WO2001032381A1 - Hochreine polymergranulate und verfahren zu deren herstellung - Google Patents

Hochreine polymergranulate und verfahren zu deren herstellung Download PDF

Info

Publication number
WO2001032381A1
WO2001032381A1 PCT/EP2000/010401 EP0010401W WO0132381A1 WO 2001032381 A1 WO2001032381 A1 WO 2001032381A1 EP 0010401 W EP0010401 W EP 0010401W WO 0132381 A1 WO0132381 A1 WO 0132381A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
filtered
filter
polycarbonate
granulation
Prior art date
Application number
PCT/EP2000/010401
Other languages
English (en)
French (fr)
Inventor
Thomas Elsner
Jürgen HEUSER
Christian Kords
Steffen Kühling
Paul Viroux
Original Assignee
Bayer Aktiengesellschaft
Bayer Antwerpen N. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft, Bayer Antwerpen N. V. filed Critical Bayer Aktiengesellschaft
Priority to US10/111,999 priority Critical patent/US6720406B1/en
Priority to BR0015332-0A priority patent/BR0015332A/pt
Priority to KR1020027005678A priority patent/KR20020055592A/ko
Priority to DE50006703T priority patent/DE50006703D1/de
Priority to EP00969531A priority patent/EP1237692B1/de
Priority to JP2001534568A priority patent/JP2003512944A/ja
Priority to AU79215/00A priority patent/AU7921500A/en
Publication of WO2001032381A1 publication Critical patent/WO2001032381A1/de
Priority to HK03104487.9A priority patent/HK1052155A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/005Using a particular environment, e.g. sterile fluids other than air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the invention relates to a process for the production of polymer granules, in particular polycarbonate granules, from polymer melts, in particular polycarbonate melts, by melt extrusion of the polymer, cooling the melt in a cooling liquid and granulating the solidified polymer, in which the cooling air or polymer which comes into contact with the polymer Ambient air has a proportion of solid particles of at most 10 ppm, preferably at most 5 ppm, particularly preferably at most 0.5 ppm.
  • High purity polycarbonates are used for optical moldings, e.g. for optical and magneto-optical storage media, in particular data storage media readable or writable in laser radiation. As the storage capacity of these media is to be increased further and further, the demands on them also increase
  • thermoforming such as for greenhouses, so-called double-wall sheets or hollow chamber sheets or solid sheets are used.
  • molded bodies are manufactured by injection molding, extrusion and extrusion blow molding using a polycarbonate with the appropriate molecular weight.
  • dihydroxydiarylalkanes in the form of their alkali salts are reacted with phosgene in the heterogeneous phase in the presence of inorganic bases such as sodium hydroxide solution and an organic solvent in which the product polycarbonate is readily soluble.
  • inorganic bases such as sodium hydroxide solution and an organic solvent in which the product polycarbonate is readily soluble.
  • the aqueous phase is distributed in the organic phase and after the reaction, the organic polycarbonate-containing phase is washed with an aqueous liquid, which is intended, among other things, to remove electrolytes, and the washing liquid is then separated off.
  • the organic solvent is then removed from the polycarbonate.
  • the polycarbonate is z. B. transferred granular form.
  • polycarbonates Another possibility for producing polycarbonates is the melt transesterification process or variants thereof (three-step process of melt oligocarbonate production, crystallization, solid-phase polycondensation).
  • the polycarbonate is converted into a form that can be easily processed after the reaction.
  • Polycarbonate is not sufficient.
  • the invention has for its object to provide polycarbonates and copolycarbonates with an even greater purity with regard to freedom from defects, which are suitable for the production of molded articles, in particular optical molded articles, magneto-optical and optical data storage media with a particularly high data density or particularly low error frequency, and the disadvantages of the known ones Avoids proceedings.
  • the number of defects in the polycarbonate can be determined using a laser film scan test.
  • the invention relates to a process for the production of polymer granules, in particular polycarbonate granules, from polymer melts, in particular polycarbonate melts, by melt extrusion of the polymer, cooling the melt in a cooling liquid and granulating the solidified polymer, characterized in that those which come into contact with the polymer Cooling air or ambient air has a proportion of solid particles of at most 10 ppm, preferably 5 ppm, particularly preferably 0.5 ppm.
  • the preferred method is characterized in that the melt extrusion, the cooling of the melt and granulation of the polymer are carried out in an encapsulated space.
  • the granulation is particularly preferably carried out in a room, the ambient air coming into contact with the polymer material being filtered step by step in such a way that the air is preferably firstly via pre-filters of filter class EU 5 to EU 7, then via fine filters of filter class EU 7 to EU 9 and finally filtered through final filters of filter class EU 13 to EU 14 (the filter classes according to DIN 24183 or EUROVENT 4/5, 4/4 were determined in August 1999).
  • polystyrene foams show very good results when tested in the laser film scan test.
  • the polycarbonates produced according to the invention thus show fewer than 250, in particular fewer than 150, defects per m 2 of extrusion film.
  • the invention further relates to the polymer granules which are obtainable by the processes according to the invention and their use for the production of transparent moldings, the use in particular being aimed at for the production of laser-readable data memories.
  • the invention also relates to transparent moldings produced from the polymer granules according to the invention.
  • the polymers to be used according to the invention are, for example, polycarbonates, both homopolycarbonates and copolycarbonates and mixtures thereof.
  • the polycarbonates can be aromatic polyester carbonates or polycarbonates which are present in a mixture with aromatic polyester carbonates.
  • the term polycarbonate is then used to represent the aforementioned polymers.
  • the preferred polycarbonate is used in particular after the so-called
  • One of the preferred embodiments of the production process mentioned is a variant in which the starting materials are processed further by the interfacial process, the reaction solution containing polycarbonate optionally being filtered directly after the reaction, the aqueous phase being separated off, the polycarbonate solution obtained being filtered again, washing if necessary, the washing liquid is separated off and the solvent is evaporated off, and the mixture of organic polycarbonate solution and residual washing liquid obtained after separating off the washing liquid is optionally heated until a clear solution is reached before separating off solids at least once, preferably twice, particularly preferably at least filtered three times, very particularly preferably in stages, the solvent is separated from the polycarbonate, and the polycarbonate is worked up and granulated under the conditions of the process according to the invention.
  • each cooling liquid which comes into contact with the polymer has a proportion of foreign particles of at most 2 million particles per 1 water (particle size> 0.5 ⁇ m), particularly preferably at most 1 million particles per 1 water (particle size> 0.5 ⁇ m), very particularly preferably at most 0.5 million particles per 1 water (particle size> 0.5 ⁇ m).
  • the filtration of the other feedstocks, additives and the coolant medium is usually conveniently carried out by using membrane filters.
  • the pore size of the filter materials is generally 0.01 to 5 ⁇ m, preferably 0.02 to
  • Such filter materials are commercially available, for example, from Pall GmbH, D-63363 Dreieich, and Krebsöge GmbH, D-42477 Radevormwald, (type SEKA-R CU1AS).
  • filtering is carried out in stages with several filters. You start cheaply with coarser filters and then switch to finer filters.
  • melt polycarbonate process in which, starting from aromatic diphenols, carbonic acid diaryl esters, catalysts and optionally branching in one
  • Is carbon atoms containing one or more aromatic groups are bisphenols belonging to the group of dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, indane bisphenols, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) ketones and ⁇ , ⁇ '-bis (hydroxyphenyl) diisopropyl - belong to benzenes.
  • Particularly preferred bisphenols belonging to the above-mentioned connecting groups are 2,2-bis (4-hydroxyphenyl) propane (BPA / bisphenol-A), tetraalkyl-bisphenol-A, 4,4- (meta-phenylenediisopropyl) diphenol ( Bisphenol M), l, l-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexanone and optionally their mixtures.
  • Particularly preferred copolycarbonates are those based on the monomers bisphenol-A and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane.
  • Suitable carbonic acid diesters for the purposes of the invention are di-Cg to Ci 4-aryl esters, preferably the diesters of phenol or alkyl-substituted phenols, i.e. diphenyl carbonate or e.g. Dicresyl. Based on 1 mol of bisphenol, the carbonic diesters are used in 1.01 to 1.30 mol, preferably in 1.02 to 1.15 mol.
  • the starting materials that is to say the diphenols and the carbonic acid diaryl esters, are free from alkali and alkaline earth metal ions, amounts of less than 0.1 ppm of alkali metal and alkaline earth metal ions being tolerable. So pure
  • Diphenols or carbonic acid diaryl esters can be obtained by using the
  • the content of alkali and alkaline earth metal ions in both the diphenol and the carbonic acid diester should be ⁇ 0.1 ppm.
  • the total chlorine content of the raw materials should not exceed 2 ppm and the saponifiable chlorine content of the
  • Carbonic acid diesters do not exceed 0.05 ppm.
  • the raw materials ie the diphenols and the carbonic acid diaryl esters, in the case of purification by distillation
  • Raw materials in the last step of manufacturing that have not gone through solid phase that is, a melt or mixed melt of the raw materials is used in the transesterification reaction or at least one of the raw materials is metered in liquid.
  • the polycarbonates in question can be deliberately and controlledly branched by using small amounts of branching agents.
  • Some suitable branches are:
  • branching agents are 2,4-dihydroxybenzoic acid, trimesic acid, cyanuric chloride and 3,3-bis (3-methyl-4-hydroxyphenyl) -2-oxo-2,3-dihydroindole.
  • the 0.05 to 2 mol% of branching agent which may be used, based on the diphenols used, can be used together with the diphenols.
  • Preferred catalysts are compounds of the general formulas 2 and 3:
  • Suitable catalysts for the process mentioned are, for example: tetramethylammonium hydroxide, tetramethylammonium acetate, tetramethylammonium fluoride, tetramethylammonium tetraphenylboronate, tetraphenylphosphonium fluoride, tetraphenylphosphonium tetraphenylboranate, dimethyldiphenium tetramidium, ammoniumdimidium, ammoniumdimidium, ammoniumdimidium, 5dimidium tetrammonium, ammonium dibhenium, tetramidium, ammonium dibhenium tetramidium, ammonium dibhenium tetramidium, ammonium, dibidium tetrammonium, ammonium, benzidium, toluene, ammonium, diammoniumdium, ammonium, 5dimidium tetramidium, -Triazabicyclo-
  • catalysts are used in amounts of 10 ⁇ 2 to 10 "8 mol, based on 1 mol of diphenol.
  • the catalysts can also be used in combination (two or more) with one another.
  • the reaction of the aromatic dihydroxy compound and the carbonic acid diester can be carried out continuously or batchwise, for example in stirred tanks, thin-layer evaporators, stirred tank cascades, extruders, kneaders and disk reactors.
  • the preferred compounds to be used as input compounds are bisphenols of the general formula HO-Z-OH, in which Z is a divalent organic radical having 6 to 30 carbon atoms and containing one or more aromatic groups.
  • Z is a divalent organic radical having 6 to 30 carbon atoms and containing one or more aromatic groups.
  • examples of such compounds are bisphenols which belong to the group of dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, indane bisphenols, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) ketones and ⁇ , ⁇ '-bis (hydroxyphenyl) belong to diisopropylbenzenes.
  • Particularly preferred bisphenols which belong to the abovementioned connecting groups are 2,2-bis (4-hydroxyphenyl) propane (bisphenol-A), tetraalkylbisphenol-A, 4,4- (meta-phenylenediisopropyl) diphenol (bisphenol M), l, l-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexanone and optionally their mixtures.
  • Particularly preferred copolycarbonates are those based on the monomers
  • Bisphenol-A and l, l-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane are reacted with carbonic acid compounds, in particular phosgene.
  • polyester carbonates are obtained by reacting the bisphenols already mentioned, at least one aromatic dicarboxylic acid and if carbonated.
  • aromatic dicarboxylic acids are, for example, orthophthalic acid, terephthalic acid, isophthalic acid, 3,3'- or 4,4'-diphenyldicarboxylic acid and benzophenone dicarboxylic acids.
  • Inert organic solvents used in the interfacial process are, for example, dichloromethane, the various dichloroethanes and chloropropane compounds, chlorobenzene and chlorotoluene; dichloromethane and mixtures of dichloromethane and chlorobenzene are preferably used.
  • reaction can be carried out by catalysts such as tertiary amines, N-alkylpiperidines or
  • Tributylamine, triethylamine and N-ethylpiperidine are preferably used.
  • a monofunctional phenol such as phenol, cumylphenol, p-tert-butylphenol or 4- (l, l, 3,3-tetramethylbutyl) phenol, can be used as chain terminating agent and molecular weight regulator.
  • isatin biscresol can be used as branching agent.
  • the bisphenols are dissolved in an aqueous alkaline phase, preferably sodium hydroxide solution.
  • the chain terminators which may be required for the production of copolycarbonates are dissolved in amounts of 1.0 to 20.0 mol% per mole of bisphenol, in the aqueous alkaline phase or added to the latter in bulk in an inert organic phase.
  • phosgene is introduced into the mixer containing the other reaction components and the polymerization is carried out.
  • Chain terminators which may be used are both monophenols and monocarboxylic acids.
  • Suitable monophenols are phenol itself, alkylphenols such as cresols, p-tert-butylphenol, p-cumylphenol, pn-octylphenol, p-iso-octylphenol, pn-nonylphenol and p-iso-nonylphenol, halophenols such as p-chlorophenol, 2,4 - Dichlo ⁇ henol, p-bromophenol and 2,4,6-tribromophenol and mixtures thereof.
  • Suitable monocarboxylic acids are benzoic acid, alkylbenzoic acids and halogenated benzoic acids.
  • Preferred chain terminators are the phenols of the formula (I)
  • R is hydrogen, tert-butyl or a branched or unbranched C 8 - and or C -alkyl radical.
  • the preferred chain terminator is phenol and p-tert-butylphenol.
  • the amount of chain terminator to be used is 0.1 mol% to 5 mol%, based on moles of diphenols used in each case.
  • the chain terminators can be added before, during or after phosgenation.
  • branching agents can be added to the reaction.
  • Suitable branching agents are the trifunctional or more than trifunctional compounds known in polycarbonate chemistry, in particular those with three or more than three phenolic OH groups.
  • Suitable branching agents are, for example, phloroglucin, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -hepten-2, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) - heptane, 1, 3,5-tri- (4-hydroxyphenyl) benzene, 1,1,1-tri- (4-hydroxyphenyl) ethane, tri- (4-hydroxyphenyl) phenylmethane, 2,2-bis [4,4-bis (4-hydroxyphenyl) cyclohexyl] propane, 2,4-bis (4-hydroxyphenyl isopropyl) phenol, 2,6-bis (2-hydroxy-5'- methyl-benzyl) -4-methylphenol, 2- (4-hydroxyphenyl) -2- (2,4-dihydroxyphenyl) propane, hexa- (4- (4-hydroxyphenyl-isopropyl) phenyl) orthoterephthalic acid ester, te
  • the amount of branching agents which may be used is 0.05 mol% to 2 mol%, based in turn on moles of diphenols used in each case.
  • the branching agents can either be introduced with the diphenols and the chain terminators in the aqueous alkaline phase, or added dissolved in an organic solvent before the phosgenation.
  • Some, up to 80 mol%, preferably from 20 to 50 mol% of the carbonate groups in the polycarbonates can be replaced by aromatic dicarboxylic acid ester groups.
  • Thermoplastic polycarbonates which are particularly preferably suitable for use in the process according to the invention have an average molecular weight M w (determined by measuring the relative viscosity at 25 ° C. in dichloromethane and a concentration of 0.5 g polycarbonate / 100 ml dichloromethane) of 12,000 to 400,000, preferably from 12,000 to 80,000 and especially from 15,000 to 40,000.
  • the aqueous phase is emulsified in the organic phase. This creates droplets of different sizes.
  • the organic phase containing the polycarbonate is usually washed several times with an aqueous liquid and separated from the aqueous phase as far as possible after each washing operation.
  • the polymer solution is cloudy after washing and separating the washing liquid.
  • Aqueous liquid for separating off the catalyst, a dilute mineral acid such as HC1 or H PO 4 and for further purification, demineralized water are used as the washing liquid.
  • the concentration of HC1 or H 3 PO in the washing liquid can be, for example, 0.5 to 1.0% by weight.
  • the organic phase can be washed five times.
  • known separation vessels, phase separators, centrifuges or coalescers or combinations of these devices can be used as phase separation devices for separating the washing liquid from the organic phase.
  • the solvent is evaporated to obtain the high-purity polycarbonate. Evaporation can take place in several evaporator stages. According to a further preferred embodiment, the solvent or part of the solvent can be removed by spray drying. The high-purity polycarbonate is then obtained as a powder. The same applies to the extraction of the particularly preferred highly pure polycarbonate by precipitation from the organic solution and subsequent residual drying. Another preferred embodiment is extrusion for the evaporation of residual solvent. Another variant of the refurbishment is the strand evaporator technology.
  • the polycarbonate is used in the granulation process according to the invention according to the different possible removal methods of the solvent or, in the case of the melt polycarbonate process, residual monomer removal / reaction.
  • the particularly preferred form of the granulation is constructed, for example, in such a way that from a replaceable nozzle with an integrated screen in 1 to 5 rows, preferably in 1 to 3 rows, which can be parallel or offset to one another, hot polymer strands emerging vertically downwards from one a pair of tapes running in water bath are automatically recorded, cooled and stretched to the desired diameter.
  • the pair of belts pushes the polymer strands over a drying section, in which the adhering surface water is largely removed by suction slits and blow nozzles.
  • the polymer strands coming from the drying section are gripped by a pair of feed rollers in the granulator, pushed forward and cut into granules by a rotating shear knife that rotates past a knife or anvil knife with little play.
  • the cut granulate then falls over a slide onto a classifying sieve or into a centrifuge in order to separate off any oversize particles.
  • the classifying sieve or the centrifuge are suctioned off in order to draw off the water vapor formed, formed by evaporating water from the granulating system adhering to granules.
  • the pelletizing device is located in a closed production room, which is kept under pressure from the environment in particular. This is done in such a way that the outside air is drawn in by a fan via a pre and post heater to dry the air and then via a pre and post heater
  • Fine filter system is pressed. From there, the dried and filtered air reaches the granulation site via channels. The air in turn is preferably carried out via several air inlets.
  • the pre- and fine filter system filters in particular in such a way that the air is preferably filtered first via pre-filters of filter class EU 5 to EU7, then via fine filters of filter class EU 7 to EU 9 and finally via final filters of filter class EU 13 to EU 14 (according to DIN 24183 or EUROVENT 4/5, 4/4).
  • the cooling air or ambient air that comes into contact with the polymer flows through the room, in particular in the
  • Laminar production area preferably from top to bottom.
  • the interior of the room has in particular a slight excess pressure of 1 to 30 Pa compared to the surroundings of the room.
  • Molded bodies according to the invention made of the high-purity polycarbonate are, in particular, optical and magneto-optical data storage media such as mini disks, compact disks or digital versatile disks, optical lenses and prisms, glazing for motor vehicles and headlights, glazing of other types such as for greenhouses, so-called double-wall sheets or hollow chamber sheets or solid sheets.
  • optical and magneto-optical data storage media such as mini disks, compact disks or digital versatile disks, optical lenses and prisms, glazing for motor vehicles and headlights, glazing of other types such as for greenhouses, so-called double-wall sheets or hollow chamber sheets or solid sheets.
  • the preferred molecular weight range for the data carriers is 12,000 to 22,000, for lenses and glazing 22,000 to 32,000 and that of plates and hollow plates 28,000 to 40,000. All molecular weights are based on the weight average molecular weight.
  • the conventional additives such as UV stabilizers, antioxidants and mold release agents can also be added to the polycarbonates according to the invention, in those for thermoplastic materials
  • the shaped bodies according to the invention may have a surface finish, for example a scratch-resistant coating.
  • the polycarbonates according to the invention are preferably used with a molecular weight of 12,000 to 40,000, since a material with a molecular weight in this area can be shaped very well in a thermoplastic manner.
  • the molded body can be manufactured by injection molding. To do this, the resin is on Temperatures of 300 to 400 ° C melted and the mold generally held at a temperature of 50 to 140 ° C.
  • the high-purity polycarbonate body according to the invention is known in suitable, known

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Beschrieben wird ein Verfahren zur Herstellung von Polymergranulat, insbesondere Polycarbonatgranulat, aus Polymerschmelzen, insbesondere Polycarbonatschmelzen durch Schmelzeextrusion des Polymeren, Abkühlen der Schmelze in einer Kühlflüssigkeit und Granulieren des verfestigten Polymeren, wobei die mit dem Polymeren in Kontakt tretende Kühlluft bzw. Umgebungsluft einen Anteil an Feststoffpartikeln von maximal 10 ppm, bevorzugt 5 ppm, besonders bevorzugt 0,5 ppm aufweist.

Description

Hochreine Polvmergranulate und Verfahren zu deren Herstellung
Die Erfindung betrifft ein Verfahren zur Herstellung von Polymergranulat, insbeson- dere Polycarbonatgranulat, aus Polymerschmelzen, insbesondere Polycarbonat- schmelzen durch Schmelzeextrusion des Polymeren, Abkühlen der Schmelze in einer Kühlflüssigkeit und Granulieren des verfestigten Polymeren, bei dem die mit dem Polymeren in Kontakt tretende Kühlluft bzw. Umgebungsluft einen Anteil an Feststoffpartikeln von maximal 10 ppm, bevorzugt maximal 5 ppm, besonders bevorzugt maximal 0,5 ppm aufweist.
Polycarbonate mit hoher Reinheit werden für optische Formkörper, z.B. für optische und magnetooptische Speichermedien, insbesondere in Laserstrahlung lesbaren oder beschreibbaren Datenspeichermedien, eingesetzt. Da die Speicherkapazität dieser Medien immer weiter erhöht werden soll, steigen auch die Anforderungen an die
Reinheit der eingesetzten Polycarbonate.
Darüber hinaus wird solch hochreines Polycarbonat bei Verscheibungen für Kraftfahrzeuge und Streuscheiben für Automobil-Reflektoren eingesetzt, bei denen eine hohe Lichttransmission ohne Störstellen im Formteil von enormer Wichtigkeit sind.
Verscheibungen anderer Art wie für Gewächshäuser, sogenannte Stegdoppelplatten oder Hohlkammeφlatten oder Massivplatten eingesetzt. Hergestellt werden diese Formköφer durch Spritzgussverfahren, Extrusionsverfahren und Extrusions-Blas- formverfahren unter Verwendung eines Polycarbonats mit dem geeigneten Mole- kulargewicht.
Zur Herstellung von Polycarbonaten nach dem sogenannten Phasengrenzflächenverfahren werden Dihydroxydiarylalkane in Form ihrer Alkalisalze mit Phosgen in heterogener Phase in Gegenwart von anorganischen Basen wie Natronlauge und einem organischen Lösungsmittel, in dem das Produkt Polycarbonat gut löslich ist, umgesetzt. Während der Reaktion ist die wässrige Phase in der organischen Phase verteilt und nach der Reaktion wird die organische, Polycarbonat enthaltende Phase mit einer wässrigen Flüssigkeit gewaschen, wobei unter anderem Elektrolyte entfernt werden sollen, und die Waschflüssigkeit anschließend abgetrennt. Anschließend wird das Polycarbonat vom organischen Lösungsmittel befreit. In der letzten Stufe wird das Polycarbonat in eine gut weiterzuverarbeitende Form z. B. Granulatform überführt.
Eine andere Herstellungsmöglichkeit zu Polycarbonaten stellt das Schmelze- umesterungsverfahren oder Varianten hiervon (Dreistufenverfahren Schmelze- oligocarbonatherstellung, Kristallisation, Festphasenpolykondensation) dar. Auch hierbei wird das Polycarbonat nach der Reaktion Herstellung in eine gut weiterzuverarbeitende Form z. B. Granulatform überführt.
Verfährt man nach den üblichen Aufarbeitungs-/Granulierungsverfahren, so stellt man fest, dass die Qualität der Polycarbonate, insbesondere bzgl. der Verunreinigungen, Störstellen im Polycarbonat für gewisse Anwendungen der
Polycarbonate nicht ausreicht.
Der Erfindung liegt die Aufgabe zugrunde, Polycarbonate und Copolycarbonate mit einer noch größeren Reinheit in bezug auf Störstellenfreiheit bereitzustellen, die zur Herstellung von Formköφern, insbesondere optischer Formköφer, magnetooptischer und optischer Datenspeicher mit besonders hoher Datendichte oder besonders geringer Fehlerhäufigkeit geeignet sind und die Nachteile der bekannten Verfahren vermeidet.
Die Anzahl an Störstellen im Polycarbonat kann durch einen Laser-Folien-Scan-Test bestimmt werden.
Es wurde nun gefunden, dass man die notwendige Qualität der Polycarbonate in einem Verfahren der oben genannten Art erreichen kann, wenn man die Aufarbeitung/Granulierung des Polycarbonats unter bestimmten, speziellen
Bedingungen, gemäß dem Kennzeichenteil des Anspruches 1 durchführt. Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Polymergranulat, insbesondere Polycarbonatgranulat, aus Polymerschmelzen, insbesondere Poly- carbonatschmelzen, durch Schmelzeextrusion des Polymeren, Abkühlen der Schmelze in einer Kühlflüssigkeit und Granulieren des verfestigten Polymeren, dadurch gekennzeichnet, dass die mit dem Polymeren in Kontakt tretende Kühlluft bzw. Umgebungsluft einen Anteil an Feststoffpartikeln von maximal 10 ppm, bevorzugt 5 ppm, besonders bevorzugt 0,5 ppm aufweist.
Das bevorzugte Verfahren ist dadurch gekennzeichnet, dass die Schmelzeextrusion, das Abkühlen der Schmelze und Granulieren des Polymeren in einem gekapselten Raum durchgeführt wird.
Besonders bevorzugt wird die Granulierung in einem Raum durchgeführt, wobei die mit dem Polymermaterial in Kontakt tretende Umgebungsluft stufenweise filtriert wird und zwar dergestalt, dass die Luft bevorzugt zunächst über Vorfilter der Filterklasse EU 5 bis EU 7, danach über Feinfilter der Filterklasse EU 7 bis EU 9 und schließlich über Endfilter der Filterklasse EU 13 bis EU 14 gefiltert wird (wobei die Filterklassen nach DIN 24183 bzw. EUROVENT 4/5, 4/4 im Stand August 1999 be- stimmt sind).
Diese Polymergranulate und die hieraus hergestellten Formköφer zeigen sehr gute Ergebnisse bei der Prüfung im Laser-Folien-Scan-Test. So zeigen die erfindungsgemäß produzierten Polycarbonate weniger als 250, insbesondere weniger als 150 Störstellen pro m2 Extrusionsfolie auf.
Gegenstand der Erfindung sind femer die Polymergranulate, die nach erfindungsgemäßen Verfahren erhältlich sind und deren Verwendung zur Herstellung transparenter Formteile, wobei speziell die Verwendung zur Herstellung von laserlesbaren Datenspeichern angestrebt wird. Ebenfalls Gegenstand der Erfindung sind transparente Formköφer hergestellt aus dem erfindungsgemäßen Polymergranulat.
Die erfindungsgemäß einzusetzenden Polymere sind beispielsweise Polycarbonate, sowohl Homopolycarbonate als Copolycarbonate und deren Gemische. Die Polycarbonate können aromatische Polyestercarbonate sein oder Polycarbonate, die im Gemisch mit aromatischen Polyestercarbonaten vorliegen. Der Begriff Polycarbonat wird anschließend stellvertretend für die zuvor genannten Polymere verwendet.
Das bevorzugt einzusetzende Polycarbonat wird insbesondere nach dem sogenannten
Phasengrenzflächenverfahren oder dem Schmelzeumesterungsverfahren erhalten (H. Schnell „Chemistry and Physics of Polycarbonates", Polymerreview, Vol.IX S.33ff, Interscience Publishers, New York 1964).
Eine der bevorzugten Ausführungsformen des genannten Herstellungsverfahrens ist eine Variante, bei der die Einsatzstoffe nach dem Phasengrenzflächenverfahren weiterverarbeitet werden, wobei die Polycarbonat enthaltende Reaktionslösung gegebenenfalls direkt nach der Reaktion filtriert, die wässrige Phase abgetrennt, die erhaltene Polycarbonatlösung gegebenenfalls nochmals filtriert, gewaschen wird, die Waschflüssigkeit abgetrennt und das Lösungsmittel abgedampft wird, und man das nach dem Abtrennen der Waschflüssigkeit erhaltene Gemisch aus organischer Polycarbonat-Lösung und restlicher Waschflüssigkeit gegebenenfalls bis zum Erreichen einer klaren Lösung erwärmt, bevor man zum Abtrennen von Feststoffen nochmals mindestens einmal, bevorzugt zweimal, besonders bevorzugt mindestens dreimal, ganz besonders bevorzugt stufenweise filtriert, das Lösungsmittel vom Polycarbonat abtrennt, und das Polycarbonat unter den Bedingungen des erfindungsgemäßen Verfahrens aufarbeitet und granuliert.
In einer bevorzugten Ausführungsform ist neben der Filtration der Kühlluft bzw. Umgebungsluft zusätzlich vorgesehen, dass jede mit dem Polymer in Kontakt tretende Kühlflüssigkeit einen Anteil von Fremdpartikeln von höchstens 2 Mio. Teilchen pro 1 Wasser (Teilchengröße >0,5 μm), besonders bevorzugt höchstens 1 Mio. Teilchen pro 1 Wasser (Teilchengröße >0,5 μm), ganz besonders bevorzugt höchstens 0,5 Mio. Teilchen pro 1 Wasser (Teilchengröße >0,5 μm) hat.
Dies kann durch Filtration der Kühlflüssigkeit erreicht werden.
Die Filtration der sonstigen Einsatzstoffe, Additive und des Kühlflüssigkeitsmediums erfolgt günstigerweise in der Regel durch den Einsatz von Membranfilter. Die Poren- große der Filtermaterialien beträgt in der Regel 0,01 bis 5 μm vorzugsweise 0,02 bis
1,5 μm, bevorzugt 0,05 μm bis 0,6 μm. Solche Filtermaterialien sind im Handel beispielsweise von den Firmen Pall GmbH, D-63363 Dreieich, und Krebsöge GmbH, D-42477 Radevormwald, (Typ SEKA-R CU1AS) erhältlich.
In einer bevorzugten Variante wird stufenweise mit mehreren Filtern filtriert. Dabei beginnt man günstig mit gröberen Filtern, um dann zu feineren Filtern zu wechseln.
Ein anderes bevorzugtes Herstellverfahren für Polycarbonat stellt das Schmelzepoly- carbonatverfahren dar, bei dem, ausgehend von aromatischen Diphenolen, Kohlen- säurediarylestem, Katalysatoren und gegebenenfalls Verzweigem bei einer
Temperatur von 80°C bis 340°C und einem Druck von 1000 mbar (hPa) bis 0,01 mbar (hPa) Polycarbonat hergestellt wird.
Als Einsatzstoffe bevorzugt einzusetzende Verbindungen sind Bisphenole der allge- meinen Formel HO-Z-OH, worin Z ein divalenter organischer Rest mit 6 bis 30
Kohlenstoffatomen ist, der eine oder mehrere aromatische Gruppen enthält. Beispiele solcher Verbindungen sind Bisphenole, die zu der Gruppe der Dihydroxydiphenyle, Bis(hydroxyphenyl)alkane, Indanbisphenole, Bis(hydroxyphenyl)ether, Bis(hydroxy- phenyl)sulfone, Bis(hydroxyphenyl)ketone und α,α'-Bis(hydroxyphenyl)diisopropyl- benzole gehören.
Besonders bevorzugte Bisphenole, die zu den vorgenannten Verbindungsgruppen gehören, sind 2,2-Bis-(4-hydroxyphenyl)-propan (BPA/Bisphenol-A), Tetraalkyl- bisphenol-A, 4,4-(meta-Phenylendiisopropyl)diphenol (Bisphenol M), l,l-Bis-(4- hydroxyphenyl)-3,3,5-trimethylcyclohexanon sowie gegebenenfalls deren Gemische. Besonders bevorzugte Copolycarbonate sind solche auf der Basis der Monomere Bis- phenol-A und l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan.
Geeignete Kohlensäurediester im Sinne der Erfindung sind Di-Cg- bis Ci 4-Arylester, vorzugsweise die Diester von Phenol oder alkylsubstituierten Phenolen, also Di- phenylcarbonat oder z.B. Dikresylcarbonat. Bezogen auf 1 Mol Bisphenpol werden die Kohlensäurediester in 1,01 bis 1,30 Mol, bevorzugt in 1,02 bis 1,15 Mol eingesetzt.
Es ist darauf zu achten, dass die Einsatzstoffe, also die Diphenole und die Kohlensäurediarylester frei von Alkali- und Erdalkaliionen sind, wobei Mengen von kleiner 0,1 ppm an Alkali- und Erdalkaliionen toleriert werden können. Derart reine
Diphenole bzw. Kohlensäurediarylester sind erhältlich, indem man die
Kohlensäurediarylester bzw. Diphenole umkristallisiert, wäscht oder destilliert.
Beim erfindungsgemäßen Verfahren soll der Gehalt an Alkali- und Erdalkalimetallionen sowohl im Diphenol als auch im Kohlensäurediester einen Wert von < 0,1 ppm betragen. Der Gesamtgehalt an Chlor der Rohstoffe sollte einen Wert von 2 ppm nicht übersteigen und der Gehalt an verseifbarem Chlor des
Kohlensäurediesters einen Wert von 0,05 ppm nicht übersteigen. Für die Farbe des resultierenden Polycarbonats ist es von Vorteil, wenn die Rohstoffe, also die Diphenole und die Kohlensäurediarylester, im Falle einer destillativen Reinigung der
Rohstoffe im letzten Schritt der Herstellung, die feste Phase nicht durchlaufen haben, also eine Schmelze- bzw. Mischschmelze der Rohstoffe in die Umesterungsreaktion eingesetzt wird oder zumindest einer der Rohstoffe flüssig dosiert wird.
Die in Frage kommenden Polycarbonate können durch den Einsatz geringer Mengen Verzweiger bewußt und kontrolliert verzweigt werden. Einige geeignete Verzweiger sind:
Phloroglucin,
4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten-2, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptan, l,3,5-Tri-(4-hydroxyphenyl)-benzol,
1,1,1 -Tri-(4-hydroxyphenyl)-ethan,
Tri-(4-hydroxyphenyl)-phenylmethan,
2,2-Bis-[4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-propan, 2,4-Bis-(4-hydroxyphenyl-isopropyl)-phenol,
2,6-Bis-(2-hydroxy-5'-methyl-benzyl)-4-methylphenol,
2-(4-Hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan,
Hexa-(4-(4-hydroxyphenyl-isopropyl)-phenyl)-orthoterephthalsäureester,
Tetra-(4-hydroxyphenyl)-methan, Tetra-(4-(4-hydroxyphenyl-isopropyl)-phenoxy)-methan,
1 ,4-Bis-(4',4"-dihydroxytriphenyl)-methyl)-benzol und insbesondere α,α\α"-Tris-(4-hydroxyphenyl)- 1 ,3,5-triisopropylbenzol.
Weitere mögliche Verzweiger sind 2,4-Dihydroxybenzoesäure, Trimesinsäure, Cyanurchlorid und 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol.
Die gegebenenfalls mitzu verwendenden 0,05 bis 2 Mol-%, bezogen auf eingesetzte Diphenole, an Verzweigem, können mit den Diphenolen zusammen eingesetzt werden.
Bevorzugte Katalysatoren sind Verbindungen der allgemeinen Formel 2 und 3:
Figure imgf000009_0001
(Formel 2 und 3)
wobei Rι_4 dieselben oder verschiedene Alkyle, Aryle oder Cycloalkyle sein können und X" ein Anion sein kann, bei dem das korrespondierende Säure-Base-Paar H+ + X- <=> HX einen pKg von <11 besitzt sowie Alkali-/Erdalkalimetall- katalysatoren.
Geeignete Katalysatoren für das genannte Verfahren sind beispielsweise: Tetramethylammoniumhydroxid, Tetramethylammoniumacetat, Tetramethyl- ammoniumfluorid, Tetramethylammoniumtetraphenylboranat, Tetraphenylphospho- niumfluorid, Tetraphenyl-phosphoniumtetraphenylboranat, Dimethyldiphenyl- ammoniumhydoxid, Tetraethylammonium- hydroxid, DBU, DBN oder Guanidin- systeme wie beispielsweise das l,5,7-Triazabicyclo-[4,4,0]-dec-5-en, 7-Phenyl- l,5,7-triazabicyclo-[4,4,0]-dec-5-en, 7-Methyl-l,5,7-triazabicyclo-[4,4,0]-dec-5-en,
7,7'-Hexyliden-di-l,5,7-triazabicyclo-[4,4,0]-dec-5-en, 7,7'-Decyliden-di-l,5,7-tri- azabicyclo-[4,4,0]-dec-5-en, 7,7'-Dodecyliden-di-l,5,7-triazabicyclo-[4,4,0]-dec-5- en oder Phosphazene wie beispielsweise das Phosphazen-Base Pj-t-Oct = tert.-
Octyl-imino-tris-(dimethylamino)-phosphoran, Phosphazen-Base Pj-t-Butyl = tert.- Butyl-imino-tris-(dimethylamino)-phosphoran, BEMP = 2-tert.-Butylimino-2-di- ethylamino- 1 ,3-dimethyl-perhydro- 1 ,3-diaza-2-phosphorin sowie Lithium-,
Natrium-, Kalium-, Cäsium-, Calzium-, Barium-, Magnesium-, -hydroxide. -carbonate, -halogenide, -phenolate, -diphenolate, -fluoride, -acetate, -phosphate, -hydrogenphosphate, -boranate.
Diese Katalysatoren werden in Mengen von 10~2 bis 10"8 Mol, bezogen auf 1 Mol Diphenol, eingesetzt. Die Katalysatoren können auch in Kombination (zwei oder mehrere) miteinander eingesetzt werden.
Die Reaktion der aromatischen Dihydroxyverbindung und des Kohlensäurediesters kann kontinuierlich oder diskontinuierlich beispielsweise in Rührkesseln, Dünn- schichtverdampfern, Rührkesselkaskaden, Extrudern, Knetem und Scheibenreaktoren durchgeführt werden.
Im Falle des Phasengrenzflächenverfahrens als Eingangsverbindungen bevorzugt einzusetzende Verbindungen sind Bisphenole der allgemeinen Formel HO-Z-OH, worin Z ein divalenter organischer Rest mit 6 bis 30 Kohlenstoffatomen ist, der eine oder mehrere aromatische Gruppen enthält. Beispiele solcher Verbindungen sind Bisphenole, die zu der Gruppe der Dihydroxydiphenyle, Bis(hydroxyphenyl)alkane, Indanbisphenole, Bis(hydroxyphenyl)ether, Bis(hydroxyphenyl)sulfone, Bis(hydroxy- phenyl)ketone und α,α'-Bis(hydroxyphenyl)diisopropylbenzole gehören.
Besonders bevorzugte Bisphenole, die zu den vorgenannten Verbindungsgruppen gehören, sind 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol-A), Tetraalkylbisphenol- A, 4,4-(meta-Phenylendiisopropyl)diphenol (Bisphenol M), l,l-Bis-(4-hydroxy- phenyl)-3,3,5-trimethylcyclohexanon sowie gegebenenfalls deren Gemische. Beson- ders bevorzugte Copolycarbonate sind solche auf der Basis der Monomere
Bisphenol-A und l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan. Die erfindungsgemäß einzusetzenden Bisphenolverbindungen werden mit Kohlensäureverbindungen, insbesondere Phosgen, umgesetzt.
Die ebenfalls geeigneten Polyestercarbonate werden durch Umsetzung der bereits genannten Bisphenole, mindestens einer aromatischen Dicarbonsäure und gegebenen- falls Kohlensäure erhalten. Geeignete aromatische Dicarbonsäuren sind beispielsweise Orthophtalsäure, Terephthalsäure, Isophthalsäure, 3,3'- oder 4,4'-Diphenyldi- carbonsäure und Benzophenondicarbonsäuren.
In dem Phasengrenzflächenverfahren verwendete inerte organische Lösungsmittel sind beispielsweise Dichlormethan, die verschiedenen Dichlorethane und Chlor- propanverbindungen, Chlorbenzol und Chlortoluol, vorzugsweise werden Dichlormethan und Gemische aus Dichlormethan und Chlorbenzol eingesetzt.
Die Reaktion kann durch Katalysatoren, wie tertiäre Amine, N-Alkylpiperidine oder
Oniumsalze beschleunigt werden. Bevorzugt werden Tributylamin, Triethylamin und N-Ethylpiperidin verwendet. Als Kettenabbruchmittel und Molmassenregler können ein monofunktionelles Phenol, wie Phenol, Cumylphenol, p.-tert.-Butylphenol oder 4-(l,l,3,3-Tetramethylbutyl)phenol verwendet werden. Als Verzweiger kann bei- spielsweise Isatinbiscresol eingesetzt werden.
Zur Herstellung der für das erfindungsgemäße Verfahren bevorzugt einsetzbaren hochreinen Polycarbonate werden im Falle des Phasengrenzflächenverfahren die Bisphenole in wässriger alkalischer Phase, vorzugsweise Natronlauge, gelöst. Die ge- gebenenfalls zur Herstellung von Copolycarbonaten erforderlichen Kettenabbrecher werden in Mengen von 1,0 bis 20,0 Mol-% je Mol Bisphenol, in der wässrigen alkalischen Phase gelöst oder zu dieser in einer inerten organischen Phase in Substanz zugegeben. Anschließend wird Phosgen in den die übrigen Reaktionsbestandteile enthaltenden Mischer eingeleitet und die Polymerisation durchgeführt.
Gegebenenfalls einzusetzende Kettenabbrecher sind sowohl Monophenole als auch Monocarbonsäuren. Geeignete Monophenole sind Phenol selbst, Alkylphenole wie Kresole, p-tert.-Butylphenol, p-Cumylphenol, p-n-Octylphenol, p-iso-Octylphenol, p-n- Nonylphenol und p-iso-Nonylphenol, Halogenphenole wie p-Chloφhenol, 2,4- Dichloφhenol, p-Bromphenol und 2,4,6-Tribromphenol sowie deren Mischungen. Geeignete Monocarbonsäuren sind Benzoesäure, Alkylbenzoesäuren und Halogen- benzoesäuren.
Bevorzugte Kettenabbrecher sind die Phenole der Formel (I)
Figure imgf000012_0001
worin R Wasserstoff, tert.-Butyl oder ein verzweigter oder unverzweigter C8- und oder C -Alkylrest ist.
Bevorzugter Kettenabbrecher ist Phenol und p-tert.-Butylphenol.
Die Menge an einzusetzendem Kettenabbrecher beträgt 0,1 Mol-% bis 5 Mol-%, bezogen auf Mole an jeweils eingesetzten Diphenolen. Die Zugabe der Kettenabbrecher kann vor, während oder nach der Phosgenierung erfolgen.
Sollte es gewünscht sein, kann der Reaktion noch Verzweiger zugesetzt werden. Geeignete Verzweiger sind die in der Polycarbonatchemie bekannten tri- oder mehr als tri- funktionellen Verbindungen, insbesondere solche mit drei oder mehr als drei phenolischen OH-Gruppen.
Geeignete Verzweiger sind beispielsweise Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4- hydroxyphenyl)-hepten-2, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptan, 1 ,3,5-Tri- (4-hydroxyphenyl)-benzol, 1,1,1 -Tri-(4-hydroxyphenyl)-ethan, Tri-(4-hydroxyphenyl)- phenylmethan, 2,2-Bis-[4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-propan, 2,4-Bis-(4-hy- droxyphenyl-isopropyl)-phenol, 2,6-Bis-(2-hydroxy-5'-methyl-benzyl)-4-methylphenol, 2-(4-Hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan, Hexa-(4-(4-hydroxyphenyl- isopropyl)-phenyl)-orthoterephthalsäureester, Tetra-(4-hydroxyphenyl)-methan, Tetra- (4-(4-hydroxyphenyl-isopropyl)-phenoxy)-methan und 1 ,4-Bis-(4',4"-dihydroxy- triphenyl)-methyl)-benzol sowie 2,4-Dihydroxybenzoesäure, Trimesinsäure, Cyanur- chlorid und 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol.
Die Menge der gegebenenfalls einzusetzenden Verzweiger beträgt 0,05 Mol-% bis 2 Mol-%, bezogen wiederum auf Mole an jeweils eingesetzten Diphenolen.
Die Verzweiger können entweder mit den Diphenolen und den Kettenabbrechem in der wässrig alkalischen Phase vorgelegt werden, oder in einem organischen Lösungsmittel gelöst vor der Phosgenierung zugegeben werden.
Ein Teil, bis zu 80 Mol-%, vorzugsweise von 20 bis 50 Mol-% der Carbonat- Gruppen in den Polycarbonaten können durch aromatische Dicarbonsäureester- Gruppen ersetzt sein.
Für den Einsatz im erfindungsgemäßen Verfahren besonders bevorzugt geeignete thermoplastische Polycarbonate haben ein mittleres Molekulargewicht Mw (ermittelt durch Messung der relativen Viskosität bei 25°C in Dichlormethan und einer Konzentration von 0,5 g Polycarbonat/100 ml Dichlormethan) von 12.000 bis 400.000, vorzugsweise von 12.000 bis 80.000 und insbesondere von 15.000 bis 40.000.
Während der Phasengrenzflächenreaktion wird die wässrige Phase in der organischen Phase emulgiert. Dabei entstehen Tröpfchen unterschiedlicher Größe. Nach der Reaktion wird die organische, das Polycarbonat enthaltende Phase, üblicherweise mehrmals mit einer wässrigen Flüssigkeit gewaschen und nach jedem Waschvorgang von der wässrigen Phase soweit wie möglich getrennt. Die Polymerlösung ist nach der Wäsche und Abtrennung der Waschflüssigkeit trüb. Als Waschflüssigkeit werden wässrige Flüssigkeit zur Abtrennung des Katalysators, eine verdünnte Mineralsäure wie HC1 oder H PO4 und zur weiteren Reinigung vollentsalztes Wasser eingesetzt. Die Konzentration von HC1 oder H3PO in der Waschflüssigkeit kann beispielsweise 0,5 bis 1,0 Gew.% betragen. Die organische Phase kann beispielsweise fünfmal gewaschen werden. Als Phasentrennvorrichtungen zur Abtrennung der Waschflüssigkeit von der organischen Phase können grundsätzlich bekannte Trenngefäße, Phasenseparatoren, Zentrifugen oder Coalescer oder auch Kombinationen dieser Einrichtungen verwendet wer- den.
Zum Erhalt des hochreinen Polycarbonats wird das Lösungsmittel abgedampft. Das Abdampfen kann in mehreren Verdampferstufen erfolgen. Gemäß einer weiteren bevorzugten Ausführungsform kann das Lösungsmittel oder ein Teil des Lösungs- mittels durch Sprühtrocknung entfernt werden. Das hochreine Polycarbonat fällt dann als Pulver an. Gleiches gilt für die Gewinnung des besonders bevorzugt geeigneten hochreinen Polycarbonats durch Fällung aus der organischen Lösung und anschließender Resttrocknung. Eine andere bevorzugte Ausfuhrungsform ist die Extrusion zur Verdampfung von Restlösungsmittel. Eine andere Variante der Auf- arbeitung stellt die Strangverdampfertechnologie dar.
Nach den unterschiedlich möglichen Entfernungsmethoden des Lösungsmittels bzw. im Falle des Schmelzepolycarbonatverfahrens Restmonomerentfernung/Reaktion wird das Polycarbonat in dem erfindungsgemäßen Granulierverfahren eingesetzt.
Die besonders bevorzugte Form der Granulierung ist beispielsweise derart aufgebaut, dass aus einer wechselbaren Düse mit integriertem Sieb in 1 bis 5 Reihen, vorzugsweise in 1 bis 3 Reihen, die parallel oder zu einander versetzt sein können, senkrecht nach unten austretende heiße Polymerstränge von einem durch ein Wasserbad laufenden Bandpaar automatisch erfasst, gekühlt und auf den gewünschten Durchmesser verstreckt werden.
Das Bandpaar schiebt die Polymerstränge über eine Trockenstrecke, in der das anhaftende Oberflächenwasser durch Saugschlitze und Blasdüsen weitgehend entfernt wird. Die von der Trockenstrecke kommenden Polymerstränge werden im Granulator von einem Einzugswalzenpaar erfasst, vorgeschoben und von einem rotierenden Schermesser, das mit geringem Spiel an einem Standmesser oder Ambossmesser vorbeidreht, zu Granulat geschnitten.
Anschließend fällt das geschnittene Granulat über eine Rutsche auf ein Klassiersieb oder in eine Zentrifuge, um den evtl. anfallenden Überkornanteil abzutrennen. Das Klassiersieb bzw. die Zentrifuge werden abgesaugt, um den entstehenden Wasserdampf, gebildet durch an Granulatkörnern anhaftendes verdampfendes Wasser aus der Granulieranlage, abzuziehen.
Die Granulierungsvomchtung steht in einem geschlossenen Produktionsraum, der insbesondere unter Überdruck gegenüber der Umgebung gehalten wird. Das erfolgt dergestalt, dass Außenluft der Umgebung durch einen Ventilator über einen Vor- und Nacherhitzer zur Trocknung der Luft angesaugt und anschließend über ein Vor- und
Feinfiltersystem gedrückt wird. Von dort gelangt die getrocknete und gefilterte Luft über Kanäle in den Ort der Granulierung. Der Lufteintritt erfolgt wiederum bevorzugt über mehrere Lufteinlässe.
Das Vor- und Feinfiltersystem filtriert insbesondere dergestalt, dass die Luft bevorzugt zunächst über Vorfilter der Filterklasse EU 5 bis EU7, danach über Feinfilter der Filterklasse EU 7 bis EU 9 und schließlich über Endfilter der Filterklasse EU 13 bis EU 14 gefiltert wird (nach DIN 24183 bzw. EUROVENT 4/5, 4/4).
Bevorzugt findet im Granulierverfahren ein ca. 5 bis 100 facher Luftwechsel pro
Stunde, bevorzugt ein 10 bis 70 facher Luftwechsel pro Stunde am Ort der Granulierung statt.
Die mit dem Polymeren in Kontakt tretende Kühlluft bzw. Umgebungsluft durch- strömt in einer besonderen Ausführung der Erfindung den Raum insbesondere im
Produktionsbereich laminar, bevorzugt von oben nach unten. Das Innere des Raumes weist insbesondere einen leichten Überdruck von 1 bis 30 Pa gegenüber der Umgebung des Raumes auf.
Erfindungsgemäße Formköφer aus dem hochreinen Polycarbonat sind insbesondere optische und magnetooptische Datenspeicher wie Mini Disk, Compact Disk oder Digital Versatile Disk, optische Linsen und Prismen, Verscheibungen für Kraftfahrzeuge und Scheinwerfer, Verscheibungen anderer Art wie für Gewächshäuser, sogenannte Stegdoppelplatten oder Hohlkammeφlatten oder Massivplatten. Hergestellt werden diese Formköφer durch Spritzgussverfahren, Extrusionsverfahren und
Extrusions-Blasformverfahren unter Verwendung des erfindungsgemäßen Polycarbonats mit dem geeigneten Molekulargewicht.
Der bevorzugte Molekulargewichtsbereich für die Datenträger beträgt 12.000 bis 22.000, für Linsen und Verscheibungen 22.000 bis 32.000 und derjenige von Platten und Hohlkammeφlatten 28.000 bis 40.000. Alle Molekulargewichtsangaben beziehen sich auf das Gewichtsmittel der Molmasse.
Den erfindungsgemäßen Polycarbonaten können noch die üblichen Additive wie UV- Stabilisatoren, Antioxidantien und Entformungsmittel, in den für thermoplastischen
Polycarbonaten üblichen Mengen zugeführt werden.
Die erfindungsgemäßen Formköφer weisen gegebenenfalls eine Oberflächenvergütung auf, beispielsweise eine Kratzfestbeschichtung.
Zur Herstellung von optischen Linsen und Folien oder Scheiben für magnetooptische Datenträger werden die erfindungsgemäßen Polycarbonate vorzugsweise mit einem Molekulargewicht von 12.000 bis 40.000 eingesetzt, da sich ein Material mit einer Molmasse in diesem Bereich sehr gut thermoplastisch formen lässt. Die Formköφer können durch Spritzgussverfahren hergestellt werden. Dazu wird das Harz auf Temperaturen von 300 bis 400°C geschmolzen und die Form im allgemeinen auf einer Temperatur von 50 bis 140°C gehalten.
Zur Herstellung beispielsweise eines plattenformigen Datenspeichermaterials wird der erfindungsgemäße hochreine Polycarbonatköφer in dafür geeigneten, bekannten
Kunststoffspritzgießmaschinen hergestellt.
Das folgende Beispiel dient der Erläuterung der Erfindung.

Claims

BeispieleBeispiel 1Zur Herstellung der Polycarbonate wird BPA (BPA wird als Schmelze kontinuierlich mit einer wässrigen 6,5 %igen NaOH zusammengebracht) in einer wässrigen 6,5 %igen NaOH unter Sauerstoffausschluss gemischt. Die eingesetzte NaOH und das VE- Wasser wird mit 0,6 μa (NaOH) bzw. 0,1 μa Filter (VE- Wasser) der Fa. Pall filtriert. Diese Natriumdibisphenolatlösung wird nun in die Polycarbonatreaktion mit Phosgen und t-Butylphenol als Kettenabbrecher eingesetzt. Nach der Reaktion wird die Reaktionslösung über einen 1 ,0 μnom Beutelfilter filtriert und der Wäsche zugeführt. Hier wird mit 0,6 %iger Salzsäure gewaschen und anschließend mit filtriertem VE-Wasser noch 5 mal nachgewaschen. Die organische Lösung wird von der wässrigen abgetrennt und nach dem Erwärmen der organischen Lösung auf 55°C zuerst mit 0,6 μa Filter und anschließend über ein 0,2 μa Filter filtriert. Jetzt wird dasPolymer durch Abdampfen vom Lösungsmittel befreit, und es werden der Poly- carbonatschmelze 500 ppm Glycerinmonostearat (Entformungsmittel) zugeführt, das zuvor über einen 0,2 μa Filter filtriert wurde. Anschließend wird das Polycarbonat, welches ein Mw von 19 500 aufweist dem Granulierungsprozess zugeführt.Die Granulierung des Polycarbonats wird unter folgenden Bedingungen durchgeführt: die Umgebungsluft wird stufenweise filtriert und zwar dergestalt, dass die Luft zunächst über Vorfilter der Filterklasse EU 6, danach über Feinfilter der Filterklasse EU 8 und schließlich über Endfilter der Filterklasse EU 13 filtriert wird (nach DDSf 24 183 bzw. EUROVENT 4/5, 4(4).Hierbei wird außerdem ein ca. 60facher Luftwechsel/h, am Ort der Granulierung sichergestellt; die Luft strömt dabei laminar von oben nach unten. Am Ort derGranulierung herrscht ein leichter Überdruckbereich von 10 Pa (gegenüber der Um- gebung des Raumes). Das bei der Granulierung eingesetzte Kühlwasser wird durch ein 0,1 μa Filter der Fa. Pall filtriert und weist nach der Filtration 475 000 Mio. Partikel/1 Wasser >0,5 μ auf.Aus dem Polycarbonat wird nun eine Folie extrudiert und diese mit dem u.g. Folien- Laser-Scan-Test auf Störstellen ausgetestet.Die Extrusionsfolie ist 200 μm dick und 60 mm breit. Ein He-Ne-Laser ("Spotdiameter" von 0,1 mm) tastet die Folie, mit einer Scanfrequenz von 5000 Hz in der Breiterichtung und eine Transportgeschwindigkeit von 5 m/s in der Längsrichtung, ab. Dabei werden alle Störstellen, die eine Streuung des durchgehenden Laserstrahls(ab 0,10 mm Durchmesser) bewirken, durch einen Photomultipler detektiert und softwaremäßig gezählt. Die Anzahl optische Störstellen pro kg Polycarbonat bzw. pro m2 Folie, ist ein Maß für die Oberflächenqualität dieser Folie bzw. Reinheit des PC.Die Ergebnisse des Tests sind mit den beiden Vergleichsversuchen in Tabelle 1 zu- sammengefasst. Hieraus ergibt sich die Überlegenheit des erfindungsgemäßen Verfahrens im Vergleich zur Granulation ohne Luftfilterung.Beispiel 2Es wird wie unter Beispiel 1 beschrieben verfahren, jedoch wird auf die Filterung des Kühlwassers bei der Granulierung verzichtet. Das Ergebnis eines Laser-Scan-Test ist in Tabelle 1 wiedergegeben.Vergleichsbeispiel 1Es wird verfahren wie in Beispiel 1 , nur wird auf die Filtration der Umgebungsluft verzichtet. Man erhält dann die in Tabelle 1 beschriebenen Testergebnisse. Vergleichsbeispiel 2Es wird verfahren wie in Beispiel 1 , nur wird auf die Filtration der Umgebungsluft und die Filtration des Kühlwassers verzichtet.Man erhält dann die in Tabelle 1 beschriebenen Testergebnisse.Tabelle 1Auswertung Extrusionsfohe mit Folien-Laser-Scan-TestPatentansprüche
1. Verfahren zur Herstellung von Polymergranulat, insbesondere Polycarbonat- granulat, aus Polymerschmelzen, insbesondere Polycarbonatschmelzen durch Schmelzeextrusion des Polymeren, Abkühlen der Schmelze in einer Kühl- flüssigkeit und Granulieren des verfestigten Polymeren, dadurch gekennzeichnet, dass die mit dem Polymeren in Kontakt tretende Kühlluft bzw. Umgebungsluft einen Anteil an Feststoffpartikeln von maximal 10 ppm, bevorzugt maximal 5 ppm, besonders bevorzugt maximal 0,5 ppm aufweist.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Schmelzeextrusion, das Abkühlen der Schmelze und Granulieren des Polymeren in einem gekapselten Raum durchgeführt wird
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die
Granulierung in einem Raum durchgeführt wird, wobei die mit dem Polymermaterial in Kontakt tretende Umgebungsluft stufenweise filtriert wird und zwar dergestalt, dass die Luft bevorzugt zunächst über Vorfilter der Filterklasse EU 5 bis EU 7, danach über Feinfilter der Filterklasse EU 7 bis EU 9 und schließlich über Endfilter der Filterklasse EU 13 bis EU 14 gefiltert wird
(wobei die Filterklassen nach DIN 24183 bzw. EUROVENT 4/5, 4/4 im Stand August 1999 bestimmt sind).
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein ca. 5 bis 100 facher Luftwechsel pro Stunde, bevorzugt ein 10 bis
70 facher Luftwechsel pro Stunde am Ort der Granulierung stattfindet.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die mit dem Polymeren in Kontakt tretende Kühlluft bzw. Umgebungsluft den Raum insbesondere im Produktionsbereich laminar, bevorzugt von oben nach unten durchströmt.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Innere des Raumes einen leichten Überdruck von 1 bis 30 Pa gegenüber der Umgebung des Raumes aufweist.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Polymere transparente Polycarbonate, insbesondere Homopolycarbonate Copolycarbonate oder deren Gemische, besonders bevorzugt aromatische Polyestercarbonate oder Polycarbonate, die im Gemisch mit aromatischen Polyestercarbonaten vorliegen, verwendet werden.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass jede mit dem Polymer in Kontakt tretende Kühlflüssigkeit einen Anteil von Fremdpartikeln von höchstens 2 Mio. Teilchen pro 1 Wasser (Teilchengröße >0,5 μm), bevorzugt höchstens 1 Mio. Teilchen pro 1 Wasser (Teilchengröße
>0,5 μm), besonders bevorzugt höchstens 0,5 Mio. Teilchen pro 1 Wasser (Teilchengröße >0,5 μm) hat.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass alle Einsatzstoffe, das Polymer, bevorzugt gelöst im Lösungsmittel einschließlich der Polymeradditive, und die Kühlflüssigkeit vor dem Einsatz gegebenenfalls in mehreren Stufen feingefiltert werden.
10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass die Porengröße der Filtermaterialien von 0,01 bis 5 μm, vorzugsweise von 0,02 bis 1,5 μm, bevorzugt von etwa 0,05 μm bis 1 ,0 μm beträgt.
11. Polymergranulat erhältlich aus einem Verfahren gemäß einem der Ansprüche 1 bis 10.
2. Transparente Formköφer hergestellt aus Polymergranulat gemäß Anspruch 11.
PCT/EP2000/010401 1999-11-03 2000-10-23 Hochreine polymergranulate und verfahren zu deren herstellung WO2001032381A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/111,999 US6720406B1 (en) 1999-11-03 2000-10-23 High-purity polymer granules and method for the production thereof
BR0015332-0A BR0015332A (pt) 1999-11-03 2000-10-23 Granulados de polìmero de alta pureza e processos para produção dos mesmos
KR1020027005678A KR20020055592A (ko) 1999-11-03 2000-10-23 고순도 중합체 입상체 및 그의 제조 방법
DE50006703T DE50006703D1 (de) 1999-11-03 2000-10-23 Verfahren zur herstellung hochreiner polymergranulate
EP00969531A EP1237692B1 (de) 1999-11-03 2000-10-23 Verfahren zur herstellung hochreiner polymergranulate
JP2001534568A JP2003512944A (ja) 1999-11-03 2000-10-23 高純度ポリマーの顆粒及びその製法
AU79215/00A AU7921500A (en) 1999-11-03 2000-10-23 High-purity polymer granules and method for the production thereof
HK03104487.9A HK1052155A1 (zh) 1999-11-03 2003-06-23 高純度聚合物顆粒及其生產方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19952852A DE19952852A1 (de) 1999-11-03 1999-11-03 Hochreine Polymergranulate und Verfahren zu deren Herstellung
DE19952852.7 1999-11-03

Publications (1)

Publication Number Publication Date
WO2001032381A1 true WO2001032381A1 (de) 2001-05-10

Family

ID=7927753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/010401 WO2001032381A1 (de) 1999-11-03 2000-10-23 Hochreine polymergranulate und verfahren zu deren herstellung

Country Status (13)

Country Link
US (1) US6720406B1 (de)
EP (1) EP1237692B1 (de)
JP (1) JP2003512944A (de)
KR (1) KR20020055592A (de)
CN (1) CN1313257C (de)
AU (1) AU7921500A (de)
BR (1) BR0015332A (de)
DE (2) DE19952852A1 (de)
ES (1) ES2222239T3 (de)
HK (1) HK1052155A1 (de)
RU (1) RU2002114825A (de)
TW (1) TWI224118B (de)
WO (1) WO2001032381A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062459A1 (fr) * 2000-02-25 2001-08-30 Teijin Limited Procede de maintien de pastilles de polycarbonate
JP2004009303A (ja) * 2002-06-03 2004-01-15 Fuji Photo Film Co Ltd プラスチック製光学部品の製造方法
US8079158B2 (en) * 2004-09-02 2011-12-20 Grupo Petrotemex, S.A. De C.V. Process for separating and drying thermoplastic particles under high pressure
US7875184B2 (en) * 2005-09-22 2011-01-25 Eastman Chemical Company Crystallized pellet/liquid separator
DE102006051309A1 (de) * 2006-10-31 2008-05-08 Bayer Materialscience Ag Substratmaterialien für transparente Spritzgusskörper
WO2008052666A1 (de) * 2006-10-31 2008-05-08 Bayer Materialscience Ag Verfahren und vorrichtung für die kontrolle der qualität einer granulatcharge
DE102006051306A1 (de) * 2006-10-31 2008-05-08 Bayer Materialscience Ag Substratmaterialien für Extrusionsfolien mit geringen Oberflächenstörungen
FR2959241B1 (fr) * 2010-04-23 2013-11-15 Zeta Procede de fabrication de pellets et pellets obtenus par le procede.
US11457605B2 (en) 2012-09-11 2022-10-04 Pioneer Pet Products, Llc Extruded self-clumping cat litter
US10028481B2 (en) 2012-09-11 2018-07-24 Pioneer Pet Products, Llc Granular absorbent and system and method for treating or processing granular absorbent during granular absorbent transport
US11602120B2 (en) 2012-09-11 2023-03-14 Pioneer Pet Products, Llc Lightweight coated extruded granular absorbent
US11470811B2 (en) 2012-09-11 2022-10-18 Pioneer Pet Products, Llc Extruded granular absorbent
US9266088B2 (en) 2012-09-11 2016-02-23 Pioneer Pet Products, Llc Method of making extruded self-clumping cat litter
JP6006653B2 (ja) * 2013-02-04 2016-10-12 出光興産株式会社 ポリカーボネート樹脂用押出造粒装置およびポリカーボネート樹脂押出造粒方法
WO2015112961A1 (en) 2014-01-25 2015-07-30 Pioneer Pet Products, Llc Granular absorbent and system and method for treating or processing granular absorbent during granular absorbent transport

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184814A (ja) * 1984-03-05 1985-09-20 Mitsubishi Gas Chem Co Inc ポリカーボネート成形材料の製法
EP0293769A2 (de) * 1987-05-30 1988-12-07 Idemitsu Petrochemical Co., Ltd. Polycarbonat für Plattensubstrate
JPH04306227A (ja) * 1991-04-03 1992-10-29 Teijin Chem Ltd 光学成形品用成形材料の製造方法
EP0615996A1 (de) * 1992-02-27 1994-09-21 Ge Plastics Japan Limited Verfahren zur Herstellung von Polycarbonatzusammensetzungen mit optischer Güte
JPH08132437A (ja) * 1994-11-08 1996-05-28 Mitsubishi Gas Chem Co Inc 透明ポリカーボネート樹脂成形材料の製法
US5969084A (en) * 1997-04-14 1999-10-19 Mitsubishi Gas Chemical Company Process for producing polycarbonate resin with high flowability
WO2000009582A1 (de) * 1998-08-13 2000-02-24 Bayer Aktiengesellschaft Hochreine polycarbonate und verfahren zu deren herstellung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646020A (en) * 1987-06-30 1989-01-10 Idemitsu Petrochemical Co Production of polycarbonate for disk base
JPH0544663Y2 (de) * 1991-03-07 1993-11-12
US5475201A (en) * 1993-02-25 1995-12-12 Black & Decker Inc. Method for identifying a diffusely-reflecting material
MY119116A (en) * 1996-01-16 2005-03-31 Asahi Chemical Ind Method of producing polycarbonate pellets
JP2855572B2 (ja) * 1996-01-16 1999-02-10 旭化成工業株式会社 ポリカーボネートペレット及びその製造方法
WO1998008217A1 (fr) * 1996-08-23 1998-02-26 Sony Corporation Moyen de support de disque et dispositif de disque
JP2000289022A (ja) * 1999-04-08 2000-10-17 Nippon Zeon Co Ltd ペレットおよびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184814A (ja) * 1984-03-05 1985-09-20 Mitsubishi Gas Chem Co Inc ポリカーボネート成形材料の製法
EP0293769A2 (de) * 1987-05-30 1988-12-07 Idemitsu Petrochemical Co., Ltd. Polycarbonat für Plattensubstrate
JPH04306227A (ja) * 1991-04-03 1992-10-29 Teijin Chem Ltd 光学成形品用成形材料の製造方法
EP0615996A1 (de) * 1992-02-27 1994-09-21 Ge Plastics Japan Limited Verfahren zur Herstellung von Polycarbonatzusammensetzungen mit optischer Güte
JPH08132437A (ja) * 1994-11-08 1996-05-28 Mitsubishi Gas Chem Co Inc 透明ポリカーボネート樹脂成形材料の製法
US5969084A (en) * 1997-04-14 1999-10-19 Mitsubishi Gas Chemical Company Process for producing polycarbonate resin with high flowability
WO2000009582A1 (de) * 1998-08-13 2000-02-24 Bayer Aktiengesellschaft Hochreine polycarbonate und verfahren zu deren herstellung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198544, Derwent World Patents Index; Class A23, AN 1985-273100, XP002158797 *
DATABASE WPI Section Ch Week 199250, Derwent World Patents Index; Class A23, AN 1992-410420, XP002158798 *
DATABASE WPI Section Ch Week 199631, Derwent World Patents Index; Class A23, AN 1996-305054, XP002158799 *

Also Published As

Publication number Publication date
AU7921500A (en) 2001-05-14
EP1237692B1 (de) 2004-06-02
ES2222239T3 (es) 2005-02-01
RU2002114825A (ru) 2004-02-20
TWI224118B (en) 2004-11-21
DE50006703D1 (de) 2004-07-08
EP1237692A1 (de) 2002-09-11
JP2003512944A (ja) 2003-04-08
DE19952852A1 (de) 2001-05-10
CN1387470A (zh) 2002-12-25
KR20020055592A (ko) 2002-07-09
BR0015332A (pt) 2002-07-09
CN1313257C (zh) 2007-05-02
HK1052155A1 (zh) 2003-09-05
US6720406B1 (en) 2004-04-13

Similar Documents

Publication Publication Date Title
EP1237692B1 (de) Verfahren zur herstellung hochreiner polymergranulate
EP1203042B1 (de) Polycarbonat und dessen formkörper
WO2000058385A1 (de) Hochverzweigte polykondensate
EP2285865A1 (de) Alkylphenol zur einstellung des molekulargewichtes und copolycarbonat mit verbesserten eigenschaften
DE102009052363A1 (de) Polycarbonate mit verbesserter Transmission
EP2098553B1 (de) Verfahren zur Herstellung von Polycarbonat nach dem Phasengrenzflächenverfahren
DE102008008841A1 (de) Verfahren zur Herstellung von Polycarbonaten
DE102008008842A1 (de) Alkylphenol zur Einstellung des Molekulargewichtes und Polycarbonatzusammensetzungen mit verbesserten Eigenschaften
EP1265944A1 (de) Verfahren zur herstellung von hochreinem polycarbonat und polycarbonat höchster reinheit
EP1240240B1 (de) Polycarbonat-substrate
EP1240249B1 (de) Polycarbonat-substrate
WO2001032746A1 (de) Verfahren zur herstellung von polycarbonaten
WO2000009582A1 (de) Hochreine polycarbonate und verfahren zu deren herstellung
WO2001051541A1 (de) Polycarbonat-substrate
DE4039023A1 (de) 2-stufen-verfahren zur herstellung von halogenfreien aromatischen polycarbonaten
DE10248951A1 (de) Herstellung von Polycarbonat mit Hilfe eines Filtrationskonzeptes
WO2004035654A1 (de) Verfahren zur abtrennung von restmonomeren und oligomeren aus polycarbonat
EP1313791A1 (de) Verfahren zur herstellung von polycarbonat und produkten daraus
EP1240231A1 (de) Optische datenträger und verfahren zu ihrer herstellung
DE10135314A1 (de) Aufarbeitung von Polymersyntheselösungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000969531

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 534568

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 008152063

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10111999

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027005678

Country of ref document: KR

ENP Entry into the national phase

Ref country code: RU

Ref document number: 2002 2002114825

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1020027005678

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000969531

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000969531

Country of ref document: EP