, and a liquid suction port 20 is formed in communication with the inlet portion 17 of the boost channel 16. A fluid discharge port 21 is formed in communication with the outlet portion 18 of the pressure increasing flow path 16, and an isolation portion 19 is formed between the inlet portion 17 and the outlet portion 18 of the pressure increasing flow path 16.

ポンプ本体11内には、羽根車14が回転可能に嵌合されている。この羽根車14の外周部には、所定ピッチで形成された径方向の小羽根部12と、これらの小羽根部12間の羽根溝部13が設けられている。羽根車14の中心に嵌着された回転軸15を外部に設けられたモータ(図示せず)などで回転することにより、羽根車14の小羽根部12及び羽根溝部13は、羽根車14と同心円の昇圧流路16内を回転する。この羽根車14の回転により、液体吸込口20から水(液体)5が吸い込まれる。   An impeller 14 is rotatably fitted in the pump body 11. On the outer peripheral portion of the impeller 14, a small blade portion 12 in the radial direction formed at a predetermined pitch, and a blade groove portion 13 between the small blade portions 12 are provided. By rotating the rotating shaft 15 fitted in the center of the impeller 14 with a motor (not shown) provided outside, the small blade portion 12 and the blade groove portion 13 of the impeller 14 are connected to the impeller 14. Rotates in a concentric booster channel 16. As the impeller 14 rotates, water (liquid) 5 is sucked from the liquid suction port 20.

渦流ポンプ10の液体吸込口20には、空気供給ノズル22が挿入されて固定されている。この空気供給ノズル22から供給される空気(気体)6は、昇圧流路16の入口部17から昇圧流路16に流入するように構成されている。
このように、渦流ポンプ10は、ポンプ本体11内に回転可能に嵌合された羽根車14の周囲に環状の昇圧流路16が形成されている。この昇圧流路16の入口部20には、入口部20に対して、空気6を供給する空気供給ノズル22が挿入、固定されている。
An air supply nozzle 22 is inserted and fixed in the liquid suction port 20 of the vortex pump 10. The air (gas) 6 supplied from the air supply nozzle 22 is configured to flow into the boosting channel 16 from the inlet 17 of the boosting channel 16.
As described above, the vortex pump 10 has the annular pressure increasing channel 16 formed around the impeller 14 rotatably fitted in the pump body 11. An air supply nozzle 22 that supplies air 6 is inserted into and fixed to the inlet portion 20 of the pressure increasing flow path 16.

空気6が、空気供給ノズル22から渦流ポンプ10内に供給され、この渦流ポンプ10内で空気(気体)6と水(液体)5とが混合撹拌され、水5と空気6とが混合された気液混合水(気液混合流体)7が流体吐出部21から接続流路41に吐出される。   Air 6 is supplied into the vortex pump 10 from the air supply nozzle 22, and the air (gas) 6 and water (liquid) 5 are mixed and stirred in the vortex pump 10, and the water 5 and air 6 are mixed. Gas-liquid mixed water (gas-liquid mixed fluid) 7 is discharged from the fluid discharge portion 21 to the connection channel 41.

すなわち、渦流ポンプ10の液体吸込口20に吸い込まれた水(液体)5は、羽根車14と共に昇圧流路16をほぼ一周する間に、羽根車14の各羽根溝13内と昇圧流路16との間で渦流となり、昇圧流路16を進むにつれて昇圧されて流体吐出口21から接続流路41に吐出される。このとき、昇圧流路16の入口部17は負圧になり、この入口部17に水5が吸込まれるとともに、空気供給ノズル22から供給された空気6も吸込まれる。この水5と空気6とは、羽根車14と昇圧流路16との間で生じる渦流によって混合攪拌されながら昇圧流路16を移動するので、この過程で水5の中に多量の空気6が混合される。すなわち、水5と空気6とが混合された気液混合水(気液混合流体)7となって流体吐出口21から吐出される。また、水5に混合された空気6は、渦流によるせん断力を受けて微細化された微細気泡〔例えば、直径がマイクロメートル(μm)オーダーの微細気泡〕となっている。   That is, while the water (liquid) 5 sucked into the liquid suction port 20 of the vortex pump 10 substantially goes around the boosting flow path 16 together with the impeller 14, the inside of each blade groove 13 of the impeller 14 and the boosting flow path 16. Eddy current between the fluid discharge port 21 and the pressure is increased as it travels through the pressure increase flow path 16 and is discharged from the fluid discharge port 21 to the connection flow path 41. At this time, the inlet portion 17 of the pressure increasing flow path 16 becomes negative pressure, and the water 5 is sucked into the inlet portion 17 and the air 6 supplied from the air supply nozzle 22 is also sucked. Since the water 5 and the air 6 are mixed and agitated by the vortex generated between the impeller 14 and the pressure increasing flow path 16, the water 5 and the air 6 move in the pressure increasing flow path 16. Mixed. That is, the gas-liquid mixed water (gas-liquid mixed fluid) 7 in which the water 5 and the air 6 are mixed is discharged from the fluid discharge port 21. Further, the air 6 mixed with the water 5 is a fine bubble [for example, a fine bubble having a diameter of the order of micrometers (μm)] which is refined by receiving a shearing force caused by a vortex.

次に、噴流式微細気泡発生部30について説明する。図3、図4に示すように、噴流式微細気泡発生部30は、扁平の直方体状のものである噴流式微細気泡発生箱(以下、微細気泡発生箱と記載)31を備えている。微細気泡発生箱31は、その長手方向が鉛直になるように配置されている。微細気泡発生箱31の一方の面に設けられた流体入口部には、渦流ポンプ10で加圧されるとともに吐出された気液混合水(気液混合流体)7を微細気泡発生箱31内に噴射する噴射口となる噴射ノズル32が固定されている。噴射ノズル32は、噴射口の断面が円筒の環状空間である。   Next, the jet type fine bubble generating unit 30 will be described. As shown in FIGS. 3 and 4, the jet-type fine bubble generation unit 30 includes a jet-type fine bubble generation box (hereinafter referred to as a fine bubble generation box) 31 that is a flat rectangular parallelepiped. The fine bubble generation box 31 is arranged so that its longitudinal direction is vertical. At the fluid inlet portion provided on one surface of the fine bubble generating box 31, the gas-liquid mixed water (gas-liquid mixed fluid) 7 pressurized and discharged by the vortex pump 10 is put into the fine bubble generating box 31. An injection nozzle 32 serving as an injection outlet for injection is fixed. The injection nozzle 32 is an annular space having a cylindrical cross section of the injection port.

噴流式微細気泡発生部30の本体部を形成する微細気泡発生箱31には、微細気泡発生室31aと、接続流路41に接続される流体入口部と、送出流路45に接続される流体出口部33等が形成されている。微細気泡発生箱31の内部には、区画された微細気泡発生室31aが形成されている。微細気泡発生室31aの内部空間Vは、3次元の箱状の空間で扁平であり、空間の概ねの水平方向の厚さをH、その空間の概ねの幅をW、鉛直方向の長さをLとし、流体入口部に設けられた噴射ノズル32の開口の有効直径をD1とすると、概略「D1<H」、「W/H>4」、且つ、「W<L」の関係にある。噴射ノズル32から噴射された気液混合水(気液混合流体)7は、噴射速度が増加するのに伴い圧力が低下し、圧力が飽和蒸気圧まで減少した結果、液体成分(水成分)が蒸発して気泡が発生するキャビテーションと呼ばれる現象が生じる。この結果、気液混合水7が噴射ノズル32から噴射された噴流水(噴流流体)に、気液混合水7の気泡等を気泡核として、キャビテーション現象による気泡が発生する。その後、飽和蒸気圧まで低下した圧力が、噴流水の下流側で次第に元の圧力に戻り始めると気泡は圧縮され潰れる。この気泡の圧壊した時に発生する高温、高圧のエネルギーが周囲に放射され、このエネルギーにより噴流水内の気泡、微細気泡が微細化し、直径が極めて微小なナノメートル(nm)オーダーの微細気泡(ナノバブル)が生成される。   The fine bubble generation box 31 forming the main body of the jet-type fine bubble generation unit 30 includes a fine bubble generation chamber 31 a, a fluid inlet connected to the connection channel 41, and a fluid connected to the delivery channel 45. An outlet 33 and the like are formed. Inside the fine bubble generation box 31, a partitioned fine bubble generation chamber 31a is formed. The internal space V of the fine bubble generating chamber 31a is a three-dimensional box-shaped space that is flat, with the approximate horizontal thickness of the space being H, the approximate width of the space being W, and the vertical length being When L is L and the effective diameter of the opening of the injection nozzle 32 provided at the fluid inlet portion is D1, the relations are approximately “D1 <H”, “W / H> 4”, and “W <L”. The gas-liquid mixed water (gas-liquid mixed fluid) 7 injected from the injection nozzle 32 decreases in pressure as the injection speed increases, and as a result of the pressure decreasing to the saturated vapor pressure, the liquid component (water component) is reduced. A phenomenon called cavitation occurs in which bubbles are generated by evaporation. As a result, bubbles due to the cavitation phenomenon are generated in the jet water (jet fluid) in which the gas-liquid mixed water 7 is jetted from the jet nozzle 32 with the bubbles of the gas-liquid mixed water 7 as the bubble nuclei. Thereafter, when the pressure lowered to the saturated vapor pressure gradually returns to the original pressure on the downstream side of the jet water, the bubbles are compressed and crushed. High-temperature and high-pressure energy generated when the bubbles are crushed is radiated to the surroundings, and the bubbles and fine bubbles in the jet water are refined by this energy. ) Is generated.

噴射ノズル32から噴射された気液混合水(気液混合流体)7は、噴流水(噴流流体)となって微細気泡発生室31a内を流動する。噴流水の主噴流34は、鉛直方向で内部空間Vの概ねの中心線の方向に噴射される。主噴流34、34’は、コアンダ効果(噴流が近くの壁に引き寄せられる効果)により、微細気泡発生室31aの壁面のどちらか一方の側に引き寄せられるように湾曲して流れる。また、隅部でも湾曲するように流れるため、噴流水の主噴流34、34’は、渦を巻いて流れる渦流となる。噴流水の主噴流34、34’は、渦流の回転方向が激しく変化し、図3、4に示す主噴流34、34’のような動きの流れになる。微細気泡発生室31の8隅には、コアンダ効果により低圧渦である付着渦流35、35が発生する。従って、微細気泡発生室31には、例えば、図3又は図4に図示したような矢印の方向に、主噴流34、34’の流れ(渦流)が発生することになる。この主噴流34、34’の流れは、一定で安定したものではなく、幅Wの面内で矢印+w方向または矢印−w方向に、かつ、厚さHの面内で矢印+h方向または矢印−h方向に揺れるとともに、渦流の回転方向が激しく変化するような動きの流れになる。   The gas-liquid mixed water (gas-liquid mixed fluid) 7 ejected from the ejection nozzle 32 becomes jet water (jet fluid) and flows in the fine bubble generating chamber 31a. The main jet 34 of jet water is jetted in the direction of the approximate center line of the internal space V in the vertical direction. The main jets 34 and 34 ′ are curved and flow so as to be drawn toward one of the wall surfaces of the fine bubble generating chamber 31 a by the Coanda effect (effect in which the jet is drawn to a nearby wall). Moreover, since it flows so that it may curve also in a corner part, the main jets 34 and 34 'of jet water become a vortex which flows in a vortex. The main jets 34 and 34 'of the jet water undergo a drastic change in the direction of rotation of the vortex, resulting in a movement flow like the main jets 34 and 34' shown in FIGS. Adhering vortices 35 and 35 that are low-pressure vortices are generated at the eight corners of the fine bubble generating chamber 31 by the Coanda effect. Accordingly, the flow (vortex) of the main jets 34 and 34 ′ is generated in the fine bubble generating chamber 31 in the direction of the arrow as illustrated in FIG. 3 or 4, for example. The flow of the main jets 34, 34 'is not constant and stable, and is in the direction of the arrow + w or arrow -w in the plane of the width W, and in the plane of the thickness H is the arrow + h or arrow- As it sways in the h direction, the flow of motion changes so that the direction of rotation of the vortex changes drastically.

即ち、主噴流34、34’はキャビテーションを起こし、不安定であり揺れながら流れ、渦流が発生することになる。言い換えると、微細気泡発生室31a内では、攪拌力の強い渦流現象が発生し、この渦流は回転方向が激しく変化している。また、これらの主噴流34、34’、付着渦流35、35等の回転方向が激しく変化する噴流は、気液混合水(気液混合流体)7と微細気泡が混合された噴流水に極めて強いせん断力を与える。このせん断力は、微細気泡と噴流水との混合を促進するとともに、微細気泡をせん断し、直径が極めて微小なナノメートル(nm)オーダーの微細気泡(ナノバブル)を生成させる。このような微細化が行われた微細気泡は、例えば、直径が数十ナノメートル以下の微細気泡となり、噴流水に混合されて含有される。この微細気泡含有水(微細気泡含有液体)8は、送出流路45内を流れて貯留等され、所望の場所、所望の目的等で活用される。   That is, the main jets 34 and 34 'cause cavitation, are unstable and flow while shaking, and a vortex flow is generated. In other words, a vortex phenomenon with a strong stirring force occurs in the fine bubble generating chamber 31a, and the rotational direction of this vortex flow changes drastically. In addition, these main jets 34 and 34 ′, the adhering vortex 35 and 35, etc., whose jet direction changes drastically are very strong against jet water in which gas-liquid mixed water (gas-liquid mixed fluid) 7 and fine bubbles are mixed. Give shear force. This shearing force promotes the mixing of the fine bubbles and the jet water, and also shears the fine bubbles to generate fine bubbles (nanobubbles) on the order of nanometers (nm) having a very small diameter. The microbubbles that have been refined as described above become, for example, microbubbles having a diameter of several tens of nanometers or less, and are mixed and contained in the jet water. The fine bubble-containing water (fine bubble-containing liquid) 8 flows through the delivery channel 45 and is stored, and is used for a desired place, a desired purpose, and the like.

このような直径がナノメートルオーダーの微細気泡は、液体(水)中でブラウン運動しながら浮力の影響を受けず、長時間に亘って液体(水)中に含有される。また、この微細気泡含有水(微細気泡含有液体)8は、洗浄作業等に使用すると、微小な隙間の奥まで入り込み、汚れ等の元となる成分を吸着、剥離することで洗浄効果が大幅に向上する。例えば、この微細気泡含有水8で、放射性物質(例えば、放射性セシウム)が付着した被洗浄物の除染を行うと従来のものより放射性物質濃度が低下し、確実に除染を行うことができる。すなわち、直径がナノメートルオーダーの微細気泡は、被洗浄物の洗浄を従来のものより効果的に行うことができる。   Such fine bubbles having a diameter of nanometer order are not affected by buoyancy while performing Brownian motion in the liquid (water), and are contained in the liquid (water) for a long time. In addition, when this fine bubble-containing water (fine bubble-containing liquid) 8 is used for cleaning operations, it penetrates deeply into minute gaps, and adsorbs and separates the original components such as dirt, thereby greatly improving the cleaning effect. improves. For example, when the object to be cleaned to which radioactive substances (for example, radioactive cesium) are attached is decontaminated with the water 8 containing fine bubbles, the concentration of the radioactive substance is lower than that of the conventional one, and the decontamination can be performed reliably. . That is, fine bubbles having a diameter of nanometer order can more effectively clean the object to be cleaned than the conventional one.

以上、本発明の実施の形態について説明を行ったが、本発明はこの実施の形態に限定されることはなく、本発明の目的、趣旨を逸脱しない範囲内での変更が可能なことはいうまでもない。   Although the embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and it can be modified within the scope of the purpose and spirit of the present invention. Not too long.

1…微細気泡発生装置
5…液体(水)
6…気体(空気)
7…気液混合流体(気液混合水)
8…微細気泡含有液体(微細気泡含有水)
10…気液混合ポンプ(渦流ポンプ)
11…ポンプ本体
14…羽根車
30…噴流式微細気泡発生部
31…噴流式微細気泡発生箱
32…噴射ノズル
33…流体出口部
34、34’…主噴流
35…付着噴流
V…内部空間
W…内部空間の幅
H…内部空間の高さ
1 ... Microbubble generator 5 ... Liquid (water)
6 ... Gas (air)
7 ... Gas-liquid mixed fluid (gas-liquid mixed water)
8 ... Liquid containing fine bubbles (water containing fine bubbles)
10. Gas-liquid mixing pump (vortex pump)
DESCRIPTION OF SYMBOLS 11 ... Pump main body 14 ... Impeller 30 ... Jet type fine bubble generation part 31 ... Jet type fine bubble generation box 32 ... Injection nozzle 33 ... Fluid outlet part 34, 34 '... Main jet 35 ... Adhesion jet V ... Internal space W ... Width of internal space H ... Height of internal space

Claims (2)

吸い込んだ液体(5)を所定の圧力に加圧して吐出するためのポンプであって、前記液体の吸込口(20)の近傍に気体(6)の供給口を設け、羽根車の回転により、前記液体内に前記気体の気泡が混合された気液混合流体(7)を吐出するための渦流ポンプである気液混合ポンプ(10)と、
前記気液混合流体(7)が噴射される噴射ノズル(32)を有する直方体状の箱部材であって、内部に3次元の扁平空間(V)を形成し、前記気液混合流体(7)が前記噴射ノズル(32)から前記扁平空間(V)に噴射されるとき、気泡の発生、圧壊を行うキャビテーションを起こすとともに、前記気液混合流体(7)が噴射された噴流流体が揺れながら前記扁平空間(V)内で渦を巻いて流れる渦流とを発生し、前記気泡の圧壊によるエネルギーと前記渦流によるせん断力とで、前記気泡を微細気泡に微細化する噴流式微細気泡発生部(30)と、
前記噴流式微細気泡発生部(30)は、前記扁平空間(V)が、前記空間の概ねの高さをHで、それの概ねの幅をWで表し、前記噴射ノズル(32)の開口の有効直径をD1で表すと、前記噴流は長さ方向に向いて前記空間の概ねの中心線の方向に噴射され、前記渦流の発生条件として、D1<H、W/H>4、且つ、W<Lである
ことを特徴とする微細気泡発生装置。
A pump for pressurizing and discharging the sucked liquid (5) to a predetermined pressure, provided with a gas (6) supply port in the vicinity of the liquid suction port (20), and by rotating the impeller, A gas-liquid mixing pump (10) which is a vortex pump for discharging a gas-liquid mixed fluid (7) in which the gas bubbles are mixed in the liquid;
A rectangular parallelepiped box member having an injection nozzle (32) through which the gas-liquid mixed fluid (7) is injected, wherein a three-dimensional flat space (V) is formed therein, and the gas-liquid mixed fluid (7) Is injected into the flat space (V) from the injection nozzle (32), causing cavitation to generate and crush bubbles, and the jet fluid from which the gas-liquid mixed fluid (7) is injected shakes A jet-type microbubble generator (30) that generates a vortex that flows in a vortex in a flat space (V), and that refines the bubble into a microbubble by the energy of the bubble collapse and the shearing force of the vortex. )When,
In the jet type fine bubble generating part (30), in the flat space (V), an approximate height of the space is represented by H, an approximate width thereof is represented by W, and an opening of the spray nozzle (32) is formed . When the effective diameter is represented by D1, the jet is jetted in the direction of the length and in the direction of the center line of the space, and the conditions for generating the vortex are D1 <H, W / H> 4 , and W <L is the fine bubble generator characterized by the above-mentioned.
請求項1に記載された微細気泡発生装置において、
前記液体は水であり、前記気体は空気であり、前記微細気泡は、直径がナノメートルレベルの微細気泡である
ことを特徴とする微細気泡発生装置。
In the fine bubble generator described in Claim 1,
The liquid is water, the gas is air, and the fine bubbles are fine bubbles having a diameter of nanometer level.
JP2013098111A 2013-05-08 2013-05-08 Microbubble generator Active JP6449531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013098111A JP6449531B2 (en) 2013-05-08 2013-05-08 Microbubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013098111A JP6449531B2 (en) 2013-05-08 2013-05-08 Microbubble generator

Publications (2)

Publication Number Publication Date
JP2014217803A JP2014217803A (en) 2014-11-20
JP6449531B2 true JP6449531B2 (en) 2019-01-09

Family

ID=51936802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013098111A Active JP6449531B2 (en) 2013-05-08 2013-05-08 Microbubble generator

Country Status (1)

Country Link
JP (1) JP6449531B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588359A (en) * 2015-02-04 2015-05-06 河南省爱可沃德生态科技有限公司 Workpiece undamaged washing machine and using method thereof
KR101834183B1 (en) * 2016-04-15 2018-03-05 오우라코리아 주식회사 Low energy & vast water flow type micro bubble generator
JP7193826B2 (en) * 2016-08-24 2022-12-21 株式会社ワイビーエム Fine bubble generator
JP6742867B2 (en) * 2016-09-07 2020-08-19 日本製紙株式会社 Method for producing inorganic carbonate
JP7193972B2 (en) * 2018-10-10 2022-12-21 株式会社ディスコ mixing device
CN115007010B (en) * 2022-06-14 2023-08-08 江苏惠尔泵业有限公司 High-lift gas-liquid mixing pump capable of adjusting flow

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494587B2 (en) * 1998-04-13 2004-02-09 真方  勝哉 Liquid quality reformer
JP4415794B2 (en) * 2003-09-24 2010-02-17 パナソニック電工株式会社 Microbubble generator
JP2005152763A (en) * 2003-11-25 2005-06-16 Koji Takahashi Gas-liquid mixed solution containing ultrafine bubble for reactor, production method of the same, chemical reactor apparatus, and bioreactor apparatus
JP5133556B2 (en) * 2006-12-07 2013-01-30 株式会社横田製作所 Microbubble generator
WO2011133533A2 (en) * 2010-04-20 2011-10-27 California Institute Of Technology Method to generate micro scale gas filled liquid bubbles as tracer particles or inhaler mist for drug delivery
JP5654291B2 (en) * 2010-08-30 2015-01-14 株式会社Mgグローアップ Static fluid mixing device

Also Published As

Publication number Publication date
JP2014217803A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP6310359B2 (en) Microbubble generator and method for generating the same
JP6449531B2 (en) Microbubble generator
JP6169749B1 (en) Microbubble generator
JP2008086868A (en) Microbubble generator
JP2010075838A (en) Bubble generation nozzle
JPWO2019026195A1 (en) Fine bubble generator, fine bubble generation method, shower device and oil / water separator having the fine bubble generator
TWM483123U (en) Generation device for gas dissolution into liquid and fluid nozzle
JP2009028579A (en) Bubble generating apparatus
JP2007117799A (en) Microbubble generator and microbubble generating apparatus using the same
JP2008136931A (en) Liquid discharge apparatus
JP4426612B2 (en) Fine bubble generation nozzle
JP2008036612A (en) Apparatus for aerial spraying of gas-liquid mixture containing high-density microbubbles
JP7193826B2 (en) Fine bubble generator
JP2008023435A (en) Microbubble generator
JP2007000848A (en) Method for generating fine bubble
JP2017136513A (en) Fine air bubble generating device, fine air bubble generating method, and shower device and oil water separating apparatus having the fine air bubble generating device
JP2010115586A (en) Microbubble generator
JP2010043212A (en) Manufacturing method of water-in-oil emulsion, manufacturing apparatus of water-in-oil emulsion, and manufacturing apparatus of water-in-oil emulsion fuel
JP6736146B2 (en) Bubble generator
JP2019166493A (en) Fine bubble generation nozzle
JPWO2019207651A1 (en) Fine bubble generating method and fine bubble generating apparatus
KR20170096674A (en) micro-bubble generator
JP4903292B1 (en) Swivel type micro bubble generator
JP2012091153A (en) Fine-air-bubble generator
US20240198300A1 (en) Device and method for dispersing gases into liquids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171004

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20171027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181206

R150 Certificate of patent or registration of utility model

Ref document number: 6449531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250