JP2008136931A - Liquid discharge apparatus - Google Patents

Liquid discharge apparatus Download PDF

Info

Publication number
JP2008136931A
JP2008136931A JP2006325328A JP2006325328A JP2008136931A JP 2008136931 A JP2008136931 A JP 2008136931A JP 2006325328 A JP2006325328 A JP 2006325328A JP 2006325328 A JP2006325328 A JP 2006325328A JP 2008136931 A JP2008136931 A JP 2008136931A
Authority
JP
Japan
Prior art keywords
liquid
flow
path
vortex
liquid flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2006325328A
Other languages
Japanese (ja)
Inventor
Yoshito Ogawa
義人 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006325328A priority Critical patent/JP2008136931A/en
Publication of JP2008136931A publication Critical patent/JP2008136931A/en
Ceased legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid discharge apparatus which can easily cause activation action by fine bubbles by generating the fine bubbles efficiently and highly densely. <P>SOLUTION: This liquid discharge apparatus 10 comprises a liquid flow storage part 11B with a ring-like cross section formed in the rear part to which a liquid flow is introduced from a liquid introduction port 11c and an outer aperture 13a communicated with the outside, a gas flow introduction channel 13A penetrating the inside of the liquid flow storage part from the rear side to the front side and having an inner aperture 13b facing forward in the front part of the liquid flow storage part, an eddy current formation channel 13A communicated with the liquid flow storage part, extended forward to the surrounding of the gas flow introduction channel while the diameter is reduced more than that of the liquid flow storage part and having a ring-like cross-section up to the inner aperture of the gas flow introduction part and a circular cross-section form the portion facing to the inner aperture, and a liquid discharge port 16a formed in the most front part and communicated with the eddy current formation channel. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は液吐出装置に係り、特に、泡沫流を放出可能に構成された液吐出装置の放水構造に関する。   The present invention relates to a liquid discharge device, and more particularly, to a water discharge structure of a liquid discharge device configured to be able to discharge a foam flow.

一般に、泡沫流を大気中へ吐出可能に構成した液吐出装置が知られており、このような液吐出装置は、例えば、風呂場などで用いられるシャワーヘッド、水道の蛇口に取り付けられる吐水栓、ホースの先端部に装着される洗浄器具などとして用いられている。   In general, a liquid discharge device configured to be able to discharge a foam flow into the atmosphere is known, and such a liquid discharge device is, for example, a shower head used in a bathroom or the like, a faucet attached to a faucet, It is used as a cleaning instrument attached to the tip of a hose.

上記の液吐出装置には、泡沫流を吐出するために、例えば、後方から水流を前方の吐出口へ向けて噴出させつつ、吐出口に隣接した取入口より空気を吸入し、水流中に空気を巻き込むことによって泡沫流を発生させるものが知られている。(例えば、以下の特許文献1乃至3参照)。また、ヘッド背面側に空気取入口を開口し、内部に設けた切換弁の後方から空気を導入して、泡沫流を発生させるようにしたシャワーヘッドも知られている(例えば、以下の特許文献4参照)。さらに、前部の本体に対してスプラインを介して係合し、後部の切換えハンドルと螺合するスリーブを設け、当該スリーブに設けられた旋回流チャンバによって旋回流を形成し、この旋回流をスリーブの前方へ向けて円錐状に広がるように噴射するとともに、前端中央に設けられた整流を吐出するための集中吐水孔から吸入した空気を巻き込むことで、集中吐水孔の周囲に設けられた散水孔より泡沫流を放出するように構成されたシャワーヘッドも提案されている(例えば、以下の特許文献5参照)。   In order to discharge the foam flow, for example, the liquid discharge device described above sucks air from the intake port adjacent to the discharge port while ejecting the water flow from the rear toward the front discharge port, and the air flows into the water flow. It is known that a foam flow is generated by entraining. (For example, see Patent Documents 1 to 3 below). There is also known a shower head in which an air intake is opened on the back side of the head and air is introduced from behind a switching valve provided therein to generate a foam flow (for example, the following patent documents) 4). Furthermore, a sleeve that engages with the front main body via a spline and is screwed with a rear switching handle is provided, and a swirl flow is formed by a swirl flow chamber provided in the sleeve, and this swirl flow is formed into the sleeve. Sprinkling holes provided around the concentrated water discharge holes by injecting the air drawn from the concentrated water discharge holes for discharging the rectification provided at the center of the front end while spraying so as to spread in a conical shape toward the front of the There has also been proposed a shower head configured to discharge more foam flow (see, for example, Patent Document 5 below).

ところが、前述の従来文献に記載の液吐出装置においては、泡沫流によって洗浄効果を多少は高めることができるものの、例えば気泡径(気泡の球換算径、以下同様)が50μm以下(好ましくは10μm以下)の微細気泡(マイクロバブル)を高密度に含む泡沫流を形成することができず、また、吐出口から離間するほど気泡径が増大し、気泡密度も低下するため、十分な洗浄効果を得ることが難しいという問題点がある。   However, in the liquid ejecting apparatus described in the above-mentioned conventional document, although the cleaning effect can be somewhat enhanced by the foam flow, for example, the bubble diameter (the equivalent spherical diameter of bubbles, the same applies hereinafter) is 50 μm or less (preferably 10 μm or less). ) Cannot be formed, and the bubble diameter increases and the bubble density decreases as the distance from the discharge port increases, so that a sufficient cleaning effect is obtained. There is a problem that it is difficult.

一方、一般に微細気泡を生成する構造として、旋回流中に空気を導入することで気流がせん断されて微細気泡が生ずるように構成された種々のノズル構造が、浴槽などの水中へ微細気泡を含む水流を噴出させる目的で提案されている(例えば、以下の特許文献6乃至9参照)。特に、特許文献9に示すように、上記原理を利用して肌の洗浄効果を高めるようにした吸引洗浄器としては、水流を側方から装置内部に導入することにより旋回流を発生させながら、この旋回流により生ずる負圧により背後の気体自吸口から空気を自吸させ、装置先端に設けた拡径状の気液噴出ガイド部内にて微細気泡を含む泡沫流を生成させて肌へ当てることができるものが知られている。このような装置は、例えば非特許文献1にも記載されている、微細気泡を水中で発生させる装置構造に基づくものである。また、水中に配置したタービン翼で旋回流を形成しつつ空気を導入し、その先に内径を絞って縮径させた後に拡径するノズルを設けることにより、小径部分を通過した先の拡径部分で渦崩壊(渦の構造が急激に変化する現象)を生じさせることで、微細気泡を生成する方法も知られている(以下の非特許文献2参照)。
国際公開パンフレットWO2003/040481 特開2005−290686号公報 実公昭51−134号公報 実用新案登録公報第2590832号公報 特開平4−306331号公報 特開2003−181258号公報 特開2003−225546号公報 特開2006−142300号公報 特開2003−38382号公報 大成博文著、「マイクロバブルのすべて」、株式会社日本実業出版社、2006年10月20日、P.144〜164 京藤敏達(筑波大学システム情報工学研究科)、"渦崩壊を利用した翼型気泡発生装置"、[online]、[平成18年11月24日検索]、インターネット<http://surface.kz.tsukuba.ac.jp/~kyotoh/MicroBubbleHome.pdf>
On the other hand, as a structure for generating fine bubbles, various nozzle structures configured so that air bubbles are sheared by introducing air into a swirling flow to generate fine bubbles include fine bubbles in water such as a bathtub. It has been proposed for the purpose of ejecting a water flow (see, for example, Patent Documents 6 to 9 below). In particular, as shown in Patent Document 9, as a suction washer that enhances the skin cleaning effect using the above principle, while generating a swirling flow by introducing a water flow into the apparatus from the side, The negative pressure generated by this swirling flow causes air to be self-sucked from the gas self-suction port on the back, and a foam flow containing fine bubbles is generated and applied to the skin in the expanded gas-liquid jet guide provided at the tip of the device. What can be done is known. Such an apparatus is based on the apparatus structure which generate | occur | produces a microbubble in water described also in the nonpatent literature 1, for example. In addition, by introducing air while forming a swirling flow with turbine blades arranged in water, and by providing a nozzle that expands the diameter after reducing the diameter by reducing the inner diameter, the diameter of the tip that has passed through the small diameter portion There is also known a method of generating fine bubbles by causing vortex breakdown (a phenomenon in which the structure of the vortex changes abruptly) in a portion (see Non-Patent Document 2 below).
International publication pamphlet WO2003 / 040481 JP-A-2005-290686 Japanese Utility Model Publication No. 51-134 Utility Model Registration Gazette No. 2590832 JP-A-4-306331 JP 2003-181258 A JP 2003-225546 A JP 2006-142300 A JP 2003-38382 A Written by Hirofumi Taisei, “All About Micro Bubbles”, Nippon Jitsugyo Publishing Co., Ltd., October 20, 2006, p. 144-164 Tosatsu Kyoto (Graduate School of Systems and Information Engineering, University of Tsukuba), “Airfoil bubble generator using vortex breakdown”, [online], [searched on November 24, 2006], Internet <http: // surface. kz.tsukuba.ac.jp/~kyotoh/MicroBubbleHome.pdf>

しかしながら、上記特許文献6乃至9並びに非特許文献1及び2に記載された装置では、水中で旋回流を形成した上でこの流れの中心に空気を導入して微細気泡を発生させ、これを水中へ噴出させるようにしたものであり、大気中に泡沫流を噴出させる場合にはそのまま適用することができない。これは、上記装置ではノズルから旋回流を水中へ放出する時に大量の微細気泡が発生するように構成されているため、大気中へ微細気泡を含む泡沫流を噴出させる場合には微細気泡の発生効率がきわめて低く、十分小径で高密度の微細気泡を生じさせることができないからである。例えば、上記非特許文献2に記載された装置では、上記小径部分までは水中において渦流が進むが、これに続く上記拡径部分では水流が大気中に放出されるため、当該拡径部分での渦崩壊を水中の場合と同様に生じさせることが難しい。また、大気中へ水流を吐出させると、大気を巻き込むことできわめて短い時間内に微細気泡が消失し、所望の作用が得られないことも予測される。   However, in the devices described in Patent Documents 6 to 9 and Non-Patent Documents 1 and 2, after forming a swirling flow in water, air is introduced into the center of the flow to generate fine bubbles, which are When the foam flow is jetted into the atmosphere, it cannot be applied as it is. This is because, in the above device, a large amount of fine bubbles are generated when the swirling flow is discharged from the nozzle into the water. Therefore, when a foam flow containing fine bubbles is ejected into the atmosphere, the generation of fine bubbles is generated. This is because the efficiency is very low and fine bubbles with sufficiently small diameter and high density cannot be generated. For example, in the apparatus described in Non-Patent Document 2, a vortex flows in water up to the small diameter portion, but since the water flow is released into the atmosphere at the expanded diameter portion that follows, the It is difficult to cause vortex breakdown as in water. It is also predicted that when a water flow is discharged into the atmosphere, the fine bubbles disappear within a very short time by entraining the atmosphere, and the desired action cannot be obtained.

そこで、本発明は上記問題点を解決するものであり、その課題は、効率的かつ高密度に微細気泡を発生させることにあり、その結果、微細気泡を含む泡沫流を大気中へ放出しても微細気泡を或る程度維持することができるなど、微細気泡による活性化作用を気軽に享受することができる液吐出装置を実現することにある。   Therefore, the present invention solves the above-mentioned problems, and the problem is to generate fine bubbles efficiently and with high density. As a result, a foam flow containing fine bubbles is released into the atmosphere. Another object of the present invention is to realize a liquid ejection device that can easily enjoy the activation effect of fine bubbles, such as being able to maintain a certain amount of fine bubbles.

斯かる実情に鑑み、本発明の液吐出装置は、液導入口から液流が導入される後部に設けられた環状断面の液流収容部と、外部に連通する外部開口を備え、前記液流収容部の内部を後方から前方へ貫通し、前記液流収容部より前方において前方へ向いた内部開口を備えた気流導入路と、前記液流収容部に連通するとともに前記液流収容部より縮径されて前記気流導入路の周囲を前方へ向けて伸び、前記気流導入路の前記内部開口に至るまでは環状断面を備え、前記内部開口に臨む部分から円形断面となる渦流形成路と、該渦流形成路に連通し、最前部に設けられた液吐出口と、を具備することを特徴とする。   In view of such a situation, the liquid ejection device of the present invention includes a liquid flow accommodating portion having an annular cross section provided at a rear portion where a liquid flow is introduced from a liquid introduction port, and an external opening communicating with the outside. An air flow introduction path that penetrates the inside of the housing portion from the rear to the front and has an internal opening facing forward in front of the liquid flow housing portion, and communicates with the liquid flow housing portion and is smaller than the liquid flow housing portion. An eddy current forming path having a circular cross section from a portion facing the internal opening, and having an annular cross section extending around the air flow introduction path to the front and reaching the internal opening of the air flow introduction path; And a liquid discharge port provided in the foremost part in communication with the vortex forming path.

この発明によれば、液導入口から液流が導入され環状断面の液流収容部に収容されることで旋回流が発生し、その後にさらに縮径された環状断面の渦流形成路に進む過程において旋回流の流速及び旋回周波数が増大し、この高速な旋回流中に気流導入路の内部開口から気流が導入されることにより、旋回流中心の減圧領域に気流(気柱)を含む渦流が形成され、その後、旋回流による気流のせん断作用で徐々に微細気泡が生成されていく。そして、渦流形成路中で発生した渦流が渦流形成路から液吐出口へ進んで吐出される途中で不安定化して崩壊し、十分小径で高密度の微細気泡が混入された泡沫流が形成される。本発明の場合、大径の液流収容部から小径の渦流形成路に進むことで高速な旋回流が生ずるとともに、この高速な旋回流が形成されている渦流形成路の中心部にのみ気流が導入されることで、その先の円形断面内に渦流が安定した状態で形成されることから、気泡の微細化が効率的に進むとともに、渦流形成路から出て液吐出口を経て大気中に噴出される過程で急激な渦崩壊が生じて気泡のさらなる微細化が生じるので、大気中に放出される場合でも微細気泡が維持されやすくなり、その結果、従来の泡沫流よりも高い活性化作用(洗浄作用、生物活性作用など)を容易に得ることができる。   According to the present invention, a process in which a liquid flow is introduced from the liquid introduction port and is stored in the liquid flow storage portion having the annular cross section to generate a swirling flow, and then proceeds to the vortex forming path having a further reduced diameter in the circular cross section. The swirl flow velocity and swirl frequency are increased at this time, and air flow is introduced from the internal opening of the air flow introduction path into this high-speed swirl flow. After that, fine bubbles are gradually generated by the shearing action of the airflow by the swirling flow. Then, the vortex generated in the vortex forming path is destabilized and collapsed while being discharged from the vortex forming path to the liquid discharge port, and a foam flow in which fine bubbles of sufficiently small diameter and high density are mixed is formed. The In the case of the present invention, a high-speed swirling flow is generated by proceeding from the large-diameter liquid flow accommodating portion to the small-diameter vortex forming passage, and an air flow is generated only at the center of the vortex forming passage where the high-speed swirling flow is formed. By being introduced, the vortex is formed in a stable state in the circular section ahead of it, so that the miniaturization of the bubbles proceeds efficiently and exits from the vortex formation path to the atmosphere through the liquid discharge port. Since the vortex breaks up rapidly in the process of jetting, the bubbles become even finer, making it easier to maintain the bubbles even when they are released into the atmosphere, resulting in a higher activation effect than conventional foam flows. (Cleaning action, bioactive action, etc.) can be easily obtained.

なお、液流収容部における旋回流は、基本的には環状断面の液流収容部に液流が導入されることのみで充分に発生するが、例えば、液導入口による液流の導入位置及び導入方向を後述する実施形態のように環状断面形状の外周側において接線方向に斜めに設定することで、より効率的に生じさせることができる。また、渦流形成部の入口側部分がテーパ状に構成され、出口側部分が同径状に構成されることが旋回流の高速化及び渦流の安定化を両立させる上で好ましい。   Note that the swirling flow in the liquid flow accommodating portion is sufficiently generated basically only by introducing the liquid flow into the liquid flow accommodating portion having an annular cross section. By setting the introduction direction obliquely in the tangential direction on the outer peripheral side of the annular cross-sectional shape as in the embodiment described later, it can be generated more efficiently. Further, it is preferable that the inlet side portion of the vortex forming portion is tapered and the outlet side portion is configured to have the same diameter in order to achieve both high speed swirling flow and stabilization of the vortex flow.

本発明において、前記渦流形成路に連通し、前記渦流形成路の前方にて前記渦流形成路より拡径された広がりを備え前記液吐出口に連通する液吐出室と、前記液吐出室に臨み、前記渦流形成路の出口に対向配置され、前記渦流形成路から導出された液流を前記液吐出室内において周囲へ飛散させる液流飛散部と、をさらに具備することが好ましい。これによれば、渦流形成路から導出された旋回流が大径の液吐出室に放出されることで渦流の不安定化が生じて急激に渦崩壊が生ずるとともに、旋回流が液流飛散部によって周囲に飛散されることで渦崩壊が促進されることから、液吐出口から吐出された泡沫流中の微細気泡の小径化や形成密度をさらに向上させることができ、その結果、微細気泡の維持性能をさらに高めることができる。   In the present invention, a liquid discharge chamber that communicates with the vortex formation path, has a diameter larger than the vortex formation path in front of the vortex formation path, and communicates with the liquid discharge port, and faces the liquid discharge chamber It is preferable that a liquid flow scattering unit that is disposed to face the outlet of the vortex forming path and that scatters the liquid flow derived from the vortex forming path to the surroundings in the liquid discharge chamber is further provided. According to this, the swirl flow derived from the swirl flow path is discharged into the large-diameter liquid discharge chamber, resulting in instability of the swirl flow and sudden vortex collapse, and the swirl flow Since the vortex breakdown is promoted by being scattered by the surroundings, it is possible to further reduce the diameter and formation density of the fine bubbles in the foam flow discharged from the liquid discharge port. Maintenance performance can be further enhanced.

本発明において、前記渦流形成路内の前記内部開口より上流側に位置する前記液流収容部若しくは前記渦流形成路中には、液流を旋回させる液流旋回手段が設けられていることが好ましい。これによれば、液流旋回手段によって旋回流の流速及び旋回周波数を増加させることができるが、気泡径は渦崩壊時の旋回周波数のおよそ−6/5乗に比例する(上記非特許文献2参照)ため、旋回周波数の増加によって気泡径をさらに低減できる。なお、液流旋回手段としては、液流を旋回させるために流路内に配置されたフィン(タービン翼)、螺旋溝などの液流案内構造自体若しくは当該構造を備えた部材が挙げられる。また、液流旋回手段としては、上記の液流案内構造に加えて旋回エネルギーを別途供給可能なもの、例えば、回転駆動源に接続されたタービンのようなものであっても構わない。   In the present invention, it is preferable that liquid flow swirling means for swirling the liquid flow is provided in the liquid flow accommodating portion or the vortex flow forming path located upstream of the internal opening in the vortex flow forming path. . According to this, the flow velocity and the swirling frequency of the swirling flow can be increased by the liquid swirling means, but the bubble diameter is proportional to approximately the sixth power of the swirling frequency at the time of vortex breakdown (Non-Patent Document 2 above). Therefore, the bubble diameter can be further reduced by increasing the turning frequency. Examples of the liquid flow swirling means include a liquid flow guiding structure itself such as fins (turbine blades) and spiral grooves arranged in the flow path for swirling the liquid flow, or a member having the structure. In addition to the liquid flow guide structure, the liquid flow swirl means may be capable of supplying swirl energy separately, for example, a turbine connected to a rotational drive source.

本発明において、前記液流旋回手段は前記渦流形成路内において前記気流導入路を構成する管材を支持することが好ましい。渦流形成路内には上記気流導入路を構成する管材が配置されるが、周囲を高速の旋回流が流れることで当該管材に振動が発生する虞がある。しかしながら、液流旋回手段を介して上記管材を渦流形成路内において支持することで、管材の実質的な剛性を高めることができ、管材の振動等を防止できる。上記管材を支持可能な液流旋回手段としては、例えば、上記管材の外周面から渦流形成路の内周面まで連続した構造部分を有する液流案内構造若しくは当該構造を備えた部材等が挙げられる。   In the present invention, it is preferable that the liquid flow swirl means supports a pipe material constituting the air flow introduction path in the vortex flow formation path. Although the pipe material which comprises the said airflow introduction path is arrange | positioned in a vortex | eddy_current formation path, there exists a possibility that a vibration may generate | occur | produce in the said pipe material when a high-speed swirl flow flows through the circumference | surroundings. However, by supporting the tube material in the vortex forming path via the liquid flow swirl means, the substantial rigidity of the tube material can be increased, and vibration of the tube material can be prevented. Examples of the liquid flow swirl means that can support the pipe material include a liquid flow guide structure having a continuous structure part from the outer peripheral surface of the pipe material to the inner peripheral surface of the vortex forming path, or a member having the structure. .

以下、本発明の実施の形態を図示例と共に説明する。図1は本発明に係る第1実施形態の液吐出装置を示す概略縦断面図である。この液吐出装置(シャワーヘッド)10には、水、湯等の液体を導入するための液導入路11Aを備えた液導入部11aと、この液導入部11aに接続され液流収容部11Bを構成する後側ケース部11bとを含み、液導入部11aの内部と後側ケース部11bとが液導入口11cで連通しているとともに、背面中央に開口部11dを有するように構成された、後方から内部構造を覆うケース11が設けられている。このケース11の上記開口部11d内にはケース11に螺合した管支持部材12が嵌合配置され、この管支持材12には軸線10xの方向に伸びる気流導入管13が固定されている。この気流導入管13は外部に連通する外部開口13aを有するとともに、ケース11の内部を軸線10x方向へ伸び、その先端に内部開口13bを備えている。ここで、管支持部材12のケース11に対する螺合深さを変えることで、内部開口13bの軸線10xに沿った位置を前後に調整することができる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view showing a liquid ejection apparatus according to a first embodiment of the present invention. The liquid discharge device (shower head) 10 includes a liquid introduction part 11a having a liquid introduction path 11A for introducing a liquid such as water and hot water, and a liquid flow storage part 11B connected to the liquid introduction part 11a. The rear case portion 11b is configured, and the inside of the liquid introduction portion 11a and the rear case portion 11b communicate with each other through the liquid introduction port 11c and are configured to have an opening portion 11d at the center of the back surface. A case 11 that covers the internal structure from the rear is provided. A tube support member 12 screwed into the case 11 is fitted and disposed in the opening 11d of the case 11, and an airflow introduction tube 13 extending in the direction of the axis 10x is fixed to the tube support member 12. The air flow introduction tube 13 has an external opening 13a communicating with the outside, extends in the direction of the axis 10x in the case 11, and has an internal opening 13b at the tip thereof. Here, by changing the screwing depth of the tube support member 12 with respect to the case 11, the position along the axis 10x of the internal opening 13b can be adjusted back and forth.

ケース11の内部には、中央に上記軸線10xに沿った筒状部14aと、この筒状部14aの後端外周からフランジ状に張り出したフランジ部14bとを有する内側部材14が配置されている。この内側部材14は、そのフランジ部14bの外周がパッキン等のシール部材を介してケース11の内面に密接している。また、内側部材14の前方にはL字状の断面を備えた環形状に構成された固定部材15が配置されている。固定部材15は前方から内側部材14に当接し、内側部材14をケース11に対して保持固定している。   Inside the case 11, an inner member 14 having a cylindrical portion 14a along the axis 10x and a flange portion 14b projecting in a flange shape from the outer periphery of the rear end of the cylindrical portion 14a is disposed at the center. . As for this inner member 14, the outer periphery of the flange part 14b is closely_contact | adhered to the inner surface of case 11 via sealing members, such as packing. Further, a fixing member 15 configured in a ring shape having an L-shaped cross section is disposed in front of the inner member 14. The fixing member 15 contacts the inner member 14 from the front, and holds and fixes the inner member 14 to the case 11.

ケース11の前方には、1又は複数の液吐出口16aを備えた吐出部材16が配置され、この吐出部材16はケース11の前端部に螺合する保持枠17によって保持され、パッキン等のシール部材を介してケース11及び固定部材15に密接している。なお、固定部材15は上記吐出部材16から受ける押圧力で内側部材14を保持している。吐出部材16の中央内面側には、吐出部材16と一体に形成され、或いは、別体に構成されて接着等で固定された液流飛散部18が設けられている。この液流飛散部18は、内側部材14の筒状部14aの出口14dに対向し、軸線10x周りにテーパ状に傾斜した円錐面状の液流飛散面18aを備えている。なお、吐出部材16と保持枠17を一体に構成してもよい。   A discharge member 16 having one or a plurality of liquid discharge ports 16a is disposed in front of the case 11, and the discharge member 16 is held by a holding frame 17 that is screwed to the front end portion of the case 11, and a seal such as packing. The case 11 and the fixing member 15 are in close contact with each other through the members. The fixing member 15 holds the inner member 14 with a pressing force received from the discharge member 16. On the central inner surface side of the discharge member 16, a liquid flow scattering portion 18 that is formed integrally with the discharge member 16 or is configured separately and fixed by bonding or the like is provided. The liquid flow scattering portion 18 is provided with a conical liquid flow scattering surface 18a that faces the outlet 14d of the cylindrical portion 14a of the inner member 14 and is tapered around the axis 10x. In addition, you may comprise the discharge member 16 and the holding frame 17 integrally.

上記のように構成された液吐出装置10には、上記ケース11の液導入部11aの内側に液導入路11Aが構成され、この液導入路11Aは液導入口11cに連通している。液導入口11cはケース11の後側ケース部11bの内側に形成された液流収容部11Bに開口している。液導入口11cは上記液流収容部11Bに対して外周側から軸線10xの周りを周回する方向に向けて斜めに開口し、これによって液流収容部11B内に旋回流を生じやすくしている。液流収容部11Bは上記管支持部材12及び気流導入管13が軸線10xに沿って貫通していることで、全体として環状断面を有するものとなっている。   In the liquid discharge device 10 configured as described above, a liquid introduction path 11A is formed inside the liquid introduction portion 11a of the case 11, and the liquid introduction path 11A communicates with the liquid introduction port 11c. The liquid inlet 11c is open to a liquid flow accommodating portion 11B formed inside the rear case portion 11b of the case 11. The liquid inlet 11c is opened obliquely from the outer peripheral side toward the direction around the axis 10x with respect to the liquid flow accommodating portion 11B, thereby making it easy to generate a swirling flow in the liquid flow accommodating portion 11B. . The liquid flow accommodating portion 11B has an annular cross section as a whole because the tube support member 12 and the air flow introduction tube 13 penetrate along the axis 10x.

気流導入管13の内部は外部(ケース11の後方)から気流を導入する気流導入路13Aを形成する。この気流導入路13Aは上記外部開口13aから内部開口13bまで伸びる直線路である。また、上記内側部材14の筒状部14aは渦流形成路14Aを構成する。この渦流形成路14Aは液流収容部11Bよりも縮径され、入口14cが液流収容部11Bに開口している。この場合、渦流形成路14Aの内径が入口14cから徐々に前方へ向けて縮径していることが好ましい。   Inside the airflow introduction pipe 13 forms an airflow introduction path 13A for introducing the airflow from the outside (the back of the case 11). This air flow introduction path 13A is a straight path extending from the external opening 13a to the internal opening 13b. The cylindrical portion 14a of the inner member 14 constitutes a vortex forming path 14A. This vortex forming path 14A has a smaller diameter than the liquid flow accommodating portion 11B, and the inlet 14c opens to the liquid flow accommodating portion 11B. In this case, it is preferable that the inner diameter of the vortex forming path 14A is gradually reduced from the inlet 14c toward the front.

また、渦流形成路14Aの内部には上記気流導入管13が軸線10xに沿って導入され、その内部開口13bが途中で開口している。すなわち、渦流形成路14Aの入口側部分は気流導入管13の存在により環状断面とされ、出口側部分は気流導入管13が存在しないことで円形断面とされている。図示例の場合、渦流形成路14Aは入口14cから徐々に縮径するようにテーパ状に構成され、途中でほぼ同径に構成されて出口14dに至るように構成される。テーパ状の部分は上記の入口側部分にほぼ対応し、同径の部分は上記の出口側部分にほぼ対応する。このように渦流形成路の入口側部分がテーパ状に構成され、出口側部分が同径状に構成されることが旋回流の高速化及び渦流の安定化を両立させる上で好ましい。なお、内部開口13bの軸線10xに沿った位置は上述のように調整可能であり、この調整によって渦流形成路14A内の気流が導入される位置が変わるため、後述する微細気泡の発生状態を適宜に設定することが可能になる。   Further, the air flow introduction pipe 13 is introduced along the axis 10x into the vortex forming path 14A, and the internal opening 13b is opened in the middle. That is, the inlet side portion of the vortex forming path 14A has an annular cross section due to the presence of the air flow introduction pipe 13, and the outlet side portion has a circular cross section due to the absence of the air flow introduction pipe 13. In the case of the illustrated example, the vortex forming path 14A is configured to be tapered so that the diameter gradually decreases from the inlet 14c, and is configured to have substantially the same diameter on the way to the outlet 14d. The tapered portion substantially corresponds to the inlet side portion, and the same diameter portion substantially corresponds to the outlet side portion. In this manner, it is preferable that the inlet side portion of the vortex forming path is formed in a tapered shape and the outlet side portion is formed in the same diameter in order to achieve both a high speed swirling flow and a stable vortex flow. The position along the axis 10x of the internal opening 13b can be adjusted as described above, and this adjustment changes the position where the air flow in the vortex forming path 14A is introduced. It becomes possible to set to.

渦流形成路14Aの出口14dは、上記固定部材15及び吐出部材16に囲まれた液吐出室16Aに開口している。この液吐出室16Aは渦流形成路14Aより拡径された断面を有し、吐出部材16に設けられた液吐出口16aを介して外部と連通している。この液吐出室16A内において、渦流形成路14Aの出口14dは上記液流飛散部18の液流飛散面18aに対向配置されている。液吐出口16Aは液流飛散面18aの外周側に複数分散して形成されている。   The outlet 14d of the vortex forming path 14A opens to the liquid discharge chamber 16A surrounded by the fixing member 15 and the discharge member 16. The liquid discharge chamber 16A has a cross section whose diameter is larger than that of the vortex forming path 14A, and communicates with the outside through a liquid discharge port 16a provided in the discharge member 16. In the liquid discharge chamber 16A, the outlet 14d of the vortex forming path 14A is disposed to face the liquid flow scattering surface 18a of the liquid flow scattering portion 18. A plurality of liquid discharge ports 16A are formed in a dispersed manner on the outer peripheral side of the liquid flow scattering surface 18a.

以上のように構成された第1実施形態の液吐出装置10においては、液導入路11Aから液導入口11cを通して液流収容部11Bに液体が導入され、環状断面の液流収容部11B内において旋回流が発生する。液流収容部11B内の旋回流は入口14cから渦流形成路14A内に導入され、小径の渦流形成路に導入されることで流速及び旋回周波数が増加する。ここで、図2に示すように、液体の旋回流Xが内部開口13bを通過することで生ずる減圧作用により気流導入路13Aを通して気流が内部に吸引されており、これによって旋回流X中に気流Yが導入される。高速な旋回流Xは遠心力によって軸線10xに沿った中央部に減圧領域を生じさせるので、気流Yは当初軸線10xに沿って気柱状となり、旋回流Xの内側を流れながら徐々に旋回流Xのせん断力で分離され、微細気泡を発生させる。このようにして、渦流形成路14A内では旋回流X中に気流Y及びその周辺の微細気泡によって形成される渦流Zが形成される。この渦流Zは小径の渦流形成路14A内においては高速な旋回流Xによって比較的安定な状態にあり、当初は軸線10xに沿って旋回流Xの中心部を流れるとともに旋回流Xによるせん断力で徐々に微細気泡が形成されていくが、渦流形成路14Aの出口14d近傍から液吐出室16Aにかけて旋回流Xの不安定化により渦崩壊を生ずる。この渦崩壊によって不安定化された渦流Z′中の気流は急激に微細化され、小径及び高密度の微細気泡が形成される。   In the liquid ejection device 10 of the first embodiment configured as described above, the liquid is introduced from the liquid introduction path 11A through the liquid introduction port 11c into the liquid flow accommodating portion 11B, and in the liquid flow accommodating portion 11B having an annular cross section. A swirling flow is generated. The swirling flow in the liquid flow accommodating portion 11B is introduced into the vortex forming path 14A from the inlet 14c, and the flow velocity and the swirling frequency are increased by being introduced into the small-diameter vortex forming path. Here, as shown in FIG. 2, the air current is sucked into the swirl flow X through the air flow introduction path 13 </ b> A by the pressure reducing action caused by the liquid swirl flow X passing through the inner opening 13 b. Y is introduced. Since the high-speed swirling flow X generates a decompression region in the central portion along the axis 10x due to centrifugal force, the airflow Y initially becomes an air columnar shape along the axis 10x and gradually flows while flowing inside the swirling flow X. It is separated by the shearing force of and generates fine bubbles. In this way, the vortex flow Z formed by the airflow Y and the surrounding fine bubbles is formed in the swirl flow X in the vortex flow formation path 14A. The vortex Z is in a relatively stable state due to the high-speed swirl flow X in the small-diameter vortex formation path 14A, and initially flows through the center of the swirl flow X along the axis 10x and is sheared by the swirl flow X. Although fine bubbles are gradually formed, vortex collapse occurs due to the destabilization of the swirl flow X from the vicinity of the outlet 14d of the vortex forming path 14A to the liquid discharge chamber 16A. The airflow in the vortex Z ′ destabilized by this vortex breakdown is rapidly refined, and small diameter and high density microbubbles are formed.

液吐出室16A内に出た旋回流Xは渦流Z′とともに液流飛散面18aに衝突し、ここで渦流Z′は完全に破壊されるとともに、さらに微細気泡が形成される。このようにして小径(50μ以下、好ましくは10μm以下)できわめて高密度の微細気泡が水中に含まれたまま、液吐出室16Aで形成された泡沫流が液吐出口16aより外部へ吐出される。   The swirling flow X exiting into the liquid discharge chamber 16A collides with the liquid flow scattering surface 18a together with the vortex Z ', where the vortex Z' is completely destroyed and further fine bubbles are formed. In this way, the foam flow formed in the liquid discharge chamber 16A is discharged to the outside from the liquid discharge port 16a while the fine bubbles having a small diameter (50 μm or less, preferably 10 μm or less) are contained in the water. .

本実施形態では、液流収容部11Bで発生した旋回流は、縮径された小径の渦流形成路14A内で高速な旋回流Xとなり、この旋回流X内に内部開口13bから気流が導入され、ここで渦流Z、Z′が形成されるため、安定した渦流Zを形成することができるとともに、その後に、渦崩壊が発生するので、微細気泡の小径化及び高密度化がさらに促進される。したがって、従来のシャワーヘッド等から吐出される泡沫流に比べてより小径の微細気泡が高密度に含まれるため、液吐出口16aから吐出された後においても微細気泡が失われにくく、大気中に放出された泡沫流であっても微細気泡が従来よりも長く維持されるので、十分な活性化作用、例えば、洗浄作用、血流増大作用等を奏することが可能になる。   In the present embodiment, the swirling flow generated in the liquid flow accommodating portion 11B becomes a high-speed swirling flow X in the reduced-diameter small-eddy vortex forming path 14A, and an air flow is introduced into the swirling flow X from the internal opening 13b. Since the vortex flows Z and Z ′ are formed here, a stable vortex flow Z can be formed, and vortex collapse occurs thereafter, so that further reduction in the diameter and density of the fine bubbles is further promoted. . Therefore, since fine bubbles having a smaller diameter are included in a higher density than the foam flow discharged from a conventional shower head or the like, the fine bubbles are not easily lost even after being discharged from the liquid discharge port 16a, and thus are in the atmosphere. Even in the released foam flow, the fine bubbles are maintained longer than before, so that it is possible to achieve a sufficient activation action, for example, a washing action, a blood flow increasing action, and the like.

図3は、上記第1実施形態の基本構成を踏襲しつつ、細部に改良を加えた第2実施形態の液吐出装置20の構造を示す縦断面図である。この第2実施形態の液吐出装置20は、液導入部21a及び後側ケース部21bを有し、それらの内部に液導入路21A、液導入口21c及び液流収容部21Bを備えたケース21、ケース21の開口部21dに装着された管支持部材22、管支持部材22に支持固定され、外部開口23a、気流導入路23A及び内部開口23bを備えた気流導入管23、筒状部24a及びフランジ部24bを有するとともに、筒状部24aに入口24c及び出口24dを備えた渦流形成路24Aを構成する内側部材24、この内側部材24を固定する固定部材25、液吐出孔26aを備えた吐出部材26、吐出部材26を保持する保持枠27、並びに、液流飛散面28aを備えた液流飛散部28を具備し、これらはすべて以下に説明する点を除き基本的に第1実施形態と同様であるので、同様の点についての説明を省略する。なお、吐出部材26と保持枠27を一体に構成してもよい点は同様である。   FIG. 3 is a longitudinal sectional view showing the structure of the liquid ejection device 20 according to the second embodiment in which the details are improved while following the basic configuration of the first embodiment. The liquid ejection device 20 according to the second embodiment includes a liquid introduction part 21a and a rear case part 21b, and a case 21 including therein a liquid introduction path 21A, a liquid introduction port 21c, and a liquid flow accommodating part 21B. The tube support member 22 attached to the opening 21d of the case 21, the air support pipe 23 provided with the external opening 23a, the air flow introduction path 23A and the internal opening 23b, the cylindrical portion 24a, An inner member 24 constituting a vortex forming path 24A having a flange portion 24b and having a cylindrical portion 24a provided with an inlet 24c and an outlet 24d, a fixing member 25 for fixing the inner member 24, and a discharge provided with a liquid discharge hole 26a A member 26, a holding frame 27 for holding the discharge member 26, and a liquid flow scattering portion 28 having a liquid flow scattering surface 28a are provided, all of which are basically the same except as described below. Since 1 is the same as the embodiment, the description thereof is omitted for the same point. Note that the discharge member 26 and the holding frame 27 may be configured integrally.

本実施形態では、管支持部材22の後部に凹穴22aが設けられ、この凹穴22aの内部に上記気流導入管23の外部開口23aが開口している。上記凹穴22aには気流調整ねじ29がねじ込まれ、このねじ込み量によって気流調整ねじ29の先端に設けられた調整端29aが気流吸引口23aの開口面積を増減して気流の導入量を調整できるようになっている。具体的には、上記調整端29aは円錐形状を有し、その先端の外部開口23a内への挿入深さにより、気流の通過面積が増減するようになっている。なお、気流調整ねじ29に設けられた貫通孔29bは気流の流入口を構成している。   In the present embodiment, a recessed hole 22a is provided in the rear portion of the tube support member 22, and an external opening 23a of the airflow introduction tube 23 is opened inside the recessed hole 22a. An airflow adjusting screw 29 is screwed into the concave hole 22a, and the adjusting end 29a provided at the tip of the airflow adjusting screw 29 can adjust the amount of airflow introduced by increasing or decreasing the opening area of the airflow suction port 23a. It is like that. Specifically, the adjustment end 29a has a conical shape, and the airflow passage area increases or decreases depending on the insertion depth of the tip end into the external opening 23a. The through hole 29b provided in the airflow adjusting screw 29 constitutes an airflow inlet.

また、内側部材24の筒状部24a内に構成される渦流形成路24A内には、液流旋回手段である液流旋回部材31が配置され、バヨネット構造等で取り付けられる保持部材32により保持固定されている。この液流旋回部材31は、上流側から流入した液流を螺旋状に案内する螺旋溝31aを有し、この螺旋溝31aによって液流を案内し、螺旋溝31aに沿って旋回させるように作用する。   Further, a liquid flow swirl member 31 that is a liquid flow swirl means is disposed in the vortex forming path 24A configured in the cylindrical portion 24a of the inner member 24, and is held and fixed by a holding member 32 attached by a bayonet structure or the like. Has been. The liquid flow swirling member 31 has a spiral groove 31a that spirally guides the liquid flow that flows in from the upstream side. The liquid flow is guided by the spiral groove 31a and swirls along the spiral groove 31a. To do.

なお、液流旋回手段としては、図4に示す液流旋回部材31′のように、タービン形のフィン31a′を備えたものを用いてもよい。この液流旋回部材31′は気流導入管23の外周面上から筒状部24aの内周面上に至るまで連続する構造部分を有しているので、気流導入管23と内側部材24の間に介在し、気流導入管23を外側から支持する。これによって気流導入管23に振動が発生することを防止でき、また、衝撃を受けたときに気流導入管23が破損する虞も低減できる。   As the liquid flow swirling means, a liquid flow swirling member 31 'shown in FIG. 4 having a turbine-shaped fin 31a' may be used. Since the liquid flow swirling member 31 ′ has a continuous structural portion from the outer peripheral surface of the air flow introduction tube 23 to the inner peripheral surface of the cylindrical portion 24 a, The air flow introduction pipe 23 is supported from the outside. As a result, vibrations can be prevented from occurring in the airflow introduction tube 23, and the possibility that the airflow introduction tube 23 is damaged when subjected to an impact can be reduced.

本実施形態において、液流旋回部材31は渦流形成路24A内に導入された旋回流の流速及び旋回周波数を増大させる。また、渦流形成路24Aは、液流旋回部材31から出た部分でさらに縮径し、旋回流の流速及び旋回周波数をさらに増大させることができる。これによって、気流導入路23Aの内部開口23bから導出される気流は第1実施形態よりさらに高速な旋回流の中心部に流入することとなるため、微細気泡の生成効率をより高めることができる。   In this embodiment, the liquid flow swirl member 31 increases the flow velocity and swirl frequency of the swirl flow introduced into the vortex flow formation path 24A. Further, the vortex forming path 24A can be further reduced in diameter at the portion exiting from the liquid flow swirl member 31, and the flow velocity and swirl frequency of the swirl flow can be further increased. As a result, the air flow derived from the internal opening 23b of the air flow introduction path 23A flows into the central portion of the swirling flow faster than in the first embodiment, so that the generation efficiency of fine bubbles can be further increased.

図5は、上記第1実施形態又は第2実施形態の液吐出装置10、20に対して交換装着可能な別の吐出部材36、並びに、追加装着可能な延長アダプタ37を示す縦断面図である。吐出部材36は、基本的に上記各実施形態のケース11,21に対して保持枠17,27により保持固定されるように構成されているが、上記各実施形態とは異なり、中央部に上記内側部材14,24の筒状部14a,24aの前端と密接する筒状部36aが形成され、この筒状部36aの吐出口36bが外部へ開口していることによって、上記渦流形成路14A,24Aの出口14d、24dが筒状部36aを通して外部へ直接に連通するように構成される。   FIG. 5 is a longitudinal sectional view showing another discharge member 36 that can be exchanged and attached to the liquid discharge devices 10 and 20 of the first embodiment or the second embodiment, and an extension adapter 37 that can be additionally attached. . The discharge member 36 is basically configured to be held and fixed by the holding frames 17 and 27 with respect to the cases 11 and 21 of the above-described embodiments. A cylindrical portion 36a is formed in close contact with the front ends of the cylindrical portions 14a and 24a of the inner members 14 and 24, and the discharge port 36b of the cylindrical portion 36a is opened to the outside. The outlets 14d and 24d of 24A are configured to directly communicate with the outside through the cylindrical portion 36a.

この吐出部材36を上記各実施形態に用いることで、渦流形成路14A,24A中の旋回流及び渦流はそのまま外部へと吐出され、吐出時に渦崩壊が発生することにより、微細気泡が発生する。この構造では、泡沫流が大気中へ吐出されると、大気を巻き込むことで微細気泡が比較的短時間に消滅するが、それでも、渦流形成路14A,24Aと気流導入管13,23の内部開口13b、23bとの位置関係によって従来よりも微細気泡による作用を効果的に発揮させることが可能である。   By using this discharge member 36 in each of the above-described embodiments, the swirl flow and vortex flow in the vortex forming paths 14A and 24A are discharged to the outside as they are, and vortex collapse occurs during discharge, thereby generating fine bubbles. In this structure, when the bubble flow is discharged into the atmosphere, the fine bubbles disappear in a relatively short time by entraining the atmosphere. Nevertheless, the vortex formation paths 14A and 24A and the internal openings of the air flow introduction pipes 13 and 23 are still present. By the positional relationship with 13b and 23b, it is possible to exhibit the effect | action by a fine bubble more effectively than before.

図5に示す延長アダプタ37は、上記各実施形態の保持枠17,27の代わりに吐出部材16、26、36をケース11,21に保持固定するために用いられるものである。延長アダプタ37をケース11、21に装着することで、延長アダプタ37の前端部を対象物に当接させることが可能になり、これによって吐出部材16,26,36と対象物との距離を固定することができるため、吐出部材16,26,36から吐出された泡沫流を対象物に対して確実に所定距離にて作用させることができる。   An extension adapter 37 shown in FIG. 5 is used for holding and fixing the discharge members 16, 26, and 36 to the cases 11 and 21 instead of the holding frames 17 and 27 of the above embodiments. By attaching the extension adapter 37 to the cases 11 and 21, the front end of the extension adapter 37 can be brought into contact with the object, thereby fixing the distance between the discharge members 16, 26, and 36 and the object. Therefore, the foam flow discharged from the discharge members 16, 26, and 36 can be reliably applied to the object at a predetermined distance.

図6は、上記第1実施形態の構成を基本とし、当該構成に対して泡沫流と整流とを切り替えて吐出することができるように構成した第3実施形態の縦断面図である。この実施形態の液吐出装置40は、上記第1実施形態と基本的には同様の、液導入部41a及び後側ケース部41bを有し、それらの内部に液導入路41A、液導入口41c及び液流収容部41Bを備えたケース41、ケース41の開口部41dに装着された管支持部材42、管支持部材42に支持固定され、外部開口43a、気流導入路43A及び内部開口43bを備えた気流導入管43、筒状部44a及びフランジ部44bを有するとともに、筒状部44aによって入口44c及び出口44dを備えた渦流形成路44Aが構成される内側部材44、内側部材を固定する固定部材45、液吐出孔46aを備えた吐出部材46、吐出部材46を保持する保持枠47、並びに、液流飛散面48aを備えた液流飛散部48を具備し、これらはすべて以下に説明する点を除き基本的に第1実施形態と同様であるので、同様の点についての説明を省略する。なお、吐出部材46と保持枠47を一体に構成してもよい点は同様である。   FIG. 6 is a longitudinal cross-sectional view of a third embodiment that is based on the configuration of the first embodiment and is configured so that the foam flow and the rectification can be switched and discharged with respect to the configuration. The liquid discharge device 40 of this embodiment has a liquid introduction part 41a and a rear case part 41b that are basically the same as those of the first embodiment, and a liquid introduction path 41A and a liquid introduction port 41c are provided therein. And a case 41 having a liquid flow accommodating portion 41B, a tube support member 42 attached to the opening 41d of the case 41, a support member fixed to the tube support member 42, and an external opening 43a, an air flow introduction path 43A, and an internal opening 43b. An inner member 44 having an air flow introduction pipe 43, a cylindrical portion 44a and a flange portion 44b, and an eddy current forming path 44A provided with an inlet 44c and an outlet 44d by the cylindrical portion 44a, and a fixing member for fixing the inner member 45, a discharge member 46 having a liquid discharge hole 46a, a holding frame 47 for holding the discharge member 46, and a liquid flow scattering portion 48 having a liquid flow scattering surface 48a. Because basically, except as described below is the same as the first embodiment, the description thereof is omitted for the same point. Note that the discharge member 46 and the holding frame 47 may be configured integrally.

本実施形態において、気流導入管43は管支持部材42と一体に構成されて気流導入部材を構成し、その後部の開口部に気流導入通路49aを設けた支持部材49Aが嵌合され、この支持部材49Aに気流調整ねじ49Bが螺入されている。この気流調整ねじ49Bは上記と同様の調整端49bが設けられ、その螺入深さに応じて気流の導入量を調整できるように構成されている。なお、このような構成は上記各実施形態にも同様に適用できる。   In the present embodiment, the airflow introduction pipe 43 is configured integrally with the pipe support member 42 to form an airflow introduction member, and a support member 49A provided with an airflow introduction passage 49a is fitted in the opening of the rear part thereof, and this support is provided. An airflow adjusting screw 49B is screwed into the member 49A. The air flow adjusting screw 49B is provided with an adjustment end 49b similar to the above, and is configured so that the amount of air flow introduced can be adjusted according to the screwing depth. Such a configuration can be similarly applied to the above embodiments.

また、内側部材44は、固定部材45の案内部45Aにより軸線40xに沿って移動可能に案内されている。ここで、案内部45Aは、内側部材44の軸線40xに沿って突出する凸部44pと嵌合するように軸線40xに沿って穿設された嵌合穴45hを有し、内側部材44を軸線40xに沿って移動可能に構成しつつ、内側部材44が軸線40x回りに回転しないようにしている。また、内側部材44は固定部材45の駆動部45Bに対して軸線40x周りに形成されたネジ構造を介して螺合されている。さらに駆動部45Bは吐出部材46及び保持枠47に対して固定されて一体化されているとともに、ケース41及び案内部45Bに対して軸線40x回りに回転可能に取り付けられている。   The inner member 44 is guided by the guide portion 45A of the fixed member 45 so as to be movable along the axis 40x. Here, the guide portion 45A has a fitting hole 45h drilled along the axis 40x so as to be fitted with a convex portion 44p projecting along the axis 40x of the inner member 44, and the inner member 44 is moved along the axis. The inner member 44 is configured not to rotate around the axis 40x while being configured to be movable along 40x. The inner member 44 is screwed to the driving portion 45B of the fixing member 45 through a screw structure formed around the axis 40x. Furthermore, the drive unit 45B is fixed and integrated with the discharge member 46 and the holding frame 47, and is attached to the case 41 and the guide unit 45B so as to be rotatable about the axis 40x.

保持枠47をケース41に対して回転させると、一体的に取り付けられた駆動部45Aが共に回転するので、内側部材44は軸線40xに沿って移動する。具体的には、内側部材44は、駆動部45Bのネジ構造により駆動されるとともに案内部45Aに案内されることにより、図示実線で示す前端位置と、図示二点鎖線で示す後端位置との間を移動する。ここで、内側部材44が図示実線の位置にある場合には、上記第1実施形態と同様のプロセスで微細気泡を含む泡沫流が液吐出口46aより吐出される。一方、内側部材44が図示二点鎖線の位置にある場合には、液流収容部41Bから渦流形成路41Aへの液流の流れが遮断され、その代わりに、内側部材44の周囲に設けられた全体として環状断面の液流通過路45Sを液流が通過して液吐出室46Aに至り、最終的に液吐出口46aより整流が吐出される。   When the holding frame 47 is rotated with respect to the case 41, the integrally attached drive unit 45A rotates together, so that the inner member 44 moves along the axis 40x. Specifically, the inner member 44 is driven by the screw structure of the drive unit 45B and guided by the guide unit 45A, so that a front end position indicated by a solid line in the drawing and a rear end position indicated by a two-dot chain line in the drawing are provided. Move between. Here, when the inner member 44 is at the position indicated by the solid line in the drawing, a foam flow containing fine bubbles is discharged from the liquid discharge port 46a in the same process as in the first embodiment. On the other hand, when the inner member 44 is at the position of the two-dot chain line in the figure, the flow of the liquid flow from the liquid flow accommodating portion 41B to the vortex forming path 41A is interrupted, and instead, provided around the inner member 44. As a whole, the liquid flow passes through the liquid flow passage 45S having an annular cross section to reach the liquid discharge chamber 46A, and finally the rectification is discharged from the liquid discharge port 46a.

上記の構成では、内側部材44が内部を軸線40xに沿って前後に移動することで、液流収容部41Aから渦流形成路44Aを経て液吐出室46Aへと進む泡沫流を形成する経路と、液流収容部41Aから液流通過路45Sを経て液吐出室46Aへと進む整流を形成する経路とを切り替えることができる。この場合、保持枠47を軸線40x回りに回転させても内部の内側部材44の軸線40xに沿った位置が変化するだけで他の構成には何らの変化もないので、泡沫流や整流の吐出特性が変化せず、安定した吐出性能を設定することができる。なお、上記の第3実施形態は第1実施形態に泡沫流と整流との切り替え機能を付加した構成となっているが、第2実施形態に上記切り替え機能を付加した構成としてもよい。   In the above configuration, the inner member 44 moves back and forth along the axis 40x, thereby forming a foam flow that travels from the liquid flow accommodating portion 41A to the liquid discharge chamber 46A via the vortex flow formation path 44A, It is possible to switch the path that forms the rectification that proceeds from the liquid flow accommodating portion 41A to the liquid discharge chamber 46A via the liquid flow passage 45S. In this case, even if the holding frame 47 is rotated around the axis 40x, only the position of the inner member 44 along the axis 40x changes, and there is no change in other configurations. Stable discharge performance can be set without changing the characteristics. In addition, although said 3rd Embodiment becomes a structure which added the switching function of foam flow and rectification to 1st Embodiment, it is good also as a structure which added the said switching function to 2nd Embodiment.

上記第1実施形態の液吐出装置10をシャワーヘッドとして構成し、通常のシャワーヘッドの泡沫流との洗浄性能を比較した。それぞれのシャワーヘッドで、それぞれ同一人の皮膚に油性インクを塗った部位、口紅を塗った部位、及び、頭皮の所定部位に対して同一温度の泡沫流を同一時間適用した後の皮膚表面をマイクロスコープで50倍の拡大画像を撮影し、観察した。本実施形態のシャワーヘッドを用いた場合には、油性インク、口紅、皮脂のいずれもが通常のシャワーヘッドを用いた場合よりも大幅に除去され、通常のシャワーヘッドを用いた場合では肉眼でも油性インク、口紅、皮脂の残渣がはっきりと認められたのに対して、実施形態のシャワーヘッドを用いた場合には、拡大画像ではうっすらと残渣が見えるものの、肉眼ではほとんど視認できない程度となった。   The liquid ejection device 10 of the first embodiment was configured as a shower head, and the cleaning performance was compared with the foam flow of a normal shower head. With each shower head, the surface of the skin of the same person after applying oil-based ink, the part where lipstick was applied, and the surface of the scalp after applying foam flow at the same temperature to the predetermined part of the scalp for the same time A magnified image of 50 times was taken and observed with a scope. When the shower head of this embodiment is used, all of the oil-based ink, lipstick, and sebum are significantly removed compared to the case of using a normal shower head. The residue of ink, lipstick, and sebum was clearly recognized, but when the shower head of the embodiment was used, the residue was slightly visible in the enlarged image, but was hardly visible with the naked eye.

尚、本発明の液吐出装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the liquid discharge apparatus of the present invention is not limited to the illustrated examples described above, and it is needless to say that various changes can be made without departing from the gist of the present invention.

第1実施形態の液吐出装置の縦断面図。FIG. 3 is a longitudinal sectional view of the liquid ejection device according to the first embodiment. 液吐出装置の渦流の発生と渦崩壊のプロセスを模式的に示す説明図。Explanatory drawing which shows typically the generation | occurrence | production of vortex | eddy_current of a liquid discharge apparatus, and the process of vortex breakdown. 第2実施形態の液吐出装置の縦断面図。The longitudinal cross-sectional view of the liquid discharge apparatus of 2nd Embodiment. 第2実施形態の異なる液流旋回部材の斜視図。The perspective view of the different liquid flow turning member of 2nd Embodiment. 各実施形態において使用可能な異なる吐出部材及び延長アダプタを示す縦断面図。The longitudinal cross-sectional view which shows the different discharge member and extension adapter which can be used in each embodiment. 第3実施形態の液吐出装置の縦断面図。The longitudinal cross-sectional view of the liquid discharge apparatus of 3rd Embodiment.

符号の説明Explanation of symbols

10、20、40…液吐出装置、11、21、41…ケース、11a、21a、41a…液導入部、11b、21b、41b…後側ケース部、11c、21c、41c…液導入口、11B、21B、41B…液流収容部、12、22、42…管支持部材、13、23、43…気流導入管、13b、23b、43b…内部開口、14、24、44…内側部材、14A、24A、44A…渦流形成路、15、25、45…固定部材、45A…案内部、45B…駆動部、16、26、36、46…吐出部材、17、27、47…保持枠、18、28、48…液流飛散部、18a、28a、48a…液流飛散面、19、29、49B…気流調整ねじ、37…延長アダプタ DESCRIPTION OF SYMBOLS 10, 20, 40 ... Liquid discharge apparatus 11, 21, 41 ... Case, 11a, 21a, 41a ... Liquid introduction part, 11b, 21b, 41b ... Rear side case part, 11c, 21c, 41c ... Liquid introduction port, 11B , 21B, 41B ... Liquid flow accommodating portion, 12, 22, 42 ... pipe support member, 13, 23, 43 ... Air flow introduction pipe, 13b, 23b, 43b ... Internal opening, 14, 24, 44 ... Inner member, 14A, 24A, 44A ... Eddy current forming path, 15, 25, 45 ... Fixing member, 45A ... Guide part, 45B ... Drive part, 16, 26, 36, 46 ... Discharge member, 17, 27, 47 ... Holding frame, 18, 28 48 ... Liquid splash part, 18a, 28a, 48a ... Liquid splash surface, 19, 29, 49B ... Air flow adjusting screw, 37 ... Extension adapter

Claims (4)

液導入口から液流が導入される後部に設けられた環状断面の液流収容部と、
外部に連通する外部開口を備え、前記液流収容部の内部を後方から前方へ貫通し、前記液流収容部より前方において前方へ向いた内部開口を備えた気流導入路と、
前記液流収容部に連通するとともに前記液流収容部より縮径されて前記気流導入路の周囲を前方へ向けて伸び、前記気流導入路の前記内部開口に至るまでは環状断面を備え、前記内部開口に臨む部分から円形断面となる渦流形成路と、
該渦流形成路に連通し、最前部に設けられた液吐出口と、
を具備することを特徴とする液吐出装置。
A liquid flow accommodating portion having an annular cross section provided at the rear portion where the liquid flow is introduced from the liquid introduction port;
An air flow introduction path provided with an external opening communicating with the outside, penetrating the inside of the liquid flow accommodating portion from the rear to the front, and having an internal opening directed forward in front of the liquid flow accommodating portion;
Communicating with the liquid flow storage section and being reduced in diameter from the liquid flow storage section, extending forward around the air flow introduction path, and having an annular cross section until reaching the internal opening of the air flow introduction path, A vortex flow path having a circular cross section from the portion facing the internal opening;
A liquid discharge port that communicates with the vortex formation path and is provided at the forefront;
A liquid ejection apparatus comprising:
前記渦流形成路に連通し、前記渦流形成路の前方にて前記渦流形成路より拡径された広がりを備え前記液吐出口に連通する液吐出室と、前記液吐出室に臨み、前記渦流形成路の出口に対向配置され、前記渦流形成路から導出された液流を前記液吐出室内において周囲へ飛散させる液流飛散部と、をさらに具備することを特徴とする請求項1に記載の液吐出装置。   A liquid discharge chamber that communicates with the liquid discharge port and communicates with the liquid discharge port and has a spread that is larger in diameter than the vortex flow formation path in front of the vortex flow formation path. 2. The liquid according to claim 1, further comprising a liquid flow scattering portion that is disposed to face an outlet of the path and that scatters the liquid flow led out from the vortex forming path to the surroundings in the liquid discharge chamber. Discharge device. 前記渦流形成路内の前記内部開口より上流側に位置する前記液流収容部若しくは前記渦流形成路中には、液流を旋回させる液流旋回手段が設けられていることを特徴とする請求項1又は2に記載の液吐出装置。   The liquid flow swirling means for swirling the liquid flow is provided in the liquid flow accommodating portion or the vortex flow forming path located upstream of the internal opening in the vortex flow forming path. 3. The liquid ejection device according to 1 or 2. 前記液流旋回手段は前記渦流形成路内において前記気流導入路を構成する管材を支持することを特徴とする請求項3に記載の液吐出装置。   The liquid discharge device according to claim 3, wherein the liquid flow swirl means supports a pipe constituting the air flow introduction path in the vortex flow formation path.
JP2006325328A 2006-12-01 2006-12-01 Liquid discharge apparatus Ceased JP2008136931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325328A JP2008136931A (en) 2006-12-01 2006-12-01 Liquid discharge apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325328A JP2008136931A (en) 2006-12-01 2006-12-01 Liquid discharge apparatus

Publications (1)

Publication Number Publication Date
JP2008136931A true JP2008136931A (en) 2008-06-19

Family

ID=39598952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325328A Ceased JP2008136931A (en) 2006-12-01 2006-12-01 Liquid discharge apparatus

Country Status (1)

Country Link
JP (1) JP2008136931A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164275A (en) * 2009-01-19 2010-07-29 Noritz Corp Circulation adaptor
JP2012005566A (en) * 2010-06-23 2012-01-12 Toto Ltd Shower device
JP2012528663A (en) * 2009-06-02 2012-11-15 エムイーシー Micro bubble generating shower
JP2013126652A (en) * 2011-11-18 2013-06-27 Yanmar Sangyo Kk Nozzle
KR101299601B1 (en) * 2011-04-07 2013-08-26 곽현준 Water saving sink head for kitchen's faucet
JP2014163574A (en) * 2013-02-25 2014-09-08 Hatano Seisakusho:Kk Hot water supply port adaptor for bathtub
JP2014163573A (en) * 2013-02-25 2014-09-08 Hatano Seisakusho:Kk Hot water supply port adaptor for bathtub
JP2014217824A (en) * 2013-05-10 2014-11-20 株式会社リガルジョイント Fluid sucking and mixing device
JP2017063831A (en) * 2015-09-28 2017-04-06 株式会社タカギ Microbubble shower device
JP2017214138A (en) * 2016-06-02 2017-12-07 株式会社ダイゾー Emission product
JP2020031785A (en) * 2018-08-28 2020-03-05 株式会社Lixil Shower head device
KR102122016B1 (en) * 2019-03-20 2020-06-26 성종현 Shower device
CN114042550A (en) * 2021-10-19 2022-02-15 厦门欧圣斯卫浴有限公司 Water outlet device's water flower form adjusts structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151961U (en) * 1986-03-15 1987-09-26
JPH03286051A (en) * 1990-03-30 1991-12-17 Toto Ltd Discharge water outlet
JP2003181258A (en) * 2001-12-13 2003-07-02 Tashizen Techno Works:Kk Whirling type fine bubble formation apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151961U (en) * 1986-03-15 1987-09-26
JPH03286051A (en) * 1990-03-30 1991-12-17 Toto Ltd Discharge water outlet
JP2003181258A (en) * 2001-12-13 2003-07-02 Tashizen Techno Works:Kk Whirling type fine bubble formation apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164275A (en) * 2009-01-19 2010-07-29 Noritz Corp Circulation adaptor
JP2012528663A (en) * 2009-06-02 2012-11-15 エムイーシー Micro bubble generating shower
JP2012005566A (en) * 2010-06-23 2012-01-12 Toto Ltd Shower device
KR101299601B1 (en) * 2011-04-07 2013-08-26 곽현준 Water saving sink head for kitchen's faucet
JP2013126652A (en) * 2011-11-18 2013-06-27 Yanmar Sangyo Kk Nozzle
JP2014163573A (en) * 2013-02-25 2014-09-08 Hatano Seisakusho:Kk Hot water supply port adaptor for bathtub
JP2014163574A (en) * 2013-02-25 2014-09-08 Hatano Seisakusho:Kk Hot water supply port adaptor for bathtub
JP2014217824A (en) * 2013-05-10 2014-11-20 株式会社リガルジョイント Fluid sucking and mixing device
JP2017063831A (en) * 2015-09-28 2017-04-06 株式会社タカギ Microbubble shower device
JP2017214138A (en) * 2016-06-02 2017-12-07 株式会社ダイゾー Emission product
JP2020031785A (en) * 2018-08-28 2020-03-05 株式会社Lixil Shower head device
JP7203538B2 (en) 2018-08-28 2023-01-13 株式会社Lixil shower head device
KR102122016B1 (en) * 2019-03-20 2020-06-26 성종현 Shower device
CN114042550A (en) * 2021-10-19 2022-02-15 厦门欧圣斯卫浴有限公司 Water outlet device's water flower form adjusts structure
CN114042550B (en) * 2021-10-19 2022-07-05 厦门欧圣斯卫浴有限公司 Water outlet device's water flower form adjusts structure

Similar Documents

Publication Publication Date Title
JP2008136931A (en) Liquid discharge apparatus
JP6487041B2 (en) Atomizer nozzle
JP5712292B2 (en) Bubble generation mechanism and shower head with bubble generation mechanism
JP6210846B2 (en) Micro bubble spray device
JP6310359B2 (en) Microbubble generator and method for generating the same
JP2008086868A (en) Microbubble generator
JP2007089710A (en) Shower apparatus
JP4142728B1 (en) Bubble refiner
RU2000112541A (en) SKIN TREATMENT
JP2010075838A (en) Bubble generation nozzle
JP2009136864A (en) Microbubble generator
JP5573879B2 (en) Microbubble generator
JP2005052754A (en) Spray nozzle
JP6449531B2 (en) Microbubble generator
KR102274670B1 (en) Showerhead
JP2019166493A (en) Fine bubble generation nozzle
JP2009178661A (en) Apparatus for discharging liquid
JP3174668U (en) Shower nozzle that generates microbubbles of air and carbon dioxide
JP6646300B2 (en) Bubble generator for sewage purification and sewage purification method
JP2008000685A (en) Air-water mixture flow generating device
JP2007089702A (en) Shower apparatus
JP2010115586A (en) Microbubble generator
JP2015223585A (en) Micro-bubble generator
JP2012091153A (en) Fine-air-bubble generator
WO2021098833A1 (en) Micro-bubble spray head and washing apparatus having same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20120925